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Abstract

This paper provides high-dimensional and �exible importance sam-

pling procedures for the likelihood evaluation of dynamic latent variable

models involving �nite or in�nite mixtures leading to possibly heavy tailed

and/or multi-modal target densities. Our approach is based upon the ef-

�cient importance sampling (EIS) approach of Richard and Zhang (2007)

and exploits the mixture structure of the model when constructing impor-

tance sampling distributions as mixture of distributions. The proposed

mixture EIS procedures are illustrated with ML estimation of a student-t

state space model for realized volatilities and a stochastic volatility model

with leverage e�ects and jumps for asset returns.
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1 Introduction

In recent decades Monte Carlo (MC) procedures based upon Importance

Sampling (IS) have been successfully applied for the analysis of econo-

metric models involving multiple integrals for which no analytical solu-

tions exist. Important applications of IS are the evaluation of Bayesian

a-posteriori expectations of functions of parameters of interest and that

of likelihood functions in the presence of unobservable latent variables �

see, e.g., Kloek and Dijk (1978); Geweke (1989); Durbin and Koopman

(1997).

It is well-known that the reliable and e�cient use of IS requires that the

IS auxiliary density closely mimics the target density kernel which needs

to be integrated, and exhibits tails that do not decay more quickly than

the tails of the target density (see, Geweke (1989); Robert and Casella

(2004)). This implies that IS implementations have to be tailored to the

problem under consideration which has proved to be a signi�cant obstacle

to routine applications of IS. This is especially true for applications with

ill behaved, and therefore, di�cult to approximate target densities. A

survey of IS approaches is found, e.g., in Liesenfeld and Richard (2001).

Another critical issue is that most of the existing IS approaches do not

appear to be applicable to highly multidimensional integration problems.

Prominent exceptions are the high-dimensional IS methods proposed by

Shephard and Pitt (1997); Durbin and Koopman (1997, 2000), and the

E�cient Importance Sampling (EIS) procedure of Richard and Zhang

(2007). Existing implementations of those methods rely on IS densities

from the exponential family of distributions, which, in the case of EIS,

considerably simpli�es the implementation. While the IS approaches of

Shephard and Pitt (1997) and Durbin and Koopman (1997, 2000) use

Gaussian IS densities constructed from local Taylor-series approximations

to the target density, the IS densities of the EIS approach of Richard and
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Zhang (2007) are based upon global approximations to the target obtained

via a sequence of low-dimensional auxiliary least-squares regressions.

Those high-dimensional IS approaches have been successfully applied

for the computation of the likelihood for a broad range of dynamic latent

variable (DLV) models, where the target densities are reasonably well be-

haved such that they can be well approximated by IS densities from the

exponential family of distributions (see, e.g., Sandmann and Koopman

(1998); Liesenfeld and Richard (2003, 2010); Bauwens and Galli (2009)).

However, for DLV models with pathological target densities, featuring e.g.

multi-modality and/or fat tails, those high-dimensional procedures based

upon IS densities from the exponential family might have severe conver-

gence problems. In the context of DLV models, such ill-behaved tar-

get densities are often caused by �nite or in�nite mixture-of-distributions

speci�cations assumed for some of the variables. Examples, to be dis-

cussed further below are di�usion models for stock prices with discrete

jumps and state space models with student-t measurement errors. Hence,

there exists a need for high-dimensional IS procedures based upon �exible

IS densities beyond the exponential family of distributions.

In the present paper, we extend the high-dimensional EIS approach of

Richard and Zhang (2007), by introducing �nite and in�nite mixture of

distributions as �exible classes of IS distributions allowing to approximate

target densities which are possibly heavy-tailed and/or multi-modal. Our

approach is particularly well adapted to the likelihood evaluations for

DLV models involving variables characterized by a mixture of distribu-

tions, which can be exploited when constructing the IS densities. Under

appropriate simplifying conditions our proposed mixture EIS procedures

rely, similarly to EIS implementations for IS densities from the exponen-

tial family, on a simple sequence of auxiliary least-squares regressions used

to obtain close approximations to the integrand.

Alternative IS procedures using �exible mixtures of distributions as IS
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densities are the `split'-Student IS approach of Geweke (1989), the `defen-

sive' mixture technique proposed by Hesterberg (1995) and the adaptive

method of Ardia et al. (2009) using mixture of Student-t distributions.

While those approaches have been successfully applied to lower dimen-

sional Bayesian integration problems, they do not appear to be applicable

to very high-dimensional integrals, which needs to be approximated, e.g.,

for the likelihood evaluation of DLV models.

The rest of the paper is organized as follows. In Section 2, we brie�y

review the generic principles of EIS, and in Section 3 we introduce mixture

EIS approaches based upon �nite and in�nite mixtures of distributions.

Section 3 also provides two simple one-dimensional examples illustrat-

ing the bene�ts of the proposed mixture EIS procedures. Sequential im-

plementation of mixture EIS procedures for high-dimensional integration

required for a likelihood analysis of realistic models is illustrated in Sec-

tion 4. In particular, we discuss the ML estimation of a student-t state

space model for realized volatilities (Section 4.1) and a stochastic volatil-

ity model with a jump component for asset returns (Section 4.2). Section

5 concludes.

2 E�cient importance sampling (EIS)

2.1 General principle

Consider the problem of evaluating an integral of the form

I =

∫
ϕ(z)dz, (1)

where ϕ : ∆ 7→ R+ with ∆ ⊆ RT . Of special interest in this paper

focusing on likelihood evaluations of DLV models is the case where the

econometric model under consideration leads to an initial factorization of
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the integrand of the form

ϕ(z) = g(z) · p(z), (2)

where p is a probability density function for z referred to as the initial or

natural (model based) sampler, and g : ∆ 7→ R+ is a p-integrable function.

IS integration consists of selecting an IS density, say m(z), and rewrit-

ing Equation (1) as

I =

∫ [
ϕ(z)

m(z)

]
·m(z)dz. (3)

The corresponding MC IS estimator of I is then given by

Î =
1

M

M∑
j=1

ϕ(z(j))

m(z(j))
, (4)

where {z(j), j = 1, ...,M} denotes a set of M identically independently

distributed draws from m.

The technical conditions, under which the IS estimator (4) converges

almost surely to I and its variance is �nite are discussed in Geweke (1989)

and Robert and Casella (2004). A su�cient condition for the �niteness

the variance of Î is that |ϕ(z)/m(z)| be bounded above on ∆.

E�cient IS algorithms are those for which the variance of Î is as small

as possible. This suggests to select an IS density m, which mimics the

target integrand ϕ(z) as close as possible such that the ratio ϕ(z)/m(z)

is almost constant on ∆. The EIS approach of Richard and Zhang (2007)

provides an algorithm to select such an e�cient sampler within a prese-

lected parametric class of densities, say M = {m(z; a), a ∈ A}, indexed

by the auxiliary parameter a. For lower dimensional problems, it approxi-

mates the target ϕ(z) by the density kernel k(z, a) associated with density

m(z; a), where the correspondence between k and m is given by

m(z; a) =
k(z, a)

χ(a)
with χ(a) =

∫
k(z, a)dz. (5)
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The near optimal value â obtains as the solution to the least-squares

problem

{â, ĉ} = argmin
a,c

∫
[lnϕ(z)− c− ln k(z, a)]2m(z; a)dz, (6)

where c represents an intercept meant to calibrate the log-ratio ln(ϕ/k).

