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using static forecasts, as well as different measures of forecast errors. Finally, we propose a 
new class of models which combine the relevant aspects of the financial and structural 
specifications proposed in the literature (“mixed” models). Our empirical findings suggest 
that, irrespective of the shape of the loss function, the class of financial models is to be 
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and structural models. Results of the Diebold and Mariano test are not conclusive, for the 
loss differential seems to be statistically insignificant in the large majority of cases. Although 
the random walk model is not statistically outperformed by any of the alternative models, 
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 Oil Price Forecast Evaluation 

with Flexible Loss Functions 
 
 
 
 
 
 
 

Abstract.  The empirical literature is very far from any consensus about the appropriate model for 
oil price forecasting that should be implemented. Relative to the previous literature, this paper is 
novel in several respects. First of all, we test and systematically evaluate the ability of several 
alternative econometric specifications proposed in the literature to capture the dynamics of oil 
prices. Second, we analyse the effects of different data frequencies on the coefficient estimates and 
forecasts obtained using each selected econometric specification. Third, we compare different 
models at different data frequencies on a common sample and common data. Fourth, we evaluate 
the forecasting performance of each selected model using static forecasts, as well as different 
measures of forecast errors. Finally, we propose a new class of models which combine the relevant 
aspects of the financial and structural specifications proposed in the literature (“mixed” models). 
Our empirical findings suggest that, irrespective of the shape of the loss function, the class of 
financial models is to be preferred to time series models. Both financial and time series models are 
better than mixed and structural models. Results of the Diebold and Mariano test are not conclusive, 
for the loss differential seems to be statistically insignificant in the large majority of cases. 
Although the random walk model is not statistically outperformed by any of the alternative models, 
the empirical findings seem to suggest that theoretically well-grounded financial models are valid 
instruments for producing  accurate forecasts of the WTI spot price.  
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1 Introduction 

The relevance of oil in the world economy is undisputable. According to Eni (2010), the world 

oil production in 2009 amounted to 82,165 thousand barrels per day (tbd). OPEC countries 

produced 33,363 tbd (40.6% of the world oil production) in 2009, while OECD countries and 

Europe (25 countries) were responsible of 19,427 tbd (23.6%) and 2,187 tbd (2.7%), respectively. 

At 1 January 2010 world oil stocks were estimated at 1,191,066 million barrels. If OPEC countries 

alone hold 80.2% of world oil reserves, OECD and European countries can directly count only on 

7% and 0.8%, respectively. Moreover, world oil consumption in 2009 was measured in 85,006 tbd, 

59.6% of which originates from the OECD countries. The impact of oil on the financial markets is 

at least equally important. The NYMEX average daily open interest volume (OIV)1 on oil futures 

and options contracts, which was equal to 634,549 contracts during the period 2002-2005, increased 

to 1,255,986 contracts during the period 2006-2010 (source: Commodity Futures Trading 

Commission, 2010). 

Moreover, the peculiar nature of oil price dynamics has attracted the attention of many 

researchers in recent years. As an example, in Figure 1 we report the behaviour of the WTI spot 

price over the period January 1986 - December 2005. From an inspection of this graph, it is easy to 

verify that both level and volatility of WTI spot price are highly sensitive to specific economic and 

geo-political events. For instance, the small price fluctuations of  the years 1986-1990 are the result 

of the OPEC’s production quotas repeated adjustments. The 1990 sharp increase in WTI spot price 

is obviously due to the Gulf war. The remarkable price falls of the period 1997-1998 coincide with 

the pronounced slowdown of Asian economic growth. The reduction in OPEC’s production quotas 

of 1999 has been followed immediately by a sharp price increase. Finally, if the price decreases in 

2001 are related to terrorist attack of  11 September, the reduction of the WTI spot price levels 

recorded in the period 2002-2005 are again justified by falling OPEC production quotas and spare 

capacity.   

The more recent evolution of the WTI spot price demonstrates how oil price forecasting is 

challenging. On 11 August 2005 oil price has risen to over US$ 60 per barrel (pb), while one year 

later it has topped out at the record level of US$ 77.05 pb. Experts have again attributed the spike in 

oil price to a variety of economic and geo-political factors, including the North Korean crisis, the 

Israel-Lebanon conflict, the Iranian nuclear threat and the decline in US oil reserves. At the end of 

the summer 2006, the WTI oil price has begun to decrease and reached the level of US$ 56.82 pb 

                                                 
1 Open interest volume is measured as the sum of all long contracts (or, equivalently, as the sum of all short contracts) 
held by market participants at the end of a trading day. It is a proxy for the flow of money into the oil futures and 
options market. 
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on 20 October 2006. In the meantime, OPEC has announced production cuts to stop the sliding 

price. On 16 January 2007 prices have been even lower: US$ 51.21 pb for the WTI spot price and 

US$ 51.34 for the first position of the NYMEX oil futures contract. 

 Given the relevance of oil in the world economy and the peculiar characteristics of the oil price 

time series, it is hardly surprising that considerable effort has been devoted to the development of 

different types of econometric models for oil price forecasting. 

Several specifications have been proposed in the economic literature. Some are based on 

financial theory and concentrate on the relationship between spot and futures prices (“financial” 

models). Others assign a key role to variables explaining the characteristics of the physical oil 

market (“structural” models). These two main groups of models have often been compared to 

standard time series models, such as the random walk and the pure first-order autoregressive model, 

which are simple and, differently from financial and structural models, do not rely on additional 

explanatory variables. 

It should be noticed that most of the econometric models for oil price forecasting available in 

the literature are single-equation, linear reduced forms. Two recent noticeable exceptions are 

represented by Moshiri and Foroutan (2006) and Dees et al. (2007). The first study uses a single-

equation, non-linear artificial neural network model to forecast daily crude oil futures prices over 

the period 4 April 1983 - 13 January 2003. The second contribution discusses a multiple-equation, 

linear model of the world oil market which specifies oil demand, oil supply for non-OPEC 

producers, as well as a price rule including market conditions and OPEC behaviour. The forecasting 

performance of this model is assessed on quarterly data over the period 1995-2000.  

The empirical literature is very far from any consensus about the appropriate model for oil 

price forecasting that should be implemented. Findings vary across models, time periods and data 

frequencies. This paper provides fresh new evidence to bear on the following key question: does a 

best performing model for oil price forecasting really exist, or aren’t accurate oil price forecasts 

anything more than a mere illusion?  

