Think Again: Higher Elasticity of Substitution Increases Economic Resilience

By P. Dumas, Centre International de Recherche sur l’Environnement et le Développement (CIRED)

S. Hallegatte, Ecole Nationale de la Météorologie, Météo-France and CIRED
Think Again: Higher Elasticity of Substitution Increases Economic Resilience

By P. Dumas, Centre International de Recherche sur l’Environnement et le Développement (CIRED)
S. Hallegatte, Ecole Nationale de la Météorologie, Météo-France and CIRED

Summary
This paper shows that, counter-intuitively, a higher elasticity of substitution in model production function can lead to reduced economic resilience and larger vulnerability to shocks in production factor prices. This result is due to the fact that assuming a higher elasticity of substitution requires a recalibration of the production function parameters to keep the model initial state unchanged. This result has consequences for economic analysis, e.g., on the economic vulnerability to climate change.

Keywords: Substitution, Calibration, Constant Elasticity of Substitution, Shock

JEL Classification: D24, E17, E23

The authors would like to thank Frédéric Ghersi, Philippe Quirion, Guy Meunier, Franck Nadaud and Nicola Ranger.

Address for correspondence:
P. Dumas
Centre International de Recherche sur l’Environnement et le Développement (CIRED)
Campus du Jardin Tropical
45 bis avenue de la Belle Gabrielle
94736 Nogent-sur-Marne
Cedex
France
E-mail: dumas@centre-cired.fr

The opinions expressed in this paper do not necessarily reflect the position of Fondazione Eni Enrico Mattei
Corso Magenta, 63, 20123 Milano (I), web site: www.feem.it, e-mail: working.papers@feem.it
Think again: higher elasticity of substitution increases economic resilience*

P. Dumas‡, S. Hallegatte‡

July 24, 2009

1 Introduction

To cope with exogenous shocks, it seems obvious that flexibility, often measured by the elasticity of substitution, is crucial. Indeed, when facing an increase in commodity price or a decrease in a sector productivity, a more flexible economy with a higher elasticity of substitution will be more able to substitute alternative productions or supplies, thereby mitigating the consequence of the shock.

This paper questions this intuition, when different sets of elasticity values are used in the same model to compute the effect of a shock. In the simple model presented in this paper, using an illustrative production structure, calculations even lead to opposite results: a higher elasticity of substitution can cause a higher reduction in production in response to a price or productivity shock. The reason behind this result is that all function parameters have to be calibrated to fit with observed economic conditions. When one assumes a higher elasticity of substitution, ceteris paribus, it is necessary to change the parameters of production functions to keep the equilibrium situation unchanged (Klump and Saam, 2008). The point is that, while the direct effect of the elasticity increase is to enhance resilience and reduce the total cost of a shock, the indirect effect through parameter changes is to decrease

*The authors would like to thank Frédéric Ghersi, Philippe Quirion, Guy Meunier, Franck Nadaud and Nicola Ranger.

‡Centre International de Recherche sur l’Environnement et le Développement (CIRED), Campus du Jardin Tropical, 45 bis, avenue de la Belle Gabrielle, 94736 Nogent-sur-Marne Cedex, FRANCE, dumas@centre-cired.fr.

‡Ecole Nationale de la Météorologie, Météo-France and CIRED. hallegatte@centre-cired.fr.
resilience and increase the total cost. Over all, the latter effect often exceeds the former, and the total effect of an increase in elasticity of substitution is to reduce resilience and increase the vulnerability to supply-side shocks.

2 Model

We consider an economy with two sectors. The first sector produces an intermediate goods that is used by the second sector, which produces a final consumption goods. For instance, the first sector can be the infrastructure sector that produces the services used by the rest of the economy (e.g., electricity, water, transportation services).

The first sector uses a borrowed amount capital K, with constant return to scale to produce the intermediate good M that is sold at price p. The price of the capita K is supposed to be fixed and equal to r. The intermediate good market is supposed to be competitive.

The production function of the first sector is:

$$M = \beta K. \quad (1)$$

The condition of null profit and market clearing leads to the equality:

$$pM = rK, \quad (2)$$

and the equilibrium price is given by:

$$p = \frac{r}{\beta}. \quad (3)$$

The second sector is composed of n identical firms, producing an output Y considered as the numeraire, which is sold at a fixed price set to 1. Production is assumed to be made with two inputs: the intermediate good M that is bought at the price p; and labor L that is provided with inelastic supply \bar{L} at the equilibrium price w.

At symmetric equilibrium on the labor market, all firms use $\hat{L} = \bar{L}/n$ units of goods L. The firms are price takers on all the markets. The production of final goods is integrally used by the workers and the capital owners.

The production function of the second sector is a Constant Elasticity of Substitution (CES) function (Arrow et al., 1961), with an elasticity of substitution $\sigma = \frac{1}{\rho}$:

$$Y(M, L) = (\lambda M^\rho + \mu L^\rho)^{1/\rho}. \quad (4)$$
If \(\rho = 1 \), we have \(\sigma = +\infty \) and the production function is linear with perfect substitution; if \(\rho \to -\infty \), we have \(\sigma = 0 \), and the production function is given by a Leontieff production function, with fixed factors and no substitution. If \(\rho \to 0 \), we have \(\sigma = 1 \) and the function is a Cobb-Douglas:

\[
Y(M, L) = \gamma M^\lambda L^{1-\lambda}.
\] (5)

Firm profits are given by:

\[
\Pi = Y(M, L) - wL - pM.
\] (6)

Firm profit maximization, with equilibrium on the market of \(L \) gives the first order condition:

\[
\frac{\partial Y}{\partial M}(M, \hat{L}) = p.
\] (7)

This determines the value \(M^* \), the total consumption of goods \(M \) by all firms:

\[
M^* = \bar{L} \left(\frac{\mu}{(\frac{p}{\lambda})^{\frac{1}{1-\rho}} - \lambda} \right)^{1/\rho}.
\] (8)

The quantity of borrowed capital is \(K^* \):

\[
K^* = \frac{M^*}{\beta}.
\] (9)

Total production at equilibrium is \(Y^* \):

\[
Y^* = \bar{L} \left(\frac{\lambda \mu}{(\frac{p}{\lambda})^{\frac{1}{1-\rho}} - \lambda} + \mu \right)^{1/\rho}.
\] (10)

In the Cobb-Douglas case, one gets:

\[
M^* = \bar{L} \left(\frac{p}{\lambda \gamma} \right)^{\frac{1}{1-\gamma}}
\] (11)

\[
Y^* = \bar{L} \left(\frac{p}{\lambda \gamma} \right)^{\frac{\lambda}{1-\gamma}}.
\] (12)

The value added created by this economy, i.e., the Gross Domestic Product (GDP), is the sum of the two sector values added:

\[
\text{GDP} = Y^* - pM^* + pM^* = Y^*.
\] (13)
3 Calibration

We assume that initial equilibrium conditions are fixed: production is equal to Y_0, total supply of labor L is \bar{L}, initial consumption of goods M is M_0, and initial price of the goods M is p_0.

Such a calibration makes sense from a practical point of view: considering any economic sector, national accounts can provide an assessment of how much input M is consumed by this sector (M_0) at what price (p_0), how much labor (\bar{L}) is consumed, and how much is produced (Y_0). The elasticity of substitution and the parameters of the production function, on the other hand, are difficult to measure and often have to be calibrated (Magnus, 1979). Also, the elasticity is sometimes modified to account for various mechanisms. For example, Rose et al. (2007) divide the elasticity of substitution by 10 to take into account short-term rigidities in the economic system in the aftermath of a disaster.

Here we assume that the elasticity of substitution is chosen first (in an ad hoc manner or from econometric analyses), and the other parameters are then calibrated from economic data.

When the elasticity of substitution has been chosen (through the choice of ρ), the values of parameters λ and μ (or, equivalently, λ and γ), are chosen as a function of $X_0 = (Y_0, M_0, \bar{L}, p_0)$ and of ρ. First order conditions (7) gives, after reintroducing Y_0:

$$\lambda = \left(\frac{Y_0}{M_0}\right)^{\rho-1} p_0.$$ (14)

Substituting λ back in the production function leads to:

$$\mu = \left(\frac{Y_0}{\bar{L}}\right) - \left(\frac{M_0}{\bar{L}}\right)^{\rho} \left(\frac{Y_0}{M_0}\right)^{\rho-1} p_0.$$ (15)

With a Cobb-Douglas function, one gets in a similar way:

$$\lambda = \frac{M_0}{Y_0} p_0,$$ (16)

$$\gamma = \frac{Y_0}{M_0 \bar{L}^{1-\lambda}}.$$ (17)

As shown in Fig. 1, λ and μ increases when ρ increases and the elasticity of substitution is larger. For instance, if ρ tends to $-\infty$, i.e., if the production function is a Leontief function, then λ and μ tend to zero. If ρ is close to zero, i.e., if the production function is close to a Cobb-Douglas with an elasticity of substitution tending to one, then $\lambda = p_0 M_0 / Y_0$ and $\mu = (Y_0 - M_0) / \bar{L}$.

4
Figure 1: Values of the production function parameters, as a function of the elasticity of substitution ρ, for $\rho < 0$ on the left, and $\rho > 0$ on the right. These values are calculated with $Y_0 = 1$, $M_0 = 0.1$, $p_0 = 1$, and $\bar{L} = 0.9$.

In this case, λ is the ratio of intermediate consumption of goods M to total production, i.e., the cost share of goods M. If ρ tends toward 1, i.e., if the production function is close to the linear case, then λ is equal to p_0 and μ is equal to w.

These relationships are also apparent using cost shares, which are often used for calibration of the elasticity of substitution (Frondel and Schmidt, 2002):

$$\ln \left(\frac{p_0 M_0}{Y_0} \right) = (1 - \sigma) \ln(p_0) + \sigma \ln(\lambda).$$

(18)

This equation shows that the parameter λ has to be adjusted if σ changes while $p_0 M_0 / Y_0$ and p_0 are unchanged.

More generally, this dependency shows that, when one wants to investigate the influence of the elasticity of substitution using a sensitivity analysis (Rose et al., 2007), it is necessary to take into account the direct effect of an increase in elasticity of substitution (through the production function shape) and the indirect effect of this increase (through the impact on the other parameters of the production function). The combined impact of these two effects is investigated in the next section.
4 Impact of a supply-side shock

We assess the consequence on production Y (i.e., on GDP) of an increase in the price of goods M, for various values of ρ (between $-\infty$ and 1). We assume that the new price of the goods M is $p = \alpha p_0$. This increase in the price of goods M could come from a reduction of the productivity in this sector, for example, one could have $\beta = \beta_0/\alpha$. This is for instance what can be expected if climate change reduces the productivity of infrastructure capital. The amount of borrowed capital changes, and we assume that there is enough unused capacity to respond to this demand, at an unchanged price r.

Since the production Y is used as a numeraire, the price p is measured with respect to the price of final production. Replacing the price in the expression of Y^* leads to:

$$Y^* = Y_0 \left(\frac{1 - \frac{p_0 M_0}{Y_0}}{1 - \frac{p_0 M_0}{Y_0} \alpha \frac{\rho}{\rho - 1}} \right)^{1/\rho}. \quad (19)$$

The denominator in (19) cancels out when the cost of intermediate consumption is larger than the value of production. In this case, producing does not make sense, and production reaches zero.

The ratio Y^*/Y_0 is also the ratio of GDP after and before the shock and is therefore a measure of the economic resilience to the price shock. The derivative d_σ of Y^*/Y_0 with respect to σ describes how resilience depends on the elasticity of substitution. This derivative d_σ has the same sign than d_ρ, the derivative of Y^*/Y_0 with respect to ρ.

Elementary calculation gives the expression of d_ρ, with $B = p_0 M_0/Y_0$:

$$d_\rho = \left((1 - B) \left(1 - B \alpha \frac{\rho}{\rho - 1} \right)^{-1} \right)^{\rho - 1} \times$$

$$\left[- \ln \left((1 - B) \left(1 - B \alpha \frac{\rho}{\rho - 1} \right)^{-1} \right) \rho^{-2} +$$

$$B \alpha \frac{\rho}{\rho - 1} \left((\rho - 1)^{-1} - \frac{\rho}{(\rho - 1)^2} \right) \ln (\alpha) \rho^{-1}$$

$$\left(1 - B \alpha \frac{\rho}{\rho - 1} \right)^{-1}. \quad (20)$$

A numerical analysis with $\alpha = 2$, see Fig. 2, shows that the derivative of production with respect to the elasticity of substitution can be either positive
Figure 2: Sign of d_ρ, the output ratio derivative with respect to the parameter ρ, with $\alpha = 2$. Parameter ρ is varied on the x-axis, while the y-axis is the initial share of M in output, i.e., $B = p_0M_0/Y_0$. In region (1) production is impossible, in region (2) the derivative is positive, and in region (3) the derivative is negative.
or negative. The figure shows three regions:

