
Eymann, Torsten et al.

Working Paper

Preliminary specification and design documentation
for software components to achieve catallaxy in
computational systems

Bayreuther Arbeitspapiere zur Wirtschaftsinformatik, No. 2

Provided in Cooperation with:
University of Bayreuth, Chair of Information Systems Management

Suggested Citation: Eymann, Torsten et al. (2007) : Preliminary specification and design
documentation for software components to achieve catallaxy in computational systems,
Bayreuther Arbeitspapiere zur Wirtschaftsinformatik, No. 2, Universität Bayreuth, Lehrstuhl für
Wirtschaftsinformatik, Bayreuth,
https://nbn-resolving.de/urn:nbn:de:bvb:703-opus-3062

This Version is available at:
http://hdl.handle.net/10419/52645

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:de:bvb:703-opus-3062%0A
http://hdl.handle.net/10419/52645
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Bayreuther Arbeitspapiere zur Wirtschaftsinformatik

Lehrstuhl für
Wirtschaftsinformatik

Information Systems
Management

Bayreuth Reports on Information Systems Management

No. 2

2005

Torsten Eymann / Werner Streitbergern / Michael Reinicke / Felix Freitag / Pablo Chacin / Isaac
Chao / Björn Schnizler / Daniel Veit

Preliminary specification and design documentation
for software components to achieve Catallaxy in
computational systems

ISSN 1864-9300

Die Arbeitspapiere des Lehrstuhls für

Wirtschaftsinformatik dienen der Darstellung

vorläufiger Ergebnisse, die i. d. R. noch für

spätere Veröffentlichungen überarbeitet werden.

Die Autoren sind deshalb für kritische Hinweise

dankbar.

 The Bayreuth Reports on Information Systems

Management comprise preliminary results

which will usually be revised for subsequent

publications. Critical comments would be

appreciated by the authors.

Alle Rechte vorbehalten. Insbesondere die der

Übersetzung, des Nachdruckes, des Vortrags,

der Entnahme von Abbildungen und Tabellen –

auch bei nur auszugsweiser Verwertung.

 All rights reserved. No part of this report may

be reproduced by any means, or translated.

Authors: Information Systems and Management
Working Paper Series

Edited by:

Prof. Dr. Torsten Eymann

Managing Assistant and Contact:

Raimund Matros

Universität Bayreuth

Lehrstuhl für Wirtschaftsinformatik (BWL VII)

Prof. Dr. Torsten Eymann

Universitätsstrasse 30

95447 Bayreuth

Germany

Email: raimund.matros@uni-bayreuth.de ISSN

Torsten Eymann, Werner Streitberger, Michael
Reinicke, Felix Freitag, Pablo Chacin, Isaac Chao,
Björn Schnizler, Daniel Veit

1864-9300

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic

application networks

D2.1 Preliminary specification and design
documentation for software components to
achieve Catallaxy in computational systems

Torsten Eymann, Werner Streitberger, Michael Reinicke (Bayreuth)
Felix Freitag, Pablo Chacin, Isaac Chao (Barcelona)

Björn Schnizler, Daniel Veit (Karlsruhe)

Executive Summary.
CATNETS EU IST-FP6-003769 Project Deliverable D2.1
This Report is about the preliminary specifications and design documentation for software
components to achieve Catallaxy in computational systems.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 2 -

Document Id. CATNETS/2005/D2.1/v1.0
Project CATNETS EU IST-FP6-003769
Date Date 2005-02-28
Distribution Public

Copyright © 2005 Issuer

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 3 -

CATNETS Consortium

This document is part of a research project partially funded by the IST Programme of the
Commission of the European Communities as project number IST-FP6-003769. The partners
in this project are: LS Wirtschaftsinformatik (BWL VII) / University of Bayreuth (coordina-
tor, Germany), Arquitectura de Computadors / Universitat Politecnica de Catalunya (Spain),
Information Management and Systems / University of Karlsruhe (TH) (Germany), Diparti-
mento di Economia / Università delle merche Ancona (Italy), School of Computer Science
and the Welsh eScience Centre / University of Cardiff (United Kingdom), Automated Rea-
soning Systems Division / ITC-irst Trento (Italy)

University of Bayreuth
LS Wirtschaftsinformatik (BWLVII)
95440 Bayreuth
Germany
Tel: +49 921 55-2807, Fax: +49 921 55-2816
Contactperson: Torsten Eymann
E-mail: catnets@uni-bayreuth.de

Universitat Politecnica de Catalunya
Arquitectura de Computadors
Jordi Girona, 1-3
08034 Barcelona
Spain
Tel: +34 93 4016882, Fax: +34 93 4017055
Contactperson: Felix Freitag
E-mail: felix@ac.upc.es

University of Karlsruhe
Institute for Information Management and
Systems
Englerstr. 14
76131 Karlsruhe
Germany
Tel: +49 721 608 8370, Fax: +49 721 608
8399
Contactperson: Daniel Veit
E-mail: veit@iw.uka.de

Università delle merche Ancona
Dipartimento di Economia
Piazzale Martelli 8
60121 Ancona
Italy
Tel: 39-071- 220.7088 , Fax: +39-071-
220.7102
Contactperson: Mauro Gallegati
E-mail: gallegati@dea.unian.it

University of Cardiff
School of Computer Science and the Welsh
eScience Centre
University of Caradiff, Wales
Cardiff CF24 3AA, UK
United Kingdom
Tel: +44 (0)2920 875542, Fax: +44 (0)2920
874598
Contactperson: Omer F. Rana
E-mail: o.f.rana@cs.cardiff.ac.uk

ITC-irst Trento
Automated Reasoning Systems Division
Via Sommarive, 18
38050 Povo – Trento
Italy
Tel: +39 0461 314 314, Fax: +39 0461 302
040
Contactperson: Floriano Zini
E-mail: zini@itc.it

Changes

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 4 -

Version Date Author Changes
1.0 2005-02-

15
MRWS First release candidate draft

1.1 2005-03-
08

TE Added sections on existing taxonomies and Catallaxy back-
ground

1.2 2005-03-
18

TEMR Finalized draft

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 5 -

Content

1 Introduction... 6

2 Identification of Fundamental Components in Related ALN 7

2.1 Service Provisioning Phases.. 7
2.1.1 Service Discovery ... 8
2.1.2 Service Selection / Matching / Scheduling.. 8
2.1.3 Execution...12

3 The Catallaxy as an economic self-organization framework................................13

4 Fundamental components in CATNETS..17

4.1 Market Model ... 18

4.2 Components... 22

4.3 Lifecycle of Agents ... 25

4.4 Interactions between market participants ... 26

4.5 Additional conditions for Catallaxy realisation .. 29
4.5.1 Service discovery...29
4.5.2 Negotiation ..32
4.5.3 Adaptation of strategy..35

5 Mappable applications...38

5.1 BitTorrent ... 38

5.2 PlanetLab ... 39

5.3 Coral... 40

6 Summary ...43

7 Appendix: Documentation of CatNet.v1...46

7.1 Components Code ... 46

7.2 Simulation Environment and Documentation ... 48

8 References ..68

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 6 -

1 Introduction

This deliverable describes the work done in the first 6 months of task 2.1, " Software compo-
nents: Specification and design of software components, based on theoretical and experimen-
tal experience from related and the assessment projects, so that Catallaxy can be implemented
in any computational system including the simulation and prototype software” from WP2,
"Fundamental components”. The document is divided in four parts: The introduction with a
placement of the CATNETS idea to existing Grid taxonomies, a description of the Catallaxy
concept as such, the presentation of the fundamental components identified so far, and the
mapping of the concept to the candidate ALN implementations for the "proof-of-concept"
prototypes in later work packages.

The findings of task 2.1 come in two parts. This deliverable D2.1 presents the preliminary
findings so far, which are needed for achieving a common understanding of the Catallaxy and
the requirements for both simulation and prototype implementation. Feedback from these
joint efforts will enter into a reviewed and more detailed version D2.2, which will present the
final specification of the fundamental components. D2.2 is scheduled for Month 18 (February
2006).

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 7 -

2 Identification of Fundamental Components in Related ALN
The focus of this section is on the presentation and evaluation of existing mechanisms for
allocating resources in a Grid-like Application Layer Network (ALN). ALNs are software
architectures that allow the provisioning of services requiring larger amounts of resources,
which can be obtained from computing systems connected over simple communication infra-
structures such as the Internet. In general, Grid computing, Peer-to-Peer networks, On-
Demand Computing and Service-oriented Architectures can be subsumed under this category.
A particular resource allocation problem in these concepts is how to match the distributed
demand for a service, with an existing, but unclear supply situation.

Using self-organization for such computing system problems, instead of a centralized match-
maker, has recently gained attention by the start of large industrial research concepts like
IBM’s Autonomic Computing or HP’s Adaptive Computing initiatives. The key motivation
aspect for self-organization lies in the increasing size and complexity of today’s information
systems, which has led to a non-negligible growth of their control costs. Autonomic Comput-
ing uses a biological paradigm as a design and control metaphor, the autonomic nervous sys-
tem (Kephart and Chess). The core properties of the Autonomic Computing concept, the
CHOP circle of self-configuring, self-healing, self-organization and self-protection is an elec-
tronic realization of the respective mechanisms of the human body.

Abundant biological paradigms distract from the existence of self-organizing resource alloca-
tion mechanisms elsewhere, which could, and have been used for engineering and controlling
computer systems. In the physical world, for example, the proven ability of a free-market
economy to adjudicate and satisfy the conflicting needs of millions of human agents recom-
mends it as a decentralized organizational principle (Wellman; Kephart, Hanson et al.; Ey-
mann and Morito 2004).

Applying Economic concepts to allocating or scheduling resources in computing systems is
not a new idea (see (Huberman 1988; Clearwater) for overviews). An early attempt at using
economic ideas has been Agoric Open Systems (AOS) (Miller and Drexler; Lavoie, Baetjer et
al.). AOS were defined as software systems that use market mechanisms for resource alloca-
tion, and encapsulate information, access paths and resources in objects traded by economic
actor processes. Similar projects have been Mariposa (Stonebraker, Devine et al.), Popcorn
(Regev and Nisan), and Spawn (Waldspurger, Hogg et al.).

The basic problem can be characterized by having a number of processors, supplying comput-
ing power to a demand situation composed of computation jobs. The particular question is
how supply and demand can be matched to each other, if the actual situation on both sides is
unclear. In closed environments, e.g. parallel computing, this question usually can be assumed
away, as the number of processors is fixed and the arrival of computational jobs is determinis-
tic.

2.1 Service Provisioning Phases

However, the advent of large, open distributed networks of processors, like in Grid comput-
ing, has spurred new interest in this question. Generalizing, to match a particular computation
request to a processor service in a Grid, four phases have to be conducted: service discovery,
matching requests to services, scheduling the matched services and finally execution (Krauter,
Buyya et al. 2001; Nabrzyski, Schopf et al. 2003).

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 8 -

2.1.1 Service Discovery

Finding service instances is a computationally demanding task. Existing sophisticated ap-
proaches for service discovery have been realized using flooding algorithms or distributed
hash tables (DHT) (Ratnasamy, Francis et al. 2001; Balakrishnan, Kaashoek et al. 2003). The
result of the service discovery phase is a list of candidate service provider instances. In this
article, we assume that more than one service can provide access rights, and more than one
client demands access – otherwise, the discovery phase would be trivial to implement and
usual client/server mechanisms apply.

2.1.2 Service Selection / Matching / Scheduling

For all kinds of ALN, different taxonomies have already been published to capture the exist-
ing diverse resource allocation approaches in a common framework.

Wolski et al. distinguish between using (1) centralized omnipotent resource control or (2)
localized application control (Wolski, Brevik et al. 2003). This distinction is also made in
Figure 1, in the horizontal axis. The first is usually not a scalable solution either in terms of
execution efficiency or fault robustness, because the broker is a bottleneck and single point of
failure. The second approach can lead to unstable resource assignments as agents adapt to
compete for resources.

Most of the actual research relies on the existence of a centralized point of information.
GARA (Roy and Sander 2003), LEGION (Grimshaw, Wulf et al. 1994), ECOGRID
(Abramson, Buyya et al. 2002), PLANETLAB (Chun, Culler et al. 2003) and RADAR
(Rabinovich and Aggarwal) are among the examples for the centralized category. Condor-G
(Frey, Tannenbaum et al. 2002), DARWIN (Chandra, Fischer et al. 2001), and most Globus-
based implementations (Foster, Kesselman et al. 1999) typically use a centralized matchmaker
instance to evaluate the candidate list.

The matchmaker instance selects the apparently optimal match from the list, according to
global optimization considerations on latency, distance or bandwidth usage, depending on the
current network state. The requesting client receives one singular matching partner. Clients
and service providers update the centralized resource broker in a continuous frequency about
their requests and effective availability.

Decentralized mechanisms, like in most file sharing networks, e.g. Gnutella (Adar and
Huberman 2000) or Kazaa, have no central point to collect supply and demand before match-
ing. Each client decides for himself which service provider to match to based on technical
parameters like estimated download time. APPLES (Casanova, Obertelli et al. 2000), WIN-
NER (Arndt, Freisleben et al. 1999) or MARS (Gehring and Reinefeld 1996) are other exam-
ples for localized control. The problem of localized control is the missing assurance on alloca-
tion stability (Wolski, Brevik et al. 2003).

Two formal approaches to the Grid resource allocation problem are control theory (Burghes
and Graham 1980) and economics. As a means of achieving stability without relying on a
centralized information base, Wolski et al. propose to use Economic mechanisms in favour of
Control theory, whose findings they describe as "elusive". The distinction between "Eco-

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 9 -

nomic" approaches and others corresponds to the second category in Figure 1, on the vertical
axis.

MILLENIUM (Chun and Culler 2000), G-COMMERCE (Wolski, Brevik et al. 2003), and
ECOGRID (Buyya 2002), Nimrod/G (Buyya, Abramson et al. 2002) are examples given for
those computational economies.

Centralized approaches implement auctioneers, like in ECOGRID, or comparable electronic
marketplace instances (Gomoluch and Schroeder 2003), which collect bids and offers from
the Grid nodes, and match supply and demand like a stock market mechanism does. As an
example, Wolski et al. have in G-COMMERCE, agents (producers and consumers), the
commodity objects (tagged with a price), and a centralized institution they call "The First
Bank of G". This institution uses a "tâtonnement" (Walras 1954; Cheng and Wellman 1998)
sequential auctioneering approach, combined with a polynomial method for finding general
market equilibria by Smale (Smale 1976). The price setting of the individual producers and
consumers uses local knowledge about the resources, and the single-variable utility functions
are expressed in budget units only.

Subcategories of computational economies are commodities markets and auction markets. In a
commodity market, resources are interchangeable, and a buyer accessing a resource does so
from a pool of equivalent choices, without the ability to specify which resource exactly will
be purchased. In an auction market, buyers explicitly specify the particular resource or good
instance to access. The fine distinction is that in a commodity market the (single) price is set,
so that all buyers and sellers are satisfied, while the auction market has specific prices, for
each buyer-seller pair. In the centralized control case, this price setting is done by the (com-
modity) resource broker or the auctioneer, while in the localized case, each seller is its own
auctioneer, or sets the price according to some local optimization rule.

Summarizing, either the client (decentralized case) or a resource broker (centralized case)
have to select a match out of several possible pairings, which satisfies both parties. Satisfac-
tion can be ideally measured either by technical parameters (fast execution time, low band-
width usage, minimal communication overhead) or by translating these to economic metrics,
e.g. utility as minimal direct access costs or as a function of waiting time saved. In principle,
existing service matching mechanisms can thus be visualized as a 2x2 matrix shown in Figure
1.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 10 -

Matching by
a Coordinator

Instance

Match selection
by Peer Client

Ranking using
technical
parameters

Resource
Auctioneers,
e.g. EcoGrid,

Nimrod/G

Usual Resource
Brokers, e.g. Condor

File Sharing,
e.g. Gnutella

Ranking using
economic
parameters

(open)

Figure 1: A portfolio of Grid Service matching mechanisms

In another taxonomy, Gomoluch and Schroeder (Gomoluch and Schroeder 2003) distinguish
resource allocation concepts according to the dimensions:

1. State-based vs Model-based: Are the allocations based on a current snapshot of the
system state (state-based), which is expensive to obtain, or on a model, which predicts
the system state and which may be inaccurate (model-based or predictive)?

2. Pre-emptive vs Non-pre-emptive: Are tasks assigned to hosts once (non-pre-emptive)
and then stay there, or can they migrate if it turns out at a later stage that it is advanta-
geous to leave the machine (pre-emptive)?

Again, these two questions unfold a 2x2 portfolio, where most of the existing Grid allocation
models fit into.

State-based, non-preemptive strategies are the easiest to implement. A known environment
state is evaluated, and a new state of increased optimality is computed (usually by a central
institution). The execution phase allocates demand statically to supply, until the next compu-
tation cycle occurs. SPAWN and POPCORN are examples for this category.

Pre-emptive strategies allow the migration of an ongoing job from one resource to the other.
Technically, this creates a lot of security and stability problems; in the context of the initial
matching process, the distinction is not necessary and shall not be followed here.

Model-based approaches to resource allocation involve two very challenging problems: how
to obtain an initial model/prediction and how to adapt the model as time passes. In principle,
the participants predict a future state of the environment, and use a model-based strategy to

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 11 -

act accordingly, in order to improve their outcome. In the centralized case, the global outcome
will be considered by the central institution (assumed that it is not possible, though, to sense
the current environment state). In the decentralized case, all participants try in parallel to im-
prove their own outcome, with a priori unknown effects on the total. A model-based example
is Nimrod/G (Buyya, Abramson et al. 2002).

Krauter et al. (Krauter, Buyya et al. 2001) have developed a comprehensive multi-
dimensional taxonomy for Grid resource management systems for distributed computing, tak-
ing into account "machine organization within the Grid, resource model, dissemination proto-
cols, namespace organization, data store organization, resource discovery, QoS support,
scheduler organization, scheduling policy, state estimation, and the rescheduling". Some of
these categories will be highlighted.

The machine organization category distinguishes between flat vs. hierarchical organization. In
a flat organization, all machines directly communicate with each other without going through
an intermediary. This corresponds to localized application control, if the machines are consid-
ered to be peers. Hierarchical communication has one or more machines being superior to
others; in the centralized control case, the resource broker would be considered superior. Im-
plicitly, communicating flat vs. hierarchical corresponds also to the question, whose optimiza-
tion goal is superior. Flat organizations with peers have all local goals equal; in hierarchical
organizations, being "above" usually means having priority if goals conflict.

In the resource discovery and dissemination category, the terms are defined as "discovery is
initiated by a network application to find suitable resources within the Grid. Dissemination is
initiated by a resource trying to find a suitable application that can utilize it. […] Resource
dissemination is categorized by the approach taken to updating the resource information." The
authors distinguish between a batch/periodic dissemination approach, where information
about the resource is push-sent in time intervals to the prospective clients or a broker instance,
or pulled by the latter. In comparison, Online/On-Demand dissemination has push-sending by
the resources, whenever a change in resource supply occurs or an actual access request is re-
ceived.

Different combinations of scheduler organization, state estimation, rescheduling, and schedul-
ing policy classifications can be implemented in a Grid resource management system, as those
categories are orthogonal to each other. Of those, the scheduler organization category distin-
guishes classically between centralized, hierarchical and decentralized approaches, which
needs not be repeated. Of more interest is the question of how the current environment state is
estimated.

Figure 2: State Estimation Taxonomy (Krauter, Buyya et al. 2001)

"In Grid systems, state estimation is always done on partial or stale information due to infor-
mation propagation delay in large distributed systems" (Krauter, Buyya et al. 2001). Differing

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 12 -

from (Gomoluch and Schroeder 2003), the authors thus focus on model-based approaches,
where they only distinguish whether the models take only historical data into account (non-
predictive), or try to predict future states. Of particular interest for CATNETS are those ap-
proaches, which include adaptive and pricing prediction. Pricing prediction uses market dy-
namics and price signals, to estimate future states. Adaptive, machine-learning approaches try
to optimize behaviour in multi-dimensional, potentially unknown distributions of several vari-
ables. Both approaches can complement each other, which CATNETS will exploit.

Summarizing all taxonomies, the CATNETS scheduling approach is defined by localized ap-
plication control using economic mechanisms, as the single agents all set their prices and bids
locally. However, it has aspects both of a commodity market (the single agents trying to adapt
to a fictive market price) as well as an auction market (the agents bidding for a specific re-
source, even in the Catallaxy case). CATNETS employs client-based economic decision-
making mechanisms with a model-based prediction of the system state (Gomoluch and
Schroeder 2003) and allocation via bargaining models (Buyya, Abramson et al. 2002). Within
the same layer (resources vs. application), it uses a flat communication model. Dissemination
of information is on-demand, as the price signals reflect the actual (but constantly changing)
situation at the time of requesting access. The prices also allow the participants to predict fu-
ture states of the Grid; improving the accuracy of that prediction is subject of machine-
learning adaptation.

These characteristics form the upper right corner of Figure 1, which is only sparsely populated
otherwise. One apparent implementation has been MojoNation (Mojo Nation 2003), but it
failed due to missing control of pricing schemes and control of money supply.

2.1.3 Execution

For interfacing with the execution phase, the matching phase ends regardless of the mecha-
nism with the matched partners agreeing on quality of service (QoS) parameters (e.g. sched-
uled time and duration, guaranteed lower bounds on bandwidth, storage or processor time),
compiled and fixed in the service level agreement (SLA).

In the execution phase, client access the scheduled services, usually according to the informa-
tion stated in the SLA. If the SLA gets breached by either side, contingency procedures have
to be taken. While posing serious questions and motivating further research, these security
issues are not in the focus of the current project.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 13 -

3 The Catallaxy as an economic self-organization framework
The purpose of this section is to provide an insight into the economic fundament of the decen-
tralized Grid scheduling algorithm. As there is no common, agreed-upon understanding on the
actual implementation of the Market mechanism, and it is at the current time impossible to
excerpt a formal, mathematical description of that mechanism from Economics literature, the
following text will concentrate on the concept. However, as the final purpose is an actual Grid
implementation, we will try to get as specific as possible.

Friedrich August von Hayek (Hayek, Bartley et al.), and other Austrian economists under-
stood the market as a decentralized coordination mechanism, as opposed to a centralized
command economy (note that Austrian, or Neo-Austrian economics, describe an Economics
line of thought, rather than only the geographical heritage of its prosponents). Apart from po-
litical macroeconomic thoughts, his work also provides concrete insight on the working
mechanisms of economic coordination. The emergence of software agent technology and in-
creasing size of information systems leads to the possibility of implementing Hayek’s Catal-
laxy concept and using the ensuing "spontaneous order” as a concrete proposal for both the
design and coordination of information systems. However, a formal description of this self-
organizing market mechanism does not so far exist.

The Catallaxy concept bases on the explicit assumption of self-interested actions of the par-
ticipants, who try to maximize their own utility and choose their actions under incomplete
information and bounded rationality (Simon). The term Catallaxy comes from the Greek word
"katallatein”, which means, "to barter” and at the same time, "to join a community.” The goal
of Catallaxy is to arrive at a state of coordinated actions, the "spontaneous order”, which
comes into existence through the bartering and communicating of the Community members
with each other and thus, achieving a community goal that no single user has planned for
(Hayek, Bartley et al. 1989). The main characteristics of the Catallaxy (Hoppmann) are that

� Participants work in their own interest to gain income. Every system element is a utility
maximizing entity, which requires the definition of utility itself, of means to measure and
compare income and utility, and to express a desire to reach a defined goal. For humans,
these definitions have not necessarily to be explicit or thoroughly defined; for information
system elements, this explicitness is required.

� Human action always takes place in a world of uncertainty (Horwitz 2003). Participants
subjectively weigh and choose preferred alternatives in order to reach an income or utility
maximization goal. In Neo-classical economic theory, the "homo oeconomicus” is a com-
pletely rational utility maximizer. He can choose an alternative action out of total knowl-
edge about the environment. Hayek’s claim was that such an "objective” choice is not
possible because of "constitutional ignorance”, that it is (inevitably) impossible to know
each and every detail of the environment state. For large and very dynamic information
systems, this is inherently true, and overcoming it by central means requires synchroniza-
tion and restriction of possible actions of the single elements.

� Participants communicate using commonly accessible markets, where they barter about
access to resources held by other participants. The development of prices for a specific
good, whether they are increasing or decreasing, leads buyers to look for alternative
sources of procurement and thus enhances the dynamics of the market. Note that a market
here is nothing more than a communication bus – it is not a central entity of its own,
which collects all information and matches market participants using some optimization
mechanisms, which would contradict "constitutional ignorance”.

In human economic systems, these institutions are implicit; for a realization in distributed
information systems, the properties of utility maximization, strategies and the exchange of

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 14 -

offers need to be explicitly specified and implemented. Formal descriptions for using eco-
nomic mechanisms in distributed computing systems can be found in (Ferguson, Nikolaou et
al. 1996).

As a blueprint for other possible forms of Service Grids (Gomoluch and Schroeder 2003) or
Application Layer Networks, we describe the concept using a simple web services scenario of
a PDF conversion service (Catnet Project; T-Online AG):

Adobe’s PDF file format is a common exchange file type for mixed text and graphics docu-
ments, mostly due to its preservation of layout specifics. The files are created using the (usu-
ally locally installed) Acrobat Distiller service, which converts from e.g. Microsoft Word or
Postscript files. In an "on-demand” Service Grid, Distiller web services are available in the
network, hosted by independent vendors and directly accessible from the software applica-
tion, competing with each other for the clients’ demand. The word-processor client programs
transparently address such a networked PDF conversion service instance in the background,
without disturbing the user’s course of work. Clients and service provider instances bargain
on access prices on a case-by-case basis, taking into account the current and prospective de-
velopment of supply and demand to increase the monetary utility of their respective owners.
Services instances are situated on host computers, which, for simplicity, are assumed to pro-
vide processor power and storage on a fixed cost basis.
Economic actors are straightforwardly implemented as intelligent software agents
(Wooldridge). Agents are embedded in an environment; whose state they experience through
sensors; which lead to a comparison of an actual environment state with a desired environ-
ment state using an internal world model; and where they try to influence the environment
state using effectors towards that more desirable state.

Market Environment

Agent

Sensor:
Price
Signals

Effector:
Ask/Bid Offers

Adaptation of
Price Setting
Strategies

Figure 3: Properties of Digital Business Agents (cf. (Wooldridge))

Figure 3 shows a Digital Business Agent (Eymann) working in a market environment. Sensors
and effectors are realized as price signals incoming from and outgoing to the market environ-
ment. If the agents’ utility goals are not met by the present ownership situation, they negotiate
with each other in order to maximize utility by exchanging resource access rights (e.g. using
an alternating offers protocol (Rosenschein and Zlotkin)). Bartering forms a sequence of ef-
fectors and sensors, this leads under partial and bounded knowledge to an adaptation of the
agent’s internal model. Implementing Edgeworth bartering (Varian), the agents trade bilater-
ally and secretly with each other, if the internal world model prognoses utility increase out of
the potential transaction. Setting the price right is the most important action decision. Sellers
intent to obtain the highest possible price for the service access they offer, buyers want to pay
the lowest possible price for the service. To that respect, the seller offers (Asks) will be higher
than the reservation prices, while buyer offers (Bids) will probably be lower. A too high price

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 15 -

in the face of competition will not lead to many transactions, while a price too low leads to
less income per transaction.

The constant price signaling between entities propagates changes in the scarcity of resources
throughout the system, and leads to constant adaptation of the system as a whole. Imperfect
knowledge makes it thus necessary to adapt the agent’s price setting strategies dynamically in
order to maximize individual utility. This is achievable using feedback learning algorithms
(Evolutionary algorithms, Numerical optimization, or hybrid methods like Brenner’s VID
model (Brenner), which are all principally interchangeable (Müller and Eymann)).

In our example, three types of market agents appear (see Figure 4): the client agents, the ser-
vice instance agents and the resource agents (as embodiments of the hardware/network pro-
vider). The market environment itself is not a solid object – it is a communication platform,
implicitly realized by the network provider, communicating the effector actions of all other
agents in the environment.

Figure 4: Interaction relations in the Service Market

� The Client is a computer program on a certain host, which needs access to a web service
to fulfil its design objectives. It tries to access that service at an arbitrary location within
the computer network, use it for a defined period, and then continues with its own pro-
gram sequence. Client programs run on a connected network resource, usually a personal
computer. The business strategy of the client computes the fixed cost of purchasing a local
copy of Adobe Distiller against the variable cost of using such available On-Demand ser-
vices, multiplying the forecast number of uses with the access price. If the client user does
not need to convert to PDF so often, it will rely on a certain price and availability level of
the service provider and refrain from buying an expensive local copy; if the usage fre-
quency is above a certain number, it is in total cheaper to buy that exclusive copy. In an
environment where services have to be paid for access, the utility gain of clients is the dif-
ference between their private value (of what the access is worth) and the actually paid
transaction price:

,
C
i i pu v p� � (1)

� A Service is an instantiation of a general application function, embodied in a computer
program. A Service Copy is an instance of the service; a resource computer, which pro-
vides both storage space and bandwidth for the access of the service, hosts it. The business
model of the service provider leads to set the access price so that the majority of clients
decide to rely on the on-demand option. In theory, the price will be equal to the marginal
cost of processing the penultimate access, which means that it is exactly so high that the
consumer is undecided whether to buy the local copy or access the remote service (pro-

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 16 -

vided that both prognoses the same number of accesses in a given time span). If the ser-
vice provider is able to distribute several instances (service copies) in the network, he
might be able to sell each copy access for a different price, according to the time of day,
the geography of the network or the willingness of clients to pay. Each redundant web
Service Copy is thus a miniature business, like a retailer’s branch store. Like the clients,
the service providers also have a private value for service access (sa) . In addition, there is
private value for buying network resource access (ra) from the hosting node:

� � � �, ,
SC sa sa ra ra
j p j p ju p v v p� � � � (2)

� A Resource denotes a host computer, which provides a limited number of storage space
and access bandwidth for service transmission. The network connections between the re-
sources are simulated to be of equal length and thus of equal transmission time and costs.
The resources and network owner (the network provider) allows service providers and cli-
ents to communicate using cables, routers, gateways and other, hardware or software net-
work layer instances. For the usage of these resources, he gains income from all partici-
pants – the more participants, the more money can the network provider make. However,
more participants means more traffic in the network, and above some level the traffic can
get so extensive that the existing resources are no longer sufficient. However, if the di-
mensioning of resources is too large, the income from the participants might not be high
enough that the resource investment is economically justified. In the long run, the network
provider will provide enough network resources for the average use, but will be vulner-
able to usage spikes. These resources incur costs, and the network provider aims to fill
these costs and to make profits by increasing the usage of the resources:

(3),
R
ku p v� � p k

Ru

Summing up all utility functions over the number of respective participants, the parameter
Social welfare utility (SWF) measures how the aggregate of all the individual utility is maxi-
mized. The equation thus can be written as

C SC
SWF i j kU u u� � �� � � (4)

After each successful trade, the sum of all utilities of all participants increases. A fictive final
state would have maximum overall utility and is Pareto-optimal, which means that no single
agent can propose a change that does not decrease any other’s utility. However, as ALN nodes
appear and disappear dynamically, such a solid state may never be reached. Under the restric-
tion of an imperfect knowledge situation, a total optimal value of SWF can only be measured
in hindsight.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 17 -

4 Fundamental components in CATNETS
Application Layer Networks (ALN) encompass heterogeneous resources by a high number of
geographically distributed devices and administrative domains, which are logically coupled
together for providing processes on application level. This comprises both computational and
data services.

We expect ALNs to be shaped by lots of basic services that can be dynamically combined to
value-added complex services (like in Service-oriented architectures (Singh and Huhns
2005)). These basic services require a set of resources, which need to be co-allocated to pro-
vide the necessary computing power (like in computational Grids). The orchestration and cus-
tomization of these basic services and resources can be understood as an inherent service, that
must be accomplished by the network as well, due to the complexity and the expertise re-
quirements which must be hidden from the application.

We thus divide the playing field in two layers, the application layer and the resource layer.
Layers, both in software (Bachmann, Bass et al. 2004) and networks (Tanenbaum 1996), al-
low to hide complexity and to provide common interfaces at the vertical touching points.

In these two layers, we contemplate three different roles, which are:
- complex services (application layer),
- basic services (application layer and resource layer) and
- resources (resource layer).

Application Layer

Resource Layer

Complex
Service

Basic
Service

Resource

Application Layer

Resource Layer

Complex
Service

Basic
Service

Resource

Figure 5: Layered-view on ALNs

Basic services thus offer the interface to accessing computational resources for complex ser-
vices, while hiding the orchestration and implementation details. In existing Grids, this more
user-centered view is not needed, as the computation requests are already expressed in appro-
priate semantics (in what we call the resource layer). In Service-oriented computing, users
define complex business job requirements, which are then broken up into collections or se-
quences of basic services that together provide the desired functionality.

In both layers, the participants similarly have various objectives, tasks, strategies and demand
patterns, which might change dynamically and unpredicted during life time. Traditional ap-
proaches, using centralized policies require complete state information which is not available
in dynamic and complex networks (Krauter, Buyya et al. 2001). As an acceptable system-
wide performance matrix is impossible to define, we use an economics-based paradigm for
the management or resource allocation and orchestration (Buyya 2002).

The economics-based paradigm is derived from human economies, where decentralisation and
heterogeneity are successfully managed. These models, when involving decentralized deci-
sion-making, are based on exchanging and acting on price signals. The participants work for
their own utility; thus, they evaluate the signals received and act according to some utility
function, which predicts an utility increase out of the effect of that action. On a system-wide

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 18 -

scale, a bird's eye view on such market dynamics shows continuous matching of demand and
supply, a case of emergent coordination. If trying to deliberately construct such automated
markets, we are searching for coordination mechanisms, which take the dynamicity of the
market into account.

This section will provide a detailed presentation of the market models, which are understood
as fundamental components for the Catallaxy Realisation. Two different market approaches
are compared, the baseline and the Catallactic market. The baseline market is a centralized
market with one centralized matchmaker. This instance tries to fulfil all clients’ requests by
matching providers’ offers with clients’ requests (see D1.1). A completely decentralized mar-
ket is the Catallactic market. In this market there is no central matchmaker, the clients negoti-
ate with the services directly, abstaining from global knowledge.

Both markets are two stage markets. One market is contemplated as a service market, a client
(complex service) requests a set of basic services to achieve the desired functionality. The
other market is a resource market. On this market the basic service buys and co-allocates the
required resources, which allow it to deliver its own part of the required service functionality.

For a circumstantial comprehension of the markets, the terms used are definable as:

Complex Service: (Former client in CatNet.v1) A modular software application which needs
a set of basic service capabilities for fulfilling its goals.

Complex Service Logic: Translates the requirements of a complex service to a set or se-
quence of modular basic services.

Basic Service: A module includable in a complex service.

Basic Service Logic: Translates basic service (depending on the multi-attributive require-
ments of the clients) in resource policy.

Co-Allocator: Tries to accomplish resource policy, obtained from Basic Service Logic. Pol-
icy can be split to several Local Resource Managers.

Local Resource Manager (equals manageable entity): Manageable interface to Resources,
which hides resources hardware (low level) details.

Resource: Low level resources can be obtained by Local Resource Managers.

In the remainder of this section, we compare our market model with existing implementations
in our own assessment project CATNET, Bittorrent, PlanetLab, and Coral. The purpose is to
nearer specify what functionality and what components need to be placed in the particular
participating objects.

4.1 Market Model

Current Grid Computing architectures exhibit fairly static resource infrastructure which is
connected by physical stable links (e.g. enterprise grid). The shift to a pervasive grid, that
could exist ubiquitously, demands for a more dynamic consideration of resources and connec-

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 19 -

tions. In CatNet.v1 the used market model addressed grids with a comparably static resource
infrastructure. An overview of the market is shown in Figure 6. The Client requests a service
transaction and inquires the available service copies for an offer. These copies will after re-
ception of the request try to contract the resources on their current resource node to be able to
offer the service. If resources are available and contractable, the service copies begin to nego-
tiate with the client. This is an m:n:1 relationship. The client and the service copy negotiate in
an m:n market, as services are available for everybody and clients could contact all service
copies. Service copies could fail. Possible reasons for failure can be software updates or loss
of connectivity.

Service Copy and Resource build an n:1 relation, as only local resources can be contacted.
This is contemplated as the second market. Clients request demands in random time intervals,
set by the simulation environment. The service copy could be understood as business process
to be included in application software on the client side.

Client

m n

Service
Copy

Service
Copy

first market

Service
Copy

Resource
Node

Resource
Node

1

second market

A Service Copy
only can buy a
fixed resource
bundle from the
node she is
located on.

Figure 6. Market model of predecessor CatNet.v1

CATNETS extends the CatNet.v1 market to a complete two stage market, to match dynamic-
ity of application areas in future grid technologies (Figure 7). The market is understood as a
decentralized control mechanism for services and resources. To satisfy the needs of future
application domains in grid and peer-to-peer networks, several alterations to the primary
model are proposed:

The client is replaced by a complex service, and could be represented by a modular software
application which needs (remote) basic service capabilities for execution. The intention be-
hind this perception is that the client and the complex service are shielded from the details on
the resource layer and site. Ideally, both only interact with the basic services which are lo-
cated in the system. Resources are not visible for them at any time. The complex service con-
tains a service selector instance that selects and contracts the basic service.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 20 -

The basic service is split in the basic service logic and a resource allocator. The logic is able
to negotiate with the complex service and to translate the requirements for service execution
in a resource specification (e.g. CPU, storage and quality of service requirements, etc.).

The resource allocator gets the resource specification and broadcasts the respective demand
to the local resource managers. This comprises bundles and co-allocative negotiations. Bun-
dles are understood as an n-tupel of resource types (e.g. CPU, storage, and bandwidth); co-
allocation describes obtaining resources for one single service transaction from various local
resource managers at the same time. Local resource/job scheduling is not in the focus of the
project and will not be further analyzed: The local resource manager hides all details of the
allocation.

On the first market, complex service and basic service negotiate, whereas complex service acts
as a buyer, the basic service as a seller agent. The same market roles can be found at the re-
source layer, the resource allocator is the buyer agent, the local resource manager acts as
seller agent.

Contemplating the second market, it is extended to a n to k market: n service copies can bar-
gain with k resource services to fulfil their service demands. This takes dynamic resources
into account. Resources are in our view entities that can fail like basic services which are sub-
ject to maintenance and inspection procedures or link failures.

Complex
Service
Logic

Local
Resource
Manager

m n k

Basic
Service
Logic

Resource
Co-Allocator

Local
Resource
Manager

first market second market

Application
Layer

Resource
Layer

Basic Service

Resource Co-Allocator
gets a resource bundle
request and buys this
resource bundle from one
or more local resource
managers

Delivers service
and maps service
demand to a
bundle of resource
demands

Service
Selector

Complex
Service

Figure 7. CATNETS market model

In CATNETS, a deviating scenario is possible. In prevailing grid applications, the application
layer is not considered in particular; both markets are located on resource layer. The transla-
tion to resource specifications is done on the complex service logic that maps its own resource
demands to a resource selector, which buys resources from different resource allocation in-
stances. Figure 8 shows this model as an alternative to the generic CATNETS market model.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 21 -

Complex
Service
Logic

Local
Resource
Manager

m n k

Resource
Allocator

Local
Resource
Manager

first market second market

Application
Layer

Resource
Layer

Resource
Selector Resource

Allocator
Complex Service

Figure 8. Alternative CATNETS market model

This model includes certain drawbacks concerning complexity on the client side. It is pre-
sumed, that the client/complex services owns knowledge about the translation process form
his demands to resources. In the upper model the knowledge is split and sourced out to the
network of basic services, which allows reducing complexity and performance claims from
clients, which gives the opportunity to model light-weighted clients (like mobile phones,
PDAs).

CS

SS

BS

5

4
3

2

1

Figure 9. Execution of a service transaction as a high-level sequence diagram

Figure 9 depicts the general sequence of how to deploy a service. The complex service (CS)
sends a requestBasicService to the Service Selector (SS), which contacts all discovered and
available basic service instances in an asynchronous communication (step 1). The Basic Ser-
vice initiates the negotiation process (steps 2 and 3) if it can contract a resource bundle for
service completion. The Service Selector informs the complex service on which service can
used for execution of his job (step 4). In step 5 the CS uses the BS according to the services
delivered by the SS.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 22 -

Summing up, CatNet.v1 and CATNETS can be compared like presented in Table 1.

Table 1. Comparison of CatNet.v1 and CATNETS market models

CatNet.v1 CATNETS

� N : M : 1 market � N : M : K market

� A service can only use the re-
sources he is hosted on.

� A service can use different resources
simultaneously

� 3 market roles � 4 market roles (services contain two
market roles)

� Static bundling on the resource
market; client cannot use more
than one service for fulfilment of
his request

� Service-defined bundling on resource
market; clients can access several ser-
vices at the same time

� Sequential negotiations � Parallel negotiations

� Only service copies may fail � Services and resources may fail

4.2 Components

Within the market model every participant has a distinct role. Figure 10 depicts the relevant
use cases of these roles. All roles will be described in the following section.

� The CS offers itself to the client (offerComplexService) which is outside of our focus,
so it does not exist in the diagram.

� For job completion the CS requests a BS (requestBasicService). The request is gener-
ated by the complex service logic which knows which types of basic services are nec-
essary for execution (selectBasicService). This SS is exclusively activated when there
is a request received and is similar to a bill explosion in logistics.

� SelectBasicService is called by the Service Selector. The Service Selector successively
calls a search algorithm (searchService), a rankItemList procedure, a bilateral negotia-
tion procedure (negotiateItem) and after each successful transaction a clearing method
(doClearing). The search should deliver all available basic services which could pro-
vide the desired service (searchService). This list is thereafter sorted by the ranking
process (rankItemList). The service selector will then initiate the negotiation with the
listed services in the ranked order and his expected service-dependant utility increase
(negotiateItem).

� The basic service logic, building the opponent in the first market, offers a basic service
(offerBasicService) and uses the same negotiation procedure like the service selector.
Note, that there is no advertising possible, thus this is a demand driven market.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 23 -

For offering a basic service, the basic service logic needs to contract the required resources
(on resource layer). This translation request can be done in advance, during negotiation and
after the contract with the complex service.

1. Contracting resources in advance requires a calculated forecast for the future de-
mand (Buyya 2002). For a centralized allocation mechanism this might be suitable
as demand and supply fluctuations can be absorbed over the whole network. In de-
centralized decision-makers, this is quite a complex task, as demand and supply
can change rapidly, and the decision-makers will not be able to anticipate this
situation by their local knowledge. Therefore, they will be exposed to a higher risk
of bankruptcy.

2. Contracting resources after closing the service contract might lead to insufficient
resource offers on the resource market and thus to unaccomplishable contracts.
Economically considered, this leads to high risks in reputation on the market.

3. Contracting the resources during negotiation is considered as best suited. Before
giving a first proposal to the opponent, the negotiation is delayed and a contract is
trying to be accomplished with several local resource managers. This has the in-
herent advantage, that supply changes in the resource market can be transferred
immediately to the service market. This reduces risks for the basic service and bal-
ances both markets. If there are not sufficient resources available, the basic service
needs to contract resources for a higher price and claims that surplus in the ongo-
ing negotiation from the complex service.

We will focus on possibility 3, as it seems to be beneficial.

� For service execution the basic service logic requests a resource bundle (request-
ResourceBundle). The further process of contracting/allocating the resource is
done by the resource co-allocator. The selection of a resource bundle is done
analogous to the selection of a service, with the exception, that a bundle is re-
quested (selectResourceBundle), whereas on service market only one service can
be negotiated per request.

� The local resource managers offer resource bundles (offerResource). The resource
bundle could be a tuple consisting of bandwith, CPU, and storage. The manager is
the seller agent of the resource market, having the ability to negotiate with the re-
source allocator (negotiateItem). The negotiation is also initiated by the resource
co-allocator.

� Finally, the clearing is invoked by the seller or buyer side of the markets (doClear-
ing). The decision on this fact is unimportant, due to the fact that the modelled
agents are benevolent.

EU
-I

ST
 P

ro
je

ct
 IS

T-
FP

6-
00

37
69

 C
A

TN
ET

S
C

A
TN

ET
S

- E
va

lu
at

io
n

of
 th

e
C

at
al

la
xy

pa
ra

di
gm

 fo
r d

ec
en

tra
liz

ed
 o

pe
ra

tio
n

of
dy

na
m

ic
 a

pp
lic

at
io

n
ne

tw
or

ks

- 2
4

-

Lo
ca

l R
es

ou
rc

e
M

an
ag

er

Co
m

pl
ex

 S
er

vi
ce

 L
og

ic
Ba

si
c

Se
rv

ic
e

Lo
gi

c

R
es

ou
rc

e
Co

-A
llo

ca
to

r

re
qu

es
tB

as
ic

Se
rv

ic
e

tr
an

sf
or

m
R

eq
ue

st
To

R
es

ou
rc

es

of
fe

rR
es

ou
rc

eof
fe

rB
as

ic
Se

rv
ic

e

re
qu

es
tR

es
ou

rc
eB

un
dl

e

se
le

ct
R

es
ou

rc
eB

un
dl

e

se
le

ct
Ba

si
cS

er
vi

ce

of
fe

rC
om

pl
ex

Se
rv

ic
e ra

nk
It

em
lis

t

ne
go

ti
at

eI
te

m

Se
rv

ic
e

Se
le

ct
or se

ar
ch

It
em

se
ar

ch
Se

rv
ic

e

se
ar

ch
R

es
ou

rc
e

«e
xt

en
d»

do
Cl

ea
ri

ng

«e
xt

en
d»

«e
xt

en
d»

«e
xt

en
d»

«e
xt

en
d»

«e
xt

en
d»

«e
xt

en
d»

«e
xt

en
d»

«a
cc

es
s»

«a
cc

es
s»

«a
cc

es
s»

«a
cc

es
s»

Fi
gu

re
 1

0.
 U

se
ca

se
di

ag
ra

m
 o

f t
he

se
rv

ic
e

ac
qu

is
iti

on
 p

ro
ce

ss

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 25 -

Every player in the market can be modelled as a software agent. The players get their basic
functionality (communication, learning algorithms, strategies etc.) from an agent source ab-
stract class. In Figure 11 the service agents contains the buyer and the seller. The specializa-
tion and concrete implementation of the agent source is done in the derived components’
classes.

Figure 11. Agent source and specialized agents in CATNETS

The basic service and the resource allocator are modelled as separate agents, as the complex-
ity should be reduced. Both will need a special interface to exchange their transformation
specification (prices, market development, etc.) from service supply to resource demand.

4.3 Lifecycle of Agents

Initialisation

Selleragent Buyeragent

Information

Matching

Execution

Negotiation

Evaluation

Identification of
Demand

Offer service/
resource

Search and
Selection

Send Information/
Reputation

Negotiate usage
conditions

Negotiate usage
conditions

Payment and
UsageProvisioning

Exchange
evaluation

Exchange
evaluation

Transaction phases

Figure 12. Lifecycle of agents

This section presents a general model of transaction phases and the mappings of this model to
the buyer and seller agents. The lifecycle starts with an initialisation phase, which is split into
an information subphase and a matching subphase.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 26 -

� The initialisation phase prepares the agents for the proceeding negotiation phase. In
the information phase the buyer agents (resource co-allocator and complex service) try
to identify the demand. The seller side (basic service and local resource manager) of-
fers his selling items.

� The matching brings together the buyer and seller agent. The buyer agent initiates this
process after specification of his demands. Seller agents can support the buyer agents
with additional information of the service or their reputation.

� A parallel, bilateral exchange of information between buyer and seller agents shapes
the negotiation phase. The usage conditions between seller and buyer agents are multi-
attributive items (like basic service on the first market and resource bundles on the
second market).

� The execution phase contains deployment and clearing of the contracted service,
which the seller agent delivers on demand. Often the evaluation phase is omitted and
the process begins again.

� In CATNETS, the evaluation phase analyzes the business relationship between the
buyer and seller. Information about evaluation is exchanged between them. This in-
formation is used to optimize the next business relation ship between a seller and
buyer agent.

4.4 Interactions between market participants

The sections above gave a short overview over the interaction of the market participants. Here
we will present a deeper insight of these interactions and classify them into the widely ac-
cepted taxonomies of grid economics literature.
There are several generic models to shape the negotiation behaviour of the agents. A general
framework is presented in (Buyya 2002).

- Commodity markets,
- Posted Price model,
- Bargaining model,
- tender/contract-net model,
- auction model,
- bit-based proportional resource sharing,
- Community/coalition/bartering/share holders model and
- monopoly/oligopoly etc.

In our decentralized architecture an iterative bilateral negotiation protocol, similar to a con-
tract-net, is used because we have a state of incomplete information. Both agents approximate
to the trade-off point in iterative steps exchanging offers and counter-offers. This process is
described as monotonic concession protocol (Rosenschein and Zlotkin 1994).

A preliminary model of our protocol is shown in Figure 13. For clarity, the basic service is
split in its buyer and seller side – basic service login (seller side) and resource co-allocator
(buyer side).

The complex service requests a basic service, according to his process demand. The basic
service translates this request to resource layer and the resource co-allocator and starts the
negotiation with several local resource managers. The local resource manager analyses the
request and creates an offer and this process iterates until an agreement (accept) or reject is

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 27 -

reached. If an accept is reached, the resource allocator confirms and informs the basic service
about the contracted resources. The basic service continues the negotiation with the complex
service, using the information from contracting the resources. The negotiation on resource
layer is processed only once. It is impossible to renegotiate a resource contract. The resuming
negotiation with the complex service uses the same negotiation protocol and after an accept
the payment process is initiated which pays the basic service and the resource. A reject on the
service market will lead to a reject ton the resource market.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 28 -

/ ResourceCoAllocator / LocalResourceManager/ BasicService/ ComplexService

1 : \request / cfp\

2 : \translateRequest\
3 : \request / cfp\

4 : \bargain\

5 : \propose / reject\

6 : \bargain\

7 : \propose / reject\

8 : \accept\
9 : \confirm\

10 : \inform\
11 : \propose\

12 : \bargain\

13 : \propose / reject\
14 : \bargain\

15 : \propose / reject\

16 : \bargain\

17 : \accept\

18 : \confirm\

19 : \invokeService / pay\

20 : \pay\

Figure 13. UML sequence diagram of the negotiation between the market participants

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 29 -

4.5 Additional conditions for Catallaxy realisation

For the realisation of the Catallaxy paradigm several additional conditions have to be imple-
mented in the decentralized CATNETS architecture.

The preceding service discovery phase can be discussed and implemented separately, depend-
ing on the application concerns. Discovery is necessarily required to initiate the match-
ing/negotiation procedure and therefore must deliver sufficient service offers to allow a selec-
tion between those items. However, it does not necessarily involve

Considering the preparation and calculation of price proposals, a negotiation module is re-
quired that constitutes the interface between internal perception of the environment and the
surrounding (sensor and effector). These negotiation strategies need to use learning mecha-
nisms, to react to changes in the environment and to implement a method that adapts to the
behaviour of the surrounding agents.

4.5.1 Service discovery
The main project interest is the service selection process. However, a successful search, deliv-
ering an (unsorted) list of suitable services, is a necessary precondition for the sorting and
selection process. This is implied by the effect, that clients lack global, persistent knowledge
about the system’s states in a dynamic surrounding and whether a suitable service/resource
exists and is still alive/available for consumption.

Implementing a central catalogue for service discovery, like shown in common web search
machines (e.g. Google) or former file sharing systems (Napster etc.) is contemplated as an
essential obstacle for a decentralized operation of dynamic application networks and counter-
productive for the evaluation, as this implies misallocations resulting form the discovery
process. Thus, solely decentralized discovery mechanisms are accounted for evaluation.

4.5.1.1 Unstructured discovery
The simplest decentralized search method is using an unstructured flooding mechanism
(Gnutella 2000, Karl Aberer, Magdalena Punceva, Manfred Hauswirth and Roman Schmidt,
Improving Data Access in P2P Systems, Matei Ripeanu (Ripeanu 2001), Peer-to-Peer Archi-
tecture Case Study: Gnutella Network). Flooding works under the assumption of a nodes’
neighbour relations. Queries are not transmitted to a central catalogue, but instead distributed
among the peers: A search request is forwarded to all neighbours and all neighbours behave
respectively (Figure 14). This flooding is limited by a time-to-live parameter (TTL) that re-
stricts an infinite search. Every node, storing the required item, send a list of all content
matching the query to the originating node the same way back and waits for a direct download
request by him. Gnutella uses this unstructured overlay network in that the topology of the
overlay network and the placement of the resources (files) is largely unconstrained.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 30 -

Peer

Request
Initiator

Peer

Peer

Peer

Peer

Request Messages

Service Provision

Figure 14. Decentralized Service Discovery in Gnutella

Obviously, the load of each node grows linearly with the total number of queries, which
grows with system size. So, this approach is not scalable. It implies that elevated network
traffic has to be accepted under the constraint, that an existing service is not reliably discov-
ered in large diameter networks, due to the time-to-live parameter and the decreased search
space. Several improvements have been made to increase the search behaviour of the flooding
mechanism, and delimit the network consumption of the algorithm. The improvements are
mainly developed to reduce the message emergence, like e.g. k-random walker search, adap-
tive TTL, one hop replication etc.

For example, the GIA algorithm combines some innovations to P2P systems:
- A dynamic topology adaptation protocol, that aligns nodes in short reach of high

capacity nodes,
- one hop replication of data pointers, so all neighbours maintain pointers to the

content offered by their immediate neighbours,
- an active flow control, to abandon overloaded hot-spots,
- a search protocol, that is based on biased random walks, directing queries to to-

wards high capacity nodes.

Simulations showed that these improvements provide a three to five orders of magnitude in
the total capacity of the system and retains robustness to failures. A distinguished melioration
of the flooding mechanism is the percolation search algorithm described in (Sarshar, Boykin
et al. 2004), which limits the search messages by concentrating on highly connected nodes
and building request-individual internal hierarchies in the (power-law) service network. The
percolation search algorithm consists of

(i) Content Caching: An initial replication of a node’s content list or directory in the
random walk visited nodes,

(ii) Query Implantation: A query first executes a short random walk and implants its
query request on the visited nodes and

(iii) Bond Percolation: A probabilistic broadcast scheme for propagating queries.
Percolation simulation results showed, that unstructured P2P networks can be made scalable.

Following Gnutella’s lead, other decentralized (file sharing) systems have become popular.
KaZaA is using FastTrack, which adopts supernodes that have higher bandwidth and connec-

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 31 -

tivity. Associated supernodes contain pointers to the content of the peers and each search re-
quest is forwarded from the peers to the supernodes. Only between the supernodes the flood-
ing mechanism is implemented. This approach appears to offer better scaling performance;
however, its scalability in comparison to Gnutella has neither been analyzed nor measured
(Making Gnutella-like P2P Systems Scalable).

4.5.1.2 Structured discovery

In contrast to unstructured overlay networks, structured search algorithms promise a guaran-
teed item discovery and a reduced message emergence. The usage of distributed hash tables
(DHTs) in CHORD (Balakrishnan, Kaashoek et al. 2003), CAN (Ratnasamy, Francis et al.
2001), Pastry (Rowstron and Druschel 2001), TAPESTRY (Zhao, Kubiatowicz et al. 2001),
VICEROY (Malkhi, Naor et al. 2002) offers a guaranteed search and distribute the search
process to the connected nodes in the network. The search does not rely on random search
behaviour in the network but calculates the closest known node on the straight way to the re-
quested service instance. Thus, a performance of O(log N) can be guaranteed, which improves
Gnutella’s performance of O(n) (Chawathe, Ratnasamy et al. 2003).

Distributed Hash Tables (DHTs) are a class of systems that provide "hash-table like semantics
at Internet scale”. The original rationale was to provide a scalable replacement for not scalable
Gnutella-like file sharing systems. In recent years a lot of research has been done on these
DHTs. All of these proposals are structured overlay networks, where both data placement and
overlay topology are completely controlled.

For unstructured networks, churn does not cause big problems as long as it is not discon-
nected by all of its neighbours. A peer can then re-run the bootstrap algorithm, to replace it-
self to reconnect to the system and a new location. DHTs, in contrast, are highly vulnerable to
churn, that causes significant overhead: Most DHTs require O(log n) repair operations after
each failure. Unpredicted failures, where peers cannot inform the network about that expected
breakdown, require even more time to discover the failure and replicate lost data and pointers.
Anticipating a high churn rate, the overhead caused by the repair operations of the DHTs can
easily overwhelm low-bandwidth nodes (Chawathe, Ratnasamy et al. 2003).

Existing networks show complex network characteristics and tolerance to node deletions
(Ripeanu, Foster et al. 2002; Saroiu, Gummadi et al. 2002). However, client-based protocols
that guarantee the global emergence of scale-free networks with tuneable properties have not
been implemented.

4.5.1.3 Evaluation

For the selection of a search algorithm, CATNETS related criteria have to be taken in special
consideration. Scalability, simulation ability and applicability for dynamic networks have to
be taken into account as both simulation and prototype should behave the same in service dis-
covery to exclusively measure the effect on service selection. However, DHTs lack scalability
in dynamic networks, as state changes (e.g. churns) lead to high overhead and might influence
the simulation behaviour considerably. They are expected to burden the execution process of
the simulation in an unacceptable and unpredictable manner and thus cannot be favoured for
implementation in CATNETS, as they constitute a risk for the project goals. Contrariwise,
newer, revised flooding algorithms (GIA, Percolation Search) in unstructured overlay net-
works are under development and offer a scalable and easy implementable mechanism, abdi-
cating the performance losing risks of DHTs.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 32 -

Thus, we regard the implementation of a simple flooding algorithm as to be best suitable for
CATNETS that – in a real application – could be extended to one of the revised flooding
mechanisms presented above.

4.5.2 Negotiation

As a basic principle, the negotiation strategy constitutes a search process in a space of poten-
tial agreements. The dimension of this search space is identical with the number of negotia-
tion attributes. Thus, a negotiation comprising quality of service, delivery time, and price
spans a 3-dimensional search space. In several cases, it is possible to map various attributes
into one criteria "price”, for example when delivery time affects the buyer’s usage and there-
fore justifies a change of the price. Multi-attributive negotiations are deepened in (Bichler
2001) and D1.1. The following section gives an overview in the negotiation concerns.

4.5.2.1 Type of negotiation

An automatic negotiation in an electronic market is shaped by an interaction of two ore more
software agents, exchanging communication acts. These negotiations can be accomplished in
two diverse types (Pruitt 1981; Jennings, Faratin et al. 2001), which differ in the handling of
the negotiation dimensions:

In integrative negotiations, participants exchange information about objectives and priorities
to seek for a common solution. This concept is recommendable if the opponents have to ac-
cept the negotiation dimensions which cannot be represented by prices. This postulates a co-
operation of the opponents for reaching the agreed target.
Distributive negotiations imply a participant’s step-by-step accept of concessions, bringing
both opponents closer in their expectations every negotiation round. Distributive negotiations
are marked by existence of a common utility space (Pruitt 1981), that can be represented by a
price. Thus, distributive negotiations give the option to reduce the negotiation dimensions.
This should result in a null-sum game, the utility one looses can be gained by the opponents
and the global utility in the systems remains constant.

4.5.2.2 Goal

The goal is a system wide pareto-optimum that can be consulted as an acceptable doctrine of
general goodness (Rosenschein and Zlotkin 1994): A solution X is pareto-optimal, if no agent
can further meliorate the achieved result without discriminating an opponent. That implies
that if solution X is not pareto-optimal, both agents could negotiate a deviating solution that
promises pareto-optimality. Sandholm (Sandholm 1996) extends this approach by introducing
various additional criteria for the optimality determination: from game theory he uses the
Nash-equilibrium that emerges if no agent has an incentive to diverge from his chosen selec-
tion.
Translated to prices, this means that pareto-optimality is a state in which no agent can in-
crease his budget without decreasing the budget of other agents (cp. Null-sum game). Utility
can be understood as budget increase per transaction and per period, sales volume or other
values taken from business economics.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 33 -

4.5.2.3 Strategy

The definition of a strategy how to reach the objectives of a negotiation is essential for model-
ling a market. In principle, the initial situation can be described like depicted in Figure 15. A
(human) principal defines an indifference price that equals his estimation about the value of
the good. For a buyer, this is a maximum price, for the seller a minimum price. So, the utility
gain equals the amount between price of the purchase and the indifference price. The start
price represents the price where the strategy begins to negotiate. By agreeing concessions, the
opponents come closer to the middle and a possible contract. A transaction is unlikely, if the
closure zone is empty, which might result when indifference prices do not build an overlap-
ping zone.

Money units

Indifference price
(Limitprice)

Price of purchase

Indifference price
(Limitprice)

Startprice

Closure ZoneBuyer Seller

Figure 15. Bilateral negotiation process (De Paula 2000)

The bargaining protocol schematized in Figure 15 can be implemented in different modes:
1) Buyers and sellers give their start prices without agreeing concessions. Thus, a con-

tract can exclusively be accomplished, when the start price of one participant is al-
ready in the closure zone. An example is the usage of catalogues, where offer prices
are fixed.

2) Only the seller performs concessions and the buyer remains at its start price. This is
represented by the Dutch auction.

3) Only the buyer performs concessions and the seller remains at its start price. This is
represented by the English auction.

4) Both agents get closer each negotiation step. This monotone sequence of concessions
describes a double auction (Friedman 1993).

However, the communication sequence is not sufficient for the description of the negotiation
protocol: mostly, several prospects are imaginable when receiving a proposal by an opponent:
The agent could reject the proposal, accept it or send a counter-offer. This decision should
include past and forecast experiences. The number of alternatives describes the complexity of
the decision process; the more alternatives exist, the bigger the search space, which increases
the quest for a suitable solution. Though, this may not exceed the time frame that is accepted
by the opponent for the reply message/counter proposal. According to (Preist 1998; Lomus-
cio, Wooldridge et al. 2000), four mechanisms/strategies for negotiation can be differentiated:

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 34 -

1) Rule-based mechanisms are subject to the premise, that all possible states are com-
pletely known and the environment remains static during processing. This might
be suitable for a market with fixed catalogues, as re-consulting a catalogue with
static prices and articles will not change the decision rules. Double auctions, how-
ever, cannot be matched, as implementing all decision alternatives when changing
prices or articles’ attributes is impossible. The conceived market model of CAT-
NETS will inherently comprise dynamic and complex states of the environment;
therefore rule-based mechanisms are not appropriate.

2) Argumentative mechanisms include not only the proposal for prices but also pur-
chase-supporting arguments which extend the negotiation dimensions. The argu-
ments highly depend on the application, thus no standards can be set and this im-
plicitly leads to a higher complexity in decision and modelling. Furthermore, it
exhibits a deviation of the single dimension negotiations.

3) Game-theoretic approaches assume the market situation to be a multi-stage game
between buyer and seller. The strategy results from the analysis of the negotiation
problem. For the formulation of a result, the availability of an offer of the coun-
terpart is not necessary; the analysis can rely on prospects. The internal model of
the agent comprises a calculus which explicitly includes all probable behaviours
of the opponents.

Multi Agent Systems can be implemented using Game-theoretic approaches, but
due to the high computation prerequisites, these systems may be limited to a num-
ber of 20 agents (Müller and Eymann 2003). Thus, Game-theoretic approaches are
not suitable for the concerned market model, due to the scalability concerns.

4) Heuristic-adaptive approaches assume incomplete knowledge a priori, and therefore
they also expect defective decisions. Agents adapt their strategy by relating the
behaviour of the market and their own activities (Sathi, Fox et al. 1989; Sycara,
Gasser et al. 1989; Cliff and Bruten 1998; Bussmann and Schild 2000). The coun-
teroffer of the opponent is contemplated as feedback of the former own proposal.
As the whole spectrum of opponents’ proposals cannot be anticipated completely
beforehand, the strategy uses forms of "trial and error” to formulate offers. An
easy example of use is shown in (Preist 1998) where heuristic rules are combined
with easy learning rules. Each agent is willing to negotiate a price that is below
(buyer) respectively above (seller) its own price limit. His autonomous decision is
to determine a price for selling/buying. The market mechanism is a round-based
continuous double auction, and all agents use the same implementation. The im-
plemented heuristics determine the target price of the agents in their negotiation
steps. A number of numerical or boolean parameters determine the strategy; these
variables will be adapted during the lifetime of an agent. In MAS learning meth-
ods like neural networks (Fausett 1994), Q-Learning (Sandholm and Crites 1995),
classifier systems (Holland 1992), Bayesian networks (Neal 1996) and evolution-
ary algorithms (Goldberg 1993) can be identified.
This implementation is typical for realisation of heuristic-adaptive strategies.
From the mentioned mechanisms, heuristic adaptive strategies show the most
scalable behaviour (Eymann 2003) and are favoured for adoption in large MAS.
Due to the fact, that they show scalability and a good behaviour they will be cho-
sen for implementation in CATNETS.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 35 -

The following section introduces the depicted learning algorithms and evaluates
them for adoption in CATNETS.

4.5.3 Adaptation of strategy

The combination of artificial intelligence and machine learning has become increasingly
complex in the last years, adopting evolutionary algorithms, fuzzy logic or neural networks.

Brenner (Brenner 2002) classifies learning methods in non-conscious learning, routine-based
learning and belief learning. However, non-conscious learning processes are discussed not to
appear in experiments, belief learning focuses on the individual and not on the whole popula-
tion. For global optimization, belief learning seems not to be suitable.

For bilateral negotiation processes, optimizing global behaviour of a population, routine based
learning strategies are most applicable.

Routine based learning strategies describe the learning process on population level. It is ac-
ceptable, to model the learning process not granularly on the individual level, as the emerging
behaviour of the complete system is in focus of CATNETS.

There are mainly two possible ways how to implement a reinforcement learning strategy: the
Roth-Erev model and evolutionary algorithms.

� The Roth-Erev (Erev and Roth 1998) model is a quite simple model, which is ade-
quate for a small, fixed set of actions and strategies. Because of being limited to a
small, pre-defined set of actions, the Roth-Erev model is not applicable of CAT-
NETS.

� Evolutionary algorithms are able to deal with a very large set of actions and strate-
gies and allow the sets of strategies increase endogenously. Therefore this type of
algorithms is more applicable to CATNETS.

Nevertheless, both models should not be considered to be more than quite crude approxima-
tions on a population level of real conscious learning processes. In economic simulations lots
of research efforts on evolutionary algorithms can be found.

We selected the STDEA (Smith Taylor Decentralized Evolutionary Algorithm) for CAT-
NETS (Smith and Taylor 1998). This algorithm showed good results in the predecessor pro-
ject CatNet. Other possible strategies are numerical optimization procedures. These algo-
rithms search for the parameter configuration which makes the maximum profit. Eymann an
Müller (Müller and Eymann 2003) could show, that results in similar learning mechanisms
showed very similar results.

The STDEA is a decentralized evolutionary algorithm, which means that it has no global
evaluation metric (fitness value), which is used in Genetic Algorithms (Goldberg 1993) to
separate the underperforming participants. A fundamental quality of the mechanism is the
decentralized communication and fitness evaluation, using locally available data. Every agent
sends a plumage object after a successful transaction, advertising its average income (fitness)
and its genes (genotype) to all agents of the population after an evaluation phase, i.e. after it
has carried out a certain number of negotiations with this genotype. If an agent receives a
plumage object from other agents, it decides using a blindness probability, whether the plum-
age object is evaluated, avoiding premature unification of the genotype. Sender and recipient

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 36 -

remain anonymous. If a certain maturity threshold of received plumages is exceeded, the
agent replaces his old genotype with the evolved version after the completion of evaluation,
selection, recombination and mutation phases as in normal genetic algorithms. The mutation
rate is also influencing the algorithm, which determines the frequency and the extent of ex-
plorative behaviour of the population. An implementation of the STDEA algorithm is shown
in Figure 16.

When comparing with other, numerical optimization strategies (Press, Teukolsky et al. 2002)
and decentralized learning, it must be admitted, that e.g. Powell’s algorithm as well as the
simplex method provide better results than the STDEA, because evolutionary algorithms per-
form a routine based learning, which constitutes a slower learning process than observed in
reality. However, the substantial advantage of optimization strategies to decentralized learn-
ing mechanisms becomes obvious if the size of the population is varied: In the case of one
single agent, the numeric algorithms take advantage of their directed search, in contrast to the
random exploration of the decentralized learning mechanisms. Increasing the size of the popu-
lation the optimizer will reach its performance limits, whereas the learning mechanisms do
not lack scalability and even perform better with an increasing number of agents.

A mixed model is OVID (Optimized Variation-Imitation-Decision) (Brenner 1996; Müller
and Eymann 2003). The OVID model presents an option of combining the advantages of the
genetic algorithm STDEA, the numeric optimization procedure of the simplex method and the
imitating and directed exploring behaviour of human cognitive processes. This algorithm does
not depend on a constant information flow between the agents, but can meaningfully optimize
its own behaviour at any time. It is thus more robust than STDEA and yields better results
than pure numerical optimization approaches. The OVID model is currently only evaluated in
a test bed. There are no results using this algorithm in real application. Therefore, it is consid-
ered to be a risk for the project using this model for learning.

In CATNETS the use of the STDEA algorithm is recommended, which has proved to be able
to handle an elevated number of agents in simulation and prototype.

Figure 16 presents the UML Class diagram of the learning algorithm. The abstract class Gene
describes general methods which are similar in all concrete data types.

The class BooleanGene is derived from Gene and implements the (boolean) mutation process,
allowing exclusively changes from 1 to 0 or 0 to 1. FloatGene implements a creep mutation,
where the genes are changed in small steps.

The Genotype consists of the properties acquisitiveness, delta_change, delta_jump, satisfac-
tion, weightmemory, and reputation. These values are constant for each agent and can exclu-
sively be adapted by learning mechanisms.

Plumage defines the object which is used for exchange of genotype and fitness information
and therewith describes the learning information for the other participants.

IMutable and IRandomizeable standardize the interfaces, which can be called by the agents’
individual learning mechanisms.

Smith and Taylor (Smith and Taylor 1998) have set the configuration values defining the fre-
quency of the exchange of learning information, adding received plumages to the stack and
selecting received plumages for crossover and mutation.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 37 -

BooleanGene

+ randomize ()
+ mutate ()

FloatGene

~ gaussWidth : float = (float) 0.1
~ min : float = 0
~ max : float = 1

+ FloatGene ()
+ FloatGene ()
+ FloatGene ()
+ setMin ()
+ setMax ()
+ setFloatValue ()
+ getFloatValue ()
+ getDoubleValue ()
+ randomize ()
+ mutate ()
testInterval ()

Gene

+ replica ()
+ getGeneValue ()
+ setGeneValue ()
+ toString ()

Genotype

+ Genotype ()
+ Genotype ()
+ Genotype ()
+ Genotype ()
+ Genotype ()
+ Genotype ()
+ geneAt ()
+ randomize ()
+ mutate ()
+ mutate ()
+ cross ()
+ cross ()
+ toFloatArray ()
+ toString ()
+ setAcquisitiveness ()
+ getAcquisitiveness ()
+ setDeltaChange ()
+ getDeltaChange ()
+ setDeltaJump ()
+ getDeltaJump ()
+ setSatisfaction ()
+ getSatisfaction ()
+ setWeightMemory ()
+ getWeightMemory ()
+ setReputation ()
+ getReputation ()

IMutateable

+ mutate ()

IRandomizeable

+ randomize ()

Plumage

name : String
+ fitness : float
itemID : Integer
- tribe : String

+ Plumage ()
+ getName ()
+ getFitness ()
+ getSenderGenes ()
+ getTribe ()

senderGenes

Smith98

- CLASS_NAME : String = "Smith98"
mother : String
father : String
courterThreshold : int = 10
dieForChild : boolean = false
immortality : boolean = false
- reproduce : boolean = true
- plumCount : int = 0
- plumFreq : int = 0

+ Smith98 ()
getMate ()
+ learn ()
newGenotype ()
+ setLearningOwner ()
+ addPublicInformation ()
+ addPrivateInformation ()

Figure 16. UML Class diagram of the learning algorithm

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 38 -

5 Mappable applications

This section compares the CATNETS market model, and the component modules identified
so far, to existing applications with a great number of connected peers. All of these applica-
tions exhibit the unfavourable properties presented in the previous sections and require effi-
cient coordination mechanisms. By introducing the CATNETS market model, we aim to ame-
liorating the performance.

Considering possible application domains, the following 3 systems have been identified:
BITTORRENT, PLANETLAB and CORAL. They will be presented shortly and an analysis
is given on the possible matching of Catallaxy to those applications. This matching will be
done on the application layer. Lower Network layers are not explicitly mentioned.

5.1 BitTorrent

In the context of peer-to-peer networks, we have selected a P2P protocol which has a clearly
specified protocol, that is popular enough, and that is used for clearly useful and legal pur-
poses (some other P2P networks are almost only used for sharing copyrighted content). This
protocol is BitTorrent (Cohen 2003). BitTorrent in general is introduced in deliverable D3.1;
in this section we discuss the mapping to the CATNETS model.

A torrent consists of a central component, called tracker and all the current active peers (Izal,
Urvoy-Keller et al. 2004). BitTorrent distinguishes between two kinds of peers depending on
their download status: clients that have already a complete copy of the file and continue to
serve other peers, called seeds; clients that are still downloading the file are called leechers.
The tracker is the only centralized component of the system. The tracker is not involved in the
actual distribution of the file; instead, it keeps meta-information about the peers that are cur-
rently active and acts as a rendez-vous point for all the clients of the torrent.
A user joins an existing torrent by downloading a torrent file (usually from a Web server),
which contains the IP address of the tracker. Generic or specialized web search engines usu-
ally lead to pages where a file can be downloaded from one or several trackers. The user has
to select one torrent file (and thus the tracker) to start downloading the file which will let him
connect to the tracker and an initial seed with a complete copy of the file. In case of multiple
trackers available for the same object, statistics about every tracker are published to help the
visitor choose the right tracker. To update the tracker’s global view of the system, active cli-
ents periodically (every 30 minutes) report their state to the tracker or when joining or leaving
the torrent. Upon joining the torrent, a new client receives from the tracker a list of active
peers to connect to.

In terms of the CATNETS model, people interested in downloading a file, running a web
browser and a Bittorrent client has the role of a Complex Service. They look for a torrent file
(a tracker) on several online web catalogues and look at the statistics of several trackers offer-
ing the same file. They manually select one tracker (the Service market). The tracker adds the
requesting complex service to a swarm of peers (LRMs) exchanging fragments of the file of
common interest. All BitTorrent clients in the swarm belong to the Resource market and are
acting as Resources.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 39 -

Client/
Resource

m n k

Client/
Resource

first market second market

Application
Layer

Resource
Layer

Basic Service

Web
Catalogue

Complex Service

Tracker

Figure 17. BitTorrent and CATNETS

5.2 PlanetLab

PlanetLab (Chun, Culler et al. 2003) is a geographically distributed overlay network designed
to support the deployment and evaluation of planetary-scale network services. Two high-level
goals shape its design. First, to enable a large research community to share the infrastructure,
PlanetLab provides distributed virtualization, whereby each service runs in an isolated slice of
PlanetLab’s global resources. Second, to support competition among multiple network ser-
vices, PlanetLab decouples the operating system running on each node from the network-wide
services that define PlanetLab, a principle referred to as unbundled management.

The service-resource cycle in PlanetLab is as follows:

� In every node, the node manager is in charge of creating and allocating resources
to vservers (virtual machines), and the resource monitor is in charge of tracking
node’s availability of resources and informing the central agent about available re-
sources.

� The agent tracks nodes’ free resources, which are advertised to resource brokers
and offered as tickets to services interested in acquiring and using resources. This
agent is part of PLC (Planet-Lab Central), a centrally-controlled brokerage service
that can be decentralized using a delegation mechanism.

� In every service, the resource broker obtains tickets from agents on behalf of ser-
vice managers, which are in charge of redeeming tickets with node managers to
acquire resources, and if resources can be acquired, start the service in that node.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 40 -

In terms of the CATNETS model, people or processes interested in using a given service have
the role of Client. They should look for and select a service instance (a Service Copy in the
Service Market). All nodes (represented by node managers and resource monitors; acting as
Resources), all service instances (represented by resource brokers and service managers; ac-
ting as Service Copies), both mediated by the central Agent (PLC) belong to the Resource
market.

PlanetLab
Application

Node
Manager

m n k

Resource
Broker

Node
Manager

first market second market

Application
Layer

Resource
Layer

Service
Manager Resource

Broker
Complex Service

Figure 18. PlanetLab and CATNETS

5.3 Coral

Coral CDN (Freedman, Freudenthal et al. 2004) is a decentralized, self-organizing, peer-to-
peer web-content distribution network (use illustration in figure 1.2). Coral CDN leverages
the aggregate bandwidth of volunteers (typically PlanetLab slivers) running the software to
absorb and dissipate most of the traffic of web sites using the system. In doing so, CoralCDN
replicates content in proportion to the content’s popularity, regardless of the publisher’s re-
sources, in effect democratizing content publication.

To use Coral CDN, a content publisher — or someone posting a link to a high-traffic portal
— simply appends ".nyud.net:8090” to the hostname in a URL. Through DNS redirection,
oblivious clients with unmodified web browsers are transparently redirected to nearby Coral
web caches. These caches cooperate to transfer data from nearby peers whenever possible,
minimizing both the load on the origin web server and the end-to-end latency experienced by
browsers.

This requires two mechanisms: finding a close peer at first, then finding a close copy of the
requested object. The first is achieved by mapping Coral servers and clients into clusters
based on latency. The second is done using a locality-aware request routing algorithm or in-

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 41 -

dexing abstraction (also know as a Distributed Sloppy Hash Table or DSHT). Every Coral
peer is running three elements: a DNS server, a HTTP proxy and a DSHT element.

In terms of the CATNETS model, people interested in downloading a file, running an un-
modified web browser (or one with a Coral plug-in to "coralize” URLs) has the role of a Cli-
ent. They request a "coralized” URL, thus going to a Coral DNS server where a response, the
IP address of a close-by Coral proxy will be selected among many of them, based on the loca-
tion of the client (this is the Service market and the Coral http proxy has the role of Service
Copy). The client web browser will contact the http proxy with the given IP address. Then the
proxy will look for the requested file in its own store or it will look for a close copy of the file
in other peers using the Coral DSHT routing algorithm. Proxies belong to the Resource mar-
ket, the election in the market is determined by the DSHT algorithm looking for a close copy
of a file, and proxies are acting as Resources.

Resources

m n k

Resources

first market second market

Application
Layer

Resource
Layer

Basic Service

DNS
Server

Complex Service

Proxy

Figure 19. Coral and CATNETS

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 42 -

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 43 -

6 Summary

What makes Economics so attractive for computing environments is that its central research
question lies in the effective allocation of resources, provided by suppliers and in demand by
customers. In computing environments like Grid Computing, the resources in question are
processor time or storage space, while the economic actors are computers or web services
(Buyya, Abramson et al.; Buyya). It appears that, by just implementing markets in computing
environments, the satisfying ability of economics might be viable for creating cost-effective
computer architectures.

However, between the mostly descriptive economic concept and the normative technical im-
plementation lies a fundamental gap, requiring selective choice of how actors, resources,
goods, and markets are modelled and embedded in a technical environment. Some researchers
call this task "market engineering” (Weinhardt, Holtmann et al.). The basic purpose of market
engineering is to capture the inherently decentralized, dynamic coordination nature of the
economic concept, and to translate that into a technical realization, which allows optimizing
resource allocation.

The „market“ as a decentralized,
dynamic coordination mechanism

Economic Concept

Technical
Implementation

Service-Oriented Architectures

?

Figure 20: Realizing economic concepts in a technical implementation

There are several competing descriptive approaches to how economic resource allocation
mechanisms work. In general, Economics is essentially all about the coordination of systems
consisting of utility-maximizing agents, who satisfy their needs using some mechanism for
solving a distributed resource allocation problem. The effect of this mechanism is a state
where prices are set, so that supply and demand is perfectly balanced, and the number of
transactions is maximized (Kearney, Smith et al.). All implementation attempts try either to
recreate the mechanism, or to achieve the effect by using another mechanism, adding some
side condition like zero communication costs or a steady environment state.

Adam Smith’s proverbial invisible hand (Smith) was a first concept of a decentralised mecha-
nism without a co-ordinator, but Smith gave no implementation of that mechanism. A century
later, Leon Walras (Walras) introduced a central auctioneer, who iteratively solved the alloca-
tion problem out of total knowledge of supply and demand. With this mechanism, Walras was
able to generate the desired equilibrium effect.

Most of today’s economic research relies on Walras’ tatônnement process as a valid picture of
the mechanism, which influences also the possible realization in computing environments. An

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 44 -

example is the realization by Wellman (Wellman), titled Market-Oriented Programming
(MOP), in an distributed artificial intelligence (DAI) environment. Wellman takes the notion
that "an economy is a multiagent system” literally; the distributed agents individually com-
pute their utility functions and post that information to a centralized Walrasian auctioneer.
During the computation process, interrelated markets are successively brought to near-
equilibrium by the auctioneer, with the final general equilibrium effect as the "gold standard”
to achieve. MOP has been successfully used in electricity markets (Ygge), for multi-
commodity flow problems (Wellman), supply chain management (Wellman and Walsh) or for
negotiations about the quality of service in multimedia networks (Yamaki, Wellman et al.).

In contrast, Economics research on self-organization still aims at explaining the mechanism of
the invisible hand, e.g. Agent-based Computational Economics (Tesfatsion). Actually, there is
growing interest in using self-organization, as indicated by the start of large industrial re-
search concepts like IBM’s Autonomic Computing initiative. Autonomic Computing uses a
biological paradigm as a design and control metaphor, the autonomic nervous system
(Kephart and Chess). If the mechanisms underlying Hayek’s spontaneous order concept
(Hayek, Bartley et al.) can be properly understood, it might be possible to build large Auto-
nomic information systems using the Catallaxy approach, where artificial entities coordinate
themselves, just as human economy participants do in the real world. For a start, we have to
discuss whether the desired effects of Autonomic Computing are achievable (and describable)
using economic terms.

IBM’s Autonomic Computing Manifesto (IBM) describes seven characteristics, which self-
adapting systems should exhibit. The core characteristics are contained in the so-called CHOP
cycle of self-configuring, self-healing, self-optimizing and self-protection capabilities. The
self-configuration property is indicated in the variation of prices when adding or removing
service providers (cf. the different density regimes). The self-healing of the system is apparent
in case a service provider instance shuts down or a network connection gets broken (cf. the
different dynamics regimes). The application is self-optimizing, in that the agents constantly
attempt to change their strategies towards the maximum utility-eliciting negotiation positions,
which respectively lay on the total supply and demand curves. The self-protection of the ap-
plication finally can be reached by including security mechanisms like reputation tracking
(Eymann, Padovan et al.), which are effective in separating malicious and underperforming
agents.

In addition, viewing Autonomic Computing systems as Economic systems has some merits,
too. The main applications for AC systems will be deeply rooted in a business context. With a
biological background, you need to find biological translations for conceptual data structures
and functionality for describing success, utility, or business goals. This is not a trivial process,
and may lead to semantic loss underway. For example, the business goal of maintaining avail-
ability (to prevent loss of profit in the case of server downtime), may be translated biologi-
cally as "staying alive”. However, the semantics of both differ – deliberately shutting down a
biological AC system may qualify for murder, while in economic terms, shutting down a sys-
tem means buying it out of business – with the programmer defining what the currency is.

The key to this semantic shift is to view the "market" as an emergent mechanism of coordinat-
ing and matching supply and demand offers, and market participants as rationally-bounded,
self-interested individuals, like in Neo-Austrian (Hayek, Bartley et al.) or Neo-Institutional
Economics (North, Calvert et al.)(Furubotn and Richter). As we move on to technology,
which allows us to map unstructured semantic knowledge in large and very dynamic systems,
we have to look for decentralized self-organization, not at least for reasons of exponentially
increasing "costs of ownership” (Truex, Baskerville et al.).
Given a highly complex and dynamic ALN infrastructure, scalability and the management of
a great number of heterogeneous resources are supposed to be challenging issues of future

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 45 -

ALNs and computing systems in general. Ubiquitous computing (Weiser) envisions trillions
of computing devices connecting and interacting with each other; Grid Computing (Snelling
and Priol) envisions millions of networked processors. To handle the complexity and scale of
such systems, the necessity of a centralized management could easily turn the vision into a
"nightmare” (Kephart and Chess). The solution is not necessarily a question of overcoming
semantic gaps or problems of multi-attribute optimization. Discovering and selecting web
services from huge numbers of unreliable candidates alone is challenging enough.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 46 -

7 Appendix: Documentation of CatNet.v1

7.1 Components Code

A preliminary evaluation of "Catallactic” mechanisms in the FET assessment project CatNet
(IST-2001-34030) using computer simulations has shown positive results, upon which the
CATNETS project will build. The CatNet assessment project (IST-2001-34030) has con-
ducted several simulation experiments using Catallactic service selection in an ALN model.
The performance of the mechanism has been evaluated using both economic and computer
science benchmark parameters (CatNet Project 2002; CATNET Project 2003a; CATNET
Project 2003b).

We have implemented two main control mechanisms for the network coordination: the base-
line and the catallactic control mechanism. The baseline mechanism computes the ser-
vice/resource allocation decision in a centralized instance, using a closed first-price auction.
In the catallactic mechanism, autonomous agents take their decisions in a decentralized way,
having only local information about the environment. Each agent uses a strategy to take deci-
sions, which targets to increase the agent’s own benefit.

The schema below shows the catallactic market, developed formerly in the assessment pro-
ject, which does not comprise the same detailing like the derived models depicted above:
The client contains a buyer interface on the service market and the service has a seller same
implementation for the service market and the resource market. The resource has a seller in-
terface on the resource market. In this market model it is not possible for clients to contract
resources directly. The two stage market model is kept. If a client would like to buy a resource
then there must be a service contracted beforehand that will provide this resource to the client.

Figure 21. Decentralized market model in CatNet

In the centralized market a central matchmaker matches the service requests of the first mar-
ket and the resources of the second market. This market model must also take into account
that a client cannot buy a resource directly.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 47 -

Figure 22. Centralized market model in CatNet

In general, we have found that the catallactic model becomes relatively superior over the
baseline model with increasing dynamics and increasing density, as indicated by the social
welfare utility (SWF) criteria ardaiz (Ardaiz, Freitag et al. 2002). But Catallaxy achieves this
result at the expense of higher communication cost (CC) and inferior response times (REST).
This is caused by the overhead of the negotiation protocol, the multiple bilateral communica-
tions, and the varying distance between service copies and clients. These results, which are
consistent in all of the investigated parameters, are described in detail in the corresponding
deliverable of the CATNET project (CATNET Project 2003a).

The initial exploration conducted in the CATNET assessment project has shown in a simu-
lated environment that service provision in application layer networks can be coordinated by
decentralized "catallactic” mechanisms. We observed the robustness of catallactic coordina-
tion against increasing dynamics of networks, which potentially is a highly interesting feature
for heterogeneous and ad-hoc Grid and P2P networks. The simulation results also raised new
questions, which could not be answered in the scope of the assessment project, due to the ab-
straction level of the simulator and the absence of real application data from existing net-
works. The purpose of CATNETS is to explore this effect deeper, both by simulation and by
including real application data.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 48 -

Agent_Source

ableToStartDemand : boolean = false
~ CLASS_NAME : String = "Agent_Source"
executionState : int = 0
+ ownID : int
- negotiating : int = - 1
+ money_balance : double = 0
+ MAX : int = 100
periodicalServicesTimeout : double

+ Agent_Source ()
+ setHP ()
+ getStrategy ()
+ goMsg_Dest ()
+ setPrice ()
+ setGenotype ()
+ getMoney_balance ()
+ setMoney_balance ()
decreaseBudget ()
increaseBudget ()
+ dataArriveAtDownPort ()
interpretRequestService ()
interpretAccept ()
interpretReject ()
interpretProposal ()
interpretCfp ()
interpretinformResourceHost ()
interpretProvideService ()
interpret_BroadcastMessage ()
interpretStatus ()
interpretMoneyTransfer ()
interpretConfirm ()
interpret_Plumage ()
+ learn ()
postRejectanceMethod ()
postAcceptanceMethod ()
checkRestrictions ()
do_Reject ()
+ do_Commit ()
+ do_Commit ()
pay_tax ()
+ start_periodical_services ()
timeout ()
+ treatNextDemand ()
+ service_Demand ()
+ rejectPendingNegotiations ()
+ isNegotiating ()
+ isNegotiatingWith ()
+ setNegotiating ()
+ setNegotiating ()
+ getNextPendingNegotiation ()
+ anyPendingNegotiation ()
+ addPendingNegotiation ()
+ removePendingNegotiations ()
+ removePendingNegotiations ()
+ idleComputing ()

Client

- CLASS_NAME : String = "Client"
~ knownResources : long = new long [MAX]
~ knownResourcesNum : int = 0
~ numberOfRejects : int
~ numberOfDemmands : int
+ accumNumberOfRejects : int = new int [200]

+ Client ()
+ setKnownResources ()
readDemand ()
+ startDemand ()
+ treatNextDemand ()
+ service_Demand ()
checkRestrictions ()
adaptPriceDistribution ()
increasePriceDistribution ()
decreasePriceDistribution ()
+ postRejectanceMethod ()
+ interpretConfirm ()
+ interpretMoneyTransfer ()
+ learn ()
+ interpret_Plumage ()
+ OutputRejects ()

Resource

~ CLASS_NAME : String = "Resource"
~ portValues : int = 4096
+ SCBWUnits : int = constant.free_bandwidth
~ StorageResourceUnits : int = MAX
+ lostTime : double = 0

addLostTime ()
+ Resource ()
+ setknownResources ()
+ listknownResources ()
+ setKnownServiceCopies ()
+ addKnownServiceCopy ()
+ setKnownServiceCopies ()
+ removeKnownServiceCopy ()
+ getFreePort ()
+ addKnownClient ()
+ setBW ()
+ interpretRequestService ()
postRejectanceMethod ()
checkRestrictions ()
interpret_BroadcastMessage ()
postAcceptanceMethod ()
+ interpretConfirm ()
+ interpretMoneyTransfer ()
+ learn ()
+ interpret_Plumage ()
+ forwardPlumage ()
+ forwardPlumageToServiceCopies ()
+ forwardPlumageToClients ()
+ do_ServiceCopy ()
+ doAllocateStorage ()
adaptPriceDistribution ()
increasePriceDistribution ()
decreasePriceDistribution ()
decrease_bandwidth ()
increase_bandwidth ()
deallocationSCBWTimer ()
do_Cfp ()
recoverStopTime ()
+ addStopTime ()
timeout ()
clearForwardedMessages ()

MasterServiceCopy

~ CLASS_NAME : String = "MasterServiceCopy"
~ LOCAL_ServiceId : int
nEmptyComputings : int = 0
thisIsTheFirstTime : boolean = true
~ HostResource : long

+ MasterServiceCopy ()
setStatusSC ()
+ interpretStatus ()
getStatusSC ()
interpretRequestService ()
addASK ()
addBID ()
sendServiceConfirm ()
rejectOtherResources ()
rejectRequest ()
timeout ()
+ computeBorsa ()
calculateAllocation ()
rejectOtherAKSs ()
calculateAcumulatedBID ()
calculateAcumulatedASK ()
+ interpret_Plumage ()
+ interpretMoneyTransfer ()
interpretConfirm ()
+ learn ()
checkRestrictions ()

ServiceCopy

~ CLASS_NAME : String = "ServiceCopy"
~ LOCAL_ServiceId : int
~ total_contracts : int = 0
~ total_requests : int = 0
~ last_total_contracts : int = 0
~ last_total_requests : int = 0
~ last_estimated_gain : double
~ current_costs : double
~ estimated_gain : double
~ available : boolean = true
+ enabled : boolean = false
~ HostResource : long
~ migrate_dest : long
~ migrate : boolean = false

+ ServiceCopy ()
+ setServiceID ()
+ getResourceHost ()
+ setResourceHost ()
+ interpretinformResourceHost ()
+ getServiceID ()
+ setCurrent_Costs ()
+ setMasterServiceCopy ()
+ isEnabledServiceCopy ()
postRejectanceMethod ()
postAcceptanceMethod ()
checkRestrictions ()
interpretAccept ()
interpretRequestService ()
interpretCfp ()
interpretProposal ()
interpretConfirm ()
+ interpretMoneyTransfer ()
+ learn ()
+ interpret_Plumage ()
interpretCfpStorage ()
+ doCfp ()
adaptPriceDistribution ()
increasePriceDistribution ()
decreasePriceDistribution ()
timeout ()
+ start_periodical_services ()
+ enableServiceCopy ()
+ addStopTime ()
+ initiate_Replacement ()
+ sendStatus ()
stopCurrentNegotiations ()
+ idleComputing ()
+ migracio ()

Figure 23. Classdiagramm CatNets.v1

7.2 Simulation Environment and Documentation

The CATNET simulator has been implemented on top of the JavaSim (Breslau et al. 2002;
JavaSim Project 2002) network simulator. It can be configured to simulate a specific ALN,
such as a content distribution network or peer-to-peer network. Different agent types can be
instantiated, namely clients, resource agents, and service agents. Network resources to be al-
located encompass service access, bandwidth and storage. The simulation builds on a TCP/IP

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 49 -

network model supported by JavaSim. It describes the generic structure of a node and the ge-
neric network components, which can both be used as base classes to implement protocols
across various layers.

The CatNet Simulator can be installed on any computer system running on a Unix Operating
System (e.g. Suse/Linux 9.0; Kernel 2.4.21-215-smp4G / i686). However, it is recommended
to install the simulator on a computer cluster or a multi-processor machine, as the experiments
– running all at the same time – require lots of processor power. Though, it is possible starting
only one experiment (out of 50) on an ordinary desktop machine, but the results can only be
evaluated when all 50 experiments are completely finished, as the evaluation scripts require
availability of all (raw) results. Thus, a sequential processing of the simulations can be per-
formed on a desktop machine, but it is time consuming.

To install the CatNet software, some additional software has to be installed.
� Tcl/Tk must be installed to run the simulation scripts (version 8; http://www.tcl.tk/).
� Java SDK, version 1.4.2 from http://java.sun.com/j2se/1.4.2/download.html
� J-Sim is downloadable from http://www.j-sim.org/. We were working with version

1.3. The installation of the patches is not necessarily needed. The package comes with
the binaries, thus it is not necessary to compile the sources, which sometimes leads to
errors due to incompatibilities of the java version and the J-Sim version.

After that, you need to download and install the java code of CatNet.v1. This could be done
by downloading from the CVS.

cvs access mode: pserver
Servername wi.oec.uni-bayreuth.de
repository /home/cvsroot

-> CVSRoot :pserver:wi.oec.uni-bayreuth.de:/home/cvsroot

Install all files in one root directory "catnet”. Your catnet directory now should look like this:

-classes
 -jars
 -jsim-1.3
 -script
 -setPath.sh
 -src

-tcl

Figure 24. Directory listing

The directory classes contains the java classes for catnet, jars some necessary libraries (like
database support), script the configuration scripts respectively run scripts and log-files, src
contains the sources of catnet and finally tcl the Tcl/Tk Environment.

setPath.sh is a shell script to set variables to the environment and must be run before starting
the simulations.

export JAVA_HOME=/usr/java;
export JAVASIM=/home/reinickm/catnet/jsim-1.3;
export CATNET=/home/reinickm/catnet;

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 50 -

export PATH=$JAVA_HOME/bin:.:$PATH;
export script=$JAVASIM/jars/tcl.zip:$JAVASIM/jars/jython.jar;
export CLASSPATH=$CLASSPATH:.:$CATNET/classes:$JAVASIM/classes:$JAVASIM/jars
/tcl.zip:$JAVASIM/jars/jython.jar;
export JAVA_DEV_ROOT=$CATNET;

Adjust line 1 to 3 to your local directories. And then run the script:
"$ source setPath.sh”

Now, the variables are set in the unix shell environment (for the current session).

Topology and Agents
Figure 26 shows the simulation topology, consisting of 106 nodes per ring. Each node is a
resource, being at least responsible for message forwarding. On each node, a client or service
copy could be instantiated. Clients are exclusively located on the outer leaves, whereas ser-
vice copies are distributed randomly to the existing nodes/resources by the start-up scripts.
For the experimentation, 75 clients and 50/30/25/12/6 (depending on the density level) service
copies are instantiated; the location of the service copies is depending on the start-up scripts
(see next section).
The one ring topology can be extended to a two or three ring topology (see Figure 26), how-
ever the position of the Master Service Copy will neither change nor does it duplicate its ca-
pabilities.

Clients

Inner node ring

Position of Master
Service Copy

Figure 25. Simulation Topology (1 ring)

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 51 -

Position of Master
Service Copy

„Backbone“

Outer leaves

Inner node ring

Figure 26. Simulation Topology (2 rings)

Scripts
The experiments are performed to measure the behaviour of the approaches on behalf of ser-
vice density and dynamics. Testing 5 density levels and 5 dynamicity levels leads to 25 runs,
for catallactic and baseline approach these sums up to 50 simulation runs. The concerned den-
sity and dynamicity level for the current simulation run is set by the start-up scripts. In the
following section an exemplified script call for one simulation run is described.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 52 -

with Resource Broker

without Resource Broker

Dynamicity

Se
rv

ic
e

D
en

si
ty

0
 1

2

3
 4

0 1 2 3 4

Figure 27. Simulation Scenarios

For simplicity reasons, exclusively the simulation run with density 2, dynamicity level 4 in a
single ring topology shall be executed (Figure 25). This can be accomplished by calling $
exp25b42_1.sh & in the directory scripts which runs the simulation by calling java
drcl.ruv.System -ue exp_25b_dyn4_den2_an1.tcl >./logs/exp25b42.log. This command is the
most important in the concerned script; the following 4 lines are only for pre-calculating some
metric values.

$ more exp25b42_1.sh
#!/bin/bash
java drcl.ruv.System -ue exp_25b_dyn4_den2_an1.tcl >./logs/exp25b42.log
cat logs/exp25b42.log | grep "Graph output - confirm" >./logs/exp25b42_graph.log
java catnet.util.TimeComputeRAEFromFile ./logs/exp25b42_graph.log ./logs/exp25b42_rae.log 1000 2000
grep CC: ./logs/exp25b42.log | cut -f 2,3 >./logs/exp25b42_netinfo.log
java catnet.util.TimeComputeNetInfoFromFile ./logs/exp25b42_net.log ./logs/exp25b42_netinfo.log 1000 2000

exp_25b_dyn4_den2_an1.tcl launches the start-up scripts depending on the scenario (level of
density and dynamicity). The following scripts are called successively from
exp_25b_dyn4_den2_an1.tcl: First call is exp_25_common.tcl.

$ more exp_25b_dyn4_den2_an1.tcl
source topologies/exp_25_common.tcl
source topologies/exp_dyn4.tcl
java::call catnet.data.constant setBaselineOn
source topologies/exp_25_topo_an1.tcl
source recursos/exp_25_rec.tcl
source recursos/exp_25_rec_den2.tcl
set netlogfilename "exp25b42_net.log"
set demandfilename "exp25_demmand.txt"
source demandes/exp_25_dem.tcl

exp_25_common.tcl sets a punch of variables in the java class catnet.data.constant. Shown are
the regularly used values like allocation cycle time of the Master Service Copy (only used for
baseline), setLearning switches the learning algorithm on or off etc.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 53 -

$ more exp_25_common.tcl
java::call catnet.data.constant setAllocationTime 0.15
java::call catnet.data.constant setLearningOff
#40 20 10 5
java::call catnet.data.constant setStockMarcketOn
java::call catnet.data.constant setHopFactor 30
java::call catnet.data.constant setUpdatesOn
java::call catnet.data.constant setMSCUpdateTime 2000
#java::call catnet.data.constant setMigrationOn

Right after exp_25_common.tcl, exp_dyn4.tcl is called to set the dynamicity level. Dynamics
are implemented exclusively on the service copies. Each instance that could fail (service cop-
ies) periodically generates a random value and checks it against a given probability. The ex-
ample initializes such a period of 200ms, whereas 50% