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In this paper we argue that when a subgroup of countries cooperate on emission reduction, the optimal response 

of non-signatories countries reflects the interaction between three potentially opposing factors, the incentive to 

free-ride on the benefits of cooperation, the incentive to expand the demand of fossil fuels, and the incentive to 

adopt cleaner technologies introduced by the coalition. Using an Integrated Assessment Model with a game 

theoretic structure we find that cost-benefit considerations would lead OECD countries to undertake a moderate, 

but increasing abatement effort (in line with the pledges subscribed in Copenhagen). Even if emission 

reductions are moderate, OECD countries find it optimal to allocate part of their resources to energy R&D and 

investments in cleaner technologies. International spillovers of knowledge and technology diffusion then lead to 

the deployment of these technologies in non-signatory countries as well, reducing their emissions. When the 

OECD group follows more ambitious targets, such as 2050 emissions that are 50% below 2005 levels, the 

benefits of technology externalities do not compensate the incentives deriving from the lower fossil fuels prices. 

This suggests that, when choosing their unilateral climate objective,  cooperating countries should take into 

account the possibility to induce a virtuous behaviour in non-signatories countries. By looking at a two-phase 

negotiation set-up, we find that free riding incentives spurred by more ambitious targets can be mitigated by 

means of credible commitments for developing countries in the second phase, as they would reduce lock-in in 

carbon intensive technologies. 
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1. Introduction 

Stable coalitions addressing a global externality such as Green House Gases (GHGs) 

emissions are generally small and do not succeed to involve all players of the game [3, 4, 16, 

17, 26].  When cooperation on a global public good is partial, the agreement can fail to be 

environmental effective. On the one hand, the pollution reduction by the coalition might be 

too small compared to the first-best level of abatement. On the other hand, the optimal 

reaction of non-signatory countries might be to increase pollution compared to the case with 

no agreement in place. Whether this is the case or not depends on a number of forces. We 

argue that, when a number of countries cooperate on emission reduction, the optimal 

response of non-members is a mix of at least three potentially opposing factors. 

First, countries have an incentive to free ride on the environmental improvement brought 

about by signatory regions. Because GHGs become uniformly mixed in the atmosphere, the 

perceived damage of emitting one additional ton of carbon is independent of the emission 

source location. A second element that can provide incentives for strategic increases in 

emissions is the global integration of markets. Even if climate policy is enforced only in a 

few countries, demand reduction of fossil fuels driven by the policy can depress the 

international price of these fuels. Consumers and producers not facing climate policies will 

respond with an increase in fossil fuels demand [7, 25, 27]. The literature has referred to this 

as energy market effect.3 A second mechanism of policy transmission is the international 

trade of energy-intensive goods. By increasing production costs of energy-intensive 

industries, climate policy can reallocate production outside the coalition. Still, the pollution 

haven hypothesis has not found robust evidence and production location choices are only 

                                                 
3 An additional channel of transmission is the international trade of energy-intensive goods. Facing higher 
energy costs, the competitiveness of these industries is reduced and production is reallocated to the countries 
without climate policy. As the international prices of such goods increases, countries outside the abating 
coalition have an incentive to expand their production of these goods and export them to signatory countries. 
The “pollution haven hypothesis” effect is not included in the present analysis.   
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marginally determined by climate policies. In particular, Barker et al. [2] argue that studies 

finding high leakage rates assume that climate policy has strong re-location effects on 

energy-intensive production. However, in practice, this is an unlikely outcome because 

countries adjust policies in order to avoid these effects, for example by exempting trade-

exposed sectors4. Burniaux and Oliveira Martins [12] show that what actually matters in 

producing carbon leakage is the structure of energy markets and of fossil fuel supply. 

However, they conclude that real world conditions and realistic values for key parameters 

make the risk of significant carbon leakage due to terms-of-trade effects unlikely.  The 

relative importance of the energy market effect compared to the pollution haven hypothesis is 

also emphasised by Böhringer et al. [8]. They show first in an analytical framework and then 

using a numerical Computable General Equilibrium (CGE) model that when either the USA 

or the EU reduce unilaterally emissions, carbon leakage is predominantly driven by the 

international energy market effect.  

The damage and energy market effects, as well as the pollution haven hypothesis,  imply that 

countries outside a climate coalition would increase their emissions. However, climate policy 

provides a price signal that triggers innovation in carbon- and energy-saving technologies. 

This is the well-known induced technical change hypothesis. Increasing factor prices give an 

incentive to develop technologies that save the most expensive input. Since markets are 

increasingly more integrated, it is quite unlikely that new technologies developed under the 

stimulus of climate policy remains confined to the policy forerunner countries. Technology 

transfers can occur through climate policies linkages (see for example the work by 

Dechezleprêtre et al. [18] and Seres et al. [37] on technology transfers through the Clean 

                                                 
4 For example, the EU decided to protect trade-exposed sectors by guaranteeing them a free allocation of 
allowances, see the recent Communication released by the European Union “Analysis of options to move 
beyond 20% greenhouse gas emission reductions and assessing the risk of carbon leakage”, COM(2010) 265. 
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Development Kyoto mechanism), but also simply because of trade flows, multinational 

enterprises, and skill-labour mobility (Eaton and Kortum [19,20], Keller, [23]).  

Unilateral climate policy can thus induce technology transfers from the coalition to non-

signatories countries, reducing emissions outside the climate coalition. Using bottom-up 

models of the energy sector, Barreto and Kypreos [6] and Barreto and Klaasen [5] show that 

technology spillovers can induce technical change and emission reduction outside the group 

of countries facing an emission constraint. Using a CGE model that links the energy sector to 

the rest of the general economy, Gerlagh and Kuik [21] estimate the rate of carbon leakage 

associated with the Kyoto Protocol and show that even for moderate levels of technology 

spillover, carbon leakage can become negative. Similar results come also from the theoretical 

literature [22, 41]. 

The two strands of literature on markets effects, on one hand, and on technology spillovers, 

on the other hand, have remained separated, with few exceptions. This is quite surprising as 

there is in fact a close connection between the energy market and the innovation effects. 

