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1. Introduction 

The control of climate change is a challenging task, at least for three reasons. Climate change is a 

global problem which involves a large number of players, namely all countries in the world. 

Climate change is likely to have significant distributional implications, as the expected impacts of 

climate change, the costs to mitigate it or adapt to it are not equally distributed.  

Secondly, it is a long-term phenomenon. Long-lived Greenhouse Gases (GHG) remain in the 

atmosphere from decades to centuries, increasing the concentrations for very long temporal 

horizons. As a consequence, mitigation efforts should be undertaken in advance, because today’s 

abatement actions will only yield benefits in the distant future.  

Thirdly, climate change is characterised by a high degree of uncertainty, both on the environmental 

and the economic side. Despite the increasing understanding of the scientific basis behind global 

warming, the climate remains a complex system. On the economic side, the future state of 

technology and innovation is hard to predict, and therefore the range of mitigation options to cope 

with climate change is uncertain. Global warming is an environmental externality and actions that 

deal with it respond to strategic incentives.  

Sound economic analysis of climate policies should try to encompass the multifaceted dimension of 

climate change. The WITCH model, developed by the climate change group at FEEM (Bosetti et 

al., 2006; Bosetti et al., 2007),  has been designed to explicitly deal with the main features of 

climate change. WITCH is a hybrid energy-economy of the world economy, with 12 representative 

macro-regions. It is an integrated assessment model (IAM), featuring a reduced form climate 

module and region-specific climate change damage functions that provide the climate feedback on 

the economic system. It is a forward-looking model, with perfect foresight, that optimises over a 

discounted stream of future consumption, over a long-term horizon covering all centuries until 

2100. Two distinguishing features of the WITCH model are the representation of endogenous 

technological change and the game–theoretic set-up.  

The intertemporal structure, the regional dimension and the game theoretical set-up make the 

WITCH model suitable for the assessment of long-term, geographic and strategic aspects of climate 

change policies.  
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The core structure of the model is described at length in the technical report (Bosetti et al., 2007). 

This paper briefly recalls its main characteristics, but the focus is on the new elements of the latest 

version, henceforth referred to as WITCH081.  

The rest of the paper is structured as follows. Section 2 briefly describes the model structure.  

Section 3 reports the updating of the base year data to 2005 and the new dynamic calibration of the 

main driving forces behind economic growth. Section 4 describes the introduction of non-CO2 

greenhouse gases and of reducing emissions from deforestation and degradation (REDD). Section 5 

illustrates the new specification of low carbon technologies and technological progress. Section 6 

briefly summarises computational advancements. Section 7 provides an overview of the new 

baseline scenario. Finally, Section 8 concludes the paper, summarising the key innovation of the 

model. 

 

2. Model structure 

2.1. General framework 

WITCH – World Induced Technical Change Hybrid – is an optimal growth model of the world 

economy that integrates in a unified framework the sources and the consequences of climate 

change. A climate module links GHG emissions produced by economic activities to their 

accumulation in the atmosphere and the oceans. The effect of these GHG concentrations on the 

global mean temperature is derived. A damage function explicitly accounts for the effects of 

temperature increases on the economic system. Equations from (A19) to (A33) in the Appendix 

describe in detail the climate module.  

WITCH08 can feature two different regional aggregations, which have both been calibrated to 

reproduce the same observed data.  

The first one preserves the same regional grouping as WITCH06. The twelve macro-regions (US, 

WESTERN EUROPE, EASTERN EUROPE, KOSAU, CAJANZ, TE, MENA, SSA, SASIA, 

CHINA. EASIA, LACA) share similarities in terms of the structure of the economy, energy supply 

and demand and resource endowments.  

                                                 
1 We refer to the latest version of the model with WITCH08. The first version instead is referred to as WITCH06. 
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The second regional aggregation is more suitable from the international policy standpoint. The 

regions CAJANZ (Canada, Japan, New Zealand), KOSAU (Australia, South Africa, Korea) and 

SSA (Sub-Saharan Africa without South Africa) have been changed into AUCANZ (Australia, 

Canada, New Zealand), JPNKOR (Korea, Japan) and SSA (Sub‑Saharan Africa, South Africa). 

Other regions have remained unchanged. 

Regions interact with each other because of the presence of economic (technology, exhaustible 

natural resources) and environmental global externalities. For each region a forward-looking agent 

maximises its own intertemporal social welfare function, strategically and simultaneously to other 

regions.  The intertemporal equilibrium is calculated as an open-loop Nash equilibrium, but a 

cooperative solution can also be implemented (see section 2.5). More precisely, the Nash 

equilibrium is the outcome of a non-cooperative, simultaneous, open membership game with full 

information. Through the optimisation process regions choose the optimal dynamic path of a set of 

control variables, namely investments in key economic variables. 

WITCH is a hard-link hybrid model because the energy sector is fully integrated with the rest of the 

economy and therefore investments and the quantity of resources for energy generation are chosen 

optimally, together with the other macroeconomic variables. The model can be defined hybrid 

because the energy sector features a bottom-up characterisation. A broad range of different fuels 

and technologies can be used in the generation of energy. The energy sector endogenously accounts 

for technological change, with considerations for the positive externalities stemming from 

Learning-By-Doing and Learning-By-Researching.  Overall, the economy of each region consists of 

eight sectors: one final good, which can be used for consumption or investments, and seven energy 

sectors (or technologies): coal, oil, gas, wind & solar, nuclear, electricity, and biofuels. 

2.2. The model  

The production side of the economy is very aggregated. Each region produces one single 

commodity that can be used for consumption or investments. The final good (Y) is produced using 

capital ( CK ), labour ( L ) and energy services ( ES ). In the first place capital and labour are 

aggregated using a Cobb-Douglas production function. This nest is then aggregated with energy 

services with a Constant Elasticity of Substitution production function (CES). Production of net 

output is described in equation (A4) in the Appendix. Climate damage (A20), which is a non-linear 

function of the gap between current and pre-industrial temperature, drives a wedge between net 

output and gross output. 
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The optimal path of consumption is determined by optimising the intertemporal social welfare 

function, which is defined as the log utility of per capita consumption, weighted by regional 

population, as described in equation (A1). The pure rate of time preference declines from 3% to 2% 

at the end of the century, and it has been chosen to reflect historical values of the interest rate. 

Energy services, in turn, are given by a combination of the physical energy input and a stock of 

energy efficiency knowledge, as illustrated in equation (A6). This way of modelling energy services 

allows for endogenous improvements in energy efficiency. Energy efficiency increases with 

investments in dedicated energy R&D, which build up the stock of knowledge. The stock of 

knowledge can then replace (or substitute) physical energy in the production of energy services. 

Energy used in final production is a combination of electric and non electric energy. Electric energy 

can be generated using a set of different technology options and non electric energy also entails 

different fuels. Each region will choose the optimal intertemporal mix of technologies and R&D 

investments in a strategic way.  

2.3. The energy sector  

Despite being a top-down model, WITCH includes quite a wide range of technology options to 

describe the use of energy and the generation of electricity (see a schematic representation of the 

energy sector and its role within the economic module of the model in Figure 1).  Energy is 

described by a production function that aggregates factors at various levels and with different 

elasticities of substitution. The main distinction is among electric generation and non-electric 

consumption of energy.  