Relative to the previous literature, the paper is novel in several respects. 

First of all, in this paper we test and systematically evaluate the ability of several alternative 

econometric specifications proposed in the literature to capture the dynamics of oil prices. We have 

chosen to concentrate our investigation on single-equation and multiple-equations linear reduced 

forms, since models of this type are the most widely used in the literature and by the practitioners. 

In this respect, our study complements the empirical findings presented in Moshiri and Foroutan 

(2006), which are focused on the forecasting performance of a single non-linear model.  
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Second, this paper analyses the effects of different data frequencies (daily, weekly, monthly 

and quarterly) on the coefficient estimates and forecasts obtained using each selected econometric 

specification. The factors which potentially affect the goodness of fit and forecasting performance 

of an econometric model are numerous, the most important being sample period and data frequency. 

The fact that no unanimous conclusions could be drawn by previous studies on the forecasting 

performance of similar models may depend, among other things, upon the particular data frequency 

used in each investigation. 

Third, in this paper we compare different models at different data frequencies on a common 

sample and common data. For this purpose, we have constructed specific data sets which enable us 

to evaluate different types of econometric specifications involving different explanatory variables 

on the same sample period. Within our composite data base, the WTI spot oil price as well as the 

majority of the explanatory variables are recorded at different frequencies. 

Fourth, we evaluate the forecasting performance of each selected model using static one step-

ahead forecasts, as well as different measures of forecast errors based on symmetric and asymmetric 

loss functions. At the same time, we present formal statistical procedures for comparing the 

predictive ability of the models estimated.  

Finally,  we propose a new class of models, namely the mixed models, which combine the 

relevant aspects of the financial and structural specifications proposed in the literature.   

The paper is organized as follows. In Section 2 we briefly review the existing empirical 

literature related to oil price forecasting. Section 3 presents and describes the data collected for the 

empirical analysis. In Section 4 the empirical results obtained by forecasting oil prices with 

alternative econometric models are discussed. The performance of each model is analysed using 

different measures of forecasting ability and graphical evaluation “within” each class of models (i.e. 

financial, structural, time series and mixed models). Section 5 summarizes the forecasting 

performance of the alternative specifications, with particular emphasis on  “between”-class 

analogies and differences. Some conclusions and directions for future research are presented in 

Section 6.  

 

 

2 The existing literature on oil price forecasting 

The literature on oil price forecasting has focused on two main classes of linear, single-

equation, reduced-form econometric models. The first group (“financial” models) includes models 

which are directly inspired by financial economic theory and based on the market efficiency 

hypothesis (MEH), while models belonging to the second class (“structural” models) consider the 
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effects of oil market agents and real variables on oil prices.2 Both financial and structural models 

often use pure time series specifications for benchmarking.3  

 

2.1 Financial models 

In general, financial models for oil price forecasting examine the relationship between the oil 

spot price at time t (St) and the oil futures price at time t with maturity T (Ft), analyzing, in 

particular, whether futures prices are unbiased and efficient predictors of spot prices. The reference 

model is:  

 

1101 +++=+ ttt FS εββ  (1) 

 

where the joint null hypothesis of unbiasedness (β0=0 and β1=1) should not be rejected, and no 

autocorrelation should be found in the error terms (efficiency). A rejection of the joint null 

hypothesis on the coefficients β0 and β1 is usually rationalised by the literature in terms of the 

presence of a time-varying risk premium. 

A sub-group of models, which are also based on financial theory but have been less 

investigated, exploits the following spot-futures price arbitrage relationship: 

 

))(( tTr

tt eSF
−−+

=
δω

 
(2) 

 

where r is the interest rate, ω is the cost of storage and δ  is the convenience yield.4 

Samii (1992) attempts at unifying the two approaches described in equations (1) and (2) by 

introducing a model where the spot price is a function of the futures price and the interest rate. 

Using both daily (20 September 1991 - 15 July 1992) and monthly (January 1984 - June 1992) data 

on WTI spot price and futures prices with three- and six-month maturity, he concludes that the role 

                                                 
2 As pointed out in the Introduction and at the beginning of  Section 2, the models analysed in this paper are linear, 
single-equation, reduced-forms. In this context, we use the term “structural model” to identify a specification whose 
explanatory variables capture the real and strategic  (as opposed to financial) aspects of the oil market.     
3 Interesting exceptions are Pyndyck (1999) and Radchenko (2005), who propose alternative forecasting models in a 
pure time series framework. See Section 2.2 for details. 
4 The arbitrage relationship (2) means that the futures price must be equal to the cost of financing the purchase of the 
spot asset today and holding it until the futures maturity date (which includes the borrowing cost for the initial purchase, 
or interest rate, and any storage cost), once the continuous dividend yield paid out by the underlying asset (i.e. the 
convenience yield) has been taken into account. See, among others, Clewlow and Strickland (2000) and Geman (2005) 
for details on the arbitrage relationship (2) for energy commodities.  
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played by the interest rate is unclear and that, although the correlation between spot and futures 

prices is very high, it is not possible to identify which is the driving variable.  

An overall comparison of financial and time series models is offered by Zeng and Swanson 

(1998), who evaluate the in-sample and out-of-sample performance of several specifications. The 

authors use a daily dataset over the period 4 January 1990 - 31 October 1991 and specify a random 

walk, an autoregressive model and two alternative Error Correction models (ECM, see Engle and 

Granger, 1987), each with a different definition of long-run equilibrium. The deviation from the 

equilibrium level which characterizes the first ECM is equal to the difference between the futures 

price tomorrow and the futures price today, i.e. the so-called “price spread”. In the second ECM, the 

error correction term recalls the relationship between spot and futures prices, which involves the 

cost of storage and the convenience yield, as reported in equation (2). The predictive performance 

of each model is evaluated using several formal and informal criteria. The empirical evidence 

shows that the ECM specifications outperform the others. In particular, the ECM based on the cost-

of-storage theory performs better than the ECM which specifies the error correction term as the 

spot-futures price spread. 

Bopp and Lady (1991) investigate the performance of lagged futures and spot oil prices as 

explanatory variables in forecasting the oil spot price. Using monthly data on spot and futures prices 

for heating oil during the period December 1980 - October 1988, they find empirical support to the 

cost-of-storage theory.5 The authors also compare a random walk against the reference financial 

model. In this case, the empirical evidence suggests that both models perform equally well. 

Serletis (1991) analyses daily data on one-month futures price (as a proxy for the spot price) 

and two-month futures price (quoted at NYMEX) for heating oil, unleaded gasoline and crude oil, 

relative to the period 1 July 1983 - 31 August 1988 (the time series of gasoline starts on 14 March 

1985). He argues that the presence of a time-varying premium worsens the forecasting ability of 

futures prices. 

In the empirical literature on oil prices there is no unanimous consensus about the validity of 

MEH. For instance, Green and Mork (1991) offer evidence against the validity of unbiasedness and 

MEH, analysing monthly prices on Mideast Light and African Light/North Sea crude oils over the 

period 1978-1985. Nevertheless, the authors notice that, if the subsample 1981-1985 is considered, 

MEH is supported by the data, because of the different market conditions characterizing the two 

time periods. 

                                                 
5 Two different spot prices are considered, namely the national average price reported by the Energy Information 
Administration (EIA) in the Monthly Energy Review, and the New York Harbor ex-shore price, while the futures 
contract is quoted at NYMEX. 
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The unreliability of unbiasedness and MEH is also pointed out by Moosa and Al-Loughani 

(1994), who analyse WTI monthly data covering the period January 1986 - July 1990. The authors 

exploit cointegration between the series on spot price and three-month and six-month futures 

contracts using an ECM, and show that futures prices are neither unbiased nor efficient. Moosa and 

Al-Loughani apply a GARCH-in-mean model to take into account the time-varying structure of the 

risk premium. 

Gulen (1998) asserts the validity of MEH by introducing the posted oil price as an additional 

explanatory variable in the econometric specification. In particular, using monthly data on WTI 

(spot price and one-month, three-month and six-month futures prices) for the period March 1983 - 

October 1995, he verifies the explanatory power of the posted price by using both futures and 

posted prices as independent variables. Empirical evidence from this study suggests that futures 

prices outperform the posted price, although the latter has some predictive content in the short 

horizon. 

Morana’s analysis (2001), based on daily data from 2 November 1982 to 21 January 1999, 

confirms that the Brent forward price can be an unbiased predictor of the future spot price, but in 

more than 50 percent of the cases the sign of the changes in oil price cannot be accurately predicted. 

He compares a financial model with a random walk specification and shows that, when considering 

a short horizon, both specifications are biased. 

Chernenko et al. (2004) test the MEH by focusing on the price spread relationship: 

 

( ) ttttTt SFSS εββ +−+=−+ 10  (3) 

 

Analysing monthly data on WTI for the period April 1989 - December 2003, the authors 

compare model (3) with a random walk specification and find that the empirical performance of the 

two models is very similar, confirming the validity of MEH. 

The same model (3) is tested by Chin et al. (2005) with a monthly dataset on WTI spot price 

and three-month, six-month and twelve-month futures prices covering the period January 1999 - 

October 2004. The empirical findings are, in this case, supportive of unbiasedness and MEH. 

Another interesting application of financial models to the oil spot-futures price relationship is 

proposed by Abosedra (2005), who compares the forecasting ability of the futures price in model 

(3) with a naïve forecast of the spot price. Specifically, assuming that the WTI spot price can be 

approximated by a random walk with no drift, he forecasts the daily one-month-ahead price using 

the previous trading day’s spot price and constructs the naïve monthly predictor as a simple average 

of the daily forecasts. Using data for the period January 1991 - December 2001, he finds that both 
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the futures price and the naïve forecast are unbiased and efficient predictors for the spot price. The 

investigation of the relationship between the forecast errors of the two predictors allows the author 

to conclude that the futures price is a semi-strongly efficient predictor, i.e. the forecast error of the 

futures price cannot be improved by any information embedded in the naïve forecast. 

 

2.2  Structural models 

Structural models, that is models based on economic fundamentals, emphasise the importance 

of explanatory variables describing the peculiar characteristics of the oil market. Some examples are 

offered by variables which are strategic for the oil market (i.e. industrial and government oil 

inventory levels), “real” variables (e.g. oil consumption and production), and variables accounting 

for the role played by OPEC in the international oil market. 

Kaufmann (1995) models the real import price of oil using as structural explanatory variables 

the world oil demand, the level of OECD oil stocks, OPEC productive capacity, as well as OPEC 

and US capacity utilisation (defined as the ratio between oil production and productive capacity). 

The author also accounts for the strategic behaviour of OPEC and the 1974 oil shock with specific 

dummy variables. His analysis exploits an annual dataset for the period 1954-1989. Regression 

results show that his specification is successful in capturing oil price variations between 1956 and 

1989, that is the coefficients of the structural variables are significant and the model explains a high 

percentage of the oil price changes within the sample period. 

More recently, Kaufmann (2004) and Dees et al. (2007) specify a different forecasting model 

on a quarterly dataset. In particular, the first paper refers to the period 1986-2000, while the second 

contribution considers the sample 1984-2002. In these studies the authors pay particular attention to 

OPEC behaviour, using as structural regressors the OPEC quota (defined as the quantity of oil to be 

produced by OPEC members), OPEC overproduction (i.e. the quantity of oil produced which 

exceeds the OPEC quota), capacity utilisation and the ratio between OECD oil stocks and OECD oil 

demand. Using an ECM, the authors show that OPEC is able to influence real oil prices, while their 

econometric specification is able to produce accurate in-sample static and dynamic forecasts. 

A number of authors introduce the role of the relative oil inventory level (defined as the 

deviation of oil inventories from their normal level) as an additional determinant of oil prices, for 

this variable is supposed to summarize the link between oil demand and production. In general, two 

kinds of oil stocks can be considered, namely industrial and governmental. The relative level of 

industrial oil stocks (RIS) is calculated as the difference between the actual level (IS) and the normal 

level of industrial oil stocks (IS*), the latter corresponding to the industrial oil inventories de-

seasonalised and de-trended. Since the government oil stocks tend to be constant in the short-run, 



 10

the relative level of government oil stocks (RGS) can be obtained by simply removing the trend 

component. 

Ye et al. (2002), (2005) and (2007) develop three different models based on the oil relative 

inventory level to forecast the WTI spot price. In their 2002 paper, the authors build up a model on 

a monthly dataset for the period January 1992-February 2001, where oil prices are explained in 

terms of the relative industrial oil stocks level and of a variable describing an oil stock level lower 

than normal. Ye et al. (2005) present a basic monthly model of WTI spot prices which uses, as 

explanatory variables, three lags of the relative industrial oil stock level, the lagged dependent 

variable, a set of dummies accounting for the terrorist attack of 11 September 2001 (D01) and a 

“leverage” (i.e. step) dummy equal to one from 1999 onwards (S99) and zero before 1999, aimed at 

picking a structural change of the OPEC behaviour in the oil market6. The authors compare this 

specification with: i) an autoregressive model which includes AR(1) and AR(12) terms and 

dummies D01 and S99; ii) a structural model where the oil spot price is a function of the one-month 

lag of the industrial oil inventories, the deviation of industrial oil stocks from the previous year’s 

level, the one-month lag of the oil spot price, as well as the dummy variables D01 and S99. Each 

model is estimated over the period 1992-2003. The basic model outperforms the other two 

specifications: in particular, the time series model is unable to capture oil price variability. The 

performance of each model is evaluated by calculating out-of-sample forecasts for the period 2000-

2003. The forecasting accuracy of the two structural models depends on the presence of oil price 

troughs or peaks within the sample period. When considering three-month-ahead forecasts, the 

basic model exhibits a higher forecasting performance in presence of oil price peaks, while the 

second structural specification outperforms the basic model in presence of oil price troughs. On the 

basis of this last evidence, Ye et al. (2007), using the same dataset, take into account the 

asymmetric transmission of oil stock changes to oil prices. The authors define a low (LIS) and a 

high (HIS) relative industrial oil stock level as follows: 

 

⎩
⎨
⎧

=
−<+=

otherwise0
if

t

IStIStt

LIS
RISRISLIS σσ

 (4) 

                                                 
6 The oil price increases, characterizing the 90s,  came to a rapid end in 1997 and 1998 when the impact of the 
economic crisis in Asia was either ignored or severely underestimated by OPEC who increased its quota by 10 percent 
January 1, 1998. The combination of lower consumption and higher OPEC production sent prices into a downward 
spiral.   In response, OPEC cut quotas by 1.25 million b/d in April and another 1.335 million in July. Price continued 
down through December 1998. Prices began to recover in early 1999 and OPEC reduced production another 1.719 
million barrels in April. Not all of the quotas were observed but between early 1998 and the middle of 1999 OPEC 
production dropped by about 3 million barrels per day and was sufficient to move prices above $25 per barrel.  
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where ISσ  indicates the standard deviation of the industrial oil stock level. 

The estimated model is: 
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which shows a more accurate forecasting performance than the linear specification proposed by Ye 

et al. (2005). 

Following Ye et al. (2002), Merino and Ortiz (2005) specify an ECM with the percentage of 

relative industrial oil stocks and “speculation” (defined as the log-run positions held by non-

commercials of oil, gasoline and heating oil in the NYMEX futures market) as explanatory 

variables. Evidence from January 1992 to June 2004 demonstrates that speculation can significantly 

improve the inventory model proposed by Ye et al., especially in the last part of the sample. 

Zamani (2004) proposes a forecasting model based on a quarterly dataset for the period 1988-

2004 and specifies an ECM with the following independent variables: OPEC quota, OPEC 

overproduction, RIS, RGS, non-OECD oil demand and a dummy for the last two quarters of 1990, 

which accounts for the Iraq war. The accuracy of the in-sample dynamic forecasts is indicative of 

the model’s capability of capturing the oil price evolution. 

In the pure time series framework, two models, which are particularly useful for forecasting oil 

prices in the long-run, are proposed by Pindyck (1999) and Radchenko (2005). The data used by the 

authors cover the period 1870-1996 and refer to nominal oil prices deflated by wholesale prices 

expressed in US dollars (base year is 1967). Pindyck (1999) specifies the following model: 
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where t1φ and t2φ  are unobservable state variables. He estimates the model with a Kalman filter and 

confronts its forecasting ability with the following specification: 

 

ttt ttSS εβββρ ++++= −
2

3211  (7) 

 

on the full dataset and three sub-samples, namely 1870-1970, 1970-1980 and 1870-1981. Model (6) 

offers a better explanation of the fluctuations of oil prices, while specification (7) produces more 

accurate forecasts. 

Radchenko (2005) extends Pindyck’s model, allowing the error terms to follow an 

autoregressive process: 
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The forecasting horizons are 1986-2011, 1981-2011, 1976-2011 and 1971-2011. Overall, the 

empirical findings confirm Pindyck’s results, although the model is unable to account for OPEC 

behaviour, leading to unreasonable price declines. Nevertheless, the author suggests that forecasting 

results can be improved significantly by combining specification (8) with a random walk and an 

autoregressive model, which can be considered a proxy for future OPEC behaviour. 

 

3 Data and Methods 

3.1 Data 

We have constructed four different datasets, with the following frequencies: daily, weekly, 

monthly and quarterly. Prices refer to WTI crude oil spot price (St) and WTI crude oil futures prices 

contracts with one-month, two-month, three-month and four-month maturity (Ft,1-Ft,4), as reported 

by EIA. Weekly, monthly and quarterly data have been obtained by aggregating daily observations 

with simple arithmetic means, taking into account that the futures contract rolls over on the third 

business day prior to the 25th calendar day of the month preceding the delivery month. The sample 

covers the period 2 January 1986 - 31 December 2005 (see Figure 1). 

Due to the limited availability of structural variables at high frequencies, the daily and weekly 

datasets include observations on the WTI prices only. Therefore, we have concentrated our analysis 
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on financial and time series models at daily and weekly frequencies, whereas we have estimated the 

structural specifications using monthly and quarterly data. 

The monthly dataset includes observations over the period January 1988 - August 2005 for the 

following variables: OECD industrial crude oil stocks (RIS); oil demand in the OECD countries 

(OD); the world crude oil production (WP); the commodity price index (PPI), with June 1982 as 

basis. All variables are expressed in million barrels per day (mbd) and are obtained from EIA, with 

the single exception of PPI, which is from the Bureau of Labor Statistics.  

The quarterly data range from the first quarter of 1993 to the third quarter of 2005 and refer to 

the following variables: total oil demand, computed (TOTD) as the sum of the OECD (OOD) and 

non-OECD (NOOD) oil demand, RIS, and the OPEC (OP) crude oil production. 