- In region (1), the denominator in (19) is negative, and \(Y^* \) is not defined (i.e., production becomes impossible after the shock). It is the case when \((p_0M_0/Y_0)\alpha^{\rho_{\rho-1}} \geq 1\). In that case, the price of intermediate consumption is too large with respect to the price of production, production is not possible and the economy collapses.

- In region (2), \(Y^* \) is positive, production remains possible, and the derivative of production with respect to the elasticity of substitution is positive. In this parameter domain, easier substitution smooths the shock, as the intuition suggests. For high \(\rho \), i.e., near perfect substitution, this region spans the entire range. But for lower \(\rho \), this region is included in the domain where \((p_0M_0/Y_0)\alpha \geq 1\) and \((p_0M_0/Y_0)\alpha^{\rho_{\rho-1}} < 1\), i.e., in the domain where the shock would make production impossible in absence of substitution but where substitution makes production possible.

- In region (3), \(Y^* \) is positive, production remains possible, and the derivative of production with respect to the elasticity of substitution is negative. In this parameter domain, increasing \(\rho \) or \(\sigma \), i.e., increasing substitution, reduces resilience. Contrary to the intuition, an easier substitution makes worse the consequences of the shock. Importantly, this is the case for all values of \(\rho < 0 \), provided that \((p_0M_0/Y_0)\alpha < 1\), i.e., provided that production would remain possible even in absence of substitution.

In the extreme case of no substitution (the Leontieff case), the price shock has simply no impact on production level. For any value of \(\alpha \), indeed, when \(\rho \rightarrow -\infty \) (i.e., \(\sigma = 0 \)) and \((p_0M_0/Y_0)\alpha^{\rho_{\rho-1}} \leq 1\), the production limit is \(Y_0 \). In fact, the additional cost of goods \(M \) is fully compensated by a decrease in the cost of labor \(L \), i.e., on \(w \), because this goods is inelastically provided.

Most of the cases that are analogous to our illustrative production structure are to be found in region (3). Assuming that \(\rho < 0 \) (\(\sigma < 1 \)), i.e., that substitution is not too large, as found by most analyses (Kemfert and Welsch, 2000), and considering a large increase in the price of goods \(M \) by 100\% (\(\alpha = 2 \)), the model parameters would be in region (3) if \((p_0M_0/Y_0) < 1/2\), i.e., if the initial consumption of goods \(M \) represents less than half of the value of production (i.e., if the cost share of goods \(M \) is lower than 50\%).

As a comparison, according to the Bureau of Economic Analysis data, the manufacturing sector in the US (in the 15-sector level of aggregation)

\(^{1}\)Other values give the same result.
consumes intermediate goods from the utilities sector for a value equal to 1.1% of its total production. Its largest client is itself (i.e., the manufacturing sector), for a value of only 33% of its total production. In France, according to INSEE, the industrial sector consumes energy for a value equal to 3.4% of its own production in 2006 (it was only 1.6% in 2004).

It seems, therefore, that in this simple general equilibrium setting, consistent with the US manufacturing sector or the French industrial sector and their infrastructure-service supply, the larger the elasticity of substitution between energy and labor, the larger are the consequences of an increase in infrastructure-service prices (or, equivalently, of a reduction in infrastructure-service production productivity). This counter-intuitive result is not due to the direct effect of substitution, which tends to smooth the shock when the elasticity is larger, but to the indirect effect of substitution, which makes the two other parameters of the CES production function change.

In this setting, however, the hypothesis of perfect wages adjustment is certainly exaggerated, at least in the short term. With less flexible wages, this mechanism should be reduced but remains present. Similarly, an unchanged capital price after the shock is a special case, as is the existence of unused capital. If there is no available capital, some investment (i.e., reduction in consumption) would have to be spent in order to reach the capital stock level that corresponds to the after-shock situation. In many cases, and in absence of rapid depreciation, this amount of transient investment should however be very low compared with the change in production.

5 Conclusion

This paper shows that, counter-intuitively, a higher elasticity of substitution in production function can lead to a reduced economic resilience and a larger vulnerability to shocks in production factor prices. This result is due to the fact that assuming a higher elasticity of substitution requires a recalibration of the production function parameters to keep the model initial state unchanged.

Even though the analysis presented in this paper uses restrictive hypotheses, this analysis is sufficient to show that the relationship between elasticity of substitution and resilience is not automatically positive.

This result has consequences that are important for economic analysis. For instance, it is likely that climate change will affect primarily the infrastructure sector, which has a long capital lifetime and will reveal at least partly ill-adapted to new climate conditions, reducing its productivity. In such a situation, a larger elasticity of substitution in the production function
of the rest of economy that relies on infrastructure services may lead to a higher vulnerability.