Electricity is generated by a series of traditional fossil fuel-based technologies and carbon-free 

options. Fossil fuel-based technologies include natural gas combined cycle (NGCC), fuel oil and 

pulverised coal (PC) power plants. Coal-based electricity can also be generated using integrated 

gasification combined cycle production with carbon capture and sequestration (CCS). Low carbon 

technologies include hydroelectric and nuclear power, renewable sources such as wind turbines and 

photovoltaic panels (Wind&Solar) and two breakthrough technologies.  
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Figure 1: Production nest and the elasticity of substitution 

Legenda: KL= Capital-labour aggregate; K = Capital invested in the production of final good; L = Labour; ES = Energy services; HE 
= Energy R&D capital; EN = Energy; EL = Electric energy; NEL = Non-electric energy; OGB = Oil, Backstop, Gas and Biofuel 
nest; ELFF = Fossil fuel electricity nest; W&S= Wind and Solar; ELj = Electricity generated with technology j (IGCC plus CCS, Oil, 
Coal, Gas, Backstop, Nuclear, Wind plus Solar); TradBiom= Traditional Biomass; TradBio= Traditional Biofuels; AdvBio= 
Advanced Biofuels 

 
 

All the main technology features are represented: yearly utilisation factors, fuel efficiencies, 

investment, and operation and maintenance costs. For CCS, supply costs of injection and 

sequestration reflect sites’ availability at the regional level, as well as energy penalty, capture and 

leakage rates. IGCC-CCS competes with traditional coal which is replaced for a sufficiently high 

carbon price signal. For nuclear power, waste management costs are also modelled, but no 

exogenous constraint is assumed. Hydroelectric power is assumed to evolve exogenously to reflect 

limited site availability. 

Breakthrough in power generation technologies is modelled by introducing a backstop technology, 

that can be better thought of as a compact representation of a portfolio of advanced technologies 

that can substitute nuclear power.   

Energy consumption in the non-electric sector is based on traditional fuels (traditional biomass, oil, 

gas and coal) and biofuels. In order to account for food security concerns, overall penetration of 

biofuels is assumed to remain modest over the century. The consumption of oil can be substituted 

with a carbon-free backstop technology, which could be thought of as next generation biofuels or 

carbon-free hydrogen. As a consequence, the backstop technology is mostly conceived as an 

abatement option for the transport sector.  
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The cost of electricity generation is endogenous and it combines capital costs, O&M expenditure 

and the expenditure for fuels. The price of fossil fuels and exhaustible resources (oil, gas, coal and 

uranium) is also endogenously determined by the marginal cost of extraction, which in turn depends 

on current and cumulative extraction, plus a regional mark-up to mimic different regional costs.  

The use of fossil fuels generates CO2 emissions, which are computed by applying stoichiometric 

coefficients to energy use.  

2.4. Endogenous technical change 

One of the main features of the WITCH model is the characterisation of endogenous technical 

change. Albeit difficult to model, technological innovation is key to the decoupling of economic 

activity from environmental degradation, and the ability to induce it using appropriate policy 

instruments is essential for a successful climate agreement, as highlighted also in the Bali Action 

Plan. 

Both innovation and diffusion processes are modelled. We distinguish dedicated R&D investments 

for enhancing energy efficiency from investments aimed at facilitating the competitiveness of 

innovative low carbon technologies (backstops) in both the electric and non-electric sectors. R&D 

processes are subject to stand-on-shoulders as well on neighbours effects. Specifically, international 

spillovers of knowledge are accounted for to mimic the flow of ideas and knowledge across 

countries. 

Finally, experience processes via Learning-by-Doing are accounted for in the development of niche 

technologies such as renewable energy (Wind&Solar) and the backstops.  

 

2.5. Non cooperative solution 

The game theoretic setup makes it possible to capture the non-cooperative nature of international 

relationships. Free-riding behaviours and strategic inaction induced by the presence of a global 

externality are explicitly accounted for in the model. Climate change is the major global externality, 

as GHG emissions produced by each region indirectly impact on all other regions through the effect 

on global concentrations and thus global average temperature.  

The model features other economic externalities that provide additional channels of interaction. 

Energy prices depend on the extraction of fossil fuels, which in turn is affected by consumption 

patterns of all regions in the world. International knowledge and experience spillovers are two 

additional sources of externalities. By investing in energy R&D, each region accumulates a stock of 

knowledge that augments energy efficiency and reduces the cost of specific energy technologies. 
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The effect of knowledge is not confined to the inventor region but it can spread to other regions. 

Finally, the diffusion of knowledge embodied in wind&solar experience is represented by learning 

curves linking investment costs with world, and not regional, cumulative capacity. Increasing 

capacity thus reduces investment costs for all regions. These externalities provide incentives to 

adopt strategic behaviours, both with respect to the environment (e.g. GHG emissions) and with 

respect to investments in knowledge and carbon-free but costly technologies.  

Two different solutions can be produced: a co-operative one that is globally optimal and a 

decentralised, non-cooperative one that is strategically optimal for each given region (Nash 

equilibrium). In the cooperative solution all externalities are internalised and therefore it can be 

interpreted as a first-best solution. The Nash equilibrium instead can be seen as a second-best 

solution. Intermediate degree of cooperation, both in terms of externalities addressed and 

participation can also be simulated.  

3. Database updating: new base year calibration 

WITCH08 has been updated with more recent data and revised estimates for future projection of the 

main exogenous drivers. The base calibration year has been set at 2005, for which socio-economic, 

energy and environmental variables data are now available. We report on the main hypotheses on 

current and future trends on population, economic activity, energy consumption and climate 

variables. 

3.1. Population 

An important driver for the emissions of greenhouse gases is the rate at which population grows. In 

the WITCH model, population growth is exogenous. We update the model base year to 2005, and 

use the most recent estimates of population growth. The annual estimates and projections produced 

by the UN Population Division are used for the first 50 years2. For the period 2050 to 2100, the 

updated data are not available, and less recent long-term projections, also produced by the UN 

Population Division (UN, 2004) are adopted instead. The differences in the two datasets are 

smoothed by extrapolating population levels at 5-year periods for 2050-2100, using average 2050-

2100 growth rates. Similar techniques are used to project population trends beyond 2100. 

                                                 
2 Data are available from 
http://unstats.un.org/unsd/cdb/cdb_simple_data_extract.asp?strSearch=&srID=13660&from=simple. 
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Figure 2 compares global population figures in WITCH06 and WITCH08. Population in 2005 

equals roughly 6.5 Billions, and peaks in 2070 at almost 9.6 Billions, slightly decreasing thereafter 

to reach 9.1 in 2100. 
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Figure 2: Population dynamics 

 

3.2. Economic growth 

The GDP data for the new base year are from the World Bank Development Indicators 2007, and 

are reported in 2005 US$3. We maintain the use of market exchange rates (MER)4. World GDP in 

2005 equals to 44.2 Trillions US$.  

Although part of the GDP dynamics is endogenously determined in the WITCH model, it is 

possible to calibrate growth of different countries by adjusting the growth rate of total factor 

productivity, the main engine of macroeconomic growth. Figure 3 shows the revised trajectories for 

Gross World Product over the century5.  

                                                 
3 http://go.worldbank.org/U0FSM7AQ40  
4 This is in line with the most common practice in energy-economic-environment modelling. There has been a recent 
intense debate on the use of MER vs. purchasing power parity (PPP) exchange rate, in particular in relation to the 
implications for greenhouse gases emission trajectories. MER might underestimate current relative output levels of low-
income countries by a factor of around three relative to high-income countries, because tradable goods are currently 
relatively more expensive in low-income countries than in high-income countries (the Harrod–Balassa–Samuelson 
effect). However, output data is more readily available and reliable in MER, and allows for better comparison of both 
output growth and carbon intensities with historical empirical studies, that mostly rely on the MER metric, as well as 
short-term projections of economic and energy variables. Furthermore, the lower carbon efficiency of developing 
countries implicit in MER calculations does not necessarily translate in higher emission projections: income elasticity of 
energy demand is higher when using PPP, so that lower autonomous efficiency improvements should be assumed for 
PPP projection. The final effect on emissions is unclear, and might not be significant. 
5 We report all US$ in 2005US$. All figures have been adjusted using the 1995->2005 conversion factor of 0.788. 
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Figure 3: GWP trajectories 

 

Economic growth rates and the level of convergence are strong determinants of energy demand and, 

therefore, GHG emissions. WITCH06 was largely based on the IPCC SRES B2 scenario, which 

assumed some relative convergence of income across countries. In this updated version of the 

model, we depart from existing IPCC scenarios, and base our projections for regional GDP growths 

on assumptions regarding labour productivity convergence6. 

OECD countries are assumed to reach a rather constant growth rate, higher than in the WITCH06 

version, while the catch-up of non-OECD is driven by labour productivity which should bring most 

developing countries closer to the level of OECD countries by the end of the century. The 

convergence is nonetheless slow in per capita terms given the higher population growth of 

developing countries (Figure 4). Sub-Saharan Africa, in particular, experiences delays in catch-up. 

Eastern Europe shows the highest convergence rate. We therefore calibrate the model dynamically 

to match a growth path consistent with these underlying assumptions on convergence and growth. 

Figure 4 shows the convergence of per capita income to the levels of the US. Figure 5 reports GPD 

growth rates. 

 

                                                 
6 Such assumptions are consistent with a harmonisation process with two other prominent European models within the 
comparison project RECIPE. http://www.pik-potsdam.de/research/research-domains/sustainable-solutions/externally-
funded-projects/?searchterm=recipe 
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Figure 4: Convergence of GDP per capita to US levels 
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Figure 5: Output growth rates 

 

3.3. Energy data  

The WITCH model distinguishes the end use of energy between power generation (electricity 

sector) and other alternative usages, also referred to as non electric usages or non-electric sector. 

This distinction makes it possible to account for emissions reduction from the non-electric sector, 

where the substitution of fossil fuel use is particularly challenging.  

WITCH08 maintains the same underlying structure of the previous version of the model as 

described in Section 2.3, but the data is updated using Enerdata (2008). 
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3.3.1. Power generation sector 

We maintain the same specification as in WITCH06 for the capacity factors, specified by type of 

power generation plant. Despite the detailed description of the power generation sub-sector, not all 

types of power plants are modelled explicitly in WITCH (for instance, the model does not 

distinguish gas with no combined cycle). We therefore assume the standard use of factors for new 

power plants. This assumption helps us to avoid accounting difficulties for multi-fuel and marginal 

power plants. We maintain the same specification as in WITCH06 for the efficiency of fuel 

consumption in power generation plants, since they are close to the implied values in the new 

Enerdata database. Following recent debates over the technical feasibility, we increase the 

investment costs for Integrated Gasification Combined Cycle (IGCC) technologies from 2540 

US$2005/kW to 3170 US$2005/kW. The same increase is applied to nuclear power generation. 

We assume the average efficiency of gas and coal power plants improves autonomously to 60% and 

45%, respectively, over the next decades. Similarly, the utilisation factor of Wind&Solar is assumed 

to increase from 2500 to 3500 hours per year within a 30-year time frame. 

Costs for new investments and maintenance in power generation are region-specific and constant 

over time, but for renewables and backstop technologies, which are discussed in greater detail in 

section 5.1. Investment costs in renewable energy decline with cumulated installed capacity at the 

rate set by the learning curve progress ratios, which is equal to 0.87 — i.e. there is a 13% 

investment cost reduction for each doubling of world installed capacity. 

 

Electricity production is described by a Leontief production function that combines generation 

capacity, fuels and expenditure for operation and maintenance (O&M) in a Leontief production 

function. The fixed proportions used to combine the three inputs (two in the case of wind and solar 

electricity generation which does not need any fuel input) have been derived by plant operating 

hours, fuel efficiencies and O&M costs described in Table 1 and are constant across regions and 

across time. The parameters governing the production function take into account the technical 

features of each power production technology, such as the low utilisation factor of renewables, the 

higher costs of running and maintaining IGCC-CCS and nuclear plants.  

 

 



 15

  

Investment costs 
World average 
USD2005/KW 

O&M 
World average 
USD2005/KW 

Fuel 
Efficiency 

% 

Load factor
% 

Lifetime 
years 

Depreciation
% 

Renewables (W&S) 
1904 30 100% 30% 30 7.40% 

Nuclear 2540 176 35% 85% 40 5.60% 
Hydropower 1780 70 100% 50% 45 5% 
Coal 1530 47 45% 85% 40 5.60% 
Oil 1010 36 40% 85% 25 8.80% 
Gas 810 30 60% 85% 25 8.80% 
IGCC-CCS 3170 47 40% 85% 40 5.60% 

Table 1: Initial investment costs and O&M costs of electricity generation technologies  

 

3.3.2. Non electricity sector 

The energy carriers that are used for usages other than power generation are traditional biomass, 

biofuels, coal, gas and oil. In addition, a backstop technology, representing potential breakthrough 

options that could substitute oil in the non electric sector, pending sufficient R&D investments, is 

also considered. Oil and gas together account for more than 70% of energy consumption in the non 

electric sector. Instead, the use of coal is limited to some developing regions and it is assumed to 

decrease exogenously. Traditional biomass as well is used mostly in non-OECD regions and its 

share declines over time, from 11% in 2005 to 7% in 2030, as rural population in developing 

countries progressively gains access to standard forms of energy. In WITCH we distinguish 

between ethanol, which we label as “traditional biofuels”, and “advanced biofuels”, which are 

obtained from biomass transformation. Biofuels consumption is currently low in all regions of the 

world and the overall penetration remains modest over time given the conservative assumptions on 

their large scale deployment.   

For the non-electric sector, we derive the updated figures from the Enerdata 2008 database, by 

subtracting energy consumptions in the electricity sector from total consumption figures. 

3.3.3. Prices of fossil fuels and exhaustible resources 

The prices of fossil fuels and exhaustible resources have been revised upwards, following the sharp 

increases in the market prices between 2002 and 2005. Base year prices have been calibrated 

following Enerdata (2008), IEA (2007) and EIA (2008). The 2005 international prices for 

exhaustible resources are set at: 
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- 55 US$/bbl for oil, or roughly 8US$/GJ 

- 7.14 US$/GJ for natural gas 

- 60 US$/ton for coal, equivalent to 2 US$/GJ. In order to match the large difference in price 

increases shown in the Enerdata database, we adjust the mark-up prices 

- Uranium ore price tripled from 2002 to 20057, and we thus update to this new level. The cost 

of conversion was increased from 5 US$/kg to 11 US$/kg8, while enrichment costs stayed 

roughly constant9. We thus slightly increased the cost of conversion and enrichment from 

221 to 230 1995 US$/kg. 

Country specific mark-ups are set to reproduce regional figures from IEA (2007).  

3.3.4. Carbon emission coefficients of fossil fuels 

In WITCH08 we maintain the same initial stoichiometric coefficients as in WITCH06. However, in 

order to differentiate the higher emission content of non-conventional oil as opposed to 

conventional ones, we link the carbon emission coefficient for oil to its availability. Specifically, 

the stoichiometric coefficient for oil increases with the cumulative oil consumed so that it increases 

by 25% when 2000 Billions Barrels are reached. An upper bound of 50% is assumed. The 2000 

figure is calibrated on IEA (2005) estimates on conventional oil resource availability. The 25% 

increase is chosen given that estimates range between 14% and 39% (Farrell and Brandt, 2006). 

3.4. Climate data and feedback 

We continue to use the MAGICC 3-box layer climate model. CO2 concentrations in the atmosphere 

have been updated to 2005 at roughly 385ppm and temperature increase above pre-industrial at 

0.76°C, in accordance with IPCC 4th Assessment Report (2007). Other parameters governing the 

climate equations have been adjusted following Nordhaus (2007)10. We have replaced the 

exogenous non-CO2 radiative forcing in equation (A22), O, with specific representation of other 

GHGs and sulphates, see Section 4. The damage function of climate change on the economic 

activity is left unchanged. 

 

                                                 
7 http://www.uxc.com/review/uxc_g_price.html  
8 http://www.uxc.com/review/uxc_g_ind-c.html  
9 http://www.uxc.com/review/uxc_g_ind-s.html  
10 http://nordhaus.econ.yale.edu/DICE2007.htm 
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4. Additional sources of GHGs 

4.1.  Non-CO2 GHGs 

Non-CO2 GHGs are important contributors to global warming, and might offer economically 

attractive ways of mitigating it11. WITCH06 only considers explicitly industrial CO2 emissions, 

while other GHGs, together with aerosols, enter the model in an exogenous and aggregated manner, 

as a single radiative forcing component. 

In WITCH08, we take a step forward and specify non-CO2 gases, modelling explicitly emissions of 

CH4, N2O, SLF (short-lived fluorinated gases, i.e. HFCs with lifetimes under 100 years) and LLF 

(long-lived fluorinated, i.e. HFC with long lifetime, PFCs, and SF6). We also distinguish SO2 

aerosols, which have a cooling effect on temperature (see equation A21). 

Since most of these gases are determined by agricultural practices, we rely on estimates for 

reference emissions and a top-down approach for mitigation supply curves. For the baseline 

projections of non-CO2 GHGs, we use EPA regional estimates (EPA, 2006). The regional estimates 

and projections are available until 2020 only: beyond that date, we use growth rates for each gas as 

specified in the IIASA-MESSAGE-B2 scenario12, which has underlying assumptions similar to the 

WITCH ones. SO2 emissions are taken from MERGE v.513 and MESSAGE B2: given the very 

large uncertainty associated with aerosols, they are translated directly into the temperature effect 

(cooling), so that we only report the radiative forcing deriving from GHGs. In any case, sulphates 

are expected to be gradually phased out over the next decades, so that eventually the two radiative 

forcing measures will converge to similar values. 

The equations translating non-CO2 emissions into radiative forcing are taken from MERGE v.5 (see 

equations A24 to A27 in the Appendix). The global warming potential (GWP) methodology is 

employed, and figures for GWP as well as base year stock of the various GHGs are taken from the 

IPCC 4th Assessment Report, Working Group I. The simplified equation translating CO2 

concentrations into radiative forcing has been modified from WITCH06 and is now in line with 

IPCC14. 

                                                 
11 See the Energy Journal  Special Issue (2006) (EMF-21), Multi-Greenhouse Gas Mitigation and Climate Policy - Special 
Issue n°. 3 and the IPCC 4th AR WG III (IPCC, 2007b) 
12 Available at http://www.iiasa.ac.at/web-apps/ggi/GgiDb/dsd?Action=htmlpage&page=regions    
13 http://www.stanford.edu/group/MERGE/m5ccsp.html  
14 http://www.grida.no/climate/ipcc_tar/wg1/222.htm, Table 6.2, first Row. 
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We introduce end-of-pipe type of abatement possibilities via marginal abatement curves (MAC) for 

non-CO2 GHG mitigation. We use MAC provided by EPA for the EMF 21 project15, aggregated for 

the WITCH regions. MAC are available for 11 cost categories ranging from 10 to 200 US$/tC. We 

have ruled out zero or negative cost abatement options. MAC are static projections for 2010 and 

2020, and for many regions they show very low upper values, such that even at maximum 

abatement, emissions would keep growing over time. We thus introduce exogenous technological 

improvements: for the highest cost category only (the 200 US$/tC) we assume a technical progress 

factor that reaches 2 in 2050 and the upper bound of 3 in 2075. We, however, set an upper bound to 

the amount of emissions which can be abated, assuming that no more than 90% of each gas 

emission can be mitigated. Such a framework enables us to keep non-CO2 GHG emissions 

somewhat stable in a stringent mitigation scenario (530e) in the first half of the century, with a 

subsequent gradual decline. This path is similar to what is found in the CCSP report16, as well as in 

MESSAGE stabilisation scenarios. Nonetheless, the scarce evidence on technology improvements 

potential in non-CO2 GHG sectors indicates that a sensitivity analysis should be performed to verify 

the impact on policy costs. 

4.2.  Forestry 

Forestry is an important contributor of CO2 emissions and, similarly to non-CO2 gases, it might 

provide relatively convenient abatement opportunities. Forestry sector models differ substantially 

from energy-economy ones, so that normally the interaction is solved via soft link (e.g. iterative) 

coupling. For example, WITCH06 has been coupled with a global timber model to assess the 

potential of carbon sinks in a climate stabilisation policy (Tavoni et al. 2007). However, the model 

did not include this option in the standard simulation exercises.  

WITCH08 is enhanced with baseline emissions and supply mitigation curves for reduced 

deforestation. The focus is on REDD17 given its predominant role in CO2 emissions and the policy 

importance of this option as stressed in the 2007 Bali Action Plan. 

Baseline emissions are provided by the Brent Sohngen GTM model. REDD supply mitigation cost 

curves have been built and made suitable to be incorporated in the WITCH model.  

Two versions of abatement cost curves have been incorporated in the model representing two 

extreme cases. The first version includes abatement curves for the whole century for the Brazilian 

tropical forest only and have been developed using Brazil’s data from the Woods Hole Research 

                                                 
15 http://www.stanford.edu/group/EMF/projects/projectemf21.htm  
16 http://www.climatescience.gov/Library/sap/sap2-1/finalreport/default.htm  
17 Reducing emissions from deforestation and degradation. 
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Center (Nepstad et al. 2008)18.  A second version includes abatement curves for all world tropical 

forests, based on the Global Timber Model of Brent Sohngen, Ohio State University, used within 

the Energy Modeling Forum 21 (2006) and data from the IIASA cluster model (Eliasch 2008). 

Bosetti et a. (2009) describes in depth the results from this analysis. 

5. Specific Features in Abatement Technologies 

5.1. Innovative carbon free technologies  

In the short to mid term, energy savings, fuel switching mainly in the power sector, as well as non 

fossil fuel mitigation, are believed to be the most convenient mitigation options. In the longer term, 

however, one could envisage the possible development of innovative technologies with low or zero 

carbon emissions. These technologies, which are currently far from being commercial, are usually 

referred to in the literature as backstop technologies, and are characterised as being available in 

large supplies. For the purpose of modelling, a backstop technology can be better thought of as a 

compact representation of a portfolio of advanced technologies, that would ease the mitigation 

burden away from currently commercial options, though it would become available not before a 

few decades. This representation has the advantage of maintaining simplicity in the model by 

limiting the array of future energy technologies and thus the dimensionality of techno-economic 

parameters for which reliable estimates and meaningful modelling characterisation do not exist.  

WITCH06 features a series of mitigation options in both the electric and non-electric sectors, such 

as nuclear power, CCS, renewables, biofuels etc. However, limited deployment potential of 

controversial technologies, such as nuclear, and resource constrained ones such as bioenergy, 

suggests that the possibility to invest towards the commercialisation of innovative technologies 

should be a desirable feature of models that evaluate long-term policies.  

To this extent, WITCH08 is enhanced by the inclusion of two backstop technologies that necessitate 

dedicated innovation investments to become economically competitive, even in a scenario with a 

climate policy. We follow the most recent characterisation in the technology and climate change 

literature, modelling the costs of the backstop technologies with a two-factor learning curve in 

which their price declines both with investments in dedicated R&D and with technology diffusion. 

This improved formulation is meant to overcome the main criticism of the single factor experience 

curves (Nemet, 2006) by providing a more structural -R&D investment-led- approach to the 

penetration of new technologies, and thus to ultimately better inform policy makers on the 

innovation needs in the energy sector.  
                                                 
18 http://whrc.org/BaliReports/ 
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More specifically, we model the investment cost in a backstop technology tec  as being influenced 

by a Learning-by-Researching process (main driving force before adoption) and by Learning-by-

Doing (main driving force after adoption), the so-called 2-factor learning curve formulation 

(Kouvaritakis et al., 2000). ttecP , , the unit cost of technology tec at time t is a function of 

deployment, ttecCC ,  and dedicated R&D stock, ttecDR ,&  as described in equation [1] 
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where the R&D stock (R&D tec) accumulates with the perpetual rule and is also augmented by the 

stock of R&D accumulated in other regions through a spillover effect, SPILL 

βαδ TtecTtecTtecTtec SPILLDIRDRDR ,,,1, &)1(&& +−⋅=+  [2] 

 

and CC is the cumulative installed capacity (or consumption) of the technology. The specification 

of the spillover component, SPILL, is described in equation (A9) in the Appendix. We assume a 

two-period time interval (i.e. 10 years) between R&D knowledge and its effect on the price of the 

backstop technologies to account for time lags between research and commercialisation. 

The two exponents are the Learning-by-Doing index ( b− ) and the Learning-by-Researching index 

( c− ). They define the speed of learning and are derived from the learning ratios. The learning ratio 

lr is the rate at which the generating cost declines each time the cumulative capacity doubles, while 

lrs is the rate at which the cost declines each time the knowledge stock doubles. The relation 

between b, c, lr, and lrs can be expressed as in [3] 

 

cb lrslr −− =−=− 21 and 21  [3] 

  

We set the initial prices of the backstop technologies at roughly 10 times the 2005 price of 

commercial equivalents (16,000 US$/kW for electric, and 550 US$/bbl for non-electric). The 

cumulative deployment of the technology is initiated at 1,000twh and 1,000EJ, respectively, for the 

electric and non-electric, an arbitrarily low value (Kypreos, 2007). The backstop technologies are 

assumed to be renewable in the sense that the fuel cost component is negligible; for power 
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generation, it is assumed to operate at load factors comparable with those of baseload power 

generation. 

This formulation has received significant attention from the empirical and modelling literature in 

the most recent past (Criqui et al, 2000; Barreto and Kypreos, 2004; Klassens et al, 2005; Kypreos, 

2007; Jamasab, 2007; Söderholm and Klassens, 2007). Estimates of parameters controlling the 

learning processes vary significantly across studies, see Table 2. They also primarily focus on 

power generation. For WITCH08 we take averages of the values in the literature, as reported in the 

last row of the table. Note that the value chosen for the Learning-by-Doing parameter is lower than 

those normally estimated in single factor experience curves, since part of the technology 

advancement is now led by specific investments. This more conservative approach reduces the role 

of black box autonomous learning, which has been criticised for being too optimistic and leading to 

excessively low costs of transition towards low carbon economies. 

Finally, it must be highlighted that modelling of long-term and uncertain phenomena such as 

technological evolution calls for caution in the interpretation of exact quantitative figures, and for 

accurate sensitivity analysis. The model parsimony allows for tractable sensitivity studies, as 

stressed above. One should nonetheless keep in mind that the economic implications of climate 

policies as well as carbon price signals are influenced by innovative technologies availability only 

after 2030. 

Technology Author LbD LbR 

Criqui et al 2000 16% 7% 

Jamasab 2007 13% 26% 

Soderholm and Klassens 

2007 

3.1% 13.2% 

Wind 

Klassens et al 2005  12.6% 

PV Criqui et al 2000 20% 10% 

Solar Thermal Jamasab 2007 2.2% 5.3% 

Nuclear Power (LWR) Jamasab 2007 37% 24% 

CCGT (1980-89) Jamasab 2007 0.7% 18% 

CCGT (1990-98) Jamasab 2007 2.2% 2.4% 

WITCH08  10% 13% 

Table 2: Learning ratios for diffusion (LbD) and innovation (LbR) processes 
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Backstops substitute linearly nuclear power in the electric sector, and oil in the non-electric one. We 

assume that once the backstop technologies become competitive thanks to dedicated R&D 

investment and pilot deployments, their uptake will not be immediate and complete, but rather there 

will be a transition/adjustment period. These penetration limits are a reflection of inertia in the 

system, as presumably the large deployment of backstops will require investment in infrastructures 

and the re-organisation of the economic system. The upper limit on penetration is set equivalent to 

5% of the consumption in the previous period of energy produced by technologies other than the 

backstop, plus the energy produced by the backstop itself.  

5.2. International spillovers of knowledge and experience  

Learning processes via knowledge investments and experience are not likely to remain within the 

boundaries of single countries, but to spill to other regions too. The effect of international spillovers 

is deemed to be important, and its inclusion in integrated assessment models desirable, since it 

allows for a better representation of the innovation market failures and for specific policy exercises. 

The WITCH model is particularly suited to perform this type of analysis, since its game theoretic 

structure allows distinguishing first- and second-best strategies, and thus to quantify optimal 

portfolios of policies to resolve all the externalities arising in global problems such as climate 

change. 

WITCH06 featured spillovers of experience for Wind&Solar in that the Learning-by-Doing effect 

depended on world cumulative installed capacity, so that single regions could benefit from 

investments in virtuous countries, thus leading to strategic incentives. An enhanced version was 

developed to include spillovers in knowledge for energy efficiency improvements (Bosetti et al. 

2008), which are retained also in this WITCH08. As mentioned in section 2.3, energy services are a 

CES nest of physical energy and energy knowledge. Energy knowledge depends not only on 

regional investments in energy R&D, but also on the knowledge stock that has been accumulated in 

other regions.  In WITCH08 we continue along this strand of research and model spillovers of both 

experience and knowledge in the newly featured backstop technologies. Similarly to the Learning- 

By-Doing for Wind&Solar, we assume experience accrues with the diffusion of technologies at the 

global level. We also assume knowledge spills internationally. The amount of spillovers entering 

each world region depends on a pool of freely available knowledge and on the ability of each 

country to benefit from it, i.e. on its absorption capacity. Knowledge acquired from abroad 

combines with domestic knowledge stock and investments and thus contributes to the production of 

new technologies at home. The parameterisation follows Bosetti et al. (2008) and it is recalled in the 

Appendix, equation (A9). 
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5.3. Key mitigation options 

The WITCH model features a series of mitigation options in both the power generation sector and 

the other usages of energy carriers, e.g. in the non-electric sector.  

Mitigation options in the power sector include nuclear, hydroelectric, IGCC-CCS, renewables and a 

backstop option that can substitute nuclear.  

Nuclear power is an interesting option for decarbonised economies. However, fission still faces 

controversial difficulties such as long-term waste disposal and proliferation risks. Light Water 

Reactors (LWR) — the most common nuclear technology today — are the most reliable and 

relatively least expensive solution. In order to account for the waste management and proliferation 

costs, we have included an additional O&M burden in the model. Initially set at 1 mUSD/kWh, 

which is the charge currently paid to the US depository at Yucca Mountain, this fee is assumed to 

grow linearly with the quantity of nuclear power generated, to reflect the scarcity of repositories and 

the proliferation challenge. 

Hydorelectric is also a carbon-free option, but it is assumed to evolve exogenously to reflect limited 

site availability.  

The limited deployment of controversial technologies such as nuclear calls for other alternative 

mitigation options. One technology that has received particular attention in the recent past is carbon 

capture and sequestration (CCS). In the WITCH model this option can be applied only to integrated 

coal gasification combined cycle power plants (IGCC-CCS). In fact, CCS is a promising technology 

but still far from large-scale deployment. CCS transport and storage cost functions are region- 

specific and they have been calibrated following Hendriks et al. (2004). Costs increase 

exponentially with the capacity accumulated by this technology. The CO2 capture rate is set at 90% 

and no after-storage leakage is considered. Other technological parameters such as efficiency, load 

factor, investment and O&M costs are described in Table 1. In the case of CCS there is no learning 

process or research activity that can either reduce investment costs or increase the capture rate. 

Electricity from wind and solar is another important carbon-free technology. The rapid development 

of wind and solar power technologies in recent years has led to a reduction in investment costs. In 

fact, beneficial effects from Learning-By-Doing are expected to decrease investment costs even 

further in the next few years. This effect is captured in the WICTH model by letting the investment 

cost follow a learning curve. As world-installed capacity in wind and solar doubles, investment cost 

diminishes by 13%. International spillovers in Learning-By-Doing are present because we believe it 

is realistic to assume that information and best practices quickly circulate in cutting-edge 

technological sectors dominated by a few major world investors. This is particularly true if we 

consider that the model is constructed on five-year time steps, a time lag that we consider sufficient 
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for a complete flow of technology know-how, human capital and best practices, across firms that 

operate in the sector. 

Less flexible is the non electric sector. Two are the major mitigation options, the use of biomass and 

the deployment of the breakthrough technology. The breakthrough technology can substitute oil and 

it can be thought of as next generation biofuels or carbon-free hydrogen to be used in the transport 

sector. The overall penetration of traditional (e.g. sugar cane or corn) biofuels remains modest over 

time and therefore the mitigation potential coming from this option is quite limited.  

Other two important mitigation options are the endogenous improvement of overall energy 

efficiency with dedicated energy R&D (section 5.2) and reducing emissions from deforestation and 

degradation (section 4.2). 

 

6. Computational issues 

The WITCH model is solved numerically using GAMS – General Algebraic Modelling System19. 

GAMS is a high-level modelling system for mathematical programming problems, designed to 

provide a convenient tool to represent large and complex models in algebraic form, allowing a 

simple updating of the model and flexibility in representation, and modular construction.  

WITCH features two different solution concepts, a cooperative concept that optimises jointly all 

regions, and a non-cooperative decentralised one that is achieved iteratively via an open loop Nash 

algorithm in which each region is optimised separately. This second solution was implemented 

sequentially in WITCH06. 

In WITCH08, the regional maximisation problems for the non-cooperative solution are solved in 

parallel, exploiting new computing power afforded by multiple-core hardware, and thus allowing 

for a much more rapid solution of the overall optimisation exercise. The solutions of each region’s 

maximisation problem are combined in a single step following each iteration – the total number of 

parallel solves is therefore equal to the number of regions – twelve in the case of WITCH. The 

speed of the solution is thus determined by the slowest region. 

The model also runs in batch mode for remote solution, using an SSH interface and a system of 

shared files, stored in the remote host computer. The use of Globus Toolkit 4 allows the submission 

of the solve jobs to more than one cluster, thus further reducing the execution time needed to find a 

solution. 

                                                 
19 http://www.gams.com/ 
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Several tests have been performed for evaluating the scalability and performance of the parallel 

algorithm (Figure 6). The execution tests have been made on the SPACI’s HP-XC6000 cluster 

ranging from 1 up to 12 CPUs, see Figure 6. Since the GAMS executable is not available for the 

considered architecture, an emulator for x86_32 processors has been used. The analytic model of 

the parallel execution time highlights how the coarse-grained parallelisation produces a decreasing 

efficiency starting from 6 processors. The reason can be found in the imperfect balance of the 

workload.20 

 

Figure 6: Execution time 

 

7. Baseline scenario 

This section outlines the main output of the WITCH08 baseline scenario which is the non 

cooperative, market solution of the model, without stabilisation constraints on GHG concentrations. 

The feedback effect of climate change into the economic system is turned off, so that regions’ 

strategies are not affected by the sensitivity to climate damage.  

 

7.1. Components of emission growth 

Figure 7 distinguishes the different drivers of GHG emissions, following Kaya’s decomposition of 

total emissions (EMI) into carbon intensity of energy (EMI/EN), energy intensity (EN/GDP), per 

capita GDP (GDP/POP) and population. The left panel reproduces the historical components of 

                                                 
20 More on this can be found in Epicoco, I., S. Mocavero,  G. Aloisio,  2008, “Analisi e sviluppo del modello parallelo 
per l’applicazione WITCH” presented at Italian e-Science 2008 (IES08). 
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GHG emissions observed over the past thirty years vis-à-vis the short-term WITCH baseline 

projections, whereas the right panel depicts the long-term trends produced by the model. 

Historically, per capita GDP and population have been the major determinants of emissions growth, 

whereas improvements in carbon intensity had the opposing effect of reducing emissions. The long-

term scenario is still characterised by a preponderant role of economic growth, whereas the role of 

population fades over time. Economic growth, measured in terms of per capita GDP, is the major 

driver of GHG emissions over the whole century whereas population growth contributes to the 

increase in GHG emissions up to 2075, when population starts to follow a slightly negative trend. A 

decrease in energy intensity has a positive effect on emission reductions, which is however not 

sufficiently large to compensate for the pressure of economic and population growth. The carbon 

content of energy remains rather constant over time, with a slight carbonisation of energy due to an 

increase in coal consumption in fast-growing countries like China and India. 
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Figure 7:  Components of GHG emissions: historical data and future path 

 

 

7.2. Energy supply and prices 

The growth rate of the world’s primary energy supply is about 1.8% per year over the first half of 

the century and declines to 0.6% by the end of the century, reaching the figure of 1,220 EJ. Figure 8 

represents, on the left hand side, the energy mix over time at the global level, whereas in the right 

hand side panel the same information is translated into percentage shares. Energy supply will be 

heavily based on fossil fuels throughout the century, given the assumption of sufficient resources of 

conventional and non-conventional fossil fuel. Renewables and nuclear slightly increase their share 
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in total energy supply. Backstop technologies are not deployed in the baseline scenario. Despite the 

rising prices of fossil fuels, the incentives are not strong enough to induce the large up-front R&D 

investments needed to make these technologies economically competitive. 

Table 3 reports on the distribution of energy demand. Today, OECD countries consume more than 

the non-OECD, but the latter are expected to take the lead in the near future, since they are 

projected to grow at a rate three times higher the one of developed countries (left panel). That is, as 

expected, the growth engine of developing regions will require a large inflow of energy resources, 

that will slow down only late in the century. The growing dominant position of non-OECD is also 

due to the different size and growth rate of the population. Looking at per capita figures (right 

panel), an average OECD resident currently consumes six times more energy than a non-OECD 

one; such a gap is expected to narrow over time, but it will nonetheless remain significant (a 4-fold 

ratio) until the end of the century. The growth rate in non-OECD regions is only twice the one for 

OECD due to a higher relative increase in population. 

 

 

 

 

 

 

 

Figure 8: Primary energy consumption – levels (left) and shares (shares) 

 

Primary energy consumption (EJ) 
  OECD NON OECD 
2005 258 203 

2050 374 529 

2100 435 767 

Average annual change 
2005-2050 0.9% 3.2% 

2100-2050 0.3% 0.9% 

 

Per capita energy consumption (TJ/person) 
  OECD NON OECD 
2005 0.24 0.04 

2050 0.32 0.07 

2100 0.41 0.10 

Average annual change 
2005-2050       0.7% 1.5% 

2100-2050 0.5% 1.0% 

 

Table 3: Distribution of energy consumption – absolute (left) and per-capita (right) 
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Electricity generation will expand from 65 EJ in 2005 to 292 EJ by 2100. As it can be seen from the 

right hand side panel on Figure 9, the power mix remains quite stable over the century, mostly 

dominated by traditional coal, driven by a significant expansion in the developing countries. The 

share of electricity generated by wind and solar increases significantly from 0.6% to 9% by 2100, 

but still covers only a small fraction of total supply. Nuclear energy maintains its share constant, 

providing 50 EJ of electricity at the end of the century. Hydroelectric power generation, on the other 

hand, loses market share over time because its production is limited by the availability of suitable 

sites and it is thus assumed to remain constant.  
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Figure 9: World electricity generation – levels and shares 

 

As for fossil fuel prices, we project a general increase in the medium term, in line with IEA 

projections (see Table 4 and Figure 10). Oil price (including non-conventional) rises from 55 to 219 

US$ per barrel in 2100, in real terms, whereas gas price goes from 7.14 to 27 US$/GJ. Coal price is 

the most stable, increasing over the century from 60 in 2005 to 118 US$ per tonne in 2100.  

 

  

Oil 

(US$/bbl) 

Coal 

(US$/ton) 

Gas 

(US$/GJ) 

2005 55.65 60.02 7.14 

2050 119.68 74.18 12.39 

2100 219.13 118.02 26.92 

Table 4: International energy prices 
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Figure 10: International fuel prices (2005 =100) 

 

7.3. Technological change 

Learning-by-Doing and Learning-by-Researching are the two major engines of endogenous 

technical change in the energy sector. Experience or Learning-By-Doing in wind and solar, as can 

be represented by world installed capacity, reduces investments costs in these technologies. Over 

time wind and solar become progressively more competitive, as suggested by the increased share in 

electricity generation (Figure 9). Figure 11 – left hand side panel – depicts the downward path of 

investments costs, which decrease from 1,906US$/kW in 2005 to 1010 by 2050 and 649 by 2100, 

with an overall reduction of about 67%. The second source of endogenous technical change is 

energy research and development (R&D). In WITCH08 energy R&D plays a twofold role: it is 

targeted at improving overall energy efficiency in final production and it also reduces the unit cost 

of the two backstop technologies. The right hand side panel of Figure 11 shows an upward trend in 

energy R&D, though only related to efficiency improvements as noted previously. A five-fold 

expansion brings energy R&D investments from 8 to 49 US$ billions by 2100. This increase is 

however smaller than the one for output, so that energy R&D slightly decreases as a share of GDP 

from 0.02% to 0.015% over the century. 
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Figure 11: Learning-by-Doing and Learning-by-Researching 

 

7.4. GHG Emissions 

The growing energy demand reported in the previous section is expected to be met mainly by fossil 

fuel consumption, especially coal, with the obvious repercussions for the evolution of greenhouse 

gases, as shown in Figure 12. CO2 emissions grow over the century, albeit at a declining rate, from 

the current 8 GtC to over 23 GtC per year in 2100. This marked increase is due especially to fast- 

growing and fossil fuel endowed non-OECD countries, especially China and India, but also the 

Middle East and the transition economies. China has a particularly important role, as it has been the 

main cause of the rapid surge of emissions experienced after the year 2000 (left panel). In the short-

term, we foresee a period of emission growth consistent with the one recently occurred, and 

somewhat above the latest projections of the Energy Information Agency (EIA, 2008b). 
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Regional Fossil Fuels Emissions over the century
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Figure 12: World CO2 emissions from fossil fuel combustion 

As far as the other GHGs are concerned, Figure 13 shows that CH4 is the major non-CO2 gas, 

followed by N2O and then fluorinated gases. Total non-CO2 GHG emissions increase and 
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eventually stabilise in the second part of the century at around 5 GtCe (as opposed to about 23GtC 

from fossil fuel combustion).  
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Figure 13: World emissions of non-CO2 gases 

 
Table 5 summarises the information regarding the regional contribution to world GHG emissions, at 

three different points in time. Non-OECD countries are the major emitters of all types of GHG 

emissions, especially CH4, as a major source of methane is agriculture, the main economic activity 

in non-OECD countries. The major contribution of OECD countries is in terms of fossil fuels CO2 

emissions. However, also for this greenhouse gas non-OECD countries account for the larger share 

of global emissions already from 2030, and the gap widens over time. 

 

  Fossil fuels CO2   CH4  N20  

  

World 

(GtC) OECD non-OECD 
World 

(GtCe) OECD non-OECD 
World  

(GtCe) OECD Non-OECD 

2030 13.01 40.7% 59.3% 2.57 14.4% 85.6% 1.23 22.0% 78.0%

2050 16.99 35.3% 64.7% 3.45 10.2% 89.8% 1.42 15.3% 84.7%

2100 23.60 28.7% 71.3% 3.71 8.0% 92.0% 0.88 14.1% 85.9%

 
Table 5: World GHG emissions and regional distribution 
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7.5. Climate variables 

As shown in the last paragraph, the WITCH08 baseline foresees a continued use of fossil fuels that 

leads to a growth of greenhouse gases throughout the century. This has important implications for 

climate-related variables and ultimately for global warming.  

Figure 14 shows the radiative forcing by GHGs over time. It grows quite rapidly to reach 6.6 w/m^2 

by 2100: even though total non-CO2 GHG emissions stabilise in the second part of the century at 

around 5 GtCe, concentrations in the atmosphere and therefore radiative forcing continue to 

increase. As expected, carbon dioxide is the dominant contributor to the higher forcing, though 

methane and nitrous oxide play an important part in the first decades. 
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Figure 14: Radiative forcing of GHGs 

 

 

In terms of climate change, the growing stock of gases translates into a steady temperature increase 

over time, from 0.7 °C above pre-industrial levels today up to 3.7 °C in 2100. These figures should 

be taken with caution, given the considerable uncertainty that surrounds the relation between GHG 

stocks and temperature increase, and could be considerably higher in the case that parameters such 

as climate sensitivity are higher than expected21. Leaving aside these uncertainties, according to 

IPCC 4th Assessment Report (IPCC, 2007) estimates, this warming could lead to severe damages to 

natural and socio-economic systems, and call for action to prevent its realisation. 

 

 

 

                                                 
21 For climate sensitivity, we assume a central value of 3. 
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Global mean temperature increase  
with respect to pre-industrial 

levels 

  °C 

2030 1.4 

2050 2.0 

2100 3.7 

Table 6: Temperature increase above pre-industrial levels 
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8. Conclusions 

Climate change is a complex issue whose analysis requires models that are able to capture the 

international, intertemporal and strategic dimension of climate change. With this regard, the 

WITCH model can be considered a successful modelling tool.  

WITCH08 improves several aspects of the first version WITCH06. Particular attention has been 

paid to improve the evolution of technological change in the energy sector. The possibility of 

investing in the commercialisation of innovative technologies is a desirable feature for models 

evaluating long-term scenarios. WITCH08 has broadened the set of technology options by 

including two backstop technologies, which can be thought of as a compact representation of  

technologies that have not yet been commercialised. Special attention is given to the international 

dimension of knowledge and experience diffusion.  

The second important feature of WITCH08 is the inclusion of non-CO2 greenhouse gases. Other 

GHGs are important contributors to global warming and they offer additional mitigation options, 

increasing the model flexibility in responding to climate policies.  

Reducing emissions from deforestation and degradation (REDD) offers another sizeable, low-cost 

abatement option. WITCH08 can include a new baseline projection of land use CO2 emissions and 

estimates of the global potential and costs for reducing emissions from deforestation. 

The base year data has been updated to 2005 and new data on economic growth, energy prices and 

technology costs have been used to re-calibrate the main exogenous drivers of the model, yielding 

an updated future socio-economic baseline scenario. The main differences of the new baseline 

scenario are driven by the upward revision of long-term world economic growth and mid-term 

international energy prices.  
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10.  Appendix: equations and variables 

This Appendix describes the main equations of the model.  The complete list of variables is 

reported at the end. In each region, indexed by n, a social planner maximises the following utility 

function: 

[ ] [ ]{ }∑∑ ==
tt

tRtnctnLtRtnLtnCUnW )(),(log),()(),(),,()(  (A1) 

where t are 5-year time spans and the pure time preference discount factor is given by: 
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where the pure rate of time preference ( )νρ  is assumed to decline over time. Moreover, 
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tnCtnc =  is per capita consumption. 

Economic module 

The budget constraint defines consumption as net output less investments: 
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Where j denotes energy technologies. Output is produced via a nested CES function that combines a 

capital-labour aggregate and energy services ( )tnES ,  capital and labour are obtained from a Cobb-

Douglas function. The climate damage ( )tn,Ω  affects gross output; to obtain net output we subtract 

the costs of the fuels f and of CCS: 
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fP  is the domestic fuel f extraction cost, int
fP is instead the international market clearing price for 

fuel f . 
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Total factor productivity ( )tnTFP ,  evolves exogenously with time. Final good capital accumulates 

following the standard perpetual rule, but four dollars of private investments are subtracted from it 

for each dollar of R&D crowded out by energy R&D: 

∑+−=+ j tnIt) – (nItn K) tn(K jDRDRCCCC ),(4,)1)(,(1, ,&&ψδ  (A5) 

Labour is assumed to be equal to population and evolves exogenously. Energy services are an  

aggregate of energy, ( )tnEN , , and a stock of knowledge, ( )tnHE , , combined with a CES function: 

( ) [ ] ESESES tnENtnHEtnES ENH
ρρρ αα

/1
),(),(, +=  (A6) 

The stock of knowledge evolves according to the perpetual rule: 

)1)(,(),(1, &DRtnHEtn Z) tHE(n δ−+=+  (A7) 

At each point in time new ideas are produced using a Cobb-Douglas combination between domestic 

investments, IR&D, the existing stock of knowledge, HE, and the knowledge of other countries, 

SPILL:  

dcb
DR tnSPILLtnHEtnIatnZ ),(),(),(),( &=                  (A8) 

The contribution of foreign knowledge to the production of new domestic ideas depends on the 

interaction between two terms: the first describes the absorptive capacity whereas the second 

captures the distance from the technology frontier, which is represented by the stock of knowledge 

in rich countries (USA, OLDEURO, NEWEURO, CAJANZ and KOSAU): 

)),(),((
),(

),(),( tnHEtnHE
tnHE

tnHEtnSPILL
HI

HI

−= ∑∑
                              (A9) 

 Energy is a combination of electric and non-electric energy: 

( ) [ ] ENENEN tnNELtnELtnEN NELEL
ρρρ αα

/1
),(),(, +=                                                                             (A10) 

Each factor is further decomposed into several sub-components. Factors are aggregated using CES, 

linear and Leontief production functions. For illustrative purposes, we show how electricity is 

produced via capital, operation and maintenance and resource use through a zero-elasticity Leontief 

aggregate:  
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( ) ( ) ( ) ( ) ( ) ( ){ }tnXtnO&MntnKntnEL ELjjjjjjj ,;,;,min, ,ςτμ=  (A11) 

Capital for electricity production technology accumulates as follows: 

( ) ( )
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1),(1,
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where, for selected technologies j, the new capital investment cost ( )tnSC ,  decreases with the 

world cumulated installed capacity by means of Learning-by-Doing: 

( ) ( )∑ −⋅=+
n
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jjj

jtnKnBtnSC 2log,)(1,   (A13) 

Operation and maintenance are treated like an investment that fully depreciates every year. The 

resources employed in electricity production are subtracted from output in equation (A4). Their 

prices are calculated endogenously using a reduced-form cost function that allows for non-linearity 

in both the depletion effect and in the rate of extraction: 

( ) ( ) ( ) ( )[ ] ( )n
fffff

ftnQtnQnntnP ψπχ ,1,)(, −+=  (A14) 

where fQ  is the cumulative extraction of fuel f : 
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=
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s extrfff snXnQtnQ  (A15) 

Each country covers consumption of fuel f , ( )tnX f , , by either domestic extraction or imports, 

( )tnX netimpf ,, , or by a combination of both. If the country is a net exporter, ( )tnX netimpf ,,  is negative. 

( ) ( ) ( )tnXtnXtnX netimpfextrff ,,, ,, +=  (A16) 

The unit cost of each backstop technology, ttecP , , is a function of deployment, ttecCC ,  and dedicated 

R&D stock, ttecDR ,& : 
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R&D stock accumulates with the perpetual rule and with the contribution of international 

knowledge spillovers, SPILL: 

βαδ TtecTtecTtecTtec SPILLDIRDRDR ,,,1, &)1(&& +−⋅=+               (A18) 

Climate Module 

GHGs emissions from the combustion of fossil fuels are derived by applying the CO2 

stoichiometric coefficients, 
2,COfω  to total consumption of fossil fuels, minus the amount of CO2 

sequestered: 

( ) ( ) ( )tnCCStnXtnCO
f fCOf ,,,

2,2 −=∑ ω  (A19) 

The damage function impacting output varies with global temperature: 

( )2
,2,1 )()(1),( tTtTtn nn θθ ++=Ω  (A20) 

Temperature relative to pre-industrial levels increases through augmented radiating forcing F(t), 

moderated by the cooling effects of SO2 aerosol, )(tcool : 

 

        (A21) 
 

Radiative forcing in turn depends on CO2 atmospheric concentrations ( )tM AT , combined linearly 

with the radiative forcing of other GHGs, )(tO : 

[ ]{ } )()2log(/)(log)( tOMtMtF PI
ATAT +−=η   (A22) 

 

O(t) = FCH4(t)+FN20(t)+FSLF(t)+FLLF(t)                                                                                        (A23)    

 

FCH4(t) =γ1,CH4 0.036 [γ2,CH4 MATCH4(t)0.5 – γ3,CH4 MPI
ATCH4(t) 0.5 ]                                                  (A24) 

[ ]{ } )1()()()()1()()1( 21 +−−−−++=+ tcooltTtTtTtFtTtT LOσλσ
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FN20(t) =γ1,N20 0.12 [γ2,N20 MATN20(t)0.5 – γ3,N20 MPI
ATN2O(t) 0.5 ]                                                   (A25)       

 

FSLF(t) =2.571 [γ2,SLF MATSLF(t) – γ3,SLF MPI
ATSLF (t)]                                                                   (A26) 

 

FLLF(t) =13.026 [γ2,LLF MATLLF(t) – γ3,LLF MPI
ATLLF (t)]                                                                (A27) 

 

CO2 atmospheric concentrations are caused by emissions from fuel combustion and land use 

change; a three box-climate module accounts for the interaction between the atmosphere and 

oceans: 

 

( )[ ] )()()(,)1( 21112 tMtMtLUtnCOtM UPAT
n

jAT φφ +++=+ ∑ , (A28) 

)()()()1( 321222 tMtMtMtM LOATUPUP φφφ ++=+ , (A29) 

)()()1( 2333 tMtMtM UPLOLO φφ +=+ .  (A30) 

Other GHGs accumulate in the atmosphere according to the following equations: 

 

MATCH4(t+1) – dec2 CH4(t)*0.5*Wo(t+1) = MATCH4(t) dec1CH4
nyper(t)+dec2CH4(t)*0.5*Wo(t)       (A31) 

 

MATN20(t+1) – dec2 N2O(t)*0.5*Wo(t+1) = MATN2O(t) dec1N2O
nyper(t)+dec2N2O(t)*0.5*Wo(t)        (A32) 

 

MATSLF(t+1) – dec2 SLF(t)*0.5*Wo(t+1) = MATSLF(t) dec1SLF
nyper(t)+dec2SLF(t)*0.5*Wo(t)          (A32) 

 

MATLLF(t+1) – dec2 LLF(t)*0.5*Wo(t+1) = MATLLF(t) dec1LLF
nyper(t)+dec2LLF(t)*0.5*Wo(t)          (A33) 

 

where dec2 and dec1 describes the yearly retention factor and the one period retention factor for 

non-CO2 gases, respectively. The time step in WITCH is of 5 years and the parameter nyper(t) 

accounts for the number of years in each period. Wo are world emissions of non-CO2 GHGs. 
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W = welfare  

U = instantaneous utility 
C = consumption 
c = per-capita consumption  
L = population 
R = discount factor 
Y = net output 
Ιc = investment in final good 
ΙR&D,EN = investment in energy R&D 
Ιj = investment in technology j 
O&M = investment in operation and maintenance 
ΤFP = total factor productivity 
Κc = final good stock of capital  
ES = energy services 
Ω = climate feedback 
Pi

int = international fuels’ prices 

Pj = fuels’ prices 

X,f , extr = extracted fuel resources 
Xf , netimp fuel resources, net imports 
PCCS = price of CCS 
CCS = sequestered CO2 
HE = energy knowledge 
EN = energy 
EL = electric energy 
NEL = non-electric energy 
KC = capital for final good production 
Κj= capital stock for technology j 
SCj = investment cost  
CO2 = emissions from combustion of fossil fuels 
MAT = atmospheric CO2 concentrations 
MATCH4 = atmospheric CH4 concentrations 
MATN20 = atmospheric N20 concentrations 
MATSLF = atmospheric  concentrations of short lived fluorinated gases 
MATLLF = atmospheric concentrations of long lived fluorinated gases 
LU = land-use carbon emissions 
MUP = upper oceans/biosphere CO2 concentrations  
MLO = lower oceans CO2 concentrations  
F = radiative forcing 
FCH4 = radiative forcing of CH4  
FN20 = radiative forcing of N20  
FSLF = radiative forcing of short lived fluorinated gases 
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FLLF = radiative forcing of long-lived fluorinated gases 
O = radiative forcing from other gases 
T = temperature  
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