Whether a zero-carbon technology is widely adopted depends largely on its price relative to 

that of fossil fuels. In turn, this relative price depends on the stringency of the climate policy,  

the scarcity of fossils, the speed of technology diffusion, and on the price elasticity of energy 

demand.  

To our knowledge, only Hoel [27] discusses these issues jointly, using a simplified analytical 

model. Hoel compares the direct effect of an exogenous cost reduction of a clean substitute to 

fossil fuels with the induced energy market effect. He shows that emissions are more likely to 

increase in the short-run, the higher the elasticity of demand, the scarcer the fossil fuels, and 

the lower the substitution possibilities between clean and dirty substitutes. That paper 

provides very clear intuitions on the interaction between energy market and technology 

effects, but taking the evolution of technical change as given and neglecting the dynamics 
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characterising the climate system. An integrated assessment model with endogenous 

technical change can complement the above analysis and provide more general insights  

because it allows characterising the optimal reaction function of non-signatories under more 

realistic assumptions. 

This is the approach adopted by this paper, which uses a numerically calibrated integrated 

assessment model to generalise some of the considerations on the trade-off between the 

energy markets and the technology effects.  The model chosen is suitable for this analysis 

because it has a game-theoretic set-up where players, regions of the world, choose their 

optimal intertemporal strategies taking in consideration other regions’ reactions. The solution 

of the pollution game is a Nash equilibrium between coalition members playing their best 

response to non-members, which individually adopt their best reply strategy (as in Chander 

and Tulkens [15]). Fossil fuel prices are endogenously influenced by the global use of 

exhaustible resources. In addition, and differently from Hoel [27], technical change 

endogenously accounts for both knowledge and experience international spillovers.  

We start the analysis by looking at partial cooperation between OECD countries, a coalition 

that is interesting in several respects. To date, industrialised countries have been the leading 

innovators. For this reason, the OECD group can be expected to lead the technological 

transition towards lower carbon development pathways while creating more incentives for 

developing countries to join. The central question we investigate is whether the OECD 

coalition can set a target that triggers technological diffusion while keeping the damage and 

energy market effects under control. In other words, is there an “optimal” abatement effort 

that minimises carbon leakage?  To generalise the validity of our results, we explore the 

influence of a number of elements, including the structure of energy markets, energy supply 

and international trade elasticities, substitution possibilities in final production, speed of 
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innovation, composition and differences in climate damages, and the nature and composition 

of the coalition. 

The remainder of the paper is organised as follows. Section 2 illustrates how the energy 

market, technology, and damage effects are described in the numerical model WITCH. 

Section 3 discusses how the  interaction between the three effects determines the optimal 

reaction of non-members to partial cooperation among OECD countries. Because the 

magnitude of each of these effects depends on the effort undertaken by the coalition, Section 

4 investigates the consequences of varying the stringency of the emission objective and the 

composition of the coalition.  In Section 5 the robustness of results is tested across alternative 

model specifications and challenged through extensive sensitivity analysis. A discussion of 

results and their policy implications concludes the paper in Section 6.  

 

2. Energy market, technology, and damage effects in the WITCH model 

Our analysis is based on the WITCH model, which incorporates a detailed representation of 

the energy sector into an inter-temporal growth model of the economy. This allows 

technology-related issues to be studied within a general equilibrium framework characterised 

by environmental (expected future climate change damages), economic (international energy 

markets), and technology (international spillovers of knowledge and experience) externalities 

(Bosetti et al. [9,10,11]).   

The players of the game are twelve forward-looking regions that cover the global economy. 

They can play either cooperatively (global and partial coalitions can be considered) or non-

cooperatively. In the first case, regions maximise the global social welfare, fully internalising 

environmental and economic externalities. This leads to the first-best optimum. When 

playing a non-cooperative game, regions optimise their individual welfare, taking as given 

each other region’s choice. This is done through an iterative procedure, which is capable of 
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reproducing the outcome of a non-cooperative, simultaneous, open membership game with 

full information, and thus achieve a second-best Nash equilibrium.5 The non-cooperative 

game can involve only singletons, coalitions of different size, or coalitions of different size 

and singletons. Both singletons and coalitions best-respond to other players’ move, but 

singletons maximise individual welfare while coalition maximises aggregate joint welfare. In 

particular, coalitions evaluate the weighted sum of discounted per capita consumption, with 

weights calibrated to equate marginal utilities across members, the Negishi weights. As the 

model describes both the environmental and technology externalities, cooperation can 

address each of these market failures. In the second stage countries choose their intertemporal 

path of investments. The game is solved backwards. 

In each region n of the model, a social planner maximises welfare Eq.(1) subject to  economic 

constraints below [Eqs. (2)-(11)]: 

 

       (1) 

 

In Eq. 1, U(.) is the utility function of the representative agent,   is per capita 

consumption at time t in region n, and L represents population, which is also the measure of 

labor inputs. R(t) is a discount factor to represent the rate of time preference.  

The regional social planner chooses an entire sequence of consumption levels and 

investments subject to the budget constraint that describes how total final production, , 

can be allocated to final consumption, , investments in final goods, , 

investments in various energy technologies i,  at the unit cost of installation , 

                                                 
5 The model is solved as a one-shot meta-game. In the first stage countries decide on their participation and 
coalitions are formed. 
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investments in R&D in each of these energy technologies, , and expenditure on 

fuels, , at unit cost  : 

 

  (2) 
 

where the technologies available i include energy efficiency improvements, EE,  fossil-fuel-

based technologies in power sector, fossil-fuel-based technologies in final use sectors, 

carbon-free technologies in power sector, carbon-free technologies in final use sectors.6  

 As mentioned above, WITCH specifically incorporates the emission externality, the 

technology externality via international knowledge and experience spillovers, and carbon 

leakage through international energy markets.  

The climate externality is represented by a damage function, D, that depends on global 

temperature, computed through a simplified climate module. Global temperature ultimately 

depends on global GHGs emissions, . The reduced-form damage function, D, 

accounts for the regional effects of global mean temperature increase on regional Gross 

Domestic Product (GDP). Because climate change damages have a direct impact on output, 

the net output available for consumption and investments can be different from what actually 

produced, driving a gap between net output available,  and produced gross output, 

:  

 

                                                 
6 Electricity can be generated using fossil fuel based technologies and carbon-free options. Fossil-fuel-based 
technologies include natural gas combined cycle (NGCC), oil- and pulverised coal-based power plants. 
Integrated gasification combined cycle power plants equipped with carbon capture and storage (CCS) are also 
modelled. Zero carbon technologies include hydroelectric and nuclear power plants, wind turbines and 
photovoltaic panels (Wind&Solar). The end-use sector uses traditional biomass, biofuels, coal, gas, and oil. Oil 
and gas together account for more than 70% of energy consumption in the non-electric sector. Instead, the use of 
coal and traditional biomass is limited to some developing regions and decreases over time.  First generation 
biofuels consumption is currently low in all regions of the world and the overall penetration remains modest 
over time given the conservative assumptions on their large scale deployment.   
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          (3) 

       (4) 

 

For an increase in temperature below 1.27°C, climate change impacts on GDP can be either 

positive or negative, depending on regional vulnerability and geographic location. Above that 

level, damages are negative throughout the world and increase in a quadratic relationship 

with temperature. Final  gross output,  is produced by combining physical 

capital, ,  energy services, , and labour , ,using a CES production 

function:  

 
      (5) 

 
 

Labour force  is approximated with (exogenous) population. At each point in time, the 

capital stock accumulates with the perpetual rule: 

 
     (6) 

 
 
Overall technological progress is described by the exogenous dynamics in total factor 

productivity, .   

Whereas there are several options that can be used to decarbonises the power generation 

sector, the non-electric sector features fewer zero-emission options. Although there can be 

some switching from direct energy use to electricity, substitution possibilities are constrained 

by the limited  elasticity of substitution assumed between electric and non electric inputs to 

the production of energy services. The two inputs enter a CES function where elasticity is 

assumed to be equal to 0.5. This low value accounts for path dependencies and lock-in effects 

in existing capital stock.  
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The technology portfolio of both the electric and the non electric sector is not static and it can 

be expanded  by investing in innovation. The WITCH model provides a simple, but 

reasonable representation of the process of innovation as well as of technology diffusion. 

Regions can invest part of their savings to accumulate new knowledge in the energy sector. 

R&D can lead to incremental energy efficiency improvements as well as radical discoveries. 

A first channel of endogenous technological change affects energy intensity. A stock of 

knowledge capital,  augments the quantity of energy services that can be 

produced by each unit of physical energy used,  

 

               (7) 

 

When enough resources are allocated to dedicated R&D, breakthrough innovation can 

happen7 making brand new clean technological options economically viable. Once 

technologies are deployed, investment costs decrease further with the learning process that is 

proportional to global adoption. The two stages of innovation and diffusion are combined 

together in a two-factor learning curve specification for investment costs, which are an 

endogenous function of the knowledge stock (Learning-By-Researching) and installed 

capacity (Learning-By-Doing). Learning-By-Researching occurs before the technology 

penetrates the market, while Learning-By-Doing operates when technology deployment 

starts. The general form is described in equation (8): 

  

                              (8) 

 

                                                 
7 The model simplifies the representation of the innovation process by assuming a deterministic specification. 
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where the investment cost in technologies i at time t depends on the cumulated stock of R&D 

investments, , and on the cumulated capacity, , aggregated over the whole 

world. The two exponents, the Learning-by-Doing (LBD) index, , and the Learning-by-

Researching (LBR) index, , define the speed of learning. In particular, the rate at which 

investment costs decline each time the cumulative capacity or the knowledge stock doubles8 

is given by the learning ratios, defined as one minus the progress ratio, 

. While regions when optimising know that 

they can affect costs by investing in R&D, LBD occurs as an external effect.  

For the sake of simplicity we assume two broad types of breakthroughs can occur, one in the 

final use sector and one in power generation.  For example, innovation could introduce a new 

substitute for oil in the transport sector, such as cellulosic biofuels, electric or hydrogen-full-

cell vehicles. Or new power generating technologies might become competitive, such as 

concentrated solar power or advanced nuclear power. Once breakthroughs occur, the uptake 

of the new technologies will not be immediate and complete, but the pace of transition is 

controlled by a penetration limit. Both learning effects influence investment costs in 

breakthrough technologies in the power and final sectors. In the case of more mature options, 

such as wind and solar PV, the contribution of the knowledge stock is negligible, that is 

=0, while the Learning-By-Doing mechanism keeps reducing investment costs. We 

assume that both learning mechanisms are zero in the case of fossil-fuel-based technologies, 

hydroelectric power, and third generation nuclear technologies. 

The innovation externality takes the form of international spillovers of knowledge embodied 

in the energy sector. The dynamic evolution of the knowledge is described the following 

perpetual rule   

                                                 
8 A two time period (corresponding to 10 years) lag is assumed for R&D, to capture the inertia of bringing research to the market.  
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 (10) 

 

where investments in R&D are combined with cumulated stock of existing national 

knowledge, to account for standing on shoulder effects, and foreign knowledge, 

, to account for international spillovers effect, as described in equation (11):    

 

       (11) 

 

The spillover term depends on the interaction between the countries’ absorptive capacity, 

measured by the ratio of the stock of the country to that of the frontier, and the distance of 

each region from the technology frontier itself. The frontier is represented by the total stock 

of knowledge available in top innovator countries, the OECD, and it is taken as an externality 

by each optimising region. This formulation implies that foreign knowledge has a positive 

contribution to domestic knowledge formation only if the recipient country has a sufficiently 

high absorptive capacity, which is measured in terms of domestic knowledge stock. The 

distance from the technology frontier, which is defined as the gap of each region from the 

international pool of knowledge, plays also a role. The technology frontier consists of 

knowledge capital stocks in different countries, reflecting the idea that there is not a single 

innovator. In this manner, countries in frontier can still benefit from spillovers because of the 

heterogeneity of knowledge capital across countries.  

