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1. Introduction 

 
In recent years experimental economists and psychologists have accumulated 

considerable evidence that steadily contradicts the self-interest hypothesis embedded in 
equilibrium concepts traditionally studied in game theory, such as Nash’s. The lab and field 
evidence, together with theoretical contributions from students of human behavior belonging 
to fields as diverse as  biology and sociology, suggests that restricting the focus of analysis to 
the strategic interactions among perfectly rational players (exhibiting equilibrium behavior) 
can be limiting, and that considerations about fairness and reciprocity should be accounted 
for1.  

In fact, while models based on the assumption that people are exclusively motivated by 
their material self-interest perform well for competitive markets with standardized goods, 
misleading predictions arise when applied to non-competitive environments, for example 
those characterized by a small number of players (cf. Fehr and Schmidt, 2001) or other 
frictions. For example, Kahneman, Knetsch and Thaler (1986) find empirical results 
indicating that customers are extremely sensitive to the fairness of firms’ short-run pricing 
decisions, which might explain the fact that some firms do not fully exploit their monopoly 
power. 

One prolific strand of literature on equity issues focuses on relative measures, in the 
sense that subjects are concerned not only with the absolute amount of money they receive 
but also about their relative standing compared to others. Bolton (1991), formalized the 
relative income hypothesis in the context of an experimental bargaining game between two 
players. 
Kirchsteiger (1994) followed a similar approach by postulating envious behavior. Both 
specify the utility function in such a way that agent i suffers if she gets less than player j, but 
she’s indifferent with respect to j’s payoff if she is better off herself. The downside of the 
latter specifications is that, while consistent with the behavior in bargaining games, they fall 
short of explaining observed behavior such as voluntary contributions in public good games2.  

A more general approach has been followed by Fehr & Schmidt (1999), who instead of 
assuming that utility is either monotonically increasing or decreasing in the well being of the 
other players, model fairness as self-centered inequality aversion. Based on this 
interpretation, subjects resist inequitable outcomes, that is they are willing to give up some 
payoff in order to move in the direction of more equitable outcomes. More specifically, a 
player is altruistic towards other players if their material payoffs are below an equitable 
benchmark, but feels envy when the material payoffs of the other players exceed this level. 
To capture this idea, the authors consider a utility function which is linear in both inequality 
aversion and in the payoffs. Formally, for the two-player case ሺ݅  ് ݆ሻ:

࣯ ൌ ݔ െ ݔ൛ݔ݉ܽߙ െ ,ݔ 0ൟ െ ݔ൛ݔ݉ܽߚ െ ,ݔ 0ൟ        ሺ1ሻ 

                                                

 


        
 

1 For supporting arguments see, among the many available literature reviews, the updated one provided in 
Gowdy (2008). 
2 A substantial departure from the models considered here, which are solely based on subjective 
considerations to differences in payoffs, is represented by models where agents’ responses are also driven by 
the motivations behind the actions of the other player. This is the case for Falk et al. (2006), as well as Levine 
(1997). While without doubt one can argue that our social interactions are to some extent influenced by 
judgments we hold on others, these efforts inevitably run into the questionable assumption of perfect (or high 
degree of) knowledge of the preferences. For this reason, we restrict attention here to more parsimonious 
models that nevertheless account for reference dependence in several dimensions, as will be explained below.       
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In (1), ࣯  is the subjective utility of player i when matched with player j, ݔ  are player i 
and player j’s payoffs, respectively, and ߚ  are player i’s inequality parameters satisfying 
the following conditions: ߚ  and  0 . The second term in the right-hand side of 
equation (1) is the utility loss from disadvantageous inequality, while the third term is the 
utility loss from advantageous inequality. Due to the above restrictions imposed on the 
parameters, for a given payoff ݔ, player i’s utility function is maximized at ݔ , and the 
utility loss from disadvantageous inequality (ݔ ) is larger than the utility loss incurred if 
player i is better off than player j (ݔ ). Notice that the asymmetric behavior implied by 
the constraint ߚ  as well as the assumption that an individual may not experience spite 
towards a worse-off opponent (ߚ ) or may not be willing to throw away money so as to 
reduce disparities (ߚ ), may not be justified in all domains, as will be discussed in greater 
detail in the concluding section. The choice of retaining the above restrictions has been taken 
on the grounds of facilitating comparisons with the standard model, as well as in order to 
impose structure on the parameters and avoid to advance concepts whose predictive 
performance is motivated merely by the inclusion of free parameters. 

 , ݔ
, ߙ

  ߙ  ߚ  1

 ൌ ݔ
 ൏ ݔ

  ݔ
  ߙ

  0
  1

                                                

Fehr and Schmidt (1999) show that the interaction of the distribution of types with the 
strategic environment explains why in some situations very unequal outcomes are obtained 
while in other situations very egalitarian outcomes prevail. In fact, the utility function in (1) 
has proved successful in many applications, mainly in combination with the Nash 
equilibrium, and will therefore be employed in this study, although in conjunction with 
different equilibrium concepts. 

 In referring to the social aspects introduced by this utility function, one could think of 
inequality aversion in terms of an interactive framing effect (reference point dependence)3: 
this is one way to depart from considerations of sole efficiency and move towards a concept 
that embodies distributive concerns on the players’ part. 

Recognizing the importance of psychological introspection on own achievement, 
distributive concerns with relative payoffs as well as cognitive limitations in steering 
individuals’ behavior,we propose two equilibrium models with the aim of accounting for 
multiple facets determining individual behavior, such as fairness motives, regret 
considerations and unobserved factors. The first two are tackled with what we term equity-
driven impulse balance equilibrium, while fairness considerations and noisy behavior are the 
main ingredients of the other model. 

In the next section, the main features of the impulse balance equilibrium will be 
introduced, while the remainder of the paper is concerned with advancing two equity-driven 
concepts: section 3 deals with the proposed modification of IBE and its ability to match 
observed behavior by individuals playing experimental games, while section 4 is concerned 
with equity-driven quantal response equilibrium and its fit to the experimental data. Section 5 
provides a discussion of the results. 
 

2. The “psychological” reference point 

 
The predictive weakness of the Nash equilibrium is effectively pointed out by Erev and 

Roth (1998), who study the robustness and predictive power of learning models in 
experiments involving at least 100 periods of games with a unique equilibrium in mixed 
strategies. They conclude that the Nash equilibrium prediction is, in many contexts, a poor 
predictor of behavior, while claiming that a simple learning model can be used to explain, as 

 
3 See Kahneman and Tversky (1979) for the pioneering work that introduced the standard reference 
dependence concept. 
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well as predict, observed behavior on a broad range of games, without fitting parameters to 
each game. A similar approach, based on within-sample and out-of-sample comparisons of 
the mean square deviations, will also be employed in this paper to assess to what extent is the 
proposed model able to fit and predict the frequencies of play recorded by subjects of an 
experiment involving several games with widely varying equilibrium predictions. 

Based on the observation of the shortcomings of mixed Nash equilibrium in confronting 
observed behavior in many classes of games played by experimental subjects, an alternative 
tractable equilibrium has been suggested by Selten and Chmura (2008). Impulse balance 
equilibrium is based on learning direction theory (Selten and Buchta, 1999), which is 
applicable to the repeated choice of the same parameter in learning situations where the 
decision maker receives feedback not only about the payoff for the choice taken, but also for 
the payoffs connected to alternative actions. If a higher parameter would have brought a 
higher payoff, the player receives an upward impulse, while if a lower parameter would have 
yielded a higher payoff, a downward impulse is received. The decision maker is assumed to 
have a tendency to move in the direction of the impulse. IBE, a stationary concept which is 
based on transformed payoff matrices as explained below, applies this mechanism to 2x2 
games. The probability of choosing one of two strategies (for example Up) in the considered 
games is treated as the parameter, which can be adjusted upward or downward4. It is assumed 
that the second lowest payoff in the matrix is an aspiration level determining what is 
perceived as profit or loss (with losses weighing twice as much as gains). In impulse balance 
equilibrium expected upward and downward impulses are equal for each of both players 
simultaneously. 

The main result of the paper by Selten and Chmura (2008) is that, for the games they 
consider, impulse balance theory has a greater predictive success than the other stationary 
concepts they compare it to: Nash equilibrium, action-sampling equilibrium, payoff-sampling 
equilibrium and quantal response equilibrium. While having the desirable feature of being a 
parsimonious parameter-free concept as the Nash equilibrium, and of outperforming the 
latter, the aspiration level framework (to be described) has the less appealing featuring of 
requiring the use of transformed payoffs in place of the original ones for the computation of 
the equilibrium5.  

The aspiration level can be thought of as a psychological reference point, as opposed to 
the social one considered when modeling inequality aversion: the idea behind the concept 
proposed in section 3 is that of utilizing the equilibration between upward and downward 
impulses which is inherent to the IBE, but replacing the aspiration level associated to own-
payoff considerations only with equity considerations related to the distance between own 
and opponent’s payoff. The motivation follows from the realization that in non-constant sum 
games (considered here) subjects’ behavior also reflects considerations of equity. In fact, 
while finite repetition alone has been shown to have limited effectiveness in enlarging the 
scope for cooperation or retaliation, non-constant sum games offer some cooperation 
opportunities, and it seems plausible that fairness motives would play an important role in 
repeated play of this class of games. A suitable consequence of replacing the aspiration level 
framework with the inequality aversion one is that the original payoffs can be utilized (and 
should, in order to avoid mixing social and psychological reference points). 

                                                 
4 Section 3 and Appendix A provide more detail on the experimental setup utilized here.  
5 When the IBE is applied to the payoffs belonging to the games truly played by the participants, the gains in fit 
of the concept over the Nash equilibrium appear to be significantly reduced, indicating that its explanatory 
superiority depends to a large extent on the payoff transformation, which is itself dependent on the choice of 
the aspiration level (the pure strategy maximin payoff) and the double weight assigned to losses relative to 
gains. 
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Before introducing the other-regarding stationary concepts explored in the next two 
sections, it is useful to take a closer look at the experiments on the basis of which they will be 
tested. Table A.I in Appendix A.1 shows the 12 games, 6 constant sum games and 6 non-
constant sum games on which Selten and Chmura (2008) have run experiments, which have 
taken place with 12 independent subject groups for each constant sum game and with 6 
independent subject groups for each non-constant sum game. Each independent subject group 
consists of four players 1 and four players 2 interacting anonymously in fixed roles over 200 
periods with random matching. In summary: 
 
Players: I={1,2} 
Action space: {U,D}x{L,R} 
Estimated choice probabilities in mixed strategy: {ܲ ,1-ܲ } and {ܳ ,1-ܳ} ௨ ௨ 

, ܳ

௨ ؆  ؆
௨ ؆ 0.5  ؆

Sample size: (54 sessions) x (16 subjects) = 864 
Time periods: T=200   
 
In Table A.I, a non-constant sum game next to a constant sum game has the same best reply 
structure (characterized by the Nash equilibrium choice probabilities ௨ܲ ) and is derived 
from the paired constant sum game by adding the same constant to player 1’s payoff in the 
column for R and to player 2’s payoff in the row for U. Games identified by a smaller number 
have more extreme parameter values than games identified by a higher number; for example, 
Game 1 and its paired non-constant sum Game 7 are near the border of the parameter space 
(ܲ 0.1   and ܳ 0.9), while Game 6 and its paired non-constant sum Game 12 are near the 
middle of the parameter space (ܲ  and ܳ  0.6).  

As pointed out above, IBE involves a transition from the original game to the 
transformed game, in which losses with respect to the aspiration level get twice the weight as 
gains above this level. The impulse balance equilibrium depends on the best reply structure of 
this modified game, which is generally different from that of the original game, resulting 
therefore in different predictions for the games in a pair. The present paper utilizes the data 
on the experiments involving 6 independent subject groups for each of the 6 non-constant 
sum games (games 7 through 12 in Table A.1). As previously anticipated, this class of games 
is conceptually suitable to the application of the inequality aversion framework. Further, in 
completely mixed 2x2 games, mixed equilibrium is the unambiguous game theoretic 
prediction when they are played as non-cooperative one-shot games. Since non-constant sum 
games provide incentives for cooperation, such attempts to cooperation may have influenced 
the observed relative frequencies in the experiment by Selten and Chmura (2008). Along 
these lines, it is particularly relevant to see whether inequality aversion payoff modifications 
can help improve the fit with respect to these frequencies.       

The application of inequality aversion parameters to the impulse balance equilibrium 
provides an opportunity for testing the fairness model by Fehr & Schmidt (1999) in 
conjunction with the latter, which is itself a simple yet powerful concept which has proven to 
be empirically successful in fitting the data in different categories of games while 
nevertheless being parsimonious (see footnote 11 for remarks on the not fully parameter-free 
nature of IBE). By including a fairness dimension to it, the hope is to supply favorable 
empirical evidence and provide further stimulus to expand the types of games empirically 
tested. Formally, this involves first modifying the payoff matrices of each game in order to 
account for the inequality parameters ( β ,α ), than creating the impulse matrix based on 
which the probabilities are computed.  

In order to clarify the difference between the reference point utilized in Selten and 
Chmura (2008) (the aspiration level) and that utilized in this paper, it is useful to start by 
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summarizing the mechanics behind the computation of the original version of the IBE. Let’s 
consider the normal form game depicted in Figure 1 below, 

 
             L (ܳ )                  R (1-ܳ) 

ܽ  , ܾ௨ ܽ ௨ ௨ +  ܿ  
 

  ,  ܾ + ݀      
                      

ܽ ௗ ௗ ܽ  ܾௗ  ,  ܾ + ݀    + ܿ   ,  

                           
Figure 1: structure of the 2x2 games (arrows point in the direction of best replies; probabilities in parentheses) 
 
In the above figure, ܽ ௗ  and  ܿ  ௨ ௗ . ܿ  and ܿ are player 1’s payoffs 
in favor of U,D while ݀௨ ௗ are player 2’s payoffs in favour of L,R respectively. Note that 
player 1 can secure the higher one of ܽ  by choosing one of his pure strategies, since if 
player 1 chooses “U”, player 2 will certainly choose “R” as ܾ  + ݀ , while if player 1 
selects “D”, player 2 will opt for “L” as ܾ  + ݀ . Similarly, player 2 can secure the 
higher one of ܾ . Therefore, the authors define the aspiration levels for the 2 players as 
given by: 

, ܽ, ܾ௨, ܾ  0 , ܿ , ݀ , ݀  0
, ݀

, ܽ
௨ ௨  ܾ௨

ௗ ௗ  ܾௗ
௨, ܾௗ

ݏ ൌ ൜max
ሺܽ, ܽሻ, for ݅ ൌ 1  

maxሺܾ௨, ܾௗሻ, for ݅ ൌ 2       ሺ3ሻ 

 






ොݔ
,   

, െ½maxሺݔ
,െݏ, 0

௨ ܿ

 

The transformed game (henceforth TG) is constructed as follows: player i’s payoff is left 
unchanged if it is less or equal to ݏ , while payoffs in excess of ݏ  are reduced by half such 
surplus. Algebraically, calling ݔ,  and ݔො, the payoffs for player i when utilizing own 
strategy o against rival strategy r, before and after the transformation respectively, the 
following  payoff transformatio btainsn o : 

 ൌ ݔ ሻ  ሺ4ሻ 
 

 
If after the play, player i could have obtained a higher payoff by employing the other strategy, 
player i receives an impulse in the direction of the other strategy, of the size of the foregone 
payoff in the TG.  

Below, a matrix showing the impulses in the direction of the unselected strategy is given, 
based on the game transformation resulting from equation (4):  
  
           L (ܳ)  R (1-ܳ) 

0 , ݀ * * , 0 

ܿ ௗ* , 0 0 , ݀ * 

 
Figure 2: Impulses in T.G. in the direction of unselected strategy (probabilities in parentheses)  
 
In Figure 2, ݀ *, ܿ *, ܿ * and ݀ * are the impulses in the direction of the unselected strategy, 
which are positive whenever the payoff for the alternative strategy was higher than the one 
obtained with the chosen one. The stars are used to remind the reader that the impulses have 
size equal to that of the forgone payoff in the transformed game, as given by applying 

௨   ௗ

↑ ↓
U (ܲ ) ௨

 D (1 െ ܲ ) ௨

U (ܲ ) ௨

 D (1 െ ܲ ) ௨
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equation (4) to the entries of Figure 1, rather than having a magnitude equal to the forgone 
payoff in the original game (where the payoff differences are given by ݀ , ܿ , ܿ  and ݀   ௨   ௗ

The concept of impulse balance equilibrium requires that player one’s expected impulse 
from U to D is equal to the expected impulse from D to U; likewise, player two’s expected 
impulse from L to R must equal the impulse from R to L. Formally, 

ሻ.

௨ܲܳܿ ௗܳܿ
௨ܲܳ݀௨ ௗܳ݀ௗ

௨ܲ

 
* =ܲ * 
*=ܲ *              

 
Which, after some manipulation, can be shown to lead to the following formulae for 
probabilities: 
 

=
*/**/*

*/*
ddducrcl

crcl
+

  ;  ܳ= 

*
*

*
*1

1

dd
du

cr
cl

+
         ሺ5ሻ 

 
3. A model with inequality aversion and regretful behavior 

 
3.1 Mechanics of the Equity-driven IBE 

 
In this section we present a model where “irrational behavior” (i.e. departures from the 

predictions of the Nash equilibrium) is guided by regret considerations as well as concerns 
for equity as signaled by relative earnings. In particular, in what follows we will retain the 
impulse equilibration mechanism, i.e. we will continue to assume that individuals adjust their 
strategies based on differences between realized payoffs and payoffs obtainable with the 
alternative strategy, in such a way that in equilibrium each player’s upward and downward 
impulses are equal.  

The first departure from IBE will be that we will dispense with two assumptions implicit 
in the impulse computation presented above, which requires the payoff transformation (and 
therefore the choice of the aspiration level as the maximin payoff and the choice of a weight 
equal to 2 to be assigned to losses). Rather, we will stick to the original payoff matrices and 
consider the impulses to simply be the size of the actual forgone payoffs in the considered 
game, as given by ݀ , ܿ , ܿ and ݀ . While this choice implies a reduction in the concept 
performance as evidenced by Selten and Chmura (2008) in Figure 11 (page 959), concerning 
the 12 games they utilize (of which we use the 6 non-constant sum ones), we believe that 
other reference considerations may play an important role in determining individuals’ 
behavior, and in order to avoid to build an overparametrized model, we have discarded the 
behavioral assumptions implicit in the payoff transformation. This approach has the 
advantage of reducing the cognitive burden on the players’ part, since they no longer are 
assumed to assess their performance relative to the maximin payoff in each move, rendering 
the concept more justified as a bounded rationality one. This translates to replacing (5) with 
the following formulae, in order to compute the probabilities of play:   

௨  ௗ

௨ܲ

 

=
ddducrcl

crcl
//

/
+

  ;  ܳ = 

dd
du

cr
cl

+1

1          ሺ6ሻ 
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The second departure from IBE concerning the concept proposed in this section has to do 
with the introduction of other-regarding distributive concerns, that are taken to affect 
individuals’ subjective utilities. This is done by replacing the aspiration level framework with 
the inequality aversion one, and doesn’t require the computation of the TGs based on 
aspiration level framing; rather, the original payoffs are now modified by including the 
inequality parameters (β ,α ). A cutout of the relevant parameter space (for the games 
considered here) is described by the highlighted area in Figure 3 below: 

 

 
Figure 3: A cutout of the correspondence between ߚ  and ߙ  (grey area) under the inequity aversion restrictions  

ݔ , 0ሽ, one can modify the matrix in Figure 1 to ac

ܽ ܿ   െ ሼܾ௨ݔܽ݉ߙ െ ܽ െ ܿ  , 0ሽ െ ሼܽݔܽ݉ߚ     ܿ   െ ܾ௨, 0ሽ

ܾ௨ െ ሼܽݔܽ݉ߙ    ܿ   െ ܾ௨, 0ሽ െ ሼܾ௨ݔܽ݉ߚ െ ܽ െ ܿ , 0ሽ

ܽ െ ሼܾ௨ݔܽ݉ߙ  ݀௨ െ ܽ, 0ሽ െ ሼܽݔܽ݉ߚ െ ܾ௨ െ ݀௨, 0

ܾ௨ ௨ െ ሼܽݔܽ݉ߙ െ ܾ௨ െ ݀௨, 0ሽ െ ሼܾ௨ݔܽ݉ߚ  ݀௨ െ ܽ, 0ሽ

 
Formally, making the perceived payoffs dependent on fairness considerations can be 

done as follows: recalling that the payoff perceived by an inequity averse individual is 
affected by his relative standing as given by ܷ ൌ ݔ െ ݔ൛ݔ݉ܽߙ െ ,ݔ 0ൟ െ ݔ൛ݔ݉ܽߚ െ
 count for the other-regarding (distributive) 

reference considerations embodied in the inequity aversion. Table I, below, contains the 
proposed payoff modifications: 

 
Table I: structure of the 2x2 games accounting for inequality aversion 
                    L                  R  

 
 +   , 

 
 

 

 
ሽ,      

 
 

+ ݀         

 
ܽ െ ሼܾௗݔܽ݉ߙ    ݀ௗ   െ ܽ, 0ሽ െ ሼെܾௗݔܽ݉ߚ െ ݀ௗ  ܽ, 0

ܾௗ  ݀ௗ െ ሼܽݔܽ݉ߙ െ ܾௗ െ ݀ௗ, 0ሽ െ ሼെܾௗݔܽ݉ߚ െ ݀ௗ  ܽ, 0

ܽ  െ ሼܾௗݔܽ݉ߙ െ ܽ െ ܿ  , 0ሽ െ ሼܽݔܽ݉ߚ    ܿ   െ ܾௗ, 0

ܾௗ െ ሼܽݔܽ݉ߙ  ܿ െ ܾௗ, 0ሽ െ ൛ܾௗݔܽ݉ߚ െ ܽ െ ܿ,   , 0

ሽ,   
 
 

ሽ  

 
+ ܿ ሽ, 

 
 

ൟ 

 
Note that Table I is based on the direct application of the inequality aversion parameters 

to the payoffs in Figure 1, without making use of the self-centered (psychological) reference 
point represented by the aspiration level, and given by (3) and (4). The impulses in the 
direction of the more profitable strategy are now dependent on the objective payoff difference 

U 

D 

 
ߚ  ߙ 0  ߚ  1 and  
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arising from the original matrix and on the difference in subjective disutility from inequity 
aversion associated with the different moves. For example, consider the impulse from “D” to 
“U” for player 1. In the absence of inequity aversion, that is ߙ ൌ , player 1 would 
experience an upward impulse of size ܿ  (in place of ܿ * experienced in standard IBE). 
However, for nonzero inequity aversion parameters, the impulse will be given by ܿ*=ܿ   െ

aversion. Similarly, now we have the following upward, rightward and downward impulses, 
spectively:  

 

ߚ ൌ 0
 

ሼܾ௨ݔܽ݉ߙ െ ܽ െ ܿ  , 0ሽ െ ሼܽݔܽ݉ߚ    ܿ   െ ܾ௨, 0ሽ  ሼܾௗݔܽ݉ߙ   ݀ௗ   െ ܽ, 0ሽ 
ሼെܾௗݔܽ݉ߚ െ ݀ௗ  ܽ, 0ሽ. It is apparent that this quantity can be larger or smaller than the 
objective payoff difference ܿ, depending on the relative size of the disutility due to inequity 

re

݀௨* ௨ െ ሼܽݔܽ݉ߙ െ ܾ௨ െ ݀௨, 0ሽ െ ሼܾ௨ݔܽ݉ߚ  ݀௨ െ ܽ, 0ሽ  ሼܽݔܽ݉ߙ    ܿ   െ
0ݑܾݔܽ݉ߚെ݈ܽെ ݈ܿ  ,0;  

ܿ*=ܿ െ ሼܾௗݔܽ݉ߙ െ ܽ െ ܿ  , 0ሽ െ ሼܽݔܽ݉ߚ     ܿ   െ ܾௗ, 0ሽ  ሼܾௗݔܽ݉ߙ െ ܽ െ
 ;െܾ݀,0  ݎܿ   ݎܽݔܽ݉ߚ0,  ݎܿ 

*=݀ௗ െ ሼܽݔܽ݉ߙ െ ܾௗ െ ݀ௗ, 0ሽ െ ሼെܾௗݔܽ݉ߚ െ ݀ௗ  ܽ, 0ሽ  ሼܽݔܽ݉ߙ    ܿ   െ
,0ܾ݀ݔܽ݉ߚെܽݎെ ܿ0,   ,ݎ    

 
Based on these impulses, and recalling that in equilibrium player i’s expected impulse from 

e of her strategies towards the other pure strategy must be equal to the expected impulse in 
the opposite direction, the artificial probabilities in (4) can be computed in order to find the 
mixed strategy equilibrium predictions corresponding to specific values of

=݀
,ݑܾ

݀ௗ
ܾ݀

on

 β andα . 
Notice that the payoffs in Table I and the above impulses are calculated utilizing 

ameters without indices (ߙଵ ൌ ଵߚ ଶ andߙ ൌ  ଶ), that is we assume that all players 1 andߚ
ll players 2 share the same inequity aversion parameters. By doing so, we hope to obtain a 

ri s   

ered, a grid search with a mean squared 
dev tion criteri

par
a
parsimonious yet realistic model, whose performance does not rely on the abundance of free 
parameters; moreover, we believe it important to come up with estimates for the envy and 
guilt parameters that can be interpreted and confronted with those obtained in other 
contributions. Such a task would become less transparent without these rest ction .   

The preceding analysis served to familiarize us to the mechanics behind the first of the 
two concepts advanced in this paper, namely the equity-driven impulse balance equilibrium. 
We are now ready to assess the descriptive and predictive success of the original impulse 
balance equilibrium in comparison to EIBE.  

 
3.2 The first measure of the relative performance of EIBE: best fit 

 
Following a methodology which has been broadly utilized in the literature to measure the 

adaptive and predictive success of a point in a Euclidean space, the mean squared distance 
(MSD) of observed and theoretical values is employed.6 More precisely, let’s first focus on 
the ability of EIBE to describe the choices of a population playing entirely mixed 2x2 games: 
for each of the 6 non-constant sum games consid

ia on on the(β ,α ) parameter space has been conducted to estimate the best 
fitting parameters, that is those that minimize the distance between the data generated by the 
mod

                                                

el and the observed relative frequencies of play. 
With this definition in mind, we say that the best overall fit is given by the parameter 

configuration that minimizes the mean over all games of the distance between the 
 

6 Cf. Erev & Roth (1998), Selten (1991, 1999), as well as Marchiori & Warglien (2008) for supporting arguments 
on the suitability of MSD as a measure of the distance between a model’s prediction and the experimental 
data. 
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experimental data and the artificial predictions generated by the model. This amounts to first 
computing the mean squared deviations independently for each game i and then finding the 
ሺ β , α ሻ௦௧ ௧ that minimiz  t  average across all games. Algebraically, letting  and ܘ be 
the N-length vectors of observed and estimated choice frequencies, respectively, we seek to 
minimize: 

e he

ܦܵܯ ൌ ଵ
ே
∑  ேܦܵܯ
ୀଵ       (7) 

 
where ܦܵܯ is the average of game i’s squared distances, given by: 
 

ܦܵܯ ൌ
ሺೠିPೠሻమାሺିQሻమ

ଶ
      (8) 

 
and f௨ and f are the observed frequencies of playing up and left in game i, respectively, 

hile P௨ and Q are the estimated relative choice probabilities in mixed strategy. Note that a 
ental data.  

.II y results on the relative 
erformances of the examined stationary equilibrium concepts. In Table A.II, in addition to 

the recorded choice frequencies and Nash equilibrium (NE) predictions, a summary of the 
results of the explanatory power of EIBE relative to IBE is shown for each non-constant sum 

, n

, and across 

rsion adjustment to payoffs that have already 
been

d deviations of the predicted probabilities from the observed frequencies under the two 

                                                

w
smaller MSD indicates better fit, i.e. a smaller distance to the experim

able A (in Appendix A.2) and Table II present complementarT
p

game utilizi g both the transformed (TG) as well as the original payoffs (OG). The 
comparisons between the two concepts are made both within game class (e.g. by comparing 
the performance within the class of transformed or original games in column 5)
game class in the last column (e.g. between the performance of EIBE using original game i 
and IBE using transformed game i, i=7,...,12).  

The raison d’être of the two-fold comparison is that not only it is meaningful to assess 
whether the proposed model can better approximate the observed frequencies than impulse 
balance equilibrium can, but it is especially important to answer the question: does EIBE 
outperform IBE when the  former is applied to the original payoffs of game i and the latter is 
applied to the corresponding transformed payoffs? In other words, since the inequality 
aversion concept overlaps to a certain extent to that of having impulses in the direction of the 
strategy not chosen, applying the inequality ave

 transformed to account for the aspiration level will result in “double counting”.7 It is 
therefore more relevant to compare the best fit of  EIBE on OG (see rows highlighted in blue 
in the last column of Table II) to that obtained by applying impulse balance equilibrium to 
TG.  

Inspection of Table A.II suggests a strong positive answer to the following two relevant 
questions regarding the ability of the proposed concept to fit the observed frequencies of 
play: within the same class of payoffs (TG or OG), is the descriptive power of EIBE superior 
to that of the IBE? And, perhaps more importantly, is this still true when the two concepts are 
applied to their natural payoff matrices, namely the original and the transformed one 
respectively? The last two columns of Table II show that, based on a comparison of the mean 
square
methods, the EIBE fares better than IBE when the IA parameters are fit to each game 
separately. This result, however, may owe, at least in part, to the fact that a parametric 

 
7 See TG7 and TG12 in Table A.II for instances where the best fit is achieved when both inequity parameters 
are 0 (in contrast to the paired original games, which have nonnegative parameters). Moreover,  

ሺ β , α ሻ۵܂ ൏ ሺ β , α ሻ۵۽ for all games, indicating that aspiration level and inequity aversion reference 

dependence overlap to some extent.  
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concept, such as the one advanced here (as well as equity-driven QRE introduced in Section 
4), is compared to a parameter-free one. 

 
3.3 The second measure of the relative performance of EIBE: predictive power 

 
In order to correct for this advantage, results for the proposed parametric concepts are 

also reported avoiding to fit them for each game separately. This is done in two ways (as will 
be further explained below): by utilizing the two parameters that best perform on all games in 
order to derive each game’s predictions (and MSD), or by making out-of-sample predictions 
for each g  ba 5 

ames.  

aking it possible to evaluate the predictive power of the model. In other words, the 
beha

ame sed on the two free parameters that minimize the MSD of the remaining 
g

Let’s take a closer look at the evaluation of the performance of equity-driven impulse 
balance equilibrium concept by means of an assessment of its predictive power. As 
mentioned, this is accomplished by partitioning the data into subsets, and simulating each 
experiment using parameters estimated from the other experiments. By generating the MSD 
statistic repeatedly on the data set leaving one data value out each time, a mean estimate is 
found m

vior in each of the 6 non-constant sum games is predicted without using that game’s 
data, but using the data of the other 5 games to estimate the probabilities of playing up and 
down. By this cross-prediction technique, one can evaluate the stability of the parameter 
estimates, which shouldn’t be substantially affected by the removal of any one game from the 
sample.8 Erev and Roth (1998) based their conclusions on the predictive success and stability 
of their learning models by means of this procedure, as well as, more recently, Marchiori and 
Warglien (2008). Table II, below, shows summary MSD scores (100*Mean-squared 
Deviation) organized as follows: each of the first 6 columns represents one non-constant sum 
game, while the last column gives the average MSD over all games, which is a summary 
statistic by which the models can be roughly compared.9 The first three rows present the 
MSDs of the NE and IBE predictions (for β =0=α ) on the transformed and original payoffs 
respectively. The remaining three rows display MSDs of the EIBE model on the original 
payoffs: in the fourth row, the parameters are separately estimated for each game (12 
parameters in total); in the fifth row, the estimated 2 parameters that best fit the data over all 
6 games (and over all but Game 7, the reason will be discussed below), are employed (the 
same two β ,α  that minimize the average score over all games are used to compute the 
MSDs for each game); in the last row the accuracy of the prediction of the hybrid model is 
showed when behavior in each of the 6 games is predicted based on the 2 parameters that best 
fit the other 5 games (and excluding Game 7).  

 
Table II: MSD scores of the considered equilibrium concepts (standard deviations for the means in parentheses)  

Model  G 7  G 8  G 9  G 10  G 11  G 12  Mean (s.d.) 
NE (on OG) 
0 parameters            All games 
                                      G8‐12   

 
6.08 

 
1.23 

 
.354 

 
.708 

 
.422 

 
.064 

 
1.48 (2.29) 
.555 (.440) 

IBE on OG)           
0 parameters            All games 

 
.330 

 
1.17 

 
1.83 

 
.878 

 
.497 

 
.209 

 
.819 (.610) 

 (

                                      G8‐12    .917 (.627) 

                                                 
8 Cross‐validation (also known as jackknifing) is extensively discussed in Busemeyer et al. (2000). 
9 Note that here we restrict attention to the OGs when considering EIBE. 
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IBE (on TG)           
0 parameters            All games 
                                      G8‐12   

 
.315 

 
.035 

 
.416 

 
.224 

 
.094 

 
.205 

 
.215 (.140) 
.195 134) (.

EIBE by game (on OG) 
12 parameters         All games 

 All games    

.090 .003 .031 .033 .056 .000 
.025 (.020) 
.058 050) 

                                     G8‐12 
6 par. (ࢼs only)      

       
.035 (.034) 

(.
EIBE best fit (on  OG)  
2 parameters 
         (.157,.157)       All games   
         (.253,.259)       G8‐12   

 
 

.746 
- 

 
 

.178 

.042 

 
 

.428 

.098 

 
 

.152 

.033 

 
 

.140 

.173 

 
 

.030 

.034 

 
 

.279 (.254) 

.076 060) (.
EIBE predict (on  OG) 
2 parameters           All gam
                                     G8‐12   

es    
 

2.22 
- 

.238 

.044 
.585 
.149 

.186 

.033 
.141 
.189 

.031 

.035        

       
.567 (.837) 
.09 (.074) 

 
Table II summarizes further evidence in favor of the newly developed equity-driven 

ium. One can see from e third row that (as already sign led by 
e parameters of inequality aversion are allowed to be fit separately in each 

d  D si an  w  
and impulse balance equi riu or  e re parsimonious version 

section, the aggregate MSD score of a 1-parameter adaptation 
call envy- riven E, is lso re rted i

n u o m f 2 oes  
 MSD, which es 0 r ll l  for d 

tance of the disadvantageous inequity aversion with respect 
to advantageous inequity aversion.   

h row, indicating stability of the parameters who survive 
the 

impulse balance equilibr th a
Table A.II), if th
game, the improvements in term
the Nash 

s of re uction of MS  are gnific t, both ith respect to
lib m. In der to consid r a mo

of the model evaluated in this 
of EIBE, which one may d IB a po n the fourth row of Table II. 
Note that the overall reduction i
dear price in terms of

 the n mber f para eters rom 1 to 6 d n’t come at a
 go  from .35 fo the fu  mode to 0.58  the reduce

one, signaling the relative impor

Let’s now restrict the number of parameters to two (common to all players in all games, 
cf. row 5 “EIBE best fit” in the above table): the mean MSD is still more than five times 
smaller than Nash’s. If one doesn’t include the extremely high MSD reported in both cases 
for Game 7 (for reasons discussed below), the gap actually increases, as the EIBE’s MSD 
becomes more than seven times smaller than Nash’s. With respect to the overall MSD mean 
of the IBE, when considering all games the proposed concept has a higher MSD, although a 
similar order of magnitude (.279 and .215 respectively). If one focuses only on games 8-12, 
again we have a marked superiority of equity-driven IBE over conventional IBE, as the MSD 
of the latter is more than twice that of the new concept. A similar pattern appears in the last 
row of the table, concerning the predictive capability: if Game 7 is excluded, the values are in 
line with the ones obtained in the fift

cross-validation test. One comforting consideration regarding the appropriateness of the 
exclusion of Game 7 comes from the widespread anomalous high level of its MSD score in 
all rows of the table, which for both Nash and EIBE predict is about four times the 
corresponding mean level obtained over the six games. It is plausible that this evidence is 
related to the location of Game 7 in the parameter space. It is in fact located near the border, 
as previously pointed out, and therefore may be subject to the overvaluation of extreme 
probabilities by the subjects due to overweighting of small probabilities.  