Moreover, both the monthly and quarterly dataset include a variable labelled as NCLP that is a 

measure of long position held by non-commercial derivative traders. Commercial and 

noncommercial are the labels currently used by the U.S. Commodity Futures Trading Commission 

(CFTC) to categorize traders. Commercial traders (commonly called hedgers) are futures market 

participants whose line of business is in the related cash market. They may speculate at times; 

however, they mostly hedge cash commitments. Noncommercial traders (commonly called 

speculators) are participants whose main line of business is unrelated to the cash market. Mostly 

they speculate, but from time to time they may hedge a cash position. The complete list of the 

variables employed in the empirical analysis is summarized in Table 1. 

3.2 Models 

We have evaluated the forecasting performance of different econometric models available in 

the existing literature, which can be subsumed under the two main classes described in Section 2, 

that of  financialand that of structuralmodels. We also propose a new class of models which 

combine the relevant aspects of financial and structural models (i.e. mixed models), and are based 

on the assumption that the interaction between financial and macroeconomic variables can improve 

the understanding of oil price behaviour. Financial, structural and mixed models are confronted 

with pure time series specifications. As already noted, due to data constraints, structural and mixed 

forecast are produced only with monthly and quarterly data. 

Irrespective of the sampling frequency of the data, all variables, with the only exception of RIS, 

have been transformed into logarithms. We denote the logarithm of a variable with lower-case 

letters (i.e. xt = log Xt). Moreover, we use Δ (i.e. Δkxt =xt - xt-k) to indicate the difference operator. 
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3.2.1 Time Series Models 

When evaluating a set of competing forecasts it is important to define a benchmark model; in the 

case of the price of oil the random walk (RW) represents a natural choice: 

 

st = st-1 + et (9) 

 

where et is a white noise error. The RW model is also known as “no-change forecast”, since  it 

is assumed that the best predictor for the oil price tomorrow is the oil price today. 

 The second time series model we consider is also a random walk, but in this case we add a 

drift term (RWD): 

  

st = δ + st-1 + et (10) 

 

The strength of these models, that explicitly impose a unit root behaviour for st, is their 

simplicity in both the estimation and forecasting stages. Actually, while the RW model does not 

need to be estimated, the RWD requires just to compute the OLS estimate of the sample average of 

Δst. Finally, we note that the usefulness of random walk models as benchmarks stems from the fact 

that they often out-perform more complex alternatives (Zeng and Swanson, 1998). 

 

3.2.2 Financial models 

In Section 3 we have pointed out that, irrescpective of the frequency considered, the WTI spot 

price and the four WTI futures prices involved in the empirical analysis are ( )1I .7 Moreover, the 

WTI spot price and each WTI futures price are cointegrated, that is there exists a stationary, long-

run equilibrium relationship between the WTI spot price and the WTI futures price at different 

maturities. Interestingly, these statistical findings can be explained by standard economic theory and 

used to  build a forecasting models for the spot price of oil. In particular, the cost-of-carry model 

posits that the futures price of storable commodities, such as crude oil, depends on the spot price as 

well as on the cost of holding  the commodity until the delivery date. This cost, known as the cost-

of-carry, includes both the storage and the opportunity cost incurred by while awaiting delivery 

                                                 
7 The results of the unit root tests are omitted from the paper to save space. Needless to say, they are available from the 
authors upon request. 
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some time in the future (see Pyndyck, 2001, for a survey). Assuming that investors can trade 

simultaneously in the spot and futures markets, we can write the (log) cost-of-carry model as: 

 

ft,i - st = dt + Qt (11) 

 

where the term on the left-hand side is knows as the “basis”, dt is the (log) cost-of-carry and Qt 

is an adjustment term accounting for the marking-to-market feature of futures markets.  As shown 

by Brenner and Kroner (1995), if we are willing to assume that the log-spot price follows a random 

walk with drift and that investors are rational, we can use equation (11) to derive the set of  

financial models: 

st =α + βft,i  + εt (12) 

 

where α subsumes the terms on the right-hand side of equation (12) and εt is an uncorrelated 

error term. Notice that we can derive a joint test of hypotheses; in fact testing if (α,β) = (0,1) is both 

a test of the optimality of ft,i as a predictor for st and a test of the Efficient Market Hypothesis, i.e. if 

new information is immediately incorporated into spot prices, then, on average, the futures price 

should be equal to the spot price. 

These considerations form the basis for deriving the operational versions of financial models 

which are used to produce a second set of forecasts. All these models exploit the cointegrating 

relation between spot and futures prices. We consider four bivariate Vector Error Correction 

Models (VECM), denoted as FUT1-FUT4, which exploit the information content of futures 

contracts with different maturities: 

 

Δst = β0i + β1iΔst-1 + β2iΔft-1,i + γsi (st-1 - b0i - b1i ft-1,i – b2it) + et,i (13) 

Δft,i = α0i + α1iΔft-1,I + α2Δst-1 + γfi (st-1 - b0i - b1i ft-1,i – b2it) + ut,i (14) 

 

for i = 1,…,4.  

The fifth financial model is a multivariate VECM and is denoted as FUT(1-4):  

 

Δst = β0 + β1Δst-1 + 4
1=Σi β2iΔft-1,i + 4

1=Σi γs,i (st-1 - b0i - ft-1,i – b2it) + et,i (15) 

Δft,i = α0i + 4
1=Σi α1iΔft-1,i + α2,iΔst-1 + 4

1=Σi γfi (st-1 - b0i - ft-1,i – b2it) + ut,i (16) 
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for i = 1,…,4. 

There are two main differences between this specification and models FUT1-FUT4. First, 

FUT(1-4) jointly model the relation between the spot price and the term structure of futures. 

Second, we impose restrictions on the cointegrating parameters in order to treat futures as unbiased 

predictors of the spot price. Finally, we also consider a sixth financial model, namely AVG(1-4), 

which uses the sample average of futures prices tf  = (1/4) 4
1=Σi ft,i. As model (15)-(16), the intuition 

for taking the simple average is to exploit the information content of the term structure of future 

prices. The model can be written as models FUT1-FUT4, with tf  in place of ft,i. 

The lag order of all models has been selected according to well established information criteria, 

as well as a set Lagrange Multiplier tests for residuals autocorrelation. Estimation and inference of 

VECMs is carried out following the Johansen’s (1995) approach to vector cointegration.8 

3.2.3 Structural and mixed models 

Structural and mixed models have been estimated only for monthly and quarterly frequencies, 

due to the lack of data on the structural variables at higher frequencies.  

For monthly data, we propose two different specifications. In the basic mixed model (MIX) the 

WTI spot price is regressed on the noncommercial long positions (nclp), OPEC consumption (od), 

the relative inventory industrial level (RIS), a step dummy for 1999 (S99), which accounts for a 

structural change of the OPEC’s behaviour in the international oil market, and the world oil 

production (wp): 

 

ttttttt wpSRISodnclps εφλδγβα ++++++= 99  (17) 

 

The structural specification (STR) considers as explanatory variables the relative oil inventory 

level (RIS), the commodity price index (ppi), the OECD oil demand (od), the step dummy S99 and 

a set of dummy variables capturing the effects of 11 September 2001 (D01): 

 

ttttttt DSodppiRISs εγλϕδβα ++++++= 0199  (18) 

 

On quarterly data we estimate the following two different types of models: 

 
                                                 
8 The estimation results for all models, which have been omitted  to save space,  are available from the authors upon 
request. 
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ttttt nclptotdRISs εδγβα ++++=  (19) 

ttttt optotdRISs εδγβα ++++=  (20) 

 

Specification (19) is a mixed model, model (20) is purely structural. 

Although oil demand might be naturally thought as endogenous when used as explanatory variable 

for oil price, in our case endogeneity of oil demand is not a issue, for the previous models are 

estimated in VECM form. Moreover, it is worth pointing out that for monthly, as well as for 

quarterly, data seasonality in oil demand and industrial oil stocks has been removed by regressing 

oil demand  and industrial oil stocks on a set of monthly dummies. 

 

3.3 Forecast evaluation 

The estimation period for time series and financial models runs from January 1986 up to 

December 2003, while the interval from January 2004 to December 2005 is used for forecast 

evaluation. Structural and mixed models have been estimated on the sample January 1993 - 

December 2003, and monthly (quarterly) forecasts have been produced for the period January (first 

quarter, Q1) 2004 – August (fourth quarter, Q4) 2005. 

All models have been selected and estimated once on the estimation sample; then one-step 

ahead forecasts have been produced by keeping the estimated parameters fixed. 

The number of observations used to evaluate the forecasting performance of different models is 

determined by the sampling frequency of the data: for daily, weekly, monthly and quarterly the 

number of predictions is 329, 123, 20 and 8, respectively. 

Before discussing our forecast evaluation framework, it is worth introducing some notation. 

We use hi,t to denote forecast from model i, the corresponding forecast error is ui,t and Li,t(ui,t) is a 

loss function. If not needed, we drop both model and time subscripts. 

Our forecast evaluation strategy relies on the family of flexible loss functions put forth by 

Elliott, Komunjer and Timmermann (2005): 

 

L(u; ρ, φ) = [φ + (1-2φ) I(u < 0)] |u|ρ (??)

 

where I(.) is the indicator function. The shape of the loss function is determined by two 

parameters: ρ > 0 and 0 < φ < 1; the loss is asymmetric whenever φ = 0.5. More precisely, over-

forecasting is costlier than under-forecasting for φ < 0.5; on the contrary, when φ > 0.5 positive 
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forecast errors (under-prediction) are more heavily weighed than negative forecast errors (over-

prediction). As shown in Figure 2, special cases of the loss include: the quad-quad loss for ρ = 2 

and the lin-lin loss for ρ = 1. Moreover, we get the mean absolute error (MAE) loss for ρ = 1 and φ 

= 0.5 and the mean square error (MSE) loss for ρ = 2 and φ = 0.5. 

When evaluating forecasts from different models we will focus on quaq-quad losses (ρ = 2) 

with three different values for the asymmetry parameter φ = (0.2,0.5,0.8). 

The values chosen for the parameters of the loss function allow for a greater flexibility than the 

traditional model ranking approach based on symmetric losses, such as the MSE. There are several 

reasons for considering a flexible loss function. First, given that the shape of the loss function often 

influences the ranking of models, an asymmetric flexible loss function allows to evaluate forecasts 

taking into account the degree of aversion of the decision maker with respect to under- and over-

prediction. Second, in order to consistently evaluate the prediction ability of models, forecasts 

producers and users should have the same loss function. On  the contrary, when the loss function of 

the forecaster does not coincide with that of the user, the optimality of the forecast can be judged 

only with respect to the producer's loss function. Therefore, unless the user knows the form of the 

forecaster's loss function, the evaluation of forecast optimality implies also a test of the functional 

form of the loss function (see Elliott, Komunjer and Timmermann, 2005; 2008). Third, there is 

evidence that loss functions of some decision makers are asymmetric (Elliott, Komunjer and 

Timmermann, 2005; 2008; Patton and Timmermann, 2007). For instance, Auffhammer (2007) 

estimates the asymmetry parameter of the flexible loss function using the annual forecasts of the 

United States Energy Information Administration.  In the case of the world price of oil, for both the 

lin-lin and quad-quad losses, the asymmetry parameter, φ,  is very close one, suggesting that over-

predictions are considered much less costly than under-predictions. 

In this paper, forecasts evaluation goes one step beyond that of a simple model ranking. As a 

matter of fact, in order to compare the forecast performance of each specification (at any sampling 

frequency and for any shape of the loss function), we run the test for equal predictive ability 

proposed by Diebold and Mariano (1995). The test statistic is based on the loss differential, diRW,t = 

Li,t - LRW,t, where the subscript attached to the second loss function indicates that the i-th model is 

evaluated against the random walk (RW). Under the null hypothesis, H0:E(diRW), the Diebold-

Mariano test statistic is asymptotically Gaussian. Given that the number of available forecasts 

produced by our models is, in at least two cases, insufficient in order to guarantee the validity of 
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asymptotic results, we implement the Diebold and Mariano test corrected for small samples, where 

the appropriate p-values are computed using the moving block bootstrap of Künsch (1989)9. 

 

4 Empirical results 

We start the evaluation of forecasts with an heuristic model comparison based on the Approximate 

Bayesian Model Averaging (ABMA). ABMA is a method to combine forecasts that delivers a set of 

weights that are functions of the Schwarz Information Criterion (see Garratt, Lee, Pesaran and Shin, 

2003). 

Results are shown in Figure 3. Irrespective of the sampling frequency of the data, the largest 

ABMA weights are always associated with models RW and RWD. While this finding is expected, 

given the pasimony of RW and RWD, nonetheless it is interesting to notice that, at daily and 

weekly sampling frequencies, ABMA would be essentially equivalent to assign equal weights to 

each model. Focusing on models for monthly and quarterly data (and keeping in mind the small size 

of the forecasting sample), we can confirm some of the previous results. In particular, the most 

heavily weighted models are, once again, RW (first), RWD (second) and AVG(1,4) (third), while 

the lowest (approximate) posterior probability is assigned to FUT(1,4). The success of the 

AVG(1,4) model is due to its ability to summarize the whole term structure of futures with two 

equations only. On the contrary, the multivariate FUT(1,4) model involves five equations and some 

coefficient restrictions that might not be supported by the data in the forecasting sample. As for the 

MIX and STR models, they appear on the bottom end of this ranking, with the sum of their weights 

being not larger than that associated to the third best model, which in turn belongs to the financial 

class. In summary, our empirical results do not suggest a single winning option, however they 

clearly indicate the presence of a hierarchical order among the different classes of models, which 

can be summarized as: time series (first), financial (second), mixed (third), structural (fourth). 

There are many ways to test for forecast optimality. One simple approach is to analyze the 

properties of forecast errors. In particular, it is well known that forecast errors from optimal 

forecasts should have zero mean. If forecast errors follow a Guassian white noise process, as it 

should be for one-step ahead errors, then a standard t-test is the obvious diagnostic tool. However, 

due to the limited number of observations, we implement a finite-sample corrected t-test by relying 

on bootstrap standard errors and p-values obtained with the moving block bootstrap of Künsch 

(1989). Results are shown in Table 2, where the statistic OUR, which measures the incidence of 

                                                 
9 Details on this procedure and a small Monte Carlo study of its performance are reported in an appendix available from 
the authors upon request. 
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over- and under-forecasts (i.e. an entry larger than unity suggests that the i-th model produces more 

negative forecast errors than positive forecast errors), is also presented.  

 

None of the models for daily data presents a statistically significant bias. As for weekly forecasts, 

only the RW and FUT(1,4) models show a positive and statistically significant bias. Interestingly, 

for data sampled at weekly frequency all models produce more under-forecasts than over-forecasts; 

this result holds also for models that at daily frequency present a value of  OUR>1. 

At monthly and quarterly frequency, OUR is always below unity, suggesting that all models tend to 

over-forecast. However, in both cases the class of financial models is the only producing unbiased 

forecasts and the one with OUR closer to unity (at least at monthly frequency). This finding can be 

explained by referring to the cost-of-carry model and its relationship with the Efficient Market 

Hypothesis. Comparing the size of biases at monthly frequency, we can compile the following 

model ranking: financial (first), structural (second), time series (third), mixed (fourth). 

Figure 4 shows the rankings and the magnitude of the flexible loss functions associated to different 

models. In panel (a) the MSE ranking is reported. The set of points with the label “overall” on the 

x-axis represent the ranking of models obtained by summing the loss function over all forecast 

horizon. First, we can notice that the loss differential across models are not very large in magnitude, 

suggesting that it will be very hard to identify a best option. Second, when the performance of 

models across sampling frequencies is compared, we can see that the magnitude of the losses 

increases. Third, in the majority of cases bivariate financial models make in the first positions. The 

performance of structural and mixed model changes according to the sampling frequency of the 

data. 

When the loss function becomes asymmetric (see panels (b) and (c)), the only models that have a 

good and consistent global performance are, once again, those belonging to the financial class. They 

are outperformed by time series models only when over-forecasting is costlier than under-

forecasting. In this case there are interesting exceptions: the mixed model applied to monthly data 

delivers the lowest loss, while FUT2 is the best option in the case of quarterly data. 

In summary, the ranking of models seems to suggest that, irrespective of the shape of the loss 

function, the class of financial models is to be preferred to time series models. Both financial and 

time series models are, in turn, better than mixed and structural models. 

 

Finally, we use the Diebold and Mariano test to evaluate if the loss differentials of RWD, financial, 

structural and mixed models are not statistically significant when the RW model is used as a 

benchmark. Results reported in Table 3 are not conclusive, for the loss differential seems to be 
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statistically insignificant in the large majority of cases. Although the RW model is not statistically 

outperformed by any of the alternative models, the empirical findings seem to suggest that 

theoretically well-grounded financial models are valid instruments for producing  accurate forecasts 

of the WTI spot price. 

 

 

6 Conclusions 

 

The relevance of oil in the world economy as well as the specific characteristics of the oil price 

time series explain why considerable effort has been devoted to the development of different types 

of econometric models for oil price forecasting. 

Several specifications have been proposed in the economic literature. Some are based on 

financial theory and concentrate on the relationship between spot and futures prices (“financial” 

models). Others assign a key role to variables explaining the characteristics of the physical oil 

market (“structural” models). 

The empirical literature is very far from any consensus about the appropriate forecasting model 

that should be implemented. Findings vary across models, time periods and data frequencies.  

Relative to the previous literature, the paper is novel in several respects. 

First of all, we test and systematically evaluate the ability of several alternative econometric 

specifications proposed in the literature to capture the dynamics of oil prices. We have chosen to 

concentrate our investigation on single- as well as multiple-equation, linear reduced forms, since 

models of this type are the most widely used in the literature and by the practitioners.  

Second, we analyse the effects of different data frequencies (daily, weekly, monthly and 

quarterly) on the coefficient estimates and forecasts obtained using each selected econometric 

specification. The fact that no unanimous conclusions could be drawn by previous studies on the 

forecasting performance of similar models may depend, among other things, upon the particular 

data frequency used in each investigation. 

Third, we compare different models at different data frequencies on a common sample and 

common data. We have constructed specific data sets which enable us to evaluate different types of 

econometric specifications involving different explanatory variables on the same sample period.  

Fourth, we evaluate the forecasting performance of each selected model using static forecasts, 

as well as different measures of forecast errors.  

Finally,  we propose a new class of models, namely “mixed” models, which combine the 

relevant aspects of the financial and structural specifications proposed in the literature.   
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The empirical findings of this paper can be summarized as follows. According to an heuristic model 

comparison based on the Approximate Bayesian Model Averaging, a single winning option does 

not exist, however the presence of a hierarchical order among the different classes of models can be 

found: time series (first), financial (second), mixed (third), structural (fourth). The finite-sample 

corrected t-test for the null hypothesis of zero-mean forecast errors, as well as of the statistic OUR, 

which measures the incidence of over- and under-forecasts show that none of the models for daily 

data presents a statistically significant bias. For data sampled at weekly frequency all models 

produce more under-forecasts than over-forecasts. At monthly and quarterly frequency, OUR is 

always below unity, suggesting that all models tend to over-forecast. However, in both cases the 

class of financial models is the only producing unbiased forecasts and the one with OUR closer to 

unity (at least at monthly frequency). Comparing the size of biases at monthly frequency, the 

following model ranking can be compiled: financial (first), structural (second), time series (third), 

mixed (fourth). The ranking of models seems to suggest that, irrespective of the shape of the loss 

function, the class of financial models is to be preferred to time series models. Both financial and 

time series models are, in turn, better than mixed and structural models. The Diebold and Mariano 

test is used to evaluate if the loss differentials of financial, structural and mixed models are not 

statistically significant when the random walk model is used as a benchmark. Results are not 

conclusive, for the loss differential seems to be statistically insignificant in the large majority of 

cases. Although the random walk model is not statistically outperformed by any of the alternative 

models, the empirical findings seem to suggest that theoretically well-grounded financial models 

are valid instruments for producing  accurate forecasts of the WTI spot price. 
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Tables and Figures 

 

Table 1 Complete list of variables used in the empirical analysis 

Variable Sample Frequency  Source Acronym 
WTI spot price 2/1/1986-

31/12/2005 
D, W, M, Q EIA S 

WTI futures price contract i = 
1,…,4 

2/1/1986-
31/12/2005 

D, W, M, Q EIA Fi 

Noncommercial long positions 3/1995-8/2005 
Q1/1995-Q42005 

M, Q CFTC NCLP 

OECD oil consumption 1/1988-8/2005 M EIA OD 

OECD industrial oil stocks 1/1988-8/2005 
Q1/1993-Q3/2005 

M, Q IEA RIS 

World oil production 1/1988-8/2005 M EIA WP 

Commodity price index 1/1988-8/2005 M BLS PPI 

OECD oil demand Q1/1993-Q3/2005 Q IEA OOD 

Non-OECD countries oil demand Q1/1993-Q3/2005 Q IEA NOOD 

Total Oil Demand Q1/1993-Q3/2005 Q Computed as: 
OOD+NOOD 

TOTD 

OPEC oil production Q1/1993-Q3/2005 Q EIA OP 

Notes: D = daily frequency; W = weekly frequency; M = monthly frequency;  Q = quarterly frequency; Qi = ith quarter, i=1,2,3,4; EIA = Energy 
Information Administration; CFTC = U.S. Commodity Futures Commission; BLS = Bureau of Labor Statistics; IEA=International Energy Agency. 
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Table 2 Bias of forecast errors and ratio of over- to under-predictions. 
  Daily Weekly Monthly Quarterly 
  Bias Over/Under Bias Over/Under Bias Over/Under Bias Over/Under 
RW 0.0526 0.8156 0.2852 0.6400 1.5572 0.5385 3.7256 0.1429 
 (0.4259)  (0.0935)  (0.0510)  (0.0006)  
RWD 0.0448 0.8380 0.2631 0.6400 1.4313 0.6667 3.2794 0.3333 
 (0.5049)  (0.1214)  (0.0723)  (0.0043)  
FUT1 -0.0549 1.0309 0.4225 0.6622 0.6692 0.8182 2.0701 0.3333 
 (1.0000)  (0.0437)  (0.2939)  (0.0835)  
FUT2 -0.2264 1.3500 0.1667 0.6849 0.5635 0.8182 2.0883 0.3333 
 (1.0000)  (0.4290)  (0.4049)  (0.0687)  
FUT3 -0.2132 1.3333 0.0451 0.7083 0.3434 0.8182 1.8374 0.3333 
 (1.0000)  (0.8311)  (0.6182)  (0.0690)  
FUT4 -0.2057 1.3333 0.0230 0.7571 0.2068 0.8182 1.5554 0.3333 
 (1.0000)  (0.9154)  (0.7581)  (0.1230)  
FUT(1,4) -0.0412 1.0061 0.4469 0.5570 0.5353 0.8182 -0.1200 0.3333 
 (1.0000)  (0.0318)  (0.4376)  (1.0000)  
AVG(1,4) -0.2775 1.4191 -0.0183 0.7083 0.3776 0.8182 1.7585 0.3333 
 (1.0000)  (1.0000)  (0.5783)  (0.0778)  
MIX     2.4991 0.5385 2.8809 0.1429 
     (0.0030)  (0.0407)  
STR     1.0648 0.6667 3.4798 0.1429 
     (0.0728)  (0.0014)  
Notes: Even columns from 2 to 8 report the bias of the forecast errors; Bootstrap p-values in round brakets denote the probability of accepting the null 
hypothesis of a forecast bias equal to zero; Bootstrap p-values have been calculated on 9999 moving block bootstrap samples; The length of blocks, b, 
is set according to the rule b = floor(4(H/100)2/9); Odds columns from 3 to 9 show the relative occurrence of negative and positive forecast errors; An 
entry lower than one indicates that there are more positive forecast errors than negative forecast errors and that the model tends to under-forecast the 
spot price; An entry greater than one suggests that the model tends to over-forecast the spot price. 
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Figure 1 WTI spot price for the period January 1986 - December 2005 (monthly data) 
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Figure 2 Generalized loss function 
 
Notes: The generalized loss function refers to Elliott, Komunjer and Timmermann (2005); Forecasts are shown 
on the horizontal axis; The actual value is equal to 10; Over-prediction, u < 0, (under-prediction, u > 0) occurs to 
the right (left) of the actual value; The graph shows four different loss functions: the mean absolute error (MAE) 
loss for ρ = 1 and φ = 0.5 (circles), the mean squared error (MSE) loss for ρ = 2 and φ = 0.5 (squares), the 
asymmetric lin-lin (piecewise linear) loss for ρ = 1 and φ = 0.7 (triangles), and the asymmetric quad-quad loss 
for ρ = 2 and φ = 0.3 (stars); The function is defined for ρ > 0 and 0 < φ < 1; Over-prediction is costlier than 
under-prediction when φ < 0.5. 
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Figure 3 Ranking of models using Approximate Bayesian Model Averaging weights. 
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