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Alliance Formation and Coercion in Networks

Timo Hiller�

European University Institute

May 6, 2011

Abstract

This paper presents a game-theoretic model of network formation, which allows

agents to enter bilateral alliances and to extract payo¤s from enemies. Each pair of

agents creates a surplus of one, which allies divide in equal parts. If agents are enemies,

then the agent with more allies obtains a larger share of the surplus. I show that Nash

equilibria are of two types. First, a state of utopia, where all agents are allies. Second,

asymmetric equilibria, such that agents can be partitioned into sets of di¤erent size,

where agents within the same set are allies and agents in di¤erent sets are enemies.

These results stand in contrast to coalition formation games in the economics of con�ict

literature, where stable group structures are generally symmetric.

The model provides a game-theoretic foundation for structural balance, a long-

standing notion in social psychology, which has been fruitfully applied to the study of

alliance formation in international relations.

Key Words: Network formation, economics of con�ict, contest success function,

structural balance, international relations.

1 Introduction

In much of the literature on networks, links carry a positive connotation and are com-

monly interpreted as friendship, collaboration or transmission of information. In many con-

texts, however, links may also be associated with antagonism, coercion or even outright
�I am greatful to my supervisors Fernando Vega-Redondo and Massimo Morelli for their invaluable sup-

port and guidance. I also thank Matthew O. Jackson, Paolo Pin, Francesco Squintani, participants of the
Networks Working Group at the European University Institute, seminar participants at PUC-Rio and par-
ticipants of the UECE Lisbon Meetings 2010 for helpful comments. All remaining errors are mine. Contact:
timo.hiller@eui.eu, Address: Department of Economics, European University Institute, Via della Piazzuola
43, 50133 Florence, Italy
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con�ict. This paper aims at clarifying the interplay between these two forces by way of a

game-theoretic model of network formation. The approach is closely related to the notion

of structural balance - an intuitive, yet entirely ad-hoc concept in the social psychology lit-

erature, which originated in a seminal contribution by Heider (1946) and continues to be an

active �eld of study until today.

The advantage of the game-theoretic formulation is twofold. First, it shows how the

global network properties, as obtained by structural balance, can be derived in a setting

where self-interested individuals form their connections strategically. Second, it allows me

to address questions concerning relative size and maximum number of groups, which could

previously not be answered. Before proceeding, let me brie�y explain the main insights of

structural balance.

In its most basic form, structural balance assumes a complete network of positive and

negative links, with a positive link denoting alliance or friendship and a negative one denoting

antagonism or enmity. The essential idea is that positively connected nodes have a tendency

to match their attitudes relative to third nodes, in order to avoid "cognitive dissonance", or

psychological stress.

Balanced vs. Unbalanced Triads

i

j k

a) i, j, and k are mutual friends:
balanced

c) i is friends with j and k, but j
and k are enemies: unbalanced

b) i and j are friends with k as a
mutual enemy: balanced

d) i, j, and k are mutual enemies:
unbalanced, weakly balanced
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A signed graph is said to be balanced, if for each triad, either all three links are positive,

or one is positive and two are negative. This leaves two triad con�gurations, which are de�ned

as unbalanced. First, two positive and one negative link. Second, the ambiguous case where

all three links are negative. The intuition for the �rst case - with two positive and one negative

link - to be considered unbalanced, is that the node with the two friendship links will either

have to choose sides among his friends due to aforementioned "cognitive dissonance", or

otherwise the two enemies will have to make peace. The second con�guration, where all

links are negative, is considered unbalanced, because two of the nodes may have incentives

to ally and gang up on their common enemy. Cartwright and Harary (1956) showed that

these local properties yield sharp predictions globally. In particular, the only two network

con�gurations, which are balanced are such that either all nodes are friends, or there exist

two distinct sets, also called cliques, where nodes in the same set are friends and nodes in

di¤erent sets sustain antagonistic relationships.1

Arguably, the incentives of two nodes to gang up on a common enemy are signi�cantly

lower than those of a node having to choose sides among two of his friends. This view has

led to the de�nition of weak structural balance, which assumes triads with only antagonistic

relationships among themselves to be balanced (Davis (1967)). A signed graph is weakly

balanced, if (and only if) nodes can be divided into distinct sets, such that any two nodes

in the same set are friends, while any two nodes in di¤erent sets are enemies. In terms of its

characterization, the di¤erence between weak structural balance and structural balance in its

stronger form, is that weak structural balance allows for more than two antagonistic groups.

Put succinctly, while under structural balance "the enemy of my enemy is my friend" must

hold, weak structural balance postulates the weaker condition that "the friend of my enemy

is my enemy".

I develop a model of strategic network formation, which picks up on the insights ob-

tained from structural balance and accounts for the interplay between friendship or alliances

on the one hand and antagonism or enmity on the other. The setup is simple. Each pair

of connected agents creates a unit surplus, which may be interpreted as a trade of money,

goods, and services.2 Agents can either extend friendly or antagonistic links, at zero cost. A

mutual friendly link creates a friendship or alliance and the surplus is shared in equal parts.

1I provide a sketch of the proof. A graph with only positive links is balanced. For a graph with positive
and negative links, pick an aribitrary node i and devide the remaining set of nodes into i�s friends and i�s
enemies. All of i�s friends must be friends, as otherwise one obtains an unbalanced triad with two positive
and one negative link. All of i�s enemies must be friends, as otherwise one obtains an unbalanced triads
with three negative links. Then, links between i�s friends and i�s enemies must be negative, as otherwise one
obtains an unbalanced triad with two negative and one positive link.

2More generally, exchange can be thought of as a general characteristic of social interaction, which is -
by and large - based on reciprocation.
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If one node extends a friendly link, while the other extends an antagonistic one, then the

two nodes enter a coercive relationship and the unit surplus is divided according to a general

contest success function. The contest success function is assumed to be strictly increasing

in the ratio of a node�s respective number of allies. Therefore, under a coercive link, nodes

with more allies extract payo¤s in excess of one half from nodes with fewer allies. A mutual

antagonistic link translates into a con�ictive relationship and the surplus is lost. However,

the last assumption is not crucial. In fact, any arbitrarily small amount of cost of con�ict

and a split of the remaining surplus, as implied by the con�ict success function, is su¢ cient

for my results to go through. One can then think of the payo¤s resulting from a coercive

link as settlement in the shadow of con�ict.

The characterization of Nash equilibria mirrors the structural properties obtained in

the social psychology literature. Equilibrium con�gurations are such that, either all nodes

are friends, or nodes can be divided into distinct sets of di¤erent size, where nodes within the

same set are friends and nodes in di¤erent sets sustain coercive relationships. Asymmetry of

equilibria is one of the most salient features of the model and at the same time constitutes

a departure from previous work on structural balance. Outright con�ict is never part of

an equilibrium, as payo¤s under coercion are always positive and either con�ict party can

pro�tably deviate by extending a positive link instead.

The range of sustainable equilibrium con�gurations will depend on the shape of the

contest success function, which de�nes the available coercion or war technology - parame-

trized by �. Under a coercive relationship, a low value of � is favorable for the node with

fewer friends (the potential defender), while a high value of � bene�ts the node with the

higher number of friends (the potential aggressor). Preliminary results, not yet included

in this version of the paper, indicate that, if � is su¢ ciently high, then multiple groups of

di¤erent size can be sustained in equilibrium. The model predictions therefore coincide with

weak structural balance. Furthermore, low values of � - a relative advantage for the defender

- force the equilibrium into weakly more asymmetric structures.

4



Structural Balance and The Path to WWI
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Structural balance theory has become an e¤ective tool for the analysis of alliance for-

mation among states. One of the earliest applications is Harary (1961), who examines the

rapid shifts of relationships among nations concerning the Middle Eastern situation in 1956

and observes a strong tendency towards balance. Moore (1979) also employs structural bal-

ance when explaining the "United States�s somewhat surprising support of Pakistan ..." after

Bangladesh�s separation in 1972. Another, particularly interesting example is provided by

Antal, Krapivsky and Redner (2006), who link the formation of alliances in the 19th century

- ultimately leading up to WWI - to structural balance. The accompanying graph is depicted

above, where alliances are denoted by straight black lines and antagonistic relationships by

dashed red lines. Note how the network gradually moves towards a structurally balanced

state. A point to be made here is that, although balance appears to be a natural outcome,

its implications need not be positive.