The next section considers incorporating fairness motives in the quantal response 
equilibrium notion, one that has recently attracted considerable attention thanks to its ability 
to rationalize behavior observed in experimental games. In addition to providing an 
interesting case for comparison, it should also allow to shed light on the suspected anomalous 
nature of Game 7. 
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4. A model with inequality aversion and noisy behavior 
 

4.1 Mechanics of the Equity-driven QRE 

 
Here we propose an alternative model which shares the aim of the one described in the 

pre

m in Table A.II and Table II), can be accounted for by means of bounded 
rationality . We assume 
that, while players attempt to best respond to the opponent’s action, they “drift away” due to 
a preference for equ ision making stemming 
from cognitive limitations or to the presence of unobserved factors rendering behavior more 
npredictable on the other hand.    

 the exponential form of quantal response equilibrium, 
cons

vious section, namely of accounting for multiple facets that determine individual behavior, 
but focuses on the role of unobserved factors and stochasticity, in addition to fairness motives 
(again in the form of inequity aversion). That is, we want to see whether the departures from 
rational self-regarding behavior observed in the data (as shown by the poor performance of 
the Nash equilibriu

, in the form of stochastic choice, and concerns for relative standing

itable earnings on the one hand, and noise in dec

u
The above is achieved by utilizing the logit version of the quantal response equilibrium 

concept in conjunction with preferences that are again allowed to be affected by the 
counterparty’s fate, via the inequity aversion parameters. The resulting model is called 
EQRE. Before showing the results, which are given in Table A.III and Table III and show an 
even better overall performance of this concept compared to the one examined above, let’s 
briefly describe the QRE. This probabilistic choice model was introduced by Mckelvey, 
Palfrey and Thomas (1995), and concerns games with noisy players that base their choices on 
quantal best responses to the behavior of the other parties, so that deviations from optimal 
decisions are negatively correlated with the associated costs. That is to say, individuals are 
more likely to select better choices than worse choices, but do not necessarily succeed in 
selecting the very best choice. In

idered here, the probabilities are proportional to an exponential with the expected payoff 
multiplied by the logit precision parameter (ߣሻ in the exponent: as λ increases, the response 
functions become more responsive to payoff differences. Formally, 

 

ܲ ൌ
ഊഏೕሺುషሻ

ഊഏೕሺುషሻାഊഏೖሺುషሻ
       ሺ9ሻ 

 
Where i,j=1,2 are the players (݇ ് ݆), ܲ is the probability of player i choosing strategy j and 
  is player i’s expected payoff when choosing strategy j given the other player is playingߨ
according to the probability distribution ܲି . 

We move from the above model of stochastic choice where players imprecisely attempt 
to act rationally and selfishly, to one that, while continuing to postulate noisy behavior, 
allows it to also respond to equity considerations. This coupling of (imperfect) maximizing 
behavior and distributive concerns is achieved by replacing the monetary payoffs in (9) with 
the ones in Table I, which are reduced in order to account for subjects’ resistance to 
inequitable outcomes as described in (1). 

While writing the paper we have become aware that a similar exercise has been 
perform 000), who successf ploy a model of inequality 

it e
exp

n ee also section 3.1 for a related discussion 
conc

ed by Goeree and Holt (2
aversion together with a log quilibrium analysis in order to explain behavior in 

erimental alternating-offer bargaining games. One salient difference concerning the two 
models pertains to the parameterizatio (s

ully em

erning EIBE): while here, for the sake of parsimony, we restrict both alpha and beta to 
be the same for both populations of players (those playing as player 1 and those in the role of 
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player 2), Goeree and Holt use a 4-parameter specification allowing the proposers to have 
different “guilt” parameter beta from the responders. The 3-parameter specification employed 
here (i.e. the utility and error parameters ߙ,ߚ and λ are common to all players), while 
inevitably resulting in a reduced fit to the data, is taken with the aim of preserving parsimony 
and 

restricted to be the same over all the games, as shown in the penultimate row 
in Table III: EQRE displays a better fit than EIBE (smaller mean square deviation) in all but 

ame 1 r the 
redictive power, measured for each game by fitting parameters estimated on the remaining 

five

comparability with past and future efforts. In particular, given the payoff structure of the 
games considered here (which is impartial with respect to the identity of the players), it 
doesn’t seem justified to consider different parameter values for the two populations of 
students.         

 
 4.2  Two measures of relative performance of EQRE: best fit and predictive power 
 

Table A.III in Appendix A.2 is a companion table to A.II, as it reports the results of 
comparisons between the model of noisy behavior affected by equity considerations and the 
standard IBE model employing the aspiration level (and thus the TG); these comparisons are 
in favor of the former, which outperforms the latter model in each game in terms of smaller 
MSD. Notice that the penultimate column now compares the performance of the two 
proposed concepts, showing that EQRE outperforms EIBE in five of the six games10. 

As before, in order to assess the performance of the concepts over multiple games, the 
parameters are 

g 1, achieving a mean MSD of .147 as opposed to .279 for the latter. As fo
p

, when all games are considered the mean MSD is substantially lower for the equity-
driven QRE, averaging .214 vs. a score of .567 for the equity-driven IBE. Table III, below, 
summarizes these comparisons: 

 
 Table III: MSD scores of the considered equilibrium concepts 

Model  G 7  G 8  G 9  G 10  G 11  G 12  Mean (s.d.) 
NE (on OG) 
0 parameters            

 
6.08 

 
1.23 

 
.354 

 
.708 

 
.422 

 
.064 

 
1.48 (2.29) 

IBE (on OG)           
0 parameters            

 
.330 

 
1.17 

 
1.83 

 
.878 

 
.497 

 
.209 

 
.819 (.610) 

IBE (on TG)           
0 parameters 

 
.315 

 
.035 

 
.416 

 
.224 

 
.094 

 
.205 

 
.215 (.140) 

EQRE by game (on OG) 
18 p rameters 
  10ି 10ି 10ି

a
 

5.5* 
 

2.4* 
 

7.5* 
 

6.4* 
ି

 
7.4* 

ି଼

 
5.7* 

ି

 
3.3*ି 

ି10 10 10  (3.0*10 ) 

Parametric best fit  (OG)        
EIBE       (16.=ࢻ=ࢼ) 
EQRE     (24.=ࢻ,15.=ࢼ, λ=.43) 

 
.746 
.251 

 
.178 
.012 

 
.428 
.397 

 
.152 
.036 

 
.140 
.163 

 
.030 
.027 

 
.279 (.279) 
.147 154) (.

EIBE vs. EQRE predict (OG)    
2 par.  EIBE                                

                    3 par. EQRE       

 
2.22 
.558 

 
.238 
.023 

 
.585 
.420 

 
.186 
.062 

 
.141 
.189 

 
.031 
.030 

 
.567 831) (.
.214 (.226) 

 
Two important considerations should be remarked at this point. Firstly, for what 

concerns the overall fit, even without excluding the potentially problematic game 7, the 

                                                 
10 in game 12 they achieve a substantially equal equilibrium prediction. 
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EQRE concept outperforms the conventional im ulse lance quilib um applied to the 
s (MSD scores are .147 and .215, res e is ewo sinc it 

asn’t the case for the other hybrid concept . Secondly, the above considerations are 
the jackknifing technique: for the EQRE 

r d o d  su iall  
c a en the para  es ll s are em

respectively esn’t hold f  E co ,  in red  
the s is e the one in the best fit row (.567 in place of .279). Note also that 

n QRE when cross-predicting is approx ately equal to the 
sfo  g  ( o E pp o . , 

lity  e  h arding vers . 
Again, this cannot be said for EIBE, whose score when using parameters fitted out of sample 
is su

lim st replies to the opponent’s action) and fairness 
motives again in the form of othe ersion. This coupling of (imperfect) 
maximizing behavior and distribu placing the monetary payoffs 
in (9) with the ones in Table I, which are reduced in order to account for subjects’ resistance 
to in

p ba  e ri
transformed game pectiv ly); th  is not rthy, e 
w 11

confirmed by the predictions obtained with 
specification the mean MSD sco e base

meters
 on cr
that b

ss-pre
t fit a

ictions
 game

is not bstant
ployed (.214 and .147, 

y higher than
the one cal ul ted wh

). This do
 la t row  roughly doubl

or the IBE ncept whose score  the p iction field in

the average MSD for equity-drive im
mean score for IBE on all tran rmed ames .214 f r EQR  as o osed t 215 for IBE)
further confirming the stabi of the param ters in the ot er-reg ion of QRE

bstantially higher than the score for the parameter-free impulse balance equilibrium (.567 
to be compared to .215). 

 
5. Discussion 

 

This paper is concerned with advancing two empirically sound, concepts: equity-driven 
impulse balance equilibrium and equity-driven quantal response equilibrium: both introduce a 
distributive reference point to the corresponding established stationary concepts known as 
impulse balance equilibrium and quantal response equilibrium. The former is modified in 
order to retain the impulse equilibration due to regret considerations associated with “wrong” 
plays while discarding the original parameterization (which assigned a double weight to 
losses with respect to the maximin payoff count, relative to gains), and at the same time build 
in equity considerations by utilizing the utility functions in (1) in place of the monetary 
payoffs in Figure 1. Quantal response equilibrium, on the other hand, serves as the basis for a 
concept that aims at explaining behavior as the result of a mix of rationality, cognitive 

itations (these two leading to stochastic be
r-regarding inequality av
tive concerns is achieved by re

equitable outcomes.  
Before drawing conclusions on the relative performance of the concepts analyzed here, 

let’s take a closer look at the meaning of the two parameters that are common to both equity-
driven equilibrium concepts proposed here, and which, consistently with the original 
specification by Fehr and Schmidt (1999), are required to satisfy the constraints ߚ    andߙ
 0  ߚ  1. As argued in the introduction, this choice is not trivial, and has been taken for 
the sake of parsimony and comparability. It may, however, be reasonable to extend the 
standard inequality aversion model in (1) to more general domains accounting for strong 
altruism as well as spiteful behavior (and is the subject of another ongoing project). In 
particular, let’s consider in turn the implications of relaxing the constraints onβ andα , 
focusing first on the last term of the right-hand side of (1), representing the positive 
deviations from the reference outcome (ݔሻ: 
 
                                                 
11 In fact, the impulse balance equilibrium obtains dramatically higher MSD scores when the original games are 
employed in place of the transformed ones, with an almost four‐fold increase. The intuition behind this is, 
loosely speaking, that the IBE is not as parameter‐free as it looks: that is, by utilizing transformed payoffs for 
each game (although based on common definition of aspiration level), it effectively allows for game‐specific 
adjustments similar to those obtained by adding a parameter which can take different values in each game.         
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0  ߚ  1       (10) 
 
Res

utility whic

 s ial comparisons:      

ߚ    ߙ
 

sitive 

sumpti

ote that the above inequalities violate (11) while satisfying (10), and still entail that an agent 
responds with a utility loss to both negative and positive deviations from the reference 

Recent contributions, such as Bolle (2000) ov (2000), have drawn the 
ttention on the parameter space concerning the degree of altruism and spite one should allow 

tricting the parameter space to values of ߚ laying between zero and one means, on one 
hand (0   ሻ, ruling out the existence of spiteful individuals who enjoy being better off thanߚ
the opponent, and on the other hand (ߚ  1ሻ ruling out the existence of strongly altruistic 
subjects who care enough about the well being of the other player to incur in a decrease in 

h is greater than the payoff difference (ݔ െ  ሻ. Both possibilities are coherentݔ
and some degree of similar pro- and anti-social behavior has been observed in the literature 
(cf. Bester and Guth (1998), Bolle (2000) and Possajennikov (2000)), so excluding them ex 
ante may bias the analysis against well documented behaviors that appear to have survived 
the evolutionary pressures shaping the evolution of human preferences.  

Consider now the second assumption that Fehr and Schmidt make on the parameters, 
concerning the presumed loss aversion in oc
 

     (11) 

When taken in conjunction with the ‘moderate aversion’ to advantageous inequality 
embodied in (10), it seems in fact plausible to postulate that negative deviations from the 
reference outcome count more than po ones (disadvantageous inequity induce higher 
disutility than advantageous inequity). However, when (10) is dropped and agents are free to 
exhibit strongly altruistic and spiteful behavior, the as on that ߚ is at most as big as ߙ is 
no longer justified in all domains. To illustrate this point, let’s consider individual i whose 
preferences satisfy a slight modification of the above parameter restrictions that maintains the 
asymmetric other regarding preferences of the familiar form12. That is, let the parameters 
modeling other-regarding behavior satisfy the following inequalities: 
 

0  ߙ ൏ ߚ  1      (12) 
 
N

outcome. The difference lies in ߚ no longer being bounded below α so that its magnitude 
(representing the altruistic disutility from advantageous inequality) can now be greater than 
that of the disutility from disadvantageous inequality.  

Another example of reasonable preferences that are ruled out in the standard inequality 
aversion model is given by 
 

ߙ ൏ 0 ൏         (13)ߚ
Loosely speaking, the intuition is that an agent whose preference parameters satisfy the above 
inequalities simply cares more about the counterparty than about herself13, a possibility 

hich may well apply to the truly altruistic agents.    w
 and Possajennik

a
for when modeling the evolutionary stability of other-regarding preferences. In particular, 
they have independently criticized and relaxed restrictions that Bester and Guሷ th (1998) had 

                                                 
12 The ‘conditional altruism’ inherent in the inequity aversion framework is preserved so long as ߙ and ߚ are 
non‐negative, implying that both positive and negative deviations from the opponent’s outcome induce a 

e with the higher payoff.      

utility loss. 
13 as for a given absolute deviation between the two payoffs, she will incur a bigger utility reduction when 
being the on
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imposed on the parameters. Given the resonance with IA preferences employed here, it is 
worth briefly introduce some notation from Bester and Guሷ th. Two agents play a symmetric 
gam

rder to allow for the possibility that individuals have other-
garding preferences that go beyond their material payoffs. Formally, 

 

 is a preference parameter (subject to ߙ 
evol

ns in (10) and (11) are 
posed on the parameter space of both models advanced here despite their restrictive nature, 

we ask whether the resulting asymmetric inequa ificantly contributes to 
explaining behavior of two populations repeatedly playing six games with random matching.      

even when restricting the degrees of 
free

e and are assumed to maximize a weighted sum of the own payoff and of the 
counterparty’s payoff, in o
re

ܸ ൌ ܷሺݔ, ሻݕ  ߙ ܷሺݔ, ݅    ,ሻݕ ് ݆      (14) 
 

where ܷ ሺݔ, ሻis the material payoff to player i, whileݕ
utionary selection), which is positive under altruism, zero under own profit maximization 

and negative under spite. As Bolle and Possajennikov show (respectively in the domains of 
spiteful and altruistic preferences), the preference restrictions imposed by Bester and Guሷ th, 
namely of ruling out spite and what I will call ‘strong altruism’, aren’t theoretically justified 
and should be relaxed. More specifically, Bester and Guሷ th assume 0  ߙ  1 and Bolle and 
Possajennikov separately show that arbitrarily large negative and positive values of the 
parameter should be allowed, in order to let the evolutionary pressures ultimately decide 
whether spite and strong altruism should be ruled out.  

With the above discussion in mind, and recalling that the restrictio
im

lity aversion sign

Based on the comparisons presented in sections 3 and 4 (and in Appendix A.2), the 
concept employing the logit equilibrium analysis (and the resulting stochasticity in behavior) 
on payoffs that are modified to reflect individuals’ inequality aversion emerges as the best 
performing in terms of goodness of fit, among the considered stationary concepts. Following 
the behavioral stationary concept interpretation of mixed equilibrium14, the experimental 
evidence leads to the conclusion that, among the stationary concepts considered here, the 
proposed other-regarding generalization of the QRE is the behavioral concept that best 
models the probability of choosing one of two strategies in various non-constant sum games 
spanning a wide parameter space. More specifically, 

dom of the parametric models and comparing the goodness of fit utilizing the same 
parameters  ( β ,α , λ if any)  for all six games, the other-regarding QRE outperforms all of 
the other stationary concepts considered here.  

In summary, the explanatory power of the considered models leads to the following 
ran

equilibrium appear to be substantially reduced, indicating that its explanatory superiority 
depends to a large extent on the payoff transformation.  

king, starting with the most successful in terms of fit to the experimental data (and with 
the goodness of fit decreasing progressively): EQRE, IBE, EIBE, QRE and Nash 
equilibrium.15 

Of course, more parsimonious concepts such as NE and IBE, are at a disadvantage when 
compared to parameterized models such as EIBE and EQRE, due to the parameter-free nature 
of the former two. It should be noted, however, that while Nash equilibrium is truly 
independent of parameters, the calculation of the impulse balance equilibrium depends on the 
choice of the aspiration level (the pure strategy maximin payoff) and the double weight 
assigned to losses relative to gains. In fact, when the IBE is applied to the payoffs belonging 
to the games truly played by the participants, the gains in fit of the concept over the Nash 

                                                 
14 that sees it as the result of evolutionary (or learning) processes in a situation of frequently repeated play 
with two populations of randomly matched opponents. 
15 See the grey highlighted rows in Table III. 
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Nevertheless, in order to avoid to give an unfair advantage to the proposed parametric 
models, the ranking presented above is based on rows 1, 3 and 5 in Table III, which show 
resu

 estimated out-of-sample for the parametric concepts (see the last row of Table 

 

lts obtained avoiding to fit the parameters (if any) to each game separately. It is 
significant to note that the order of the four concepts established under the above comparison, 
namely EQRE, IBE, EIBE and NE, is confirmed when restricting attention to the MSD obtained 
with parameters
III).  

 
Appendix 

 
A.1: Games utilized in Selten & Chmura (2008) and here 

 
Table A.I: In the present paper only games 7 to 12 (non-constant sum games) are investigated. 
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A.2: Performance of the proposed concepts with parameters estimated for each game 
 
 
Table A.II: Ex-post (best fit) descriptive power of EIBE vs. IBE  

 
 

FREQ. 
fu , fl 

NE 
௨ܲ,ܳ 

BEST FIT  EIBE
௨ܲ,  ܳ

 ( β ,α ) 

IBE 
௨ܲ, ܳ   

 (0=ߙ=ߚ)

MSD EIBE 
< 

MSD IBE 

MSD EIBE(OG) 
< 

MSD IBE(TG) 

TG7 .141,.564  .104,.634 
(0,0) 

.104,.634 NO n.a. 

OG7 .141,.564 .091,.909 .099,.568 
(.054,.055) 

.091,.500 YES YES 

TG8 .250,.586  .270,.586 
(.043,.065) 

.258,.561 YES n.a. 

OG8 .250,.586 .182,.727 .257,.584 
(.000,.471) 

.224,.435 YES YES 

TG9 .254,.827  .180,.827 
 (.07,.10) 

.188,.764 YES 
 

n.a. 

OG9 .254,.827 .273,.909 .233,.840 
(.330,.330) 

.162,.659 YES YES 

TG10 .366,.699  .355,.759 
(.089,.134) 

.304,.724 YES n.a. 

OG10 .366,.699 .364,.818 .348,.717 
(.253,.253) 

.263,.616 YES YES 

TG11 .331,.652  .357,.652 
 (.012,.018) 

.354,.646 YES n.a. 

OG11 .331,.652 .364,.727 .343,.642 
(.000,.415) 

.316,.552 YES YES 

TG12 .439,.604  .496,0.575   
(0,0) 

.496,.575 NO n.a. 

OG12 .439,.604 .455,.636 .439,.604 
 (.017,.397) 

.408,.547 YES YES 
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Table A.II e p wit IBE an  I: Ex-post (b st fit) descriptive ower of EQRE h respect to d EIBE
 
 

FREQ. 
 

fu , fl 

NE 
 

௨ܲ,ܳ 

BES E T FIT  EQR
௨ܲ,ܳ 

( β ,α , λ) 

IBE 
௨ܲ, ܳ 

 0=ߙ=ߚ  

MSD EQRE 
< 

MSD EIBE 

MSD EQRE(OG) 
 < 

MSD IBE(TG) 

TG7 .141,.564  .104,.634  n.a.  
 

OG7 
 

.141,.564 
 

.091,.909 
.141,.564 

(.1  05,.209,.335)
 

.091,.500 
 

YES 
 

YES 
T .2G8 50,.586   .258,.561  n.a. 

 
OG8 

 
.250,.586 

 
.182,.727 

.250,.586 
 (.05 ) 9,.431,.310

 
.224,.435 

 
YES 

 
YES 

TG9 .254, .827   .188,.764  n.a. 
 

OG9 
 

.254,.827 
 

.273,.909 
.254,.827 

 (.0  83,.316,.600)
 

.162,.659 
 

YES 
 

YES 
TG10 .366,.699  .304,.724    n.a.

 
OG10 

 
.366,.699 

 
.364,.818 

.366,.699 
 (.3  62,.240,.310)

 
.263,.616 

 
YES 

 
YES 

TG11 31,.652   .354,.646  n.a. .3
 

OG11 
.331,.652  

.364,.727 
.311,.652 

 (.003,.02,.910) 
 

.316,.552 
 

YES 
 

YES 
TG12 39,.604   .496,.575  n.a. .4

 
OG12 

 
.439,.604 

 
.455,.636 

.439,.604 
(.042,.137,.550) 

 
.408,.547 

 
same 

 
YES 
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