References

NOTE DI LAVORO PUBLISHED IN 2009

<table>
<thead>
<tr>
<th>Date</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD 1</td>
<td>Michael Hoel</td>
<td>Bush Meets Hotelling: Effects of Improved Renewable Energy Technology on Greenhouse Gas Emissions</td>
</tr>
<tr>
<td>SD 2</td>
<td>Abay Mulatu, Reyer Gerlagh, Dan Rigby and Ada Wossink</td>
<td>Environmental Regulation and Industry Location</td>
</tr>
<tr>
<td>SD 3</td>
<td>Anna Alberini, Stefania Tonin and Margherita Turvani</td>
<td>Rates of Time Preferences for Saving Lives in the Hazardous Waste Site Context</td>
</tr>
<tr>
<td>SD 4</td>
<td>Elena Ojea, Paulo A.L.D. Nunes and Maria Loureiro</td>
<td>Mapping of Forest Biodiversity Values: A Plural Perspective</td>
</tr>
<tr>
<td>SD 5</td>
<td>Xavier Pautrel</td>
<td>Macroeconomic Implications of Demography for the Environment: A Life-Cycle Perspective</td>
</tr>
<tr>
<td>IM 6</td>
<td>Andrew Ellul, Marco Pagano and Fausto Panunzi</td>
<td>Inheritance Law and Investment in Family Firms</td>
</tr>
<tr>
<td>IM 7</td>
<td>Luigi Zingales</td>
<td>The Future of Securities Regulation</td>
</tr>
<tr>
<td>SD 9</td>
<td>William K. Jaeger</td>
<td>The Welfare Effects of Environmental Taxation</td>
</tr>
<tr>
<td>SD 10</td>
<td>Aude Pommeret and Fabien Prieur</td>
<td>Double Irreversibility and Environmental Policy Design</td>
</tr>
<tr>
<td>SD 11</td>
<td>Massimiliano Mazzanti and Anna Montini</td>
<td>Regional and Sector Environmental Efficiency Empirical Evidence</td>
</tr>
<tr>
<td>SD 12</td>
<td>A. Chabai, C. M. Travisi, H. Ding, A. Markandya and P.A.L.D Nunes</td>
<td>Economic Valuation of Forest Ecosystem Services: Methodology and Monetary Estimates</td>
</tr>
<tr>
<td>SD 13</td>
<td>Andrea Bigano, Mariaester Cassinelli, Fabio Sfera, Lisa Guarrera, Sohbet Karbuz, Manfred Hafner, Anil Markandya and Ståle Navrud</td>
<td>The External Cost of European Crude Oil Imports</td>
</tr>
<tr>
<td>SD 14</td>
<td>Valentina Bosetti, Carlo Carraro, Romain Duval, Alessandra Sgobbi and Massimo Tavoni</td>
<td>The Role of R&D and Technology Diffusion in Climate Change Mitigation: New Perspectives Using the Witch Model</td>
</tr>
<tr>
<td>IM 15</td>
<td>Andrea Beltratti, Marianna Caccavai and Bernardo Bortolotti</td>
<td>Stock Prices in a Speculative Market: The Chinese Split-Share Reform</td>
</tr>
<tr>
<td>GC 16</td>
<td>Angelo Antoci, Fabio Sabatini and Mauro Sodini</td>
<td>The Fragility of Social Capital</td>
</tr>
<tr>
<td>SD 17</td>
<td>Alexander Golub, Sabine Fuss, Jana Szolgayova and Michael Obersteiner</td>
<td>Effects of Low-cost Offsets on Energy Investment – New Perspectives on REDD</td>
</tr>
<tr>
<td>SD 18</td>
<td>Massimiliano Mazzanti and Anna Montini</td>
<td>Regional and Sector Environmental Efficiency Empirical Evidence</td>
</tr>
<tr>
<td>SD 19</td>
<td>Irene Valsecchi</td>
<td>Non-Uniqueness of Equilibria in One-Shot Games of Strategic Communication</td>
</tr>
<tr>
<td>IM 20</td>
<td>Dimitra Vouvaki and Anastasio Xeapadoues</td>
<td>Total Factor Productivity Growth when Factors of Production Generate Environmental Externalities</td>
</tr>
<tr>
<td>IM 22</td>
<td>Bernardo Bortolotti, Veljko Fokat, William Megginson and William Miracky</td>
<td>Sovereign Wealth Fund Investment Patterns and Performance</td>
</tr>
<tr>
<td>IM 23</td>
<td>Cesare Dosi and Michele Moretto</td>
<td>Auctioning Monopoly Franchises: Award Criteria and Service Launch Requirements</td>
</tr>
<tr>
<td>SD 24</td>
<td>Andrea Bastianin</td>
<td>Modelling Asymmetric Dependence Using Copula Functions: An application to Value-at-Risk in the Energy Sector</td>
</tr>
<tr>
<td>IM 25</td>
<td>Shai Bernstein, Josh Lerner and Antoinette Schoar</td>
<td>The Investment Strategies of Sovereign Wealth Funds</td>
</tr>
<tr>
<td>SD 26</td>
<td>Marc Germain, Henry Tulkens and Alphonse Magnus</td>
<td>Dynamic Core-Theoretic Cooperation in a Two-Dimensional International Environmental Model</td>
</tr>
<tr>
<td>IM 27</td>
<td>Frank Partnoy</td>
<td>Overdependence on Credit Ratings Was a Primary Cause of the Crisis</td>
</tr>
<tr>
<td>SD 28</td>
<td>Frank H. Page Jr and Myrna H. Wooders</td>
<td>Endogenous Network Dynamics</td>
</tr>
<tr>
<td>SD 29</td>
<td>Caterina Calsamiglia, Guillaume Haeringer and Flip Klijn</td>
<td>Constrained School Choice: An Experimental Study</td>
</tr>
<tr>
<td>SD 30</td>
<td>Gilles Grandjean, Ana Mauleon and Vincent Vannetelbosch</td>
<td>Connections Among Farsighted Agents</td>
</tr>
<tr>
<td>SD 31</td>
<td>Antonio Nicoló and Carmelo Rodríguez Alvarez</td>
<td>Feasibility Constraints and Protective Behavior in Efficient Kidney Exchange</td>
</tr>
<tr>
<td>SD 32</td>
<td>Rahmi İlkılıç</td>
<td>Cournier Competition on a Network of Markets and Firms</td>
</tr>
<tr>
<td>SD 33</td>
<td>Luca Dall'asta, Paolo Pin and Abdulfazl Ramezanpour</td>
<td>Optimal Equilibria of the Best Shot Game</td>
</tr>
<tr>
<td>SD 34</td>
<td>Edoardo Gallo</td>
<td>Small World Networks with Segregation Patterns and Brokers</td>
</tr>
<tr>
<td>SD 35</td>
<td>Benjamin Golub and Matthew O. Jackson</td>
<td>How Homophily Affects Learning and Diffusion in Networks</td>
</tr>
</tbody>
</table>
SD 36.2009 Markus Kinateder (lxxxv): Team Formation in a Network
SD 37.2009 Constanza Fosco and Friederike Mengel (lxxxv): Cooperation through Imitation and Exclusion in Networks
SD 38.2009 Berno Buechel and Tim Hellmann (lxxxv): Under-connected and Over-connected Networks
SD 39.2009 Alexey Kushnir (lxxxv): Matching Markets with Signals
SD 40.2009 Alessandro Tavoni (lxxxv): Incorporating Fairness Motives into the Impulse Balance Equilibrium and Quantal Response Equilibrium Concepts: An Application to 2x2 Games
SD 41.2009 Steven J. Brams and D. Marc Kilgour (lxxxv): Kingmakers and Leaders in Coalition Formation
SD 42.2009 Dotan Persitz (lxxxv): Power in the Heterogeneous Connections Model: The Emergence of Core-Periphery Networks
SD 43.2009 Fabio Eboli, Ramiro Parrado, Roberto Roson: Climate Change Feedback on Economic Growth: Explorations with a Dynamic General Equilibrium Mode
GC 44.2009 Fabio Sabatini: Does Social Capital Create Trust? Evidence from a Community of Entrepreneurs
SD 45.2009 ZhongXiang Zhang: Is it Fair to Treat China as a Christmas Tree to Hang Everybody’s Complaints? Putting its Own Energy Saving into Perspective
SD 46.2009 Efthichios S. Sartzetakis, Anastasios Xepapadeas and Emmanuel Petrakis: The Role of Information Provision as a Policy Instrument to Supplement Environmental Taxes: Empowering Consumers to Choose Optimally
SD 47.2009 Jean-François Caulier, Ana Mauleon and Vincent Vannetelbosch: Contractually Stable Networks
SD 48.2009 Massimiliano Mazzanti, Susanna Mancinelli, Giovanni Ponti and Nora Piva: Education, Reputation or Network? Evidence from Italy on Migrant Workers Employability
SD 49.2009 William Brock and Anastasios Xepapadeas: General Pattern Formation in Recursive Dynamical Systems Models in Economics
SD 51.2009 Yoshio Kamijo and Ryo Kawasaki (lxxxv): Dynamics, Stability, and Foresight in the Shapley-Scarf Housing Market
IM 52.2009 Laura Poddì and Sergio Vergalli: Does Corporate Social Responsibility Affect the Performance of Firms?
SD 53.2009 Valentina Bosetti, Carlo Carraro and Massimo Tavoni: Climate Change Mitigation Strategies in Fast-Growing Countries: The Benefits of Early Action
IM 55.2009 Giacomo Calzolari and Carlo Scarpa: On Regulation and Competition: Pros and Cons of a Diversified Monopolist
IM 57.2009 Emmanuel Farhi and Jean Tirole: Collective Moral Hazard, Maturity Mismatch and Systemic Bailouts
SD 58.2009 Kelly C. de Bruin and Rob B. Dellink: How Harmful are Adaptation Restrictions
SD 60.2009 Stefania Tonin, Anna Alberini and Margherita Turvani: The Value of Reducing Cancer Risks at Contaminated Sites: Are More Heavily Exposed People Willing to Pay More?
SD 61.2009 Chiara Costa Duarte, Maria A. Cunha-e-Sá and Renato Rosa: The Role of Forests as Carbon Sinks: Land-Use and Carbon Accounting
GC 62.2009 Carlo Altomonte and Gabor Békés: Trade Complexity and Productivity
GC 63.2009 Elena Bellini, Gianmarco I.P. Ottaviano, Dino Pinelli and Giovanni Prarolo: Cultural Diversity and Economic Performance: Evidence from European Regions
SD 64.2009 Valentina Bosetti, Carlo Carraro, Enrica De Cian, Romain Duval, Emanuele Massetti and Massimo Tavoni: The Incentives to Participate in, and the Stability of, International Climate Coalitions: A Game-theoretic Analysis Using the Witch Model
IM 65.2009 John Temple Lang: Article 82 EC – The Problems and The Solution
SD 66.2009 P. Dumas and S. Hallegatte: Think Again: Higher Elasticity of Substitution Increases Economic Resilience

(lxxxv) This paper has been presented at the 14th Coalition Theory Network Workshop held in Maastricht, The Netherlands, on 23-24 January 2009 and organised by the Maastricht University CTN group (Department of Economics, http://www.feem-web.it/ctn/12d_maa.php).