Interaction patterns of individuals have, of course, also been examined for structural

balance properties. Szell, Lambiotte and Thurner (2010) analyze a vast data-set from a

multiplayer online game called Pardus, encompassing more than 300.000 players. The game

allows for six types of interactions, of which some have a positive (friendship, communica-

tion, trade) and others have a negative association (hostility, aggression, punishment). The

authors �nd strong support for structural balance, favoring its weak speci�cation. Further-
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more, positive links display far higher clustering than negative ones and positive links are

highly reciprocal, while negative links are not. This is much in line with the results obtained

in this paper. Recent research in sociology has examined the evolution of signed network

relations. Doreian and Mrvar (1996) and Doreian and Krackhardt (2001) are two such empir-

ical studies. In both cases a perfectly balanced state is not found, but a movement towards

balance is evident.

This paper relates to a strand of the economics literature, which allows for appropria-

tion and con�ict, recognizing that property rights may not always be perfectly and costlessly

enforced. Con�ict is modelled in terms of a contest success function (Tullock (1967, 1980))

and Hirshleifer (1989)), where an agent�s probability of winning is a function of the resources

available for arming. Open con�ict, however, does not have to take place, and may instead

be used as an instrument for bargaining. Part of this research focuses on coalition and group

formation among states in the context of distributional con�ict (Wärneryd (1998) and Este-

ban and Sákovics (2003)). Group structures are, based on the notion of farsighted stability3

(Chwe (1994)), shown to be symmetric. Jordan (1996) considers coalitional games, where

coalitions with more wealth can pillage the wealth of poorer coalitions at no cost. The far-

sighted core allocations are again symmetric. These �ndings are in sharp contrast to the

results obtained here.

My paper also contributes to the theory of network formation, which has been an

active area of research in recent years. See for example Aumann and Myerson (1988), Bala

and Goyal (2000) and Jackson and Wolinsky (1996). The so called co-author model in

Jackson and Wolinsky (1996) and Chwe (2003) obtain similar results in terms of equilibrium

structures. Two recent papers, which also feature con�ict success functions in a network

setting are Goyal and Virgier (2010) and Franke and Öztürk (2009), both with a di¤erent

focus from mine. Goyal and Virgier (2010) consider a design problem and ask how to

optimally structure networks, so that they are robust to attacks in the face of an adversary.

Franke and Öztürk (2009), in turn, model a setting where agents are embedded in a network

of bilateral con�icts. The authors are concerned with con�ict intensity on a �xed network

and considerations of link and alliance formation are entirely absent. To the best of my

knowledge, the model presented here is the �rst to incorporate friendship (or alliance) and

antagonism (or coercion) in a network formation context.

The remaining part of the paper is organized as follows: Section 2 introduces the

model, Section 3 provides an intuitive account of the main results and Section 4 concludes.

All formal proofs are con�ned to the Appendix.

3Under farsighted stability agents consider the ultimate outcome of a potential deviation.
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2 A Simple Model of Friends and Enemies

Let N = (1; 2; :::; n) be the set of ex-ante identical agents, with n � 3. A strategy for
i 2 N is de�ned as a row vector gi = (gi;1; gi;2; :::; gi;i�1; gi;i+1; :::; gi;n); where gi;j 2 f�1; 1g
for each j 2 Nn fig : i is said to extend a positive or friendly link to j if gi;j = 1 and a

negative or coercive link if gi;j = �1. The set of strategies of agent i is de�ned by Gi and
the strategy space by G = G1� :::�Gn. The resulting network of relationships is written as
g = (g1;g2; :::;gn): De�ne the undirected network �g in the following way. The link between

node i and j in the undirected network is positive, if both directed links are positive, so that

�gi;j = 1 if gi;j = gj;i = 1: The link in the undirected network is negative, if one of the two

directed links is positive, while the other is negative, so that �gi;j = �1 if gi;j � gj;i = �1. If
both nodes extend a negative link to each other, then no link is established in the undirected

network, so that �gi;j = 0 if gi;j = gj;i = �1. Given a network g, g + g+i;j and g + g�ij have
the following interpretation. When gi;j = �1 in g, g + g+i;j changes the link gi;j = �1 into
gi;j = 1, while if gi;j = 1 in g, then g + g+i;j = g: Similarly, if gi;j = 1 in g, g + g

�
i;j changes

the link gi;j = 1 into gi;j = �1, while if gi;j = �1 in g, then g + g�i;j = g:
De�ne the following sets: N+

i (�g) = fk 2 N j gi;k = 1 ^ gk;i = 1g is the set of nodes to
which node i has a positive link in the undirected network �g: N�

i (�g) = fk 2 N j gi;k � gk;i = �1g
is the set of nodes to which node i has a negative link in the undirected network �g, while

N0
i (�g) = fk 2 N j gi;k = �1 ^ gk;i = �1g is the set of nodes to which node i has no link in

the undirected network �g. The corresponding cardinalities are denoted by �+i (�g) =j N+
i (�g) j;

��i (�g) =j N�
i (�g) j and �0i (�g) =j N0

i (�g) j : Call Pk(�g) = fi 2 N j �+i (�g) = kg the set of nodes
with k positive links in the undirected network �g.

The payo¤ function �i = G ! R+ is given by

�i(g) =
�+i (�g)

2
+

P
q2N�

i (�g)

(�+i (�g)+1)
�

(�+i (�g)+1)
�+(�+q (�g)+1)�

;

with � > 0: Links in the undirected network are interpreted in the following way. �gi;j = 1

is created by a reciprocated positive link and establishes an alliance or friendship between i

and j: The surplus of one is shared in equal parts. �gi;j = �1 stems from one friendly and one
coercive link and denotes a coercive relationship. Under a coercive link, a node with more

allies can extract payo¤s in excess of 1
2
from a node with fewer allies. The exact extraction

value is determined by a general contest success function, explained in more detail below.

�gi;j = 0 results from a mutual coercive link and can be thought of a link of con�ict, where

no exchange occurs and surplus is lost.
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I assume that the coercive strength of node i is determined by �+i (�g) + 1. In the

presence of a coercive link, the relative shares of the surplus of one - denoted here by pi and

pj - are determined by the ratio of i and j�s coercive strength. The contest success function

is parametrized by �, such that

pi
pj
=

 
�+i (�g) + 1

�+j (�g) + 1

!�
:

As pi + pj = 1, I can write

pi =
(�+i (�g) + 1)

�

(�+i (�g) + 1)
� + (�+j (�g) + 1)

�
;

which corresponds to the second term in the payo¤ function �i. Note that the contest

success function is concave for 0 � � � 1 and s-shaped for � > 1; with an in�ection point at
�+i (�g) = �

+
j (�g).

De�nition 1: A clique is a set of nodes Ck(�g) � N such that �gi;j = 1 8i; j 2 Ck(�g): Call a
clique maximal and denote with Cmk (�g), if for any l 2 N ^ l =2 Cmk (�g), Cmk (�g) [ flg is not a
clique.

The equilibrium concept used is Nash Equilibrium. A strategy pro�le g� is a Nash

Equilibrium (NE) i¤

�i(g
�
i ;g

�
�i) � �i(gi;g��i);8gi 2 Gi;8i 2 N:

Throughout the paper, the network after a proposed deviation is denoted with �g�0.

There is one remark I would like to make concerning the assumption that surplus is

shared in equal parts under a friendly link. One may object that this split is arbitrary and

an alternative model speci�cation could, for example, allow for two di¤erent values of �: �f
for the division of surplus under a friendly link and �c for the division of surplus under a

coercive link. Preliminary results indicate that making the sensible assumption that �c > �f ,

thereby allocating a greater portion of the shared surplus to a friend (as compared to an

enemy), is su¢ cient for all my results to hold.
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3 The Friend of My Enemy is My Enemy

The aim of the analysis is to obtain a full characterization of Nash equilibria. This sec-

tion provides fairly detailed sketches of the proofs, while the formal arguments are relegated

to the Appendix. In Lemma 1 I �rst show that outright con�ict is never an equilibrium.

Lemma 2 then proves that in a coercive relationship, it must always be the node with the

higher number of friends extending the negative link. Proposition 1 and Proposition 2 pro-

vide existence for my main result in Proposition 3: Nash equilibria are characterized by either

a state of utopia, where all nodes are friends, or the undirected network can be partitioned

into sets of nodes of di¤erent size, where nodes in the same set are friends and nodes in

di¤erent sets sustain coercive relationships. Lemma 3 shows that in any Nash equilibrium,

nodes with the same number of friends will also be friends with each other. This observation

drives most of the results.

Lemma 1: In any NE g�, @�gi;j = 0 for some i; j 2 N:

Proof. See the Appendix.

Lemma 1 states that a con�ict link can never be part of a Nash equilibrium. The reason

for this is that both nodes involved in the link have an incentive to deviate. By extending a

friendly link, both nodes obtain a positive payo¤, compared to a payo¤of zero under con�ict,

while payo¤s from links to all other nodes remain the same (the deviation does not alter the

total number of friends).

Lemma 2: In any NE �g�; if 9i; j 2 N : �g�i;j = �1 with �+i (�g�) < �+j (�g�) then g�i;j = 1:

Proof. See the Appendix.

In Lemma 2 I prove that in equilibrium, for all competitive links in place in the undi-

rected network, it must be the node with more friends extending the directed antagonistic

link. This is easy to see, as otherwise the node with fewer friends can pro�tably deviate

by reciprocating the friendly link, thereby increasing his payo¤ from this speci�c link to 1
2
:

Moreover, he will increase payo¤s on all his coercive links, while all friendly links continue

to yield him a payo¤ of 1
2
.
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Proposition 1: 8� > 0 9NE g� : �g�i;j = 1 8i; j 2 N:

Proof. See the Appendix.

Proposition 1 shows that a state of utopia, where everyone is friends with everyone, is

a Nash equilibrium for any value of �. The intuition for this is that no node can unilaterally

extract additional payo¤s from nodes, who have the same number of friends prior to a

potential deviation.

Proposition 2: 8� > 0 9NE �g� : 9k : �g�i;k = �1 8i 2 Nnfkg ^ �g�i;j = 1 8i; j 2 Nnfkg:

Proof. See the Appendix.

Proposition 2 provides an existence result for Proposition 3 and states that all nodes

being friends with each other, except for one (who in turn is enemies with all remaining

nodes), is a Nash equilibrium for any value of �.4 Call the node without friends node k.

There are then at least two other nodes, which I call i and j, who are friends with each other.

From Lemma 2 I know that any con�guration where k extends competitive links, while any of

the remaining nodes extend friendly ones, can not be a Nash equilibrium. Assume therefore

that k extends friendly links to all other nodes. A deviation for node k then consists of

substituting a subset of these friendly links for competitive ones. This, however, is not

pro�table, as k then receives a payo¤ of zero on the resulting con�ict links, while payo¤s

from links to all other nodes remain unchanged. For node i, there are three di¤erent types

of deviations to be considered and I will show for each of them that no pro�table deviation

exists. First, i will not �nd it pro�table to extend a friendly link to k, as he will loose out on

his payo¤s in excess of 1
2
, due to �+k (�g

�) < �+i (�g
�): Second, i is not able to extract additional

payo¤s by extending competitive links to any subset of Nnfi; kg, as then node i will have
weakly less friends than any node in Nnfi; kg. In fact, any such deviation will strictly
decrease i�s payo¤s, as i will have less friends after the deviation and can therefore also

extract less from node k. Third, a combination of the above two, that is, reciprocating k�s

positive link and extending one or more negative link(s) to any of the remaining nodes. For

n = 3 it is easy to see that there does not exist a pro�table deviation, as payo¤s remain the

same. For n � 4 payo¤s will strictly decrease. I discern two cases. If the deviation involves
only one additional negative link, i�s payo¤s decrease, as node k will have less friends prior

to the proposed deviation than j after it. If the deviation involves more than one additional

negative link, payo¤s will be lower even further, because i can now not only extract less from

4In fact, for n � 5, it can be shown that there always exists an equilibrium con�guration where 2 nodes
consitute the smallest clique. This result is not yet incorporated in the current version of the paper.
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k, but he will also receive payo¤s of less than 1
2
from all other nodes to which he extends

negative links.

Lemma 3: In any NE �g�, if �+i (�g
�) = �+j (�g

�) =) �g�i;j = 1:

Proof. See the Appendix.

Lemma 3 states that, in any Nash equilibrium, nodes who have the same number of

friends are also friends with each other. I will use this result extensively for the characteriza-

tion of equilibrium. Note that Lemma 3 already rules out any con�guration with cliques of

equal size as part of a Nash equilibrium. The proof is by contradiction. Assume that there

are two nodes, i and j, such that they have the same number of friends, but sustain a coer-

cive relationship. Without loss of generality, assume that node i extends the negative link,

while node j extends the positive one. I discern 4 cases, which cover all possible networks,

each yielding a contradiction with my initial assumption. In the graphs below, black solid

lines signify positive, while dashed red lines stand for negative links. The number next to

the node indicates the number of friends of that node.

Lemma 3 - Case 1

i­2

k­3 l­3

j­2

profitable
deviation

by k

i­1

k­2 l­3

j­2

Case 1: The link between i and j is the only negative one in the undirected network,
all other links are positive. This can not be an equilibrium, as any node k can pro�tably

deviate by extending a negative link to either i or j. Node k will then extort payo¤s in excess

of one half from that particular link, while payo¤s on all his other links remain unchanged.

Note that in a triad, this is analogous to saying that a con�guration with two positive links

and one negative is not balanced.
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Lemma 3 - Case 2

i­2

k­2 l­2

j­2

profitable
deviation

by i

i­2

k­1 l­2

j­2

Case 2: There are at least two competitive links in the undirected network and i and
j are only involved in the one between themselves (and have N � 2 friends). There are then
two nodes, k and l, which are involved in at least one negative link. Therefore, k has at

most as many friends as i prior to the deviation and i can pro�tably deviate by extending a

positive link to j and a negative one to k. i then extorts payo¤s in excess of 1
2
from k, while

payo¤s from all remaining links stay the same.

Lemma 3 - Case 3

i­1

k­2 l­2

j­1

profitable
deviation

by i

i­2

k­2 l­2

j­2

Case 3: Nodes i and j extend both, positive and negative links. i can then deviate
pro�tably by extending a friendly link to j, as i will be able to extract higher payo¤s from

each of his negative links, while payo¤s from all positive links remain constant.
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Lemma 3 - Case 4

i­0

k­0 l­0

j­0

profitable
deviation

by i

i­1

k­0 l­0

j­1

Case 4: All links in the undirected network are negative. Node i receives a payo¤ of
(N�1)� 1

2
and can deviate pro�tably by extending a positive link to j. He then continues to

receive a payo¤ of 1
2
from his link with j, but receives a payo¤ in excess of 1

2
from all other

nodes.

Proposition 3: Any NE �g� s:t: 9s; t 2 N : �+s (�g
�) 6= �+t (�g

�), �g� can be partitioned into

maximal cliques of di¤erent size with �g�i;j = �1; if i 2 Cmk (�g�) and j 2 Cml (�g�):

Proof. See the Appendix.

Proposition 3 provides a characterization of equilibrium. It states that, in any Nash

equilibrium, such that there are at least two nodes with di¤erent numbers of friends, the

undirected network can be partitioned into maximal cliques of friends of di¤erent size. Nodes

in larger cliques (with more friends), extend negative links to nodes in smaller cliques (with

fewer friends).

The proof for Proposition 3 is by induction. First, I rank the sets of nodes with the

same number of friends, Pk(�g�), by their subscripts, where the subscript stands for the

number of friends of a node in that set. I call the set of nodes with the highest number of

friends Pm(�g�), the set with the second highest number of friends Pm�1(�g�) and proceed in

this way until the set of nodes with the lowest number of friends. The idea of the proof is

to show that the cardinality j Pk(�g�) j= k + 1, which - together with Lemma 3 - already

implies the result. Remember that by Lemma 2 all nodes, which are not in Pm(�g�), extend

positive links to all nodes in Pm(�g�). Therefore, the sign of a link in the undirected network

�g� is determined by the sign of the directed link, which the node with more friends extends

to the node with fewer friends.

13



Base Case: In the base case, I prove in four steps that j Pmx (�g�) j= x+ 1.

Proposition 3 - Step 1

i j
Pm

+

k l

profitable
deviation

by i

i j
Pm

+

k l

Step 1: Here I show that in any Nash equilibrium g�, any two nodes i; j 2 Pm(�g�)
must be linked to all other nodes in the same way. That is, all nodes to which i has a friendly

link in the undirected network �g�, j will have a friendly link as well, while all nodes to which

i has a antagonistic link in the undirected network �g�, j will likewise have a antagonistic

link. Assume the contrary. As i and j are both in Pm(�g�), i and j have the same number

of friends, �+i (�g
�) = �+j (�g

�): But then, there must exist a pair of nodes, k and l, such that i

has a friendly link with k and an antagonistic one with l, while j has a friendly link with l

and an antagonistic one with k: Such a con�guration is depicted in the graph above. Note

that k and l are not in Pm(�g�), as by Lemma 3 both, i and j, are linked positively to all

nodes in Pm(�g�): Furthermore, assume w.l.o.g. that l has at least as many friends as k.