Finally, the last channel of interaction across regions is that of the international energy 

market. International prices of fossil fuels are determined by the equilibrium between global 

demand and supply. As a consequence, a domestic policy enforced in one region has an 
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impact on consumption and production in other regions as well through the price mechanism. 

International prices endogenously reflect fossil fuels exhaustibility, which is ultimately 

driven by regional consumption. The cost increases with global demand to reflect resource 

scarcity. Four non-renewable fuels are considered: coal, crude oil, natural gas, and uranium. 

A set of reduced-form cost functions accounts for the non-linear  effect of both depletion and 

extraction. Assuming competitive markets, the domestic price  is equal to the marginal 

cost and it depends on the cumulative quantity of fossil fuels extracted, : 

 

                      (12) 

 

The distinguishing features of the model are summarised in Table 1. 

Table 1: Distinguishing feature of the WITCH model 

key distinguishing feature WITCH model 

Solution concept 

Intertemporal optimisation (Ramsey‐type growth model) 

Expectations/Foresight Default: perfect foresight 
Substitution possibilities 
within the macro-economy / 
sectoral coverage 

CES production function of generic final good from primary inputs capital 
and labour and intermediate inputs energy 

Link between energy system 
and macro-economy 

Economic activity determines demand; energy system costs 
(investments, fuel costs, operation and maintenance) are included in 

macro‐economic budget constraint. Hard link, i.e. energy system and 

macro‐economy are optimised jointly.  

Production function in the 
energy system / substitution 
possibilities 

Non-linear substitution between competing technologies for electricity 
generation modelled with CES production functions. Supply curves for 
exhaustible resources.  

Land use MAC curves for deforestation 
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International macro-
economic linkages / Trade 

Single market for some commodities (permits) 
International spillovers of knowledge (energy R&D) and of experience 
(learning-by-Doing for wind and solar) 

Implementation of climate 
policy targets 
 

Emission caps-and-trade, with different allocation rules across or taxes. 
Banking and borrowing can be switched on/off 
Optimal level of emissions based on Cost Benefit Analysis 

Technological Change / 
Learning 

Global learning-by-Doing for wind and breakthrough technologies in power 
and final sector;  learning-by-Researching  for breakthrough technologies 
with international spillovers of knowledge;  energy efficiency R&D 
investments with international spillovers 

Representation of end-use 
sectors 

Electric (power generation from gas, coal, and oil; coal IGCC on combination 
with CCS, nuclear, hydro, wind, solar), non-electric (final use of coal, oil, 
gas, biomass, first and second generation biofuels), final good sector 

Cooperation vs. non-
cooperation  

Nash equilibrium (non-cooperative) or Pareto equilibrium (cooperative) 

Externalities Environmental externality (a damage function can be switched on/off), 
international energy markets, technology externalities are not internalised in 
the Nash equilibrium 

Utility  Log utility. Risk aversion coefficient equal to 1. 
Investment dynamics Capital motion equations, no vintage 

 

 

Although this model represents a step-up over standard integrated assessment modelling that 

normally features only the climate externality, it must nonetheless be recognised that it does 

not thoroughly represent all possible sources of global interaction. More specifically, no 

international trade of capital is assumed and therefore terms-of-trade effects are not 

considered. However, as discussed in the introduction, most of the literature confirms that 

carbon leakage takes place mainly through the international energy market effect [2,8], which 

is fully modelled. Our model captures market failures related to international spillovers only 

in the energy sector, as no general purpose R&D is assumed. No learning is considered for 

known, yet potentially improvable technologies, such as nuclear power and carbon capture 

and storage (CCS). Thus, this exercise provides an account of only some of the most relevant 

sources of global interaction. Finally, each region internalises only the regional externalities 

associated with climate change damages, the accumulation of knowledge, and the use of 

fossil fuels, but not the international ones.  
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The next section explores the issue of carbon leakage when OECD countries play the role of 

climate leaders and choose the optimal level of pollution, knowing that non-OECD countries  

will react optimally. 

 

3 OECD partial cooperation  

Given the numerous sources of global interaction described in the previous sections, the 

implementation of climate policies in a sub-group of countries will inevitably affect the 

behaviour of non-members as well. Non-signatories might react by increasing, decreasing, or 

leaving unchanged their emission. The reaction of non signatories depends not only on the 

interaction between the energy, damage, and technology effects, but also on composition and 

size of the coalition of climate leaders. When the level of ambition of the coalition is high, 

either because the coalition is big or because the perceived damages are large, the energy 

market effect is likely to prevail. In contrast, smaller or less environmentally active coalitions 

might see the technology effect prevail. In addition, what also matters is the nature of the 

decarbonisation pathway followed by the coalition.  In particular, if coalition members 

already have a good performance in terms of energy intensity, emission reduction will need 

to rely on decarbonisation of the energy mix, which means introducing cleaner alternatives 

and expanding the deployment of zero-carbon technologies. Conversely, if the energy 

intensity of the coalition is high, a large margin of reduction will be achieved through energy 

saving measures.  In the case of the coalition considered in this section composed of OECD 

countries, the average energy-output ratio is relatively low and therefore significant 

technology transformation is required even for moderate emission reduction targets. The 

optimal endogenous level of abatement for a coalition reflects the weighting of benefit from 

avoided damage and the costs of mitigation, which in turn is based on innovation 

expenditures, the cost of shifting to more expensive technologies and fuels and towards more 
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efficient ways of production. The cost-benefit criterion is sensitive to value judgements, such 

as the economic evaluation of climate change impacts and the choice of the discount rate. The 

role of discounting and that of cost-benefit analysis in the context of climate change has been 

discussed and documented in several papers as in, among many others, Nordhaus [8], Tol 

[39]9, Stern [38] and Weitzman [42]. It is still debated whether any discounting at all should 

be associated with very long-term normative analysis, as it is ethically hard to justify that the 

present generation should get a greater slice of the cake, but for the fact that future 

generations might not be there. In this sense, discounting would weigh the likelihood of 

human extinction [36]. In this paper we start by taking a normative perspective and perform 

the analysis by assuming a pure rate of time preference of 0.1%10. We then investigate the 

effect of a higher discount rate, 3%, and show how this has major impacts on innovation 

strategies. As far as damage is concerned, the central case that we analyse in the following 

pages assumes damage estimates in the mid, high range between UNFCCC’s estimates [40] 

and the values proposed in the Stern Review11.  

3.1  The optimal OECD Target and the optimal non-OECD reaction 

Given the assumptions just described, the optimal, non-cooperative baseline would result in 

an increase in global average temperature of about 3.4°C above pre-industrial levels in 2100. 

This pattern would lead to a global damage of about 7% of the Gross World Product (GWP in 

2100). Cooperation on emission reduction by the group of OECD countries would slow down 

climate change only slightly, with 0.2°C less warming in 2100.  

                                                 
9 Similar results are shared by Manne and Richels [30], Mendelsohn et al. [31] and Pearce [35]. 
10 We did not adjust the curvature of the utility function to reflect the lower pure rate of time preference and to 
keep the interest unchanged according to the Ramsey rule. As shown in Nordhaus [33], lowering the pure rate of 
time preference and adjusting accordingly the curvature of the utility function leads to a result that is basically 
unchanged from that based on the original parameter value. Instead, we base the experiment on an interest rate 
that is exceptionally low, following a normative approach, to observe the effects and compare them with 
experiments based on a higher pure rate of time preference. The next section will analyse how myopic 
behaviour, modelled with a higher discounting, affects the results. 
11 The chosen damage and a pure rate of time preference are such that global cooperation results in the 2.5°C 
degree target.  
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Cost-benefit considerations would lead the OECD coalition to follow initially moderate 

emission cuts, while effort would increase over time. In 2050, the optimal CO2 emission 

reduction is only 32% (or 34% CO2-eq considering all GHGs) compared to 2005. In absolute 

levels this corresponds to an emission reduction of 4.5 GtCO2 (5.6 GtCO2-eq) compared to 

2005, from 13.8 to 9.4 GtCO2 (from 16.5 to 10.8 GtCO2-eq). It is interesting to note that 

short-run emission reductions fall in the range of the Copenhagen pledges for Annex I 

countries, which largely overlap with the model definition of OECD region. In 2020, the 

optimal emission reduction compared to 2005 is 2%. This increases to 7% and 14% in 2025 

and 2030, respectively. Annex I conditional pledges have been estimated to lead to a 2020 

reduction between 0% and 14.3%, with a median value between 1% and 12.5%, depending 

on the assumptions on LULUCF accounting and the use of surplus emissions units12.  

Figure 1 shows the dynamics of the OECD group’s optimal abatement path (measured as 

emissions with respect to baseline) along with the optimal reaction of non-OECD countries. 

Overall, the non-OECD countries’ reaction is proactive, and their optimal emission path lies 

slightly below baseline. This is a little improvement, when compared the absolute increase in 

emissions in non-OECD countries throughout the century, but still it implies no leakage. 

Only in the very short-run, some leakage occurs, but over time the technology channel 

dominates the damage and energy market effects. 

 

 

Figure 1: Optimal CO2 emission reductions in OECD countries and optimal reaction of non-OECD 

countries through time. GtonCO2 difference of energy-related CO2 emissions compared to non-

cooperative baseline  

                                                 
12 These are the estimates presented in the UNEP Assessment “The Emission Gap Report” which reviewed the 
assessment of the Copenhagen Pledges made by thirteen different models. The report, containing a detailed 
description of the assumptions made in the different cases, is available at 
http://www.unep.org/publications/ebooks/emissionsgapreport/ 
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Even though non-signatories could free ride on the emission reduction commitment of the 

OECD, they do not have an incentive to do so. This is the result of different factors. First of 

all, the OECD effort is moderate. Most damages occur in non-OECD countries and they are 

not internalised by the OECD coalition, which perceives a modest social cost of carbon. To 

give some perspective, global emissions resulting from the OECD coalition effort are far 

above any stabilisation path, and GHG concentration in 2100 is only 80 ppm less than in the 

non-cooperative baseline. As said above, global mean temperature in 2100 increases up to 3.2 

°C, as opposed to the 3.4°C.  

When abatement is moderate, the influence on international fuel prices is also contained. The 

international price of oil is at most 34%13 lower compared to baseline and such reduction is 

more than compensated by innovation and deployment of clean technologies. Even if the 

emission reduction is moderate, technology investments in OECD countries increase 

significantly. Expenditure in clean energy R&D grows from 0.05%  to 0.24%,measured as a 

share of GDP, for a total amount of 74 US$ Billion in 2010. A small fraction (2.9 US$ 

                                                 
13 The oil price reduction increases with the level of abatement and it reaches the highest reduction of 34% in 
2100.  
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Billion) is allocated to energy efficiency improvement, while most additional investments are 

dedicated to the development of breakthroughs in the power and final-use sector. These 

investments reduce the costs of breakthrough technologies, which are introduced first in the 

OECD and subsequently, with a time lag of five to ten years, in non-OECD countries. This 

result substantiates the discussion above concerning the nature of the decarbonisation 

pathway and how this determines the strength of the technology effect. Because OECD 

energy-output ratio is already low, even modest emission reduction requires new 

technologies. In addition, OECD countries represent the technology frontier, at least today14, 

and most R&D expenditure occurs there. Therefore, they represent the  major source of 

knowledge and technology spillovers.  

3.2  The optimal non-OECD reaction: trade-off between the energy, technology, 

and damage effects 

The previous Section discussed how the damage, energy market, and technology effects play 

out in shaping technology cost functions and the optimal response of non-signatory countries. 

In this Section we disentangle the magnitude and the direction of the three factors.  For the 

purpose of this analysis, we compare the optimal solution analysed in the previous section 

with three hypothetical scenarios in which any of the three mechanisms is turned off. This 

should obviously be considered as a purely speculative exercise, as in real life it would be 

obviously impossible to turn off either effect.   

The first of these variations assumes that Learning-By-Researching and Learning-By-Doing 

effects are completely excludable and kept within the coalition. We assume that non-

signatories cannot reap any of the innovation advancements induced by the OECD climate 

agreement. Technology investment costs and energy efficiency in non-OECD countries 

cannot be affected by R&D investments choices and new installed capacity in OECD 

                                                 
14 Consider that the base year of the model is 2005. 
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countries, as in shown in Table 2,  first two rows. We refer to this case as the “no 

TECHNOLOGY effect” case (no TECH), which can be thought of as situation in which 

channels that vehicle international transfers of knowledge and technologies, such as trade, 

FDI, skill-labour migration, patenting in different countries, are for some reasons not 

effective.   

The second case assumes that the OECD reduction in fossil fuel consumption does not 

influence the fossil fuel prices faced by non-OECD countries. They continue to buy energy at 

the same, higher price they perceived in the non-cooperative baseline. We refer to this second 

case as the “no ENERGY MARKET effect” case (no EMKT). Table 2, third row, shows how 

this case has been parameterised.  

Third, we assume that the mitigation of the temperature increase resulting from the action 

undertaken in OECD countries can be excludable and that non-OECD countries continue to 

face the higher temperature increase observed in the non-cooperative baseline. We refer to 

this final case as the “no DAMAGE effect” case (no DAM, Table 2, fourth row).  

 

Table 2: Modelling technology, damage, and energy market effect in the WITCH model  

 
No Technology effect 

 
OECD 

 
Non-OECD 

no international 
spillovers of knowledge 

 
 

For clean technologies 
 

 
For all technologies 

no international 
spillovers of experience( 

no LBD) 

 
 

For clean technologies 
 

 
 

For all technologies 
 

No Energy market 
effect 

For fossil technologies
 

as in baseline 
For fossil technologies 

 

 
 

No Damage effect 
 

 
as in baseline 
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Figure 2 reports the resulting change in non-OECD emissions with respect to the non-

cooperative baseline in these three scenarios (no TECHNOLOGY, no ENERGY-MARKET 

and no-DAMAGE cases) as well as the case where all three effects are in active (the Optimal 

case).  Results are shown for high and low discounting. We first concentrate on the low pure 

rate of time preference case (i.e. 0.1%), which is in line with the analysis in the previous 

section (left markers in Figure 2).  

As an indicator of the non-OECD group’ reaction function we plot the aggregate cumulative 

emissions reduction throughout the century with respect to the baseline. When the technology 

effect is turned off, the cost of clean technologies in non-OECD countries is unaffected by 

OECD innovation and technology use. Still, non-OECD countries see the reduced energy 

prices and perceive a lower damage. As a consequence, non-signatories’ emissions are higher 

than in the optimal case because the energy and damage effects are not counterbalanced by 

clean innovation transfers. When the technology effect is silenced, the sign of carbon leakage 

becomes negative.  

Conversely, ruling out the energy market effect implies that in non-signatory countries the 

cost of the fossil-fuel-based technology does not decrease when OECD countries reduce their 

demand, while they still perceive the induced innovation in clean technologies. As a 

consequence, the adoption of the clean options is even more pronounced than in the optimal 

case, as reflected by the even lower cumulative emissions. Finally, when non-OECD 

countries are excluded from the environmental benefits due to the OECD’s action, and they 

perceive the same temperature they would in the absence of any policy, this slightly increases 

returns on energy efficient and clean investments in non-OECD countries. However, the 

relative incentive to adopt the clean and polluting technology does not change as significantly 

as in the no ENERGY MARKET case. The damage effect turns to be the smaller, in this 

example, as the temperature changes we are considering are very modest.  
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Figure 2: Cumulative CO2 emissions (2010-2100) in non-OECD countries when reacting to the 

optimal abatement in OECD countries. Low (0.1%) and high (3%) pure rate of time preference 

(PRTP) 
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When a higher pure rate of time preference is considered (3%, right markers in Figure 2), the 

direction of each effect does not change, but the magnitude of each of them is largely and 

asymmetrically affected. In order to keep our focus on the reaction of non-signatories we 
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assume the OECD level of emission reduction remain unchanged in the higher discount rate 

case, while focusing on the changes in non signatories’ optimal reaction.15 High discounting 

significantly shortens the time horizon of the social planners, making the benefits of technical 

change and reduced damage occurring after 2050 irrelevant compared to shorter term costs. 

Damages increase exponentially (see equation 4) and technology benefits take time to 

materialise. New inventions take between ten and five years to reduce investment costs or 

improve energy efficiency (equations 8 and 10). As a consequence, both the damage and the 

technology effects lose significance when the pure rate of time preference is 3%.  The energy 

market effect, which has a shorter term nature, tends to prevail. This is true in both regions. 

OECD countries meet their goal adopting a different strategy. They invest less in innovation 

to bring down the cost of future carbon-free technologies, while spending more later in direct 

mitigation (e.g. substitution) and output contraction.  The effect on technology costs due to 

OECD countries’ myopic behaviour adds to non signatories own myopia  leading to overall 

positive carbon leakage, even in the optimal case when all three effects are at play. It is only 

excluding the energy market effect completely that we can again reverse the sign of carbon 

leakage.  

In the model international spillovers of knowledge and experience are two distinct channels 

(see equation 10 and 8). Therefore, we consider two additional variations and explore the 

relative contribution of each of these two mechanisms. First, we assume that only knowledge 

investments are completely excludable. Think, for example, to a very tight property right 

system. This would affect the timing clean technologies would become competitive, as non-

OECD countries could not benefit from knowledge spillovers nor affect knowledge in the 

coalition. Once a clean technology becomes competitive, though, cost improvements can 

diffuse freely outside the coalition by means of technology transfers. Under this scenario, 
                                                 
15 Had we also considered the effect of a higher discount rate on the OECD countries optimal emission, we 
would have seen an even stronger upward shift in the follower reaction as the lower abatement objective in the 
coalition dilutes the innovation effort even more, resulting in weaker spillovers. 
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non-signatories would benefit from the technological improvements only when they are 

embedded in new technologies that can be exported or transferred, but they cannot reap the 

benefits of enhanced knowledge, which remains within OECD countries. We refer to this 

case as the “no international knowledge spillovers” case (Table 2, first row). In the second 

case, there are knowledge spillovers, but non-OECD countries do not have access to the 

improvement in cost due to learning-by-doing effects following the breakthrough and due to 

the technology adoption in OECD countries. We refer to this case as the “no Learning-By-

Doing” case (Table 2, second row). We find that these two channels similarly contribute to 

emission reduction in non-signatory countries. Excluding either effect leads to an emission 

increase of  about 3% each  (note that the overall effect due to the technology effect is 5%, 

see Figure 2). While the “no Learning-By-Doing” case emphasises the benefits of cost 

improvements following technology adoption, the “no international knowledge spillover” 

case highlights the role of  unintended knowledge diffusion preceding the breakthrough. It is 

important to stress that the model does not consider other barriers that could hinder 

technology adoption such as institutions, governance or access to financial markets, and the 

fact that in some countries technology adaptation might be needed to make the imported 

technology suitable to the local context.  

4. Varying the coalition’s effort  

4.1 Varying  the reduction commitments in OECD countries  

We argued before that damage, energy market, and the technology effects depend on the 

effort undertaken by the coalition and by the decarbonisation pathways followed. In this 

Section we analyse how the reaction of non-OECD countries varies with the stringency of the 

coalition’s target. We analyse 2050 target for the OECD coalition ranging from 20% to 50% 

emission reduction compared to 2005 and identify a window of emission reduction targets 

that triggers proactive behaviour in non-signatory countries.  
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Figure 3, left panel, shows non-OECD cumulative emissions in reaction to different  OECD 

targets. The U-shaped reaction function suggests that for extreme commitments by OECD 

countries, both too loose and too strict, leakage is positive. There exist however an 

intermediate range of targets for which leakage goes to zero or even switch sign. The 

endogenous OECD target from the previous section lies within this intermediate interval (dot 

in Figure 3 left panel).  

 

Figure 3: Reaction function of non-OECD countries: cumulative CO2 emissions (2010-2100) 

compared to baseline (left panel). The red dot refers to the optimal case. Technology costs (right 

panel). 
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The key determinant of the reaction function shape is the trade-off between the energy market 

and the technology effect. When the coalition target is very loose (less than 30%) the 

abatement effort is achieved mostly by means of energy efficiency and substitution, which, 

being cheaper, are the first measures to be adopted. Conversely, fairly ambitious targets 

(above 35%) exert a positive effect on technology deployment and diffusion, but also imply a 

very deep contraction of fossil fuels demand. Since players are forward-looking, non-OECD 

countries foresee a lower relative oil price path and lock in into a fossil–fuel-based energy 

portfolio.  

In between these two extremes, there is a window of emission reduction targets in which the 

long-run cost of the breakthrough technology is ultimately reduced below that of the dirty 
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substitute. The right panel of Figure 3 illustrates the trade-off between the energy market and 

technology effect. It shows the evolution of the cost of a carbon-free substitute to oil in the 

final-use sector, relative to oil price. When the coalition reduces emissions by 25%, the price 

of this alternative remains high and the clean technology is not adopted in non-signatories. 

When abatement increases to 35%, the technology penetrates also outside the coalition. When 

emissions are reduced by 45%, the decline in the oil price prevails, preventing the diffusion 

of the clean technologies despite its significant cost reduction.  

4.2 Varying the coalition structure 

We have argued that very ambitious unilateral climate policies can be counterproductive 

because countries outside the coalition have the incentive to take advantage of lower energy 

prices and rely more on fossil-fuel-based energy. Section 4.1 showed that, to avoid 

boomerang effects, unilateral climate policies should aim at moderate targets. In addition, 

because OECD countries are already on a path of low energy efficiency, a mild objective 

would be sufficient to induce technological change, without prompting excessive reduction in 

the cost of fossil fuels.  

However, this holds true if non-signatory countries expect never to take any mitigation 

action. Should developing countries anticipate a future credible commitment, this would 

allow more ambitious efforts by the OECD group. We explore two cases, the first in which 

non-OECD do not have specific emission reduction targets, but take part to the international 

carbon market16 through mechanisms such as the Clean Development Mechanisms (CDM). 

The second  case assumes no CDM, but a domestic target that stabilises non-OECD 

emissions after 2050. Results indicate that if developing countries fully anticipate the 

forthcoming commitment, in 2050, they will already start modifying their investment strategy 

in the short-run, offsetting leakage. Expectations about future commitments could reverse the 

                                                 
16 We assumed that in this case non-OECD countries do not increase emissions above baseline levels.  
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sign of carbon leakage (Figure 4, right-most bar), while the left-most bar shows the optimal 

response under the “never to commit” assumption. The central bar illustrates the optimal 

reaction of non-OECD when they have the option to join a carbon market after 2010. Any 

emission reduction compared to baseline would then be remunerated at the price of carbon in 

place within the coalition. In this case non-signatories have an almost immediate incentive to 

reduce their emissions in order to sell carbon credits on the international market. As expected, 

both engagements would motivate a proactive reaction even for a stricter targets that would 

otherwise lead to carbon leakage.  

 

Figure 4: Non-OECD CO2 cumulative emissions (2010-2100) when the OECD 2050 target is 45% 

compared to 2005. Percentage change compared to non-cooperative baseline  
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5.  Sensitivity to technology diffusion, elasticity of energy markets and climate change 

damages  

The paper shows that, in the presence of partial cooperation on emission reduction, 

technology spillovers can induce non-signatories to emit less carbon compared to their 

baseline, reducing the risk and the magnitude of carbon leakage, under certain conditions. As 
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this conclusion is the result of a numerical model, it is crucial to test its robustness to changes 

in all key parameters controlling the described effects We test the robustness of our 

conclusion to alternative assumptions concerning technology cost and climate change damage 

functions. We start from the key assumptions that have been identified by the literature on 

carbon leakage. Supply elasticities of fossil fuels play a pivotal role [12,27]. The potential for 

increasing or reducing emissions ultimately depends on the incentive to extract the 

exhaustible resources from the ground, which is a decision responding to non-linear increases 

in fossil fuel costs with cumulative extraction. When the supply is inelastic, the extraction of 

an additional marginal unit does not raise costs significantly. Therefore, the extent of a price 

increase associated with a larger demand is lower than in the case of elastic supply. In 

addition to fossil fuel elasticities, we have highlighted the role of the technology effect. 

Finally, we perform sensitivity to climate change damages, which are highly uncertain and 

yet another important factor influencing the response of non-signatory countries.  

Figure 5 shows non-OECD’s reaction when varying the assumptions on the most influential 

parameters controlling for fossil fuel supply elasticities, learning rates in carbon-free 

technologies, and the climate change damage perceived by non-signatory countries. We 

consider variations of these key parameters up to 20% around their central value.  

  

Figure 5: Sensitivity analysis to model parameterisation. Cumulative CO2 emissions with respect to 

the non cooperative baseline (2010-2100) in non-OECD countries when reacting to the optimal 

abatement in OECD countries. In red the central case and error bars show the plus and minus 20% 

variations. 
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When the elasticity of fossil fuel prices to cumulative extraction decreases, the leakage rate of 

a given level of emission reduction in the OECD region is higher, in line with previous 

studies (e.g., Burniaux and Oliveira Martins [12]). Non-OECD countries increase their fossil 

fuel demand more than they would in a world with higher elasticity, as the effect on prices is 

smaller. As a consequence, emissions are higher. The convex path of fossil fuel prices leads 

to an asymmetric effect. The range of variation due to different learning rates is quite 

substantial and when learning rates are 20% above their central value, emissions in non-

OECD countries can diminish more than 5% with respect to the non-cooperative baseline. 

The sensitivity to changes in climate damages can also be quite large, especially when 

forthcoming damages are (or perceived as) lower than expected. Asymmetry in the effect 

mainly depends on the non-linearity of damages. 

Overall, the sign of leakage can be reversed depending on the magnitude of each of the three 

effects. However, it is worth noticing that the rate of leakage remains contained even for very 

pessimistic assumptions of the parameters. The highest leakage rate, 15%, is observed when 

learning rates are low. 

 

6. Concluding remarks  
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A global approach to climate change, although warranted, has turned out to be slow and 

inefficient. Rather, a bottom-up mix of architectures has emerged in which regions pursue 

different, although to some degree homogeneous, domestic policies. A sort of de facto 

cooperation between major OECD countries is happening and developed economies have 

made spoken agreements on long-term common targets several times. However, they also 

share the common fear that, given unilateral action, the response of non-signatories could 

erode their mitigation action.  

This paper illustrates how an ensemble of factors drives the response of non-participatory 

countries: the perception of climate change damages, fossil fuel prices, and the efficacy of 

technology and knowledge transfers. Free-riding incentives and carbon leakage induce non-

members to increase emissions compared to their baseline behaviour. However, if 

innovations and technology advancements achieved within the coalition extend to non-

signatories, emissions can be reduced. Hence, a carefully and comprehensive analysis is 

crucial in order to evaluate whether paralysing concerns on carbon leakage are justified or 

not, and under what assumptions.   

The interplay of these three effects is accurately examined when a coalition between OECD 

countries is formed. Cost-benefit considerations would lead the OECD coalition to follow an 

abatement path entailing 2050 emissions 30-35% below 2005 levels. It is interesting to note 

that optimal short-run emissions are in line with the Annex I’s Copenhagen conditional 

pledges. Our study show that these pledges, often criticised for being too mild, have a very 

important implication: the reaction of non-OECD is proactive. Because international 

knowledge spillovers and technology transfers counterbalance the energy market effect, non-

OECD countries switch to cleaner technologies although not because part of the agreement, 

reducing their emissions compared to baseline.  
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Figure 6 reports the cumulative emission change in OECD and non-OECD countries 

compared to the no policy baseline in absolute terms for different OECD emission targets 

(labelled for the effort they entail in 2050 relative to 2005). By projecting each target on the 

y-axis one can read the global cumulative emission cut. As the OECD coalition becomes 

more ambitious by bringing 2050 emissions in the range of 40% below 2005 levels or more, 

the overall environmental effectiveness of their effort is actually lower than in the case of a 

35% target. Carbon leakage becomes negative because the energy market and damage effects 

prevail. Only when the OECD targets increase above ≥ 45% compared to 2005, does the 

overall effect match again that of the optimal target, as the OECD extra effort compensates 

the increase in emissions outside the coalition. This result is, however, reached in a strictly 

inefficient way, as it is more costly and it implies that non-participatory countries remain on 

an unsustainable growth path.   

 

Figure 6: OECD and non-OECD emission  strategies on each axis. The projection on 

the y-axis of each scenario represents the global emission cut. The box highlights the targets 

that lead to negative carbon leakage 
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Of course these are simulations results and should be taken with caution and a grain of salt. 

Nonetheless, the qualitative insights bear some relevant insight for the current debate on 

climate negotiations. Indeed, the present analysis weakens the concern that unilateral action is 

going to erode OECD country competitiveness and the environmental efficacy of the 

agreement. In addition, it points away from extremely aggressive mitigation targets as a 

potential solution. As long as the unilateral targets are moderate, near-term cooperation 

between technologically advanced countries could trigger a virtuous behaviour in non-

signatory countries as well.  

These results imply that effective policies to address carbon leakage should promote the 

international transfer of technologies rather than threaten border adjustment measures that 

might actually shut down important channels of diffusion, such as trade and FDI, and should 

not be used as a scapegoat for inaction. The international transmission of innovation to non-

signatory countries also reduces the risk of carbon leakage, suggesting that policies aiming at 

adjusting the regimes of intellectual property rights accordingly can play a very important 

role. For example, green tags that help to signal green ideas and entitle them to a fast track 

evaluation process could better serve the purpose of innovation diffusion..  

Given that developing countries, on the basis of ethical motivations, condition their decision 

to cooperate on the mitigation effort undertaken by industrialised countries, the OECD 

represents the appropriate starting coalition, to be followed by a subsequent enlargement of 

the coalition in the mid, longer-term future. By looking at a two-phase negotiation set-up,  we 

show that moderate future, but credible commitments by developing countries significantly 

mitigates the risk of carbon leakage associated with more ambitious targets in the OECD. 
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