Since the IS sampling density m itself depends upon a, the optimization

problem (6) is reinterpreted as the search for a �xed-point solution with

an operational MC version based upon the following step-wise recursion:

Given â(`) ∈ A, generate intermediate draws {z(j,`), j = 1, ...,M} from

the step-` EIS sampler m(z; â(`)) and solve

{â(`+1), ĉ(`+1)} = argmin
a,c

M∑
j=1

[
lnϕ(z(j,`))− c− ln k(z(j,`), a)

]2
. (7)

At convergence, whereby â ' â(`+1) ' â(`), the density m(z; â) is used

to compute the EIS estimate of I according to Equation (4). An initial

value â(0) can be obtained by a local approximation of ϕ or by the value

of a associated with the natural sampler p. In order to secure smooth

convergence to a �xed-point solution, all draws {z(j,`)} must be obtained

by transformation of a set of Common Random Numbers (CRNs) {u(j)}

from a canonical distribution associated with M, i.e. one that does not

dependent on a (e.g. a standardized Normal, when m is Gaussian).

Although the EIS approach is not restricted to any particular family

of IS densities m, its existing implementations typically rely upon densi-

ties from the exponential family. In this case, the log kernel ln k can be

parameterized in such a way that it is linear in the auxiliary parameter

a and the minimization problem (7) reduces to a computationally simple

linear LS problem. If, in addition, the initial sampler p belongs to the

exponential family andM is selected to be a parametric class containing

p as a particular member, one can exploit the property of the exponential

family that a parametric class M is closed under multiplication. This
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allows one to de�ne the EIS density kernel k as

k(z, a) = p(z)ζ(z, a), (8)

where ζ(z, a) is itself a density kernel associated with m (for details, see

Richard and Zhang (2007)). It follows that p(z) cancels out in the re-

gression (7) which simpli�es into a regression of ln g(x) on a constant and

ln ζ(z, a).

2.2 Sequential high-dimensional EIS

High-dimensional EIS used, e.g., for the likelihood evaluation of DLV mod-

els, requires that the integrand ϕ(z) = g(z)p(z) in Equations (1) and (2)

as well as the EIS density m(z; a) be factorized into low-dimensional com-

ponents in accordance with a natural pre-ordering partition of z obtained

from the model speci�cation, say z1, ..., zT , with an initial condition z0.

The factorizations of ϕ and m conformably with z are

ϕ(z) =

T∏
t=0

ϕt(z(t)) = p0(z0)

T∏
t=1

gt(z(t))pt(zt|z(t−1)), (9)

m(z; a) =

T∏
t=0

mt(zt|z(t−1); at), (10)

where z(t) = (z0, ..., zt), a = (a0, ..., aT ) andmt(z0|z(−1); a0) = m0(z0; a0).

The natural model based sampling density of z is the product p(z) =

p0(z0)
∏T
t=1 pt(zt|z(t−1)). Denoting the approximating kernel of the IS

density mt(zt|z(t−1); at) by kt(z(t), at), with

mt(zt|z(t−1); at) =
kt(z(t), at)

χt(z(t−1), at)
, and (11)

χt(z(t−1), at) =

∫
kt(z(t), at)dzt,
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the integral to be approximated can be rewritten as

I = χ0(a0)

∫ [ T∏
t=0

ϕt(z(t))χt+1(z(t), at+1)

kt(z(t), at)

] T∏
t=0

mt(zt|z(t−1); at)dz(T ),

(12)

where χT+1(·) ≡ 1.

EIS then aims at selecting values of the auxiliary parameters {at}

that minimize factor by factor the variance of the ratios ϕt · χt+1/kt as

functions of z(t) with respect to the mt-distributions. An operational

MC version of that �xed-point minimization problem generates at step `

intermediate draws {z(j,`)
t t = 0, ..., T ; j = 1, ...,M} from the step-` EIS

sampler m(z; â(`)) and solves back recursively the following sequence of

T + 1 least-squares problems

{â(`+1)
t , ĉ

(`+1)
t } = arg min

at,ct

M∑
j=1

[
ln
{
ϕt(z

(j,`)

(t) )χt+1(z
(j,`)

(t) , â
(`+1)
t+1 )

}
(13)

−ct − ln kt(z
(j,`)

(t) , at)
]2
, t = T, T − 1, ..., 0.

The corresponding MC-EIS estimate of the integral I is given by

Î = χ0(α0)
1

M

M∑
j=1

[ T∏
t=0

ϕt(z
(j)

(t) )χt+1(z
(j)

(t) , ât+1)

kt(z
(j)

(t) , ât)

]
, (14)

where {z(j)
t , t = 0, ..., T, j = 1, ...,M} are draws from the EIS density

m(z; â).

This sequential high-dimensional EIS approach has been successfully

applied for likelihood evaluations for DLV models, where the natural sam-

pling densities pt in Equation (9) belong to the exponential family and the

gts are well-behaved functions in zt. In this case, ϕtχt+1 can be reason-

ably well approximated by exponential family density kernels kt obtained

as parametric extensions of the natural sampler pt according to Equation

(8). As mentioned above, the use of EIS densities from the exponential

family considerably reduces the computational e�ort and simpli�es the
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implementation of EIS by reducing it to the solution of linear LS prob-

lems. Since the number of auxiliary LS problems is proportional to the

dimension of the integral, this linearity becomes particularly desirable for

very high-dimensional integration (1000+).

Applications of EIS in such well-behaved frameworks include the com-

putation of the likelihood and ML estimates for stochastic volatility mod-

els (Liesenfeld and Richard (2003); Kleppe et al. (2010)), stochastic con-

ditional intensity processes (Bauwens and Galli (2009)), multinomial-

multiperiod Probit models (Liesenfeld and Richard (2010)) and dynamic

factor models for multivariate count data (Jung et al. (2011)).

In many practical applications, however, DLV model speci�cations

with natural sampling densities p within the exponential family appear

to be too restrictive calling for more �exible alternatives. A straightfor-

ward extension of simple distributions from the exponential family is the

class of mixture distributions providing a �exible environment for econo-

metric modeling which enjoys great popularity. However, DLV models

with natural sampling distributions p assumed to be �nite or in�nite mix-

tures of distributions lead to possibly multi-modality and/or fat tailed

targets ϕ. In such cases, the performance of (E)IS based upon sampling

densities m from the exponential family might be seriously hampered by

a large or even in�nite variance of the IS estimator Î resulting from poor

global approximations of ϕ by exponential density kernels k.

In the following section, we present algorithms to construct �exible

EIS densities for �nite and in�nite mixture frameworks generating pos-

sibly ill-behaved target integrands. The proposed algorithms exploit the

mixture speci�cation of the target density and use a data-augmentation

step demarginalizing the mixture density to include the mixing variable

as an additional latent variable. As we shall illustrate below, this arti�cial

extension of the space of integration typically leads to better behaved tar-

get integrands (for the extended space), which can be well approximated
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by standard distributions belonging to the exponential family.

3 EIS in mixture frameworks

In this section we introduce EIS in in�nite mixture (subsection 3.1) as

well as in �nite mixture frameworks (subsection 3.2) focusing on simple

one-dimensional integration problems. This provides a convenient setting

to discuss and illustrate the key features of mixture EIS. Sequential imple-

mentations for high-dimensional integration required to analyze realistic

models, will be discussed in Section 4.

3.1 In�nite mixture EIS

Assume that the natural sampling density of the integral given by Equa-

tions (1) and (2) can be represented as an in�nite mixture speci�cation

of the form

p(z) =

∫
p(z|w)p(w)dw, (15)

where p(z|w) is a conditional density depending on a latent auxiliary vari-

able w with density p(w), referred to as the mixing density. Prominent

examples for in�nite mixture density functions include the student-t and

the negative binomial density.

Such a representation of the natural sampling density allows us to

write the integral (1) as

I =

∫
g(z)p(z|w)p(w)dwdz. (16)

Based upon this demarginalization which extends the space of integra-

tion, EIS can be implemented using a joint IS density for the augmented

set of variables, say m(z, w; a), and exploiting the factorization of the

natural sampler given by p(z|w)p(w). The factorization of the joint IS

density conformably with that of the natural sampler is m(z, w; a) =
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m(z|w; az)m(w; aw), with

m(z|w; az) =
k(z, w; az)

χ(w, az)
, m(w; aw) =

k(w; aw)

χ(aw)
, (17)

where the ks and χs are the approximating EIS density kernels and the

corresponding integrating factors, respectively. This allows us to rewrite

the integral (16) as

I = χ(aw)

∫ [g(z)p(z|w)

k(z, w; az)

][χ(w, az)p(w)

k(w; aw)

]
m(z, w; a)dwdz. (18)

Then the EIS values of the auxiliary parameters, â = (â
(`+1)
z , â

(`+1)
w ),

obtain from the recursive solution of the following two LS problems

min
az ,cz

M∑
j=1

[
ln[g(z(j,`))p(z(j,`)|w(j,`))]− cz − ln k(z(j,`), w(j,`), az)

]2
min
aw,cw

M∑
j=1

[
ln[χ(w(j,`), â(`+1)

z )p(w(j,`))]− cw − ln k(w(j,`), aw)
]2
, (19)

where {(z(j,`), w(j,`)), j = 1, ...,M} are draws from the step-` intermedi-

ate sampler m(z, w; â(`)). The �nal EIS MC estimate of the augmented

integral is then given by

Î =
1

M

m∑
i=1

g(z(j))p(z(j)|w(j))p(w(j))

m(z(j), w(j); â)
, (20)

where (z(j), w(j)) represent draws from the �nal joint EIS sampler.

Hence, if both g(z)p(z|w) and χ(w, ·)p(w) can be reasonably well ap-

proximated by density kernels from the exponential family, this approach

allows us to retain the linearity of the EIS approximation problem, even

for integrands ϕ(z) which are generated by in�nite mixtures, and which

cannot be well approximated by a univariate IS sampling density for z

from the exponential family.

At a �rst glance, extending the dimension of integration seems to be

counterintuitive since an increase of the dimension typically has an adverse
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e�ect on the variance of the MC estimator. However, in the mixture

framework considered here, the data-augmentation step can signi�cantly

increase the �exibility to construct e�cient IS densities for ill-behaved

integrands in in�nite mixture frameworks, while retaining its simplicity.

The approach of augmenting the set of latent variables for the pur-

pose of enhancing the numerical e�ciency is well established in Bayesian

MCMC literature. Examples include the approach of Geweke (1993) who

exploits the equivalence of the student-t and an appropriate scale mixture

of normals for the design of a a Gibbs sampling approach and Frühwirth-

Schnatter and Wagner (2006) who propose a Gibbs sampler for a Poisson

regression model based upon a data-augmentation introducing the latent

inter-arrival times of a Poisson process.

In order to illustrate the mixture EIS approach, consider the compu-

tation of the integral
∫
g(z)p(z)dz, where g(z) is a N(z, σ2)-density for

a random variable y evaluated at y = 2, σ = 4, and p(z) is a standard-

ized student-t density with mean zero, unit variance and ν > 2 degrees

of freedom, which obtains as an inverse Gamma scale mixture of normal

densities. Hence, the augmented integrand in Equation (16) consists of

g(z) ∝ exp
{
− 1

2σ2
(2− z)2

}
, (21)

p(z|w) ∝ w
1
2 exp

{
− 1

2
z2w

}
, p(w) ∝ w

ν
2
−1 exp

{
− (ν − 2)

2
w
}
, (22)

where p(z|w) is a N(0, 1/w) and p(w) is a Gamma( ν
2
, 2
ν−2

)-density.

Let the function k(z, w; az), which is used to approximate the �rst fac-

tor g(z)p(z|w), be a Gaussian kernel obtained as the following parametric

extension of p(z|w):

k(z, w; az) = p(z|w)ζz(z; az), where (23)

ζz(z; az) = exp
{
− 1

2
(αz2 − 2βz)

}
,
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with az = (α, β). It immediately follows that the conditional EIS sam-

pler for z|w is given by m(z|w; az) ∼ N [β/(α + w), 1/(α + w)], and the

integration of k(z, w; az) with respect to z yields

χ(w; az) =
( w

w + α

) 1
2

exp
{ β2

α+ w

}
. (24)

Note that the factor p(z|w) appears on both sides of the �rst EIS-regression

in Equation (19) and cancels out. It follows that the EIS-regression sim-

pli�es to an approximation of the Gaussian density g(z) by a Gaussian

kernel ζz(z; az) which leads to a perfect �t with EIS values of the auxiliary

parameters obtained analytically as α̂ = 1/σ2 and β̂ = 2/σ2.

In order to approximate the second factor χ(w; az)p(w), we can use a

Gamma kernel parameterized as

k(w, aw) = p(w)ζw(w; aw), where ζw(w; aw) = wγ−1 exp
{
− 1

δ
w
}
, (25)

with aw = (γ, δ), so that the marginal EIS sampler for w is given by

m(w; aw) ∼ Gamma[ ν
2

+ γ − 1, ( ν−2
2

+ 1
δ
)−1]. Under this parametrization

of k(w, aw), the density p(w) cancels out in the second EIS-regression in

Equation (19), which simpli�es into a linear regression of {lnχ(w(j,`), âz)}

on {lnw(j,`), w(j,`)} and a constant.

As noted above, smooth convergence of the EIS-iterations to a �xed-

point solution requires the use of CRNs. Hence, for the simulation from

the Gamma EIS density m(w; â
(`)
w ) we rely upon the cdf inversion tech-

nique (see, e.g. Robert and Casella (2004)), whereby the jth draw w(j,`)

obtain from solving

∫ w(j,`)

−∞
m(w′; â(`)

w )dw′ − u(j) = 0, (26)

where {u(j), j = 1, ...,M} is a set of iid (0, 1) uniform CRNs1. Simula-

1Speci�cally, for the Gamma family m(w; aw) we use inverse cdf gaminv in Matlab for the
pilot example.
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tions from the conditional Gaussian EIS density m(z|w; â
(`)
z ) are based on

transformations of a set of iid N(0, 1) CRNs.

Results for this mixture EIS estimator are reported in the last column

of Table 1 for values of ν ranging from 2.5 to 15. The results reported are

the mean bias, the standard deviation and Geweke (1989) relative numer-

ical e�ciency (RNE) factor based upon 10000 independent replications of

the complete algorithm using a simulation sample size of M = 32 and 7

EIS iterations. The RNE of an IS density obtains as the ratio between the

variance of the direct MC estimates obtained by using the natural sam-

pler p(z) and the IS MC estimates. High RNE values are preferable. For

comparison, we also considered the IS estimators based upon a univari-

ate Gaussian sampler for z resulting from a local Laplace approximation

of the target integrand g(z)p(z), as well as from a global Gaussian EIS

approximation as described in Section 2. The Laplace-IS and Gaussian-

EIS algorithm are implemented using the same sample size M as for the

mixture EIS.

The results of the experiment indicate that the mixture EIS sampler

clearly outperforms the Gaussian EIS and the Laplace sampler with re-

spect to numerical accuracy: For all degrees of freedom ν, the former has

a substantially smaller standard deviation and a signi�cantly higher RNE

factor than the latter. In fact, the RNE for the mixture EIS exceeds in

all cases 1, which is the benchmark value for the natural sampler p(z),

while the RNE for the univariate Gaussian samplers is smaller than 1.

This indicates that the joint bivariate EIS sampler m(z, w; â) provides

a better approximation to the augmented integral g(z)p(z|w)p(w) than

the univariate Gaussian EIS and Laplace samplers to the marginalized

integral g(z)p(z). This is con�rmed by Figure 1 which shows the target

integrand g(z)p(z) for ν = 2.5 (normalized such that it integrates to one)

together with the Gaussian EIS and Laplace sampling densities as well as

the marginal density for z obtained from the joint EIS sampler m(z, w; â).
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Figure 1 also reveals that for low degrees of freedom ν, the Gaussian

Laplace sampler is subject to a thin-tail problem since its tails decay

more quickly than those of the target integrand. For ν = {2.5, 3.5, 6} this

translates into signi�cantly downward biased MC estimates with a bias

ranging from 3.9 to 10.9 standard deviations (see Table 1).

3.2 Finite mixture EIS

Here we consider the case where the natural sampler p(z) of the integral

given by Equations (1) and (2) is a �nite mixture of the form

p(z) =

l∑
i=1

p(z|wi)pi, (27)

where pi denotes the mixing proportion for the ith mixture component

with
∑l
i=1 pi = 1, and p(z|wi) is a conditional density depending on the

parameter wi. We assume that all mixture components p(z|wi) belong to

the same exponential family of distribution, which is essential for simpli-

�cations of the calculations.

The integral (1) to be approximated has the augmented form

I =

∫ l∑
i=1

g(z)p(z|wi)pidz. (28)

EIS may then be implemented using a joint mixed EIS samplerm(z, i; a) =

m(z|wi, az) ·mi with

m(z|wi, az) =
k(z, i; az)

χz(i, az)
, χz(i, az) =

∫
k(z, i; az)dz, (29)

and EIS mixing proportions

mi =
ki
χ̄
, χ̄ =

l∑
i=1

ki, i = 1, ..., l, (30)
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where a = (az, k1, ..., kl). This allows us to rewrite the integral (28) as

I = χ̄

∫ l∑
i=1

[
g(z)p(z|wi)
k(z, i; az)

] [
χz(i, az)pi

ki

]
m(z, i; a)dz. (31)

The density kernel k(z, i; az) used to approximate g(z)p(z|wi) can be

speci�ed as a parametric extension of p(z|wi) as

k(z, i; az) = p(z|wi)ζ(z, az), (32)

where ζ is a kernel for a density belonging to the same parametric class

as p(z|wi). Since p(z|wi) is assumed to be a member of the exponential

family, k(z, i; az) itself de�nes a kernel for a density of the same parametric

class as p(z|wi). From the factor in the rightmost bracket of (31), we see

that by setting the non-normalized mixing proportions of the importance

density to

k̂
(`+1)
i = χz(i, â

(`+1)
z ) · pi i = 1, ..., l, (33)

we obtain a further simpli�ed expression for (28):

I = χ̄

∫ [
g(z)

ζ(z, az)

] l∑
i=1

m(z, i; a)dz. (34)

Under this speci�cation of k(z, i; az) and ki, i = 1, . . . , l, the EIS auxiliary

parameters a are obtained from the solution of the LS regression

min
az ,cz

M∑
j=1

[
ln g(z(j,`))− cz − ln ζ(z(j,`), az)

]2
. (35)

Here {z(j,`), j = 1, ...,M} are draws from the step-` intermediate marginal

sampling density m(z; â(`)) associated with the joint density m(z, i; â(`))

= m(z|wi, â(`)
z ) · m̂(`)

i . In order to simulate from the marginal EIS density

m(z; â(`)) using CRNs, we can rely upon the cdf inversion technique2.

2When m(z, wi; a) is Gaussian, as it is the case in the examples below, we use the approxi-
mation erfcc given in Press et al. (2007) to the complementary error function involved in the
relevant Gaussian cumulative distribution functions.
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Since the marginal EIS densitym(z; â) is analytically available, we can

directly use it to obtain the MC-EIS estimate of the integral I as

Î =
1

M

M∑
j=1

g(z(j))p(z(j))

m(z(j); â)
, (36)

and do not need to rely upon the joint EIS sampler for the augmented

integral.

In order to illustrate this �nite mixture EIS approach, consider the

MC estimation of
∫
g(z)p(z)dz, where g(z) is a N(0, exp{z}) density for

y evaluated at y = 3, and p(z) is a zero mean and unit variance Gaussian

mixture of the form p(z) ∼ N(0, σ2
1)p1 + N(0, σ2

2)p2 with p1 = p2 = 0.5

and σ2
2 = 2− σ2

1 . In this case, the augmented integrand (28) consists of

g(z) ∝ exp
{
− 1

2
(32e−z + z)

}
(37)

p(z|wi) ∝ (σ2
i )−1/2 exp

{
− 1

2
(
z

σi
)2
}
, i = 1, 2. (38)

The joint mixed density kernel meant to approximate g(z)p(z|wi) is spec-

i�ed as

k(z, i; az) = p(z|wi)ζz(z; az), where (39)

ζz(z; az) = exp
{
− 1

2
(αz2 − 2βz)

}
,

with az = (α, β). The corresponding EIS density for z|wi is given by

m(z|wi, az) ∼ N(βσ2
i /[1 + ασ2

i ], σ2
i /[1 + ασ2

i ]), and the EIS values of the

auxiliary parameters (α, β) are obtained from solving the LS problem

(35) where {ln g(z(j,`))} is regressed on {[z(j,`)]2, z(j,`)} and a constant.

The expression for the integrating factor of k(z, i; az), which is used to

construct the EIS mixing proportions mi de�ned in Equations (30) and

(33), is

χz(i, az) = (1 + ασ2
i )−1/2 exp

{1

2

σ2
i β

2

1 + ασ2
i

}
. (40)
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Table 2 summarizes the results for the �nite mixture EIS estimates

of the integral for values of σ1 ranging from 0.1 to 0.75. Note that for

σ1 ≤ 0.25 the target integrand is bimodal and for σ1 ≤ 0.4 it is not log-

concave. As in the example in section 3.1, we also computed the MC

estimates of the integral using the Gaussian EIS sampler and, in cases

where the integrand is uni-modal, the Laplace sampler. The results in

Table 2 are the mean biases, standard deviations and RNEs from 10,000

replications of the full procedure each based upon a simulation sample

size of M = 32 and 7 EIS iterations. The results of the experiment

reveal that in all cases the mixture EIS sampler performs well leading to

numerically very accurate estimates. As expected, the Gaussian samplers

perform poorly when the integrand is bimodal and/or not log-concave. In

those cases, the EIS iterations for the Gaussian EIS sampler often failed

to converge indicating a severe mismatch between the target integrand

and the class of Gaussian densities. In sharp contrast, we have found that

the EIS convergence for the mixture EIS is fast indicating the adequacy

of the class of Gaussian mixture samplers. This is con�rmed by Figure 2

which shows the target integrand for σ1 = 0.1 together with the mixture

EIS density and the Gaussian EIS density.

4 High-dimensional mixture EIS

In this section we discuss operational implementations of the mixture EIS

approach for high-dimensional integration required for a likelihood analy-

sis of realistic models. Those high-dimensional implementations combine

data augmentation steps as discussed for univariate problems in the previ-

ous section with the generic sequential EIS approach for high-dimensional

problems introduced in Section 2.1.
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4.1 Example: student-t state-space model

We start to analyze a state space model with student-t measurement er-

rors, which represents a useful extension of the linear Gaussian speci�ca-

tion used, e.g. by Barndor�-Nielsen and Shephard (2002) and Bach and

Christensen (2011) to model time series of realized volatilities of asset

returns.

The log of the daily realized volatility denoted by yt is assumed to

follow the process

yt = λt + σyut (41)

λt = µ+ φ(λt−1 − µ) + σλεt, (42)

where (ut, εt) are mutually independent iid variables with zero mean and

unit variance. For the measurement error ut we assume a standardized

student-t distribution with ν > 2 degrees of freedom, while the shock in

the latent state equation εt is normally distributed.

The conditional distribution of yt|λt de�nes a student-t density kernel

for λt. In light of the �rst pilot example, the use of (E)IS procedures

for the likelihood evaluation based on Gaussian sampling densities for

the λts appears to be inadequate. However, the interpretation of the

fat-tailed student-t distribution as a scale mixture of Normals allows us

to augment the state space model (41) and (42) in such a way that we

can evaluate the likelihood via the sequential EIS outlined in Section 2.1

using convenient sampling densities from the exponential class. The �rst

step of data augmentation consists in representing the student-t error as

ut ∼ N(0, 1/ηt−1), where ηt−1 ∼ Gamma(ν/2, 2/(ν − 2)). In the second

step, we use the inverse cdf of the Gamma(ν/2, 2/(ν − 2))-distribution,

F−1
Γ , and the cdf of a standardized normal, Φ, to rewrite ηt as a map of
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a standard normal variable

ηt = F−1
Γ [Φ(wt)] ≡ hν(wt), wt ∼ N(0, 1). (43)

This augmentation scheme allows us to recast the non-Gaussian linear

state space model (41) and (42) into a non-linear one with a Gaussian

measurement density given by

g(yt|λt, wt−1) ∝ hν(wt−1)1/2 exp
{
− hν(wt−1)

2σ2
y

(yt − λt)2
}
, (44)

and two Gaussian state-transition densities

p(λt|λt−1) ∝ exp
{
− 1

2σ2
λ

[λt − µ(λt−1)]2
}

(45)

p(wt−1) ∝ exp{−1

2
w2
t−1}, (46)

where µ(λt−1) = µ+φ(λt−1−µ). As we shall see below, the time shift of

the auxiliary variable wt relative to ut and yt together with the represen-

tation of ηt as a function of the Gaussian variable wt allows us to factorize

the integrand of the likelihood integral period-by-period into simple bi-

variate Gaussian density kernels for the latent state variables (λt, wt).

Let z′t = (λt, wt), zT = λT , and z
′
(t) = (z′0, ..., z

′
t) and assume for the

initial condition λ0 the stationary distribution λ0 ∼ N(µ, σ2
λ/(1 − φ2)).

Then the likelihood for the augmented state space representation (44)-(46)

is given by

L(ψ) =

∫ T∏
t=0

ϕt(z(t))dz(T ), (47)

with

ϕt(z(t)) =


g(yT |λT , wT−1)p(λT |λT−1), t = T

g(yt|λt, wt−1)p(λt|λt−1)p(wt), t = 1, ..., T − 1

p(λ0)p(w0), t = 0,

(48)
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and ψ = (µ, σy, ν, φ, σz)
′.

In order to apply the sequential EIS of Section (2.1) to this augmented

likelihood, we �rst note that the factor g(yt|λt, wt−1)p(λt|λt−1) of the

period-t integrand (48) de�nes a kernel of a N(m∗t , v
∗
t ) distribution for λt

with

m∗t =
σ2
yµ(λt−1) + hν(wt−1)σ2

λyt

hν(wt−1)σ2
λ + σ2

y

, v∗t =
σ2
yσ

2
λ

hν(wt−1)σ2
λ + σ2

y

, (49)

and that p(λ0) and p(wt) present Gaussian densities. It follows that for

t < T the period-t integrands ϕt de�ne bivariate Gaussian kernels in

zt, while the period-T integrand ϕT is a univariate Gaussian kernel for

zT = λT .

This immediately suggests to specify the EIS density kernels kt of

the period-t importance samplers mt in Equation (10) as the following

parametric extensions of the Gaussian kernels ϕt:

kt(z(t), at) = ϕt(z(t))ζt(zt, at), (50)

with

ζt(zt, at) = exp
{
− 1

2
(z′tPtzt − 2R′tzt)

}
, t = 0, ..., T − 1, (51)

and ζT (·) ≡ 1. Here Pt is a symmetric (2×2) matrix and Rt a (2×1) vector

representing the EIS auxiliary parameters, i.e. at = (vech(Pt)
′, R′t)

′. Since

ϕt and ζt represent Gaussian density kernel for zt, it follows the EIS

samplers mt associated with kt are Gaussian distributions for zt|z(t−1).

Using this parametrization of kt and rewriting the likelihood integral

(47) according to Equation (12) leads to

L(ψ) = χ0(a0)

∫ T−1∏
t=0

χt+1(z(t), at+1)

ζt(zt, at)

T−1∏
t=0

mt(zt|z(t−1), at)dz(T−1). (52)

Note that since χT+1 ≡ 1 and ζT ≡ 1, the integration w.r.t. the variable
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zT = λT can be done analytically and amounts to computing the integral∫
mT (zT |zT−1, aT )dzT , which is equal to 1. It immediately follows that

the EIS auxiliary regressions in Equation (13) simplify into a sequence

of T linear LS regressions of {lnχt+1(z
(j,`)

(t) , â
(`+1)
t+1 )} on a constant and

{[λ(j,`)
t ]2, [w

(j,`)
t ]2, [λ

(j,`)
t ·w(j,`)

t ], λ
(j,`)
t , w

(j,`)
t } for t = T−1, ..., 0. As initial

samplers {mt(zt|z(t−1), â
(0)
t )} we use the Gaussian distributions associated

with the Normal density kernels given in Equation (48). Details of the

implementation of this sequential mixture EIS application are provided in

Appendix A.

The data we use to estimate the student-t state space model (41)

and (42) by ML based upon sequential mixture EIS consists of the daily

realized variances computed for the returns of the IBM stock traded at

the New York Stock Exchange. We use T = 2156 daily observations from

January 1, 2000 until July 30, 2008. The daily realized variances can be

computed as rvt =
∑J
τ=1 x

2
t,τ where xt,τ is the return computed for the

τs 5-minute interval of trading day t (This data set is discussed in more

details in Chiriac and Voev (2011)).

The ML EIS results based upon a simulation sample size M = 64 and

4 EIS iterations are summarized in Table 3. The parameter estimates and

their MC (numerical) standard deviations are computed as the means and

standard deviations of 100 ML estimates conducted under di�erent sets

of CRNs. The statistical standard deviations are obtained from 500 ML

estimates for arti�cial data generated from the model. Total computing

time for a full ML optimization using a BFGS optimizer is of the order

of 1 min on a Dell PowerEdgeR200 computed with 2.66 GHz Quad core

processor for a code written in Fortran 90. For comparison, we also report

the ML estimation results for the state space model (41) and (42) with

Gaussian measurement errors ut obtained as the limit for ν →∞, in which

case we can use the standard Kalman �lter to evaluate the likelihood.

The MC standard deviations indicate that the ML estimates based on
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the mixture EIS approach are numerically very accurate. The estimated

degrees of freedom ν is 6.4, indicating a large deviation from normality.

The substitution of the Normal for the student-t distribution decreases the

value of the maximized likelihood function by 25, indicative of a signi�cant

deterioration in �t. Finally note that the strong persistence with a value

of φ close to one is typical for volatility models for asset returns.

4.2 Example: stochastic volatility model with

jumps

In order to illustrate the mixture EIS approach for high-dimensional in-

tegration when the target integrand involves �nite mixtures, we consider

the ML estimation of a discrete-time stochastic volatility (SV) model with

leverage e�ects and jumps (see, e.g., Yu (2005); Durham (2006) for a dis-

cussion of the discrete-time SV model and Eraker et al. (2003); Malik and

Pitt (2011) for SV models involving jumps).

The stock log-returns yt are assumed to follow the process

yt = γ + σy exp{zt−1/2}(ρηt +
√

1− ρ2ξt) + Jtσuut (53)

and the latent volatility factor

zt = φzt−1 + σzηt. (54)

Here Jt represents the time-t jump arrival, which follows a Bernoulli pro-

cess with state probabilities P (Jt = j) = pj with j ∈ {0, 1}. The jump

size is given by σuut, where ut ∼ N(0, 1). The innovations ηt and ξt

are assumed to be independent from ut and are normally distributed as

(ηt, ξt) ∼ N(0, I), where I is the identity matrix. The parameter ρ mea-

sures the leverage e�ect, while σu and p1 represent the average jump size

and jump intensity respectively.

Note that under the SV model given in Equations (53) and (54) the
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conditional density of zt and yt given zt−1 and Jt is a bivariate Gaussian

density, which can be factorized as

p(zt, yt|zt−1, Jt) = p(zt|yt, zt−1, Jt)p(yt|zt−1, Jt), (55)

where p(zt|yt, zt−1, Jt) and p(yt|zt−1, Jt) are conditional Gaussian densi-

ties for zt and yt given by

p(zt|yt, zt−1, Jt) ∼ N(µzt , σ
2
zt) (56)

p(yt|zt−1, Jt) ∼ N(γ, σ2
yt), (57)

with

µzt = φzt−1 + (yt − γ)
ρσyσz exp{zt−1/2}
σ2
y exp{zt−1}+ Jtσ2

u

(58)

σ2
zt = σ2

z(1−
σ2
y exp{zt−1}

σ2
y exp{zt−1}+ Jtσ2

u

) (59)

σ2
yt = σ2

y exp{zt−1}+ Jtσ
2
u. (60)

Based on this factorization of p(zt, yt|zt−1, Jt), the likelihood function

obtains as L(ψ) =
∫ ∏T

t=0 ϕt(z(t))dz(T ), where

ϕt(z(t)) =


∑
j∈{0,1} p(zt|yt, zt−1, Jt)p(yt|zt−1, Jt)pj , t = 1, ..., T

p(z0), t = 0,

(61)

and ψ = (γ, σy, σu, σz, ρ, φ, p1)′. The initial condition z0 is assumed be

generated by the stationary distribution as z0 ∼ N(0, σ2
z/(1− φ2)).

In order to apply sequential EIS outlined in Section 2.1 to the evalua-

tion of this likelihood function, we �rst note that for t ≥ 1 the factor ϕt in

the likelihood integral de�nes a density kernel for a two-component normal

mixture distribution for zt|zt−1 with non-normalized mixing proportions

p(yt|zt−1, Jt)pj . The corresponding proper density for this two-component
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normal mixture distribution obtains as

p∗(zt|zt−1) =
ϕt(z(t))

p(yt|zt−1)
=

∑
j∈{0,1}

p(zt|yt, zt−1, Jt)πJt , (62)

where the normalized mixing proportions πJt are

πJt =
p(yt|zt−1, Jt)pj
p(yt|zt−1)

with p(yt|zt−1) =
∑

j∈{0,1}

p(yt|zt−1, Jt)pj . (63)

Using the normalized factors of the likelihood integral in Equation (62)

we can rewrite the likelihood as

L(ψ) =

∫ T−1∏
t=0

p(yt+1|zt)p∗(zt|zt−1)dz(T−1), (64)

with p∗(z0|z−1) = p(z0). The integration w.r.t. the variable zT is done

analytically and amounts to computing
∫
p∗(zT |zT−1)dzT which is equal

to 1.

Clearly, (E)IS approaches based on (E)IS densities for the zts from

the exponential family are not adequate to approximate this likelihood

function involving �nite mixtures leading to a possibly bimodal target

integrand. Instead we shall specify the EIS density kernel kt in Equation

(11) as the following parametric extension of the natural Gaussian mixture

sampler p∗ given in Equation (62):

kt(z(t), at) = p∗(zt|zt−1)ζt(zt, at) (65)

=


∑
j∈{0,1} p(zt|yt, zt−1, Jt)ζt(zt, at)πJt , t ≥ 1

p(z0)ζ0(z0, a0), t = 0,

where

ζt(zt, at) = exp
{
− 1

2
(αtz

2
t − 2βtzt)

}
, t = 0, ..., T − 1, (66)

and at = (αt, βt). This selection of the class of kernels implies that
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for period t = 0 the EIS sampler m0(z0; a0) = k0(z0, a0)/χ0(a0) is a

simple Gaussian density, while for t ≥ 1 the corresponding EIS den-

sities mt(zt|z(t−1), at) are two-component Gaussian mixtures associated

with the joint mixed density kernel p(zt|yt, zt−1, Jt)ζt(zt, at)πJt for zt and

Jt. The corresponding EIS densities for zt obtain as mt(zt|z(t−1); at) =∑
j∈{0,1}mt(zt|z(t−1), Jt; at)mJt , where the Gaussian EIS mixture com-

ponents m(zt|z(t−1), Jt; at) are

mt(zt|z(t−1), Jt; at) =
p(zt|yt, zt−1, Jt)ζt(zt, at)

χt(z(t−1), Jt, at)
, (67)

χt(z(t−1), Jt, at) =

∫
p(zt|yt, zt−1, Jt)ζt(zt, at)dzt, (68)

and the resulting EIS mixing proportions mJt obtain as

mJt =
χt(z(t−1), Jt, at)πJt

χt(z(t−1)at)
, (69)

χt(z(t−1), at) =
∑

j∈{0,1}

χt(z(t−1), Jt, at)πJt . (70)

It immediately follows that χt(z(t−1), at) as given in Equation (70) repre-

sents the integrating factor for the EIS density kernel kt(z(t), at) in Equa-

tion (65) such that the EIS density can be represented as mt(zt|z(t−1); at)

= kt(z(t), at) / χt(z(t−1), at).

Finally note that using the parametrization of the density kernel kt for

the EIS density given in Equations (65) and (66), the likelihood function

(64) can be rewritten according to Equation (12) as

L(ψ) = χ0(a0)

∫ [T−1∏
t=0

χt+1(z(t), at+1)p(yt+1|zt)
ζt(zt, at)

]
(71)

×
T−1∏
t=0

mt(zt|z(t−1), at)dz(T−1),

with χT ≡ 1. Hence, the EIS auxiliary regressions in Equation (7) sim-

plify into a sequence of T linear LS problems where {ln[χt+1(z
(j,`)
t , â

(`+1)
t+1 )
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p(yt+1|z(j,`)
t )]} is regressed on a constant and {[z(j,`)

t ]2, z
(j,`)
t } for t =

T − 1, ..., 0. As initial samplers {mt(zt|z(t−1), â
(0)
t )} we let log ζt match

the two �rst derivatives of log p(yt+1|zt, Jt+1 = 0) around the mode for

t = 0, . . . , T − 1. This amounts to setting αt = 1 and βt = log{[(yt+1 −

γ)/σy]2}. Details of the implementation of this sequential �nite mixture

EIS application are provided in Appendix B. Before presenting the em-

pirical results, an important remark is in order. As described above, the

EIS implementation requires to approximate χt+1(z(t), at+1)p(yt+1|zt) by

a Gaussian kernel ζt(zt, at), where both χt+1(z(t), at+1) and p(yt+1|zt) are

weighted sums of two functions in zt (see Equations 63 and 70). Hence,

theoretically there is no guarantee that their product will de�ne a well-

behaved function in zt. However, we have found that those products are

very accurately approximated by the Gaussian kernels ζt(zt, at). In fact,

the R2s of the EIS auxiliary regressions are typically larger than 0.99.

The data we use to estimate the SV model (53) and (54) by ML based

upon sequential �nite mixture EIS consists of daily continuously com-

pounded log-returns on the S&P500 stock price index from January 3,

2000 to December 31, 2007 with T = 2008. The ML-EIS results based

upon a simulation sample size M = 32 and 10 EIS iterations are sum-

marized in Table 4. The parameter estimates and their MC standard

deviations are computed as the means and standard deviations of 100 ML

estimates obtained under di�erent sets of CRNs. The statistical standard

deviations are based upon 500 ML estimates for arti�cial data from the

model. Total computing time for a full ML estimation using a BFGS op-

timizer is 142 seconds for a Fortran 90 code on a laptop computer with

an Intel core i7 processor with 8 Gb of memory using 2 cores in parallel.

For comparison, we also estimate the corresponding SV model without

jumps (obtained by letting either σu → 0 or p1 → 0) using the same code

and same simulation sample size as above. In this case, the mixture-EIS

procedure boils down to a standard EIS algorithm based on Gaussian IS
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densities. The MC standard deviations reported in Table 4 reveal that

the ML parameter estimates for the SV model with jumps based on �nite

mixture EIS are numerically very accurate. In fact, the MC standard

deviations for the SV jump model are of the same order of magnitudes as

those obtained by the standard EIS procedure for the ML estimation of

the model without jumps. The value of the likelihood ratio statistic for

the hypothesis H0 : σu = 0, p1 = 0 is 10.2, indicating a rejection of the

model without jumps against the SV jump speci�cation at the 1% level.

The estimate of the jump intensity parameter p1 implies that jumps occur

at a fairly low frequency with an average of 173 trading days between two

jumps. This result is consistent with the �ndings of Eraker et al. (2003)

and Malik and Pitt (2011). The high persistence with a value of φ close

to 1 and the strong leverage e�ect with a signi�cantly negative value of ρ

is typical of SV models.

5 Discussion

In this paper, we propose e�cient importance sampling (EIS) procedures

for the evaluation of likelihood functions involving �nite or in�nite mix-

tures leading to possibly ill-behaved target densities with multiple modes

or fat tails. Our approach exploits the mixture speci�cation of the target

density and uses a data augmentation step, demarginalizing the mixture

density to include the mixing variable as an additional latent variable.

In the examples used to illustrate our mixture EIS approach, we have

found that this extension of the space of integration can lead to well

behaved target integrands for the extended space which can be well glob-

ally approximated by standard distributions belonging to the exponential

family.

The set of examples considered here do by no means deplete the po-

tential area of application of the mixture EIS. Further examples where we
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have also successfully applied this methodology include the model of Cox

et al. (1985) observed with Gaussian measurement noise (exploiting that

the transition law of the CIR-di�usion is a Poisson-mixture of Gammas)

and a time-discretized jump-di�usion model observed with measurement

noise.

As for most other (E)IS methods, mixture EIS involves a high degree

of tailor-making for each particular model. However, many latent vari-

able models today involve implicitly or explicitly some form of mixing

or hierarchical structures, generating non-Gaussian and dependent target

densities. In so far, the demarginalization step underlying the mixture

EIS can in many cases be quite automatic.

As shown in the two high-dimensional examples, complex latent vari-

able models are generally needed to capture the salient features of eco-

nomic data. However, such complex models often give rise to integration

problems involving high-dimensional and complex target densities. Thus

may the required �exibility come at the cost of making the models di�cult

to �t to the data. We think that the mixture EIS provides a useful and ef-

�cient procedure for likelihood-based inference for such non-standard, but

generally more appropriate models. The estimation can be done without

imposing severe restrictions on the model building, while retaining the

sparsely parameterized local importance densities and computationally

simple LS regressions of the exponential family EIS.
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Appendix A

This appendix details the implementation of the sequential mixture EIS

application for the MC likelihood evaluation of the student-t state space

model (41) and (42) outlined in Section 4.1.

The sequence of EIS density kernels kt (t = 0, ..., T ) as de�ned by

Equations (48), (50), and (51) and the corresponding integrating factors

χt have the following functional forms:

For t = T the univariate Gaussian kernel kT = ϕT for ZT = λT is

given by

kT (z(T )) =
ϕ∗T (zT−1)

2πσyσλ
exp

{
− 1

2

(λ2
T

v∗T
− 2

m∗T
v∗T

λT
)}
, (72)

where

ϕ∗T (zT−1) = hν(wT−1)1/2 exp
{
− 1

2

(hν(wT−1)y2
T

σ2
y

+
µ(λT−1)

σ2
λ

)}
, (73)

and m∗T and v∗T are de�ned by Equation (49). Integrating the Gaussian

kernel kT w.r.t. λT and omitting irrelevant constants leads to

χT (z(T−1)) ∝ ϕ∗T (zT−1)vT
∗1/2 exp

{1

2

mT
∗2

v∗T

}
. (74)

For t = 1, ..., T − 1 the bivariate Gaussian kernel kt = ϕt · ζt for zt has

the form

kt(z(t), at) =
ϕ∗t (zt−1)

(2π)3/2σyσλ
exp

{
− 1

2

(
z′t(Σ

−1
t + Pt)zt (75)

−2(µ′tΣ
−1
t +R′t)zt

)}
,

where

ϕ∗t (zt−1) = hν(wt−1)1/2 exp
{
− 1

2

(hν(wt−1)y2
t

σ2
y

+
µ(λt−1)

σ2
λ

(76)
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−mt
∗2

v∗t
+ µ′tΣ

−1
t µt

)}
and the mean and variance associated with the density kernel ϕt are given

as

µt = (m∗t , 0)′, Σt =

 v∗t 0

0 1

 . (77)

It follows that the EIS samplermt for zt|z(t−1) associated with the density

kernel (75) is a bivariate Gaussian distribution with mean and variance

given by

µ∗t = Σ∗t (Σ
−1
t µt +Rt), Σ∗t = (Σ−1

t + Pt)
−1, (78)

Integrating the Gaussian kernel kt w.r.t. zt leads to

χt(z(t−1), at) ∝ ϕ∗t (zt−1)|Σ∗t |1/2 exp
{1

2
µt
∗′Σt

∗−1
µ∗t

}
. (79)

For t = 0 the bivariate Gaussian kernel k0 = ϕ0 ·ζ0 for z0 has the form

k0(z0, a0) = ϕ∗0 exp
{
− 1

2

(
z′0(Σ−1

0 + P0)z0 − 2(µ′0Σ−1
0 +R′0)z0

)}
, (80)

where

ϕ∗0 =
(1− φ2)1/2

2πσλ
exp

{
− 1

2
µ′0Σ−1

0 µ0

}
, (81)

µ0 = (µ, 0)′, Σ0 =

 σ2
λ/(1− φ2) 0

0 1

 . (82)

It follows that the EIS sampler m0 for z0 associated with the density

kernel (80) is a bivariate Gaussian distribution with mean and variance

given by

µ∗0 = Σ∗0(Σ−1
0 µ0 +R0), Σ∗0 = (Σ−1

0 + P0)−1. (83)

Integrating the Gaussian kernel k0 w.r.t. z0 leads to

χ0(a0) = 2πϕ∗0|Σ∗0|1/2 exp
{1

2
µ0
∗′Σ0

∗−1
µ∗0

}
. (84)
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Appendix B

In this appendix we provide details for the implementation of the sequen-

tial �nite mixture EIS application for the MC likelihood evaluation of the

SV model with jumps (53) and (54) outlined in Section 4.2.

The sequence of EIS densitiesmt(zt|z(t−1), at) associated with the den-

sity kernels kt(z(t), at) de�ned in Equations (65) and (66) and the corre-

sponding integrating factors χt(z(t−1), at) such that mt(zt|z(t−1); at) =

kt(z(t), at) / χt(z(t−1), at) obtain as follows:

For t = 1, ..., T − 1 the EIS density is a two-component mixture,

mt(zt|z(t−1); at) =
∑

j∈{0,1}

mt(zt|z(t−1), Jt; at)mJt , (85)

where the mixture component mt(zt|z(t−1), Jt; at) and the mixing pro-

portions mJt are de�ned by Equations (67) and (69), respectively. The

density kernel for the mixture componentmt(zt|z(t−1), Jt; at) has the form

(see Equation 67)

p(zt|yt, zt−1, Jt)ζt(zt, at) =
1√

2πσzt
exp

{
− 1

2

([ 1

σ2
zt

+ αt
]
z2
t (86)

−2
[µzt
σ2
zt

+ βt
]
zt +

µ2
zt

σ2
zt

)}
,

where µzt and σ
2
zt are de�ned in Equations (58) and (59). It follows that

the EIS mixture componentmt(zt|z(t−1), Jt; at) is a Gaussian density with

mean and variance given by

µ∗t = σ∗t
2
(µzt
σ2
zt

+ βt
)
, σ∗t

2
=

σ2
zt

1 + αtσ2
zt

. (87)

Integrating the Gaussian kernel (86) w.r.t. zt leads to the following form

of the integrating factor given by Equation (68):

χt(z(t−1), Jt, at) =
σ∗t
σzt

exp
{1

2

(µ2
zt

σ2
zt

− µ∗t
2

σ∗t
2

)}
. (88)
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Based upon this integrating factor for the mixture component, we can

compute the mixing proportionsmJt and the integrating factor χt(z(t−1), at)

associated with the EIS density kernel according to Equations (69) and

(70).

For t = 0 the EIS density kernel kt(z0; a0) de�ned in Equations (65)

and (66) has the form

p(z0)ζ0(z0, a0) =
(1− φ2)1/2

√
2πσz

exp
{
− 1

2

([1− φ2

σ2
z

+α0

]
z2

0−2β0z0

)}
. (89)

It follows that the EIS sampler m0 for z0 is a Gaussian distribution with

mean and variance given by

µ∗0 = σ∗0
2
β0, σ∗0

2
=

σ2
z/(1− φ2)

1 + α0σ2
z/(1− φ2)

. (90)

Integrating the Gaussian kernel (89) w.r.t. z0 leads to the following form

of the integrating factor

χ0(a0) =
(1− φ2)1/2σ∗0

σz
exp

{
− 1

2

(µ∗02

σ∗0
2

)}
. (91)

For the this model, we slow down the convergence of the EIS iterations

by choosing shorter step-lengths. This is done in order to reduce the

probability of getting an a(`) corresponding to zero variance or some other

pathology in the �rst iterations. In practice, this done by setting a
(`+1)
t ←

sa
(`+1)
t + (1− s)a(`)

t with s = min(1, exp(−0.6 + 0.1`)) immediately after

each regression.
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Table 1. IS integration for a student-t density.

ν Laplace Gaussian EIS Mixture EIS

Bias 2.5 -3.27e�03 -7.66e�04 -4.08e�06
Standard dev. 0.03 0.07 4.48e�04
RNE 2.76e�03 5.17e�04 12.3
# fail 2 0

Bias 3.5 -1.45e�03 -2.62e�04 -2.64e�06
Standard dev. 0.02 0.04 2.87e�04
RNE 7.84e�03 2.00e�03 38.4
# fail 0 0

Bias 6.0 -3.77e�04 -5.60e�05 -1.03e�06
Standard dev. 9.77e�03 0.01 1.10e�04
RNE 0.03 0.02 284.5
# fail 0 0

Bias 15.0 -2.82e�05 -1.93e�06 -2.20e�07
Standard dev. 2.86e�03 2.34e�03 2.04e�05
RNE 0.42 0.63 8.26e+03
# fail 0 0

Note: IS-MC estimation of
∫
g(z)p(z)dz where p is a standardized student-t density with ν

degrees of freedom, and g is a N [z, 42]-density. IS simulation sample size is M = 32 and the

number of EIS iterations is 7. Mean biases relative to the true value, standard deviations

and RNEs are based upon 10000 replications under di�erent CRN seeds. # fail denotes the

number of replications where the EIS approximation failed to converge. The true values of

the integrals were computed using high precision numerical integration.
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Table 2. IS integration for a two-component Gaussian mixture density.

σ1 Laplace Gaussian EIS Mixture EIS

Bias 0.10 -6.02e�05 -9.81e�06
Standard dev. 6.71e�03 8.99e�04
RNE 0.338 18.8
# fail 1457 0

Bias 0.25 -1.85e�04 -1.01e�05
Standard dev. 6.58e�03 1.02e�03
RNE 0.348 14.6
# fail 1493 0

Bias 0.40 -1.06e�03 -1.52e�04 -9.93e�06
Standard dev. 0.02 0.02 1.08e�03
RNE 0.05 0.031 13.1
# fail 335 0

Bias 0.75 -8.03e�05 -3.02e�06 -6.53e�06
Standard dev. 1.92e�03 1.83e�03 8.96e�04
RNE 4.62 5.09 21.1
# fail 0 0

Note: IS-MC estimation of
∫
g(z)p(z)dz where p is a Gaussian mixture of the form

N(0, σ2
1)p1 +N(0, σ2

2)p2 with p1 = p2 = 0.5 and σ2
2 = 2− σ2

1 , and g is a N [0, exp(z)]-density.

IS simulation sample size is M = 32 and the number of EIS iterations is 7. Mean biases

relative to the true value, standard deviations and RNEs are based upon 10000 replications

under di�erent CRN seeds. # fail denotes the number of replications where the EIS

approximation failed to converge. The true values of the integrals were computed using high

precision numerical integration.
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Table 3. ML estimation results for
state space models for realized volatility.

estimate MC-std. statistical std.

student-t measurement error

φ 0.983 7.82e�05 0.005
µ 0.383 2.07e�04 0.195
σλ 0.154 3.71e�04 0.008
σy 0.372 3.79e�04 0.009
ν 6.435 0.105 1.382
log-likelihood -1328.2 0.472

Gaussian measurement error

φ 0.982 0.005
µ 0.382 0.185
σλ 0.162 0.010
σy 0.366 0.008
log-likelihood -1353.1

Note: The estimated model is given by Equations (41) and (42).
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Table 4. ML estimation results for the SV
model with leverage e�ects and jumps for returns.

estimate MC-std. statistical std.

SV model with jumps

γ -1.80e-04 4.65e-05 0.018
σy 0.910 2.68e-04 0.097
σz 0.147 1.46e-04 0.015
ρ -0.889 5.21e-04 0.039
φ 0.985 2.43e-05 0.003
σu 1.484 0.020 0.760
log(p1) -5.156 0.046 1.658
log-likelihood -2718.7 0.060
Akaike 5451.4

SV model without jumps

γ -0.003 1.78e-05 0.019
σy 0.920 7.80e-05 0.091
σz 0.148 1.83e-04 0.013
ρ -0.875 4.70e-04 0.052
φ 0.985 3.01e-05 0.003
log-likelihood -2723.8 0.075
Akaike 5457.6

Note: The estimated model is given by Equations (53) and (54).
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Figure 1. Target integrand g(z)p(z) (normalized such that it integrates

to 1) where p is a standardized student-t density with ν = 2.5 degrees of

freedom and g is a N [z, 42]-density, Gaussian Laplace IS sampling

density, Gaussian EIS sampling density, and marginal density for z

associated with the joint mixture EIS sampling density m(z, w; â).
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Figure 2. Target integrand g(z)p(z) (normalized such that it integrates

to 1) where p(z) ∼ 0.5 ·N(0, σ2
1) + 0.5 ·N(0, σ2

2) with σ2
2 = 2− σ2

1 ,

σ1 = 0.1 and g is a N [0, exp(z)]-density, Gaussian EIS sampling density,

and mixture EIS sampling density.
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