This con�guration can not be an equilibrium, as node i can pro�tably deviate by creating a

friendly link with l and an antagonistic one with k. i�s number of friends remains the same,

while k has now strictly less friends than l had before the deviation, i.e. �+k (�g
�0) < �+l (�g

�).

Therefore, i can extract more from k than he was previously able to extract from l.

Step 2: I prove that any con�guration, which is not of the following two types, can
not be a Nash equilibrium g�. First, all nodes i 2 Pm(�g�) have positive links with all nodes
k 2 Pm�1(�g�) in the undirected network �g�. Second, all nodes i 2 Pm(�g�) have negative
links with all nodes k 2 Pm�1(�g�) in the undirected network �g�. I assume to the contrary
that there are positive and negative links between nodes in Pm(�g�) and Pm�1(�g�) and discern

two cases.

14



Proposition 3 - Step 2, Case 1

i j
+

k l
+

Pm

Pm­1

First, there does not exist a set Pm�2(�g�): I know from Step 1 that nodes in Pm(�g�)

are linked to all remaining nodes in the same way. Assume now, w.l.o.g., that k 2 Pm�1(�g�)
is linked positively with all i 2 Pm(�g�), while l 2 Pm�1(�g�) is linked negatively with all
i 2 Pm(�g�) in the undirected network �g�. This can not be an equilibrium, as from Lemma 3
I know that all nodes in Pm�1(�g�) are connected to each other in a positive way and therefore

node k has more friends than node l. But then k and l can not both be in Pm�1(�g�).

Proposition 3 - Step 2, Case 2

i j
Pm

+

k l
+

Pm­1

h Pm­x

.

.

.

profitable
deviation

by i

i j
Pm

+

k l
+

Pm­1

h Pm­x

.

.

.

Second, there exists a set Pm�2(�g�). Recall that any two nodes in Pm(�g�) are linked to

all remaining nodes in the same way. Assume again that k 2 Pm�1(�g�) is linked positively
with all i 2 Pm(�g�), while l 2 Pm�1(�g�) is linked negatively with all i 2 Pm(�g�) in the
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undirected network �g�. But then k is linked positively to all nodes in Pm�1(�g�) and to all

nodes in Pm(�g�), while for all i 2 Pm(�g�) there exists a node l 2 Pm�1(�g�), for which the link
in the undirected network �g� is negative. In order for i 2 Pm(�g�) to have more friends than
k 2 Pm�1(�g�), there must exist a node h 2 Pm�x(�g�); with x � 2, such that all i 2 Pm(�g�)
are linked positively to h 2 Pm�x(�g�), while node k is linked negatively to h 2 Pm�x(�g�) in
the undirected network �g�. But this can not be a Nash equilibrium, as then i can pro�tably

deviate by extending a negative link to h 2 Pm�x(�g�); with x � 2; and a positive one to

l 2 Pm�1(�g�). This deviation is pro�table, as h has less friends after the deviation than l
had prior to it.

Proposition 3 - Step 3 with cardinality of l�s friends smaller/equal h�s

i

k

h l

.

.

.

profitable
deviation

by k

Pm

Pm­1

Pm­x

i

k

h l

.

.

.

Pm

Pm­1

Pm­x

Step 3: I show that, if all nodes i 2 Pm(�g�) are linked positively to all k 2 Pm�1(�g�),
then it must be that the set of friends of node k 2 Pm�1(�g�) are a strict subset of the friends
of node i 2 Pm(�g�). The underlying argument is very similar to what I already used in the
�rst step.

First, note that there must exist a node h, which is neither in Pm(�g�), nor in Pm�1(�g�),

such that h is connected positively with all i 2 Pm(�g�) and there exists some k 2 Pm�1(�g�),
such that h and k are connected negatively in the undirected network �g�. Otherwise k

would have at least as many friends as i, contradicting the assumption that i 2 Pm(�g�) and
k 2 Pm�1(�g�). Assume now that k�s friends are not a strict subset of i�s friends. Then

there must exist a node l, which is neither in Pm(�g�); nor in Pm�1(�g�), such that l is linked

negatively with all i 2 Pm(�g�) and positively with some node k 2 Pm�1(�g�). This is depicted
in the graph above. I can discern two cases. First, h has at most as many friends as l, that

is, �+h (�g
�) � �+l (�g�). Then, i can deviate pro�tably by extending a positive link to l and a

negative one to h - the deviation shown in the above graph. If l has at most as many friends

16



as h, �+l (�g
�) � �+h (�g�), then node k can deviate pro�tably by extending a friendly link to h

and a competitive one to l: Both cases yield a contradiction.

Step 4: I can now at last establish that, in any Nash equilibrium g�, links between all
i 2 Pm(�g�) and all k 2 Pm�1(�g�) must be negative in the undirected network �g�. Assume
the contrary. If there does not exist a set Pm�2(�g�), it is easy to see that the statement

must hold, as otherwise i and k would have the same number of friends, i.e. �+i (�g) = �
+
k (�g),

yielding an immediate contradiction. For the case where there exists a set Pm�2(�g�), I can

distinguish two cases.

First, payo¤s of k 2 Pm�1(�g�) are at least as high as payo¤s of i 2 Pm(�g�) : �k(g�) �
�i(g

�). Recall from Step 3 that k�s friends are a subset of i�s friends and consider a deviation

where i imitates k�s strategy. Under the resulting undirected network after the deviation �g�0,

i and j are linked in the same way and i obtains higher payo¤s in �g�0 than k did in �g�. To

see this, note that no enemy of k has more friends after the deviation and at least one has

fewer friends. Therefore, �i(g�0) > �k(g�) � �i(g�) and i can pro�tably deviate.
Second, payo¤s of i 2 Pm(�g�) are higher than payo¤s of k 2 Pm�1(�g�) : �i(g�) >

�k(g
�): Now k can pro�tably deviate by imitating i�s strategy and payo¤s of k after the

deviation are equal to i�s, i.e. �i(g�) = �k(g
�0) > �k(g

�). Note that from Step 3 - that

k�s friends are a subset of i�s friends - I know that k imitating i�s strategy entails linking

positively to all nodes to which i is linked positively, while k is linked negatively in �g�. Then,

k and i are linked in the same way in the undirected network after the deviation �g�0, while

all nodes to which i extends antagonistic links have the same number of friends in �g� and

�g�0. Therefore, k�s payo¤s after the deviation are equal to i�s payo¤s prior to it, resulting in

a pro�table deviation.

I have now shown that all links between all i 2 Pm(�g�) and all k 2 Pm�1(�g�) must be
negative. But then, all links between all i 2 Pm(�g�) and all h 2 Pm�x(�g�); for x � 2; must
be negative as well. Assume the contrary. Then i could pro�tably deviate by extending a

positive link to k and a negative one to h: As all nodes in i 2 Pmx (�g�) (where the subscript
indicates the number of friends of a node in set Pmx (�g

�)) extend negative links to all other

nodes k =2 Pmx (�g�), it must be that j Pmx (�g�) j= x+ 1. This concludes the description of the
base case of the proof.

Inductive Step: For the inductive steps I de�ne the set ~P r(�g�) = fPm(�g�); Pm�1(�g�);
:::; Pm�r(�g�)g, which contains all nodes that have the r + 1 highest number of friends. The
base case showed that the statement of Propositions 2 holds for ~P 0(�g�) = Pm(�g�): In the

inductive step I assume that the statement holds for the set ~P r(�g�) and then show that it

must also hold for ~P r+1(�g�): Note �rst that, given the statement holds for ~P r(�g�), all nodes

q 2 ~P r(�g�) extend negative links to all nodes z =2 ~P r(�g�). By Lemma 1 I know that in

17



any Nash equilibrium g�; all z =2 ~P r(�g�) extend friendly links to q 2 ~P r(�g�): Assuming that

the statement holds for ~P r(�g�), I can then relabel Pm(�g�) with Pm�(r+1)(�g�) and Pm�1(�g�)

with Pm�(r+2)(�g�) and repeat the Steps 1 through 4 from the base case to establish that

all links between all h 2 Pm�(r+1)(�g�) and all z 2 Pm�(r+2)(�g�) are negative and therefore
h 2 Pm�(r+1)(�g�) is linked negatively to all nodes w =2 Pm�(r+1)(�g�): j Pm�(r+1)y (�g�) j= y+1
and above statement holds for ~P r+1(�g�). This concludes the equilibrium characterization.

4 Conclusion and Future Work

In this paper I present a simple model of network formation, where agents enter into

positive (friendship or alliances) and negative (antagonism or coercion) relationships. The

coercive power of an agent, relative to another agent, is determined by the ratio of their

respective allies. That is to say, an agent with more allies may exploit another agent with

fewer allies under a coercive relationship. There are three main insights to be drawn.

First, the model shows how in this context self-interested behavior of agents yield the

following sharp structural predictions under Nash equilibrium. Either all nodes are friends, or

cliques of allies emerge, with antagonistic relationships among distinct cliques. This mirrors

results on signed networks obtained in the structural balance literature of social psychology.

Second, cliques are of di¤erent size. This result is interesting, because it constitutes a

departure from structural balance, where balanced outcomes allow for cliques of same size. It

is also in contrast to models of alliance and group formation in the literature of economics of

con�ict and coalitional games of pillage, where group structures are shown to be symmetric.

Third, the game theoretic approach allows me to address questions concerning the

relative size and number of cliques, which could previously not be answered. A con�ict

technology, which is favorable for the node with a higher number of allies, permits cliques

to be of similar (yet di¤erent) size, while a con�ict technology relatively favouring the node

with fewer allies, forces equilibrium con�gurations into more asymmetric structures.

This paper is the �rst to incorporate friendly and antagonistic links in a game-theoretic

model of network formation and there are, of course, many open questions yet to be ad-

dressed. It appears natural to add a cost of linking and/or a cost to coercion. Introducing

incomplete or asymmetric information seems interesting, as outright con�ict may then arise

as part of an equilibrium. Furthermore, the so called trade-o¤ between guns vs. butter of

the economics of con�ict literature is not part of the current speci�cation and one could,

for example, allow for investment into production on the one hand and arming (the coercive

technology) on the other. A slightly di¤erent model setup, where surplus is not generated

by the link, but a resource speci�c to the agent, seems also promising.
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5 Appendix

Lemma 1: In any NE g�, @�gi;j = 0 for some i; j 2 N:

Proof. Assume there exist two nodes i and j such that �gi;j = 0. To see that this can

not be a Nash equilibrium, note that i and j obtain a payo¤ of zero from �gi;j = 0. But
(�+i (�g)+1)

�

(�+i (�g)+1)
�+(�+j (�g)+1)

� > 0 for � > 0 and i can deviate pro�tably with the following strategy:

gi + g
+
i;j:

Q.E.D

Lemma 2: In any NE �g�; if 9i; j 2 N : �g�i;j = �1 with �+i (�g�) < �+j (�g�) then g�i;j = 1:

Proof. Assume the contrary, i.e. �g�i;j = �1 with g�i;j = �1 and g�j;i = 1. But then i can

pro�tably deviate with g�i + g
+
i;j, yielding �g

�
i;j = 1 in the undirected network. This strictly

increases payo¤s for i from his link with j, as 1
2
>

(�+i (�g
�)+1)�

(�+i (�g
�)+1)�+(�+j (�g

�)+1)�
for �+i (�g

�) < �+j (�g
�)

and payo¤s from all k 2 Nnfi; jg are non-decreasing in �+i (�g�):
Q.E.D.

Proposition 1: 8� > 0 9NE g� : �g�i;j = 1 8i; j 2 N:

Proof. A deviation for node i consists of extending negative links to some subset of Nnfig:
Denote the undirected network after a deviation with �g�0. If the deviation strategy of i

consists of extending a negative link to only one other node j, then payo¤s remain the same,

as �+i (�g
�0) = �+j (�g

�0) = N � 2 and i and j will continue to share the surplus of one in equal
parts. If the deviation strategy of i consists of extending two or more negative links, payo¤s

will be strictly lower for i under the deviation, as then �+i (�g
�0) < �+k (�g

�0) 8k 2 Nnfig while
�g�i;j = �1 for some j 2 Nnfig.
Q.E.D.

Proposition 2: 8� > 0 9NE �g� : 9k : �g�i;k = �1 8i 2 Nnfkg ^ �g�i;j = 1 8i; j 2 Nnfkg:

Proof. Recall �rst from Lemma 1 that in any NE �g�; @s; t 2 N : �g�s;t = 0. As above I

will check in the following for pro�table deviations. Denote the undirected network after a

proposed deviation with �g�0. First, node k. From Lemma 2 I know that, as �+k (�g
�) < �+i (�g

�)

8i 2 Nnfkg, g�k;i = 1 8i 2 Nnfkg and a deviation of k therefore consists of extending
negative links to some subset of Nnfkg. To see that any such deviation decreases k�s payo¤s
strictly, note that for �g�k;i = �1 with g�k;i = 1, it must be that g�i;k = �1: If k were to
extend a negative link to i, the undirected link between k and i in �g�0 becomes �g�0k;i = 0 and

payo¤s for k are zero. Under �g�k;i = �1, however, payo¤s for k from its link to i are positive,
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while payo¤s from nodes j 2 Nnfk; ig remain the same in both networks, �g� and �g�0 (as
�+k (�g

�) = �+k (�g
�0) = 0 and �+j (�g

�) = �+j (�g
�0) = N � 2 8j 2 Nnfk; ig). Second, node i: There

are three types of possible deviations. First, i extends a positive link to k. But this decreases

i�s payo¤s strictly as �+k (�g
�) < �+i (�g

�), while payo¤s from all other links remain the same.

Second, i extends a negative link to some subset ofNnfk; ig. This deviation strictly decreases
payo¤s: i�s payo¤s will decrease from the link with k, as �+i (�g

�0) < �+i (�g
�) and will at most

yield constant payo¤s from links with j 2 Nnfi; kg, by an argument analogous to Lemma 2.
Third, a combination of the above two deviations. Assume �rst i extends a positive link to

k and one negative link to some j 2 Nnfk; ig. i will not increase payo¤s if n = 3; as then
�+k (�g

�) = �+j (�g
0) = 0 and will strictly decrease payo¤s for n � 4. To see this, note that then

�+k (�g
�) = 0 while �+j (�g

0) � 1 8j 2 Nnfk; ig. Furthermore, for n � 4, extending more than
one negative link to Nnfk; ig yields even lower payo¤s than when linking negatively to only
one node in Nnfk; ig, again by the argument used in Lemma 2.
Q.E.D.

Lemma 3: In any NE �g�, if �+i (�g
�) = �+j (�g

�) =) �g�i;j = 1

Proof. Assume there exists a Nash equilibrium strategy pro�le g� : �+i (�g
�) = �+j (�g

�) ^
�g�i;j = �1. I distinguish four cases.

Case 1: �g�i;j = �1 ^ �g�i;k = �g�j;k = �g�k;l = 1 8k; l 2 Nnfi; jg:

This can not be a Nash Equilibrium, as 9k 2 N : �+k (�g
�) > �+i (�g

�) and k can pro�tably

deviate with the following strategy g�k + g
�
k;i: To see this, note �rst that �

+
i (�g

� + g�k;i) =

�+i (�g
�)� 1:Then, cancelling out terms, �k(g�k + g�k;i;g��k) > �k(g�k;g��k)

can be written as

(�+k (�g
�)+1)�

(�+k (�g
�)+1)�+(�+i (�g

�)+1)�
> 1

2

and the inequality follows from �+k (�g
�) > �+i (�g

�) and � > 0:

Case 2: �g�i;j = �1 ^ �g�i;k = �g�j;k = 1 8k 2 Nnfi; jg ^ 9�g�k;l = �1 for some k; l 2 Nnfi; jg:

Without loss of generality assume that g�i;j = �1 and g�j;i = 1: To see that this can not

be a Nash Equilibrium, note that if �g�k;l = �1 for some k; l 2 Nnfi; jg, then �+k (�g�) �
�+l (�g

�) � �+i (�g�): But then i can deviate pro�tably with the following strategy g�i +g+i;j+g�i;k.
Denote the undirected network, resulting from the proposed deviation with �g�0: Note that

�+i (�g
�) = �+i (�g

�0), while �+k (�g
�0) = �+k (�g

�)� 1: �i(g�i + g+i;j + g�i;k;g��i) > �i(g�)
follows from
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�+i (�g
�0)

2
+

P
q2N�

i (�g
�0)

(�+i (�g
�0)+1)�

(�+i (�g
�0)+1)�+(�+q (�g�0)+1)�

>
�+i (�g

�)
2

+
P

q2N�
i (�g

�)

(�+i (�g
�)+1)�

(�+i (�g
�)+1)�+(�+q (�g�)+1)�

:

Cancelling out terms yields

P
q2N�

i (�g
�0)

(�+i (�g
�0)+1)�

(�+i (�g
�0)+1)�+(�+q (�g�0)+1)�

>
P

q2N�
i (�g

�)

(�+i (�g
�)+1)�

(�+i (�g
�)+1)�+(�+q (�g�)+1)�

:

Note that the only links that di¤er in the undirected network �g�0, relative to �g�, are �gi;j and

�gi;k: I can therefore write the above condition as

(�+i (�g
�0)+1)�

(�+i (�g
�0)+1)�+(�+k (�g

�0)+1)�
>

(�+i (�g
�)+1)�

(�+i (�g
�)+1)�+(�+k (�g

�)+1)�
:

The inequality then holds from �+i (�g
�) = �+i (�g

�0), while �+k (�g
�0) = �+k (�g

�)� 1:

Case 3: �g�i;j = �1 ^ N�
i (�g

�) 6= ; ^ N�
j (�g

�) 6= ;.

Without loss of generality assume below that g�i;j = �1 and g�j;i = 1: This can not be a Nash
equilibrium, as i can pro�tably deviate with g�i + g

+
i;j: Denote again the undirected network

after the deviation with �g�0: Note that �+i (�g
�)+1 = �+i (�g

�0) and that N�
i (�g

�0) = N�
i (�g

�)nfjg:
I can then write �i(g�i + g

+
i;j;g

�
�i) > �i(g

�
i ) as

�+i (�g
�0)

2
+

P
q2N�

i (�g
�0)

(�+i (�g
�0)+1)�

(�+i (�g
�0)+1)�+(�+q (�g�0)+1)�

>
�+i (�g

�)
2

+
P

q2N�
i (�g

�)

(�+i (�g
�)+1)�

(�+i (�g
�)+1)�+(�+q (�g�)+1)�

which can be rewritten as
(�+i (�g

�)+1)
2

+
P

q2N�
i (�g

�0)

(�+i (�g
�0)+1)m

(�+i (�g
�0)+1)m+(�+q (�g�0)+1)m

>
�+i (�g

�)
2

+
P

q2N�
i (�g

�)nfjg

(�+i (�g
�)+1)m

(�+i (�g
�)+1)m+(�+q (�g�)+1)m

+

(�+i (�g
�)+1)m

(�+i (�g
�)+1)m+(�+j (�g

�)+1)m

from �+i (�g
�) = �+j (�g

�) and N�
i (�g

�0) = N�
i (�g

�)nfjg I can write the above as

P
q2N�

i (�g
�0)

(�+i (�g
�0)+1)�

(�+i (�g
�0)+1)�+(�+q (�g�0)+1)�

>
P

q2N�
i (�g

�0)

(�+i (�g
�)+1)�

(�+i (�g
�)+1)�+(�+q (�g�)+1)�

and the inequality simply follows from �+i (�g
�) + 1 = �+i (�g

�0) and �+k (�g
�) = �+k (�g

�0) 8k 2
N�
i (�g

�0):
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Case 4: �g�k;l = �1 8k; l 2 N:

Without loss of generality assume below that g�i;j = �1 and g�j;i = 1: This can not be a

NE, as then node i could pro�tably deviate with the following strategy g�i + g
+
i;j, thereby

obtaining payo¤s larger than 1
2
from all nodes k 2 Nnfi; jg.

Q:E:D:

Proposition 3: Any NE �g� s:t: 9s; t 2 N : �+s (�g
�) 6= �+t (�g

�), �g� can be partitioned into

maximal cliques of di¤erent size with �g�i;j = �1; if i 2 Cmk (�g�) and j 2 Cml (�g�):

The proof is by induction and requires several steps. First, rank the sets Pk(�g�) by its

subscript and call the set with the highest subscript Pmk (�g
�) for some k 2 N+, the one with

the second highest subscript with Pm�1l (�g�) for some l < k with l; k 2 N+: Proceed in this
way until the set with the lowest subscript. For ease of notation, I will drop the subscripts

in the following.

Base Case: In any NE �g� : 9s; t 2 N : �+s (�g) 6= �+t (�g); then �gi;j = �1 8i 2 Pm(�g�)^
8j =2 Pm(�g�):

Step 1: I will �rst show that in any NE �g� : 9s; t 2 N : �+s (�g
�) 6= �+t (�g�); N+

i (�g
�)nfjg =

N+
j (�g

�)nfig ^N�
i (�g

�) = N�
j (�g

�) 8i; j 2 Pm(�g�):

For j Pm(�g�) j= 1; the statement holds trivially. Assume j Pm(�g�) j� 2, and - contrary

to the above - that 9i; j 2 Pm(�g�) : N+
i (�g

�)nfjg 6= N+
j (�g

�)nfig ^ N�
i (�g

�) 6= N�
j (�g

�): This

con�guration, however, can not be a Nash equilibrium. To see this, take two nodes k and

l, such that k 2 N+
i (�g

�)nfjg ^ k =2 N+
j (�g

�)nfig and l =2 N+
i (�g

�)nfjg ^ l 2 N+
j (�g

�)nfig.
Note that under the above assumption such a pair of nodes k and l must always exist, as

otherwise �+i (�g
�) 6= �+j (�g

�). Without loss of generality, assume �+k (�g
�) � �+l (�g

�): From

Lemma 2 I know that, in order for �g� to be a Nash equilibrium, g�i;l = �1 while g�l;i = 1: But
then i can pro�tably deviate with the following strategy: �g�i + g

+
i;l + g

�
i;k: Call the network

after the proposed deviation �g�0: This deviation is pro�table for i, as �+i (�g
�) = �+i (�g

�0) but

�+k (�g
�0) < �+l (�g

�), yielding strictly higher payo¤s for i. I know now that N+
i (�g

�)nfjg =
N+
j (�g

�)nfig ^N�
i (�g

�) = N�
j (�g

�) holds 8i; j 2 Pm(�g�):

Step 2: I will next show that any con�guration �g : 9s; t 2 N : �+s (�g) 6= �+t (�g), which is not
one of the following two types, can not be a Nash equilibrium �g�. First, �gi;k = 1 8i 2 Pm(�g),
8k 2 Pm�1(�g): Second, �gi;k = �1 8i 2 Pm(�g), 8k 2 Pm�1(�g):

Assume the contrary (and in accordance with Step 1 ) that 9k 2 Pm�1(�g�) : �g�k;i = 1

8i 2 Pm(�g�) and 9l 2 Pm�1(�g�) : �g�l;i = �1 8i 2 Pm(�g�). I distinguish two cases. First,
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@Pm�2(�g�): Then the contradiction is immediate, as �g�k;l = 1 8k; l 2 Pm�1(�g�) while �g�k;i = 1
8i 2 Pm(�g�) and �g�l;i = �1 8i 2 Pm(�g�) yields �+k (�g�) 6= �+l (�g�) and either k =2 Pm�1(�g�) or
l =2 Pm�1(�g�), resulting in a contradiction. Second, assume 9Pm�2(�g�) and 9k 2 Pm�1(�g�) :
�g�k;i = 1 8i 2 Pm(�g�) and 9l 2 Pm�1(�g�) : �g�l;i = �1 8i 2 Pm(�g�): Note that for node

k 2 Pm�1(�g�), �g�k;l = 1 8l 2 Pm�1(�g�)nfkg ^ �g�k;i = 1 8i 2 Pm(�g�); while for node i 2
Pm(�g�); 9l 2 Pm�1(�g�) : �g�i;l = �1^ �g�i;j = 1 8j 2 Pm(�g�)nfig: Therefore, in order for
�+i (�g

�) > �+k (�g
�); there must exist a node h 2 Pm�x(�g�) with x � 2, such that �g�i;h = 1: This,

however, can not be a Nash equilibrium, as i can then pro�tably deviate with the following

strategy: g�i + g
+
i;l + g

�
i;h: Denote again the network after the proposed deviation by �g

�0: The

deviation is pro�table for node i, as �+i (�g
�) = �+i (�g

�0), but �+h (�g
�0) < �+l (�g

�) (and it is also

pro�table for node l, as �+l (�g
�) < �+i (�g

�), which is relevant for the Bilateral Equilibrium

case): I have so far shown that 8i 2 Pm(�g�); either �g�i;k = 1 8k 2 Pm�1(�g�); or �g�i;k = �1
8k 2 Pm�1(�g�):

Step 3: In any NE �g� : 9s; t 2 N : �+s (�g) 6= �+t (�g) and �g
�
i;k = 1 8i 2 Pm(�g�); 8k 2

Pm�1(�g�); then N+
k (�g

�)nfig � N+
i (�g

�)nfkg 8i 2 Pm(�g�) and 8k 2 Pm�1(�g�) (and, con-
versely, N�

k (�g
�) � N�

i (�g
�)).

First, note that there must 9h =2 fPm(�g�); Pm�1(�g�)g : �g�i;h = 1 8i 2 Pm(�g�) ^ �g�h;k = �1
for some k 2 Pm�1(�g�): For, otherwise, �+k (�g) � �+i (�g); contradicting the initial assumption
that i 2 Pm(�g�) and k 2 Pm�1(�g�). Assume now that N+

k (�g)nfig � N+
i (�g)nfkg does not

hold. Then there must 9l 2 N : �g�i;l = �1 8i 2 Pm(�g�) ^ �g�k;l = 1 for some k 2 Pm�1(�g�):
This, however, can not be a NE. Assume �+h (�g) � �+l (�g): Then, a pro�table deviation exists
of the following form: g�i + g

+
i;l+ g

�
i;h: If �

+
l (�g) � �+h (�g) the pro�table deviation is of the form

g�k + g
+
k;h + g

�
k;l. Both cases yield a contradiction.

Before proceeding to Step 4, I will de�ne some further sets, which will prove to be useful.

De�nition 2: De�ne the following set(s) ~Nm(�g�) = fk 2 N j N+
i (�g

�) \ N�
j (�g

�) with i 2
Pm(�g�) and j 2 Pm�1(�g�)g and ~Nm�1(�g�) = fk 2 N j N+

i (�g
�) \N�

j (�g
�) with i 2 Pm�1(�g�)

and j 2 Pm�2(�g�)g. Proceed in this way until the two sets P (�g�) with the lowest number of
allies.

Step 4: I am now in the position to show that in any NE �g� : 9s; t 2 N : �+s (�g) 6= �+t (�g);
then �g�i;k = �1 8i 2 Pm(�g�); 8k 2 Pm�1(�g�):

If @Pm�2(�g�), the statement must hold, as otherwise �+i (�g) = �
+
k (�g). Assume now 9Pm�2(�g�)

and contrary to the above statement, but in accordance with the statement in Step 2, that
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�g�i;k = 1 for 8i 2 Pm(�g�); 8k 2 Pm�1(�g�): I discern two cases. First, �k(g�) � �i(g
�) for

i 2 Pm(�g�); k 2 Pm�1(�g�): Second, �i(g�) > �k(g�), for i 2 Pm(�g�); k 2 Pm�1(�g�):

Case 1: �k(g�k; g
�
�k) � �i(g�i ; g��i) for 8i 2 Pm(�g�); 8k 2 Pm�1(�g�):

First note that by Step 3, if �g�i;k = 1 8i 2 Pm(�g�); 8k 2 Pm�1(�g�) then the following has to
hold N+

k (�g)nfig � N+
i (�g)nfkg 8i 2 Pm(�g�) and 8k 2 Pm�1(�g�) (and, conversely, N�

i (�g
�) �

N�
k (�g

�)). Note that i 2 Pm(�g�) can then unilaterally imitate the strategy of k 2 Pm�1(�g�) in
the following way: g�i +

P
k2 ~N(�g�)

g�i;k: Then N
+
k (�g

�)nfi) = N+
i (g

�
i +

P
l2 ~N(�g�)

g�i;l; g
�
�i)nfkg holds for

any pair i 2 Pm(�g�); k 2 Pm�1(�g�). Note, however, that �i(g�i +
P

l2 ~N(�g�)
g�i;l; g

�
�i) > �k(g

�) �

�i(g
�); as now N�

i (g
�
i +

P
l2 ~N(�g�)

g�i;k; g
�
�i) = N�

k (�g
�); but �+h (g

�
i +

P
l2 ~N(�g�)

g�i;l; g
�
�i) < �+h (�g

�)

8h 2 ~Nm(�g�):

Case 2: �i(g�) > �k(g�), for i 2 Pm(�g�); k 2 Pm�1(�g�):

From Lemma 2 - together with �+h (�g
�) < �+k (�g

�) 8h 2 ~Nm(�g�); 8k 2 Pm�1(�g�) - I know that
g�h;k = 1 while g

�
k;h = �1: Similarly to Case 1, node k 2 Pm�1(�g�) can therefore unilaterally

imitate the strategy of i 2 Pm(�g�), such that �g�h;k = 1 8h 2 ~Nm(�g�); 8k 2 Pm�1(�g�). Denote
again the undirected network after the deviation with �g�0. To see that �i(g�) = �k(g�0); note

that N+
k (�g

�)nfig = N+
i (�g

�0)nfkg 8i 2 Pm(�g�) and 8k 2 Pm�1(�g�) (and N�
i (�g

�) = N�
k (�g

�0)).

Therefore, k can pro�tably deviate by extending friendly links to all nodes in ~Nm(�g�) and I

have reached a contradiction.

From the above it follows that in any NE �g� : 9s; t 2 N : �+s (�g
�) 6= �+t (�g�); then g�i;j = �1

8i 2 Pm(�g�); 8k 2 Pm�1(�g�): But then g�i;v = �1 8v =2 Pm(�g�) and therefore j Pmx (�g�) j=
x+ 1:

De�ne the set ~P r(�g�) = fPm(�g�); Pm�1(�g�); :::; Pm�r(�g�)g. Note ~P 0(�g�) = Pm(�g�):

Inductive Step: In any NE �g�, if �g�i;j = 1 8i; j 2 Pm�t(�g�) ^ �g�i;v = �1 8v =2 Pm�t(�g�)
holds 8t 2 N : 0 � t � r; then �g�h;l = 1 8h; l 2 Pm�(r+1)(�g�) ^ �g�h;w = �1 8w =2 Pm�(r+1)(�g�):

In the base case I proved that �g�i;j = 1 8i; j 2 Pm(�g�) ^ �g�i;v = �1 8v =2 Pm(�g�), i.e.,

that the �rst part of the statement holds for r = 0. To prove that this must hold 8Pk(�g�);
k 2 N+; I assume the induction hypothesis holds for some r 2 N+ and then show that it
also holds for r + 1: Note �rst that, assuming the induction hypothesis holds, g�q;z = �1
8q 2 ~P r(�g�);8z =2 ~P r(�g�): But then I also know that that in any Nash equilibrium g�z;q = 1

8q 2 ~P r(�g�);8z =2 ~P r(�g�); as @�g�i;j = 0. I can therefore repeat steps 1 through 4 from the
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base step, relabeling Pm(�g�) with Pm�(r+1)(�g�) and Pm�1(�g�) with Pm�(r+2)(�g�) to establish

that g�h;l = 1 8h; l 2 Pm�(r+1)(�g�); g�h;z = �1 8z 2 Pm�(r+2)(�g�) and therefore �g�h;w = �1
8w =2 Pm�r�1(�g�). I have now shown that the statement holds for ~P r+1(�g�), which concludes
the proof.

Q.E.D.

25



6 References

Antal, T., P. Krapivsky and S. Redner, (2006), "Social balance on networks: The dynamics

of friendship and enmity", Physica D, 224(130).

Aumann, R. and R. Myerson, (1988), "Endogenous Formation of Links Between Players

and Coalitions: An Application of the Shapley Value" in The Shapley Value, A. Roth (ed.),

Cambridge University Press, pp. 175-191.

Bala, V. and S. Goyal, (2000), "A non-cooperative model of network formation", Economet-

rica, Vol. 68, pp. 1181�1230.

Davis, J. A., (1967), "Clustering and structural balance in graphs", Human Relations,

20(2), pp. 181�187.

Cartwright D. and F. Harary, (1956), "Structural balance: A generalization of Heider�s the-

ory", Psychological Review, 63(5), pp. 277�293.

Chwe, M., (1994), "Farsighted Coalitional Stability", Journal of Economic Theory, Vol. 63,

pp. 299-325.

Chwe, M., (2000), "Communication and coordination in social networks", Review of Eco-

nomic Studies, Vol. 67 (1), pp. 1�17.

Doreian, P. and D. Krackhardt, (2001), "Pre-transitive mechanisms for signed networks",

Journal of Mathematical Sociology, Vol. 25, pp. 43�67.

Doreian, P. and A. Mrvar, (1996), "A partitioning approach to structural balance", Social

Networks, Vol. 18, pp. 149�168.

Esteban, J.M. and J. Sákovics, (2003), "Olson vs. Coase: Coalition worth in con�ict",

Theory and Decision ,Vol. 55, pp. 339-357.

Frank, J. and T. Öztürk, (2009), "Con�ict Networks", Ruhr Economic Papers.

Goyal, S. and A. Vigier, (2010), "Robust networks", working paper.

26



Harary, F., (1961), "A structural analysis of the situation in the Middle East in 1956", Jour-

nal of Con�ict Resolution, Vol. 5, pp. 167-178.

Heider, F., (1946), "Attitudes and cognitive organization", Journal of Psychology, Vol. 21,

pp. 107�112.

Jordan, J.S., (2006), "Pillage and property", Journal of Economic Theory, Vol. 131, Issue 1.

Jackson, M.O. and A. Wolinsky, (1996)," A Strategic Model of Social and Economic Net-

works", Journal of Economic Theory, Vol. 71, No. 1, pp. 44�74.

Moore, M., (1979), "Structural balance and international relations", European Journal of

Social Psychology, Vol. 9 (3), pp. 323�326.

Szell, M., R. Lambiotte and S. Thurner, (2010), "Multirelational organization of large-scale

social networks in an online world", PNAS, Vol. 107, No. 31, pp. 13636�13641.

Tullock, G., (1967), "The Welfare Cost of Tari¤s, Monopoly, and Theft", Western Economic

Journal, pp. 224-232.

Tullock, G., (1980), "E¢ cient Rent Seeking", in: J. Buchanan, R. Tollison and G. Tullock,

eds.,Toward a Theory of Rent Seeking Society, Texas A&M University Press, pp. 97-112.

Wärneryd, K., (1998), "Distributional con�ict and jurisdictional organization", Journal

of Public Economics, Vol. 69, pp. 435-450.

27



NOTE DI LAVORO DELLA FONDAZIONE ENI ENRICO MATTEI 

Fondazione Eni Enrico Mattei Working Paper Series 

Our Note di Lavoro are available on the Internet at the following addresses: 
http://www.feem.it/getpage.aspx?id=73&sez=Publications&padre=20&tab=1 

http://papers.ssrn.com/sol3/JELJOUR_Results.cfm?form_name=journalbrowse&journal_id=266659 
http://ideas.repec.org/s/fem/femwpa.html 

http://www.econis.eu/LNG=EN/FAM?PPN=505954494 
http://ageconsearch.umn.edu/handle/35978 

http://www.bepress.com/feem/ 
 
 
 
 

NOTE DI LAVORO PUBLISHED IN 2011 
SD 1.2011 Anna Alberini, Will Gans and Daniel Velez-Lopez: Residential Consumption of Gas and Electricity in the U.S.: 

The Role of Prices and Income 
SD 2.2011 Alexander Golub, Daiju Narita and Matthias G.W. Schmidt: Uncertainty in Integrated Assessment Models of 

Climate Change: Alternative Analytical Approaches 
SD 3.2010 Reyer Gerlagh and Nicole A. Mathys: Energy Abundance, Trade and Industry Location 
SD 4.2010 Melania Michetti and Renato Nunes Rosa: Afforestation and Timber Management Compliance Strategies in 

Climate Policy. A Computable General Equilibrium Analysis 
SD 5.2011 Hassan Benchekroun and Amrita Ray Chaudhuri: “The Voracity Effect” and Climate Change: The Impact of 

Clean Technologies 
IM 6.2011 Sergio Mariotti, Marco Mutinelli, Marcella Nicolini and Lucia Piscitello: Productivity Spillovers from Foreign 

MNEs on Domestic Manufacturing Firms: Is Co-location Always a Plus? 
GC 7.2011 Marco Percoco: The Fight Against Geography: Malaria and Economic Development in Italian Regions 
GC 8.2011 Bin Dong and Benno Torgler: Democracy, Property Rights, Income Equality, and Corruption 
GC 9.2011 Bin Dong and Benno Torgler: Corruption and Social Interaction: Evidence from China 
SD 10.2011 Elisa Lanzi, Elena Verdolini and Ivan Haščič: Efficiency Improving Fossil Fuel Technologies for Electricity 

Generation: Data Selection and Trends 
SD 11.2011 Stergios Athanassoglou: Efficient Random Assignment under a Combination of Ordinal and Cardinal 

Information on Preferences 
SD 12.2011 Robin Cross, Andrew J. Plantinga and Robert N. Stavins: The Value of Terroir: Hedonic Estimation of 

Vineyard Sale Prices 
SD 13.2011 Charles F. Mason and Andrew J. Plantinga: Contracting for Impure Public Goods: Carbon Offsets and 

Additionality 
SD 14.2011 Alain Ayong Le Kama, Aude Pommeret and Fabien Prieur: Optimal Emission Policy under the Risk of 

Irreversible Pollution 
SD 15.2011 Philippe Quirion, Julie Rozenberg, Olivier Sassi and Adrien Vogt-Schilb: How CO2 Capture and Storage Can 

Mitigate Carbon Leakage 
SD 16.2011 Carlo Carraro and Emanuele Massetti: Energy and Climate Change in China 
SD 17.2011 ZhongXiang Zhang: Effective Environmental Protection in the Context of Government Decentralization 
SD 18.2011 Stergios Athanassoglou and Anastasios Xepapadeas: Pollution Control: When, and How, to be Precautious 
SD 19.2011 Jūratė Jaraitė and Corrado Di Maria: Efficiency, Productivity and Environmental Policy: A Case Study of 

Power Generation in the EU 
SD 20.2011 Giulio Cainelli, Massimiliano Mozzanti and Sandro Montresor: Environmental Innovations, Local Networks 

and Internationalization 
SD 21.2011 Gérard Mondello: Hazardous Activities and Civil Strict Liability: The Regulator’s Dilemma 
SD 22.2011 Haiyan Xu and ZhongXiang Zhang: A Trend Deduction Model of Fluctuating Oil Prices 
SD 23.2011 Athanasios Lapatinas, Anastasia Litina and Eftichios S. Sartzetakis: Corruption and Environmental Policy: 

An Alternative Perspective 
SD 24.2011 Emanuele Massetti: A Tale of Two Countries:Emissions Scenarios for China and India 
SD 25.2011 Xavier Pautrel: Abatement Technology and the Environment-Growth Nexus with Education 
SD 26.2011 Dionysis Latinopoulos and Eftichios Sartzetakis: Optimal Exploitation of Groundwater and the Potential for 

a Tradable Permit System in Irrigated Agriculture 
SD 27.2011 Benno Torgler and Marco Piatti. A Century of American Economic Review 
SD 28.2011 Stergios Athanassoglou, Glenn Sheriff, Tobias Siegfried and Woonghee Tim Huh: Optimal Mechanisms for 

Heterogeneous Multi-cell Aquifers 
SD 29.2011 Libo Wu, Jing Li and ZhongXiang Zhang: Inflationary Effect of Oil-Price Shocks in an Imperfect Market: A 

Partial Transmission Input-output Analysis  
SD 30.2011 Junko Mochizuki and ZhongXiang Zhang: Environmental Security and its Implications for China’s Foreign 

Relations 
SD 31.2011 Teng Fei, He Jiankun, Pan Xunzhang and Zhang Chi: How to Measure Carbon Equity: Carbon Gini Index 

Based on Historical Cumulative Emission Per Capita 
SD 32.2011 Dirk Rübbelke and Pia Weiss: Environmental Regulations, Market Structure and Technological Progress in 

Renewable Energy Technology — A Panel Data Study on Wind Turbines 
SD 33.2011 Nicola Doni and Giorgio Ricchiuti: Market Equilibrium in the Presence of Green Consumers and Responsible 

Firms: a Comparative Statics Analysis 



SD 34.2011 Gérard Mondello: Civil Liability, Safety and Nuclear Parks: Is Concentrated Management Better? 
SD 35.2011 Walid Marrouch and Amrita Ray Chaudhuri: International Environmental Agreements in the Presence of 

Adaptation 
ERM 36.2011 Will Gans, Anna Alberini and Alberto Longo: Smart Meter Devices and The Effect of Feedback on Residential 

Electricity Consumption: Evidence from a Natural Experiment in Northern Ireland 
ERM 37.2011 William K. Jaeger and Thorsten M. Egelkraut: Biofuel Economics in a Setting of Multiple Objectives & 

Unintended Consequences 
CCSD 38.2011 Kyriaki Remoundou, Fikret Adaman, Phoebe Koundouri and Paulo A.L.D. Nunes: Are Preferences for 

Environmental Quality Sensitive to Financial Funding Schemes? Evidence from a Marine Restoration 
Programme in the Black Sea 

CCSD 39.2011 Andrea Ghermanti and Paulo A.L.D. Nunes: A Global Map of Costal Recreation Values: Results From a 
Spatially Explicit Based Meta-Analysis 

CCSD 40.2011 Andries Richter, Anne Maria Eikeset, Daan van Soest, and Nils Chr. Stenseth: Towards the Optimal 
Management of the Northeast Arctic Cod Fishery 

CCSD 41.2011 Florian M. Biermann: A Measure to Compare Matchings in Marriage Markets 
CCSD 42.2011 Timo Hiller: Alliance Formation and Coercion in Networks 

 
 
 
 
 
 
 
 
 
 
 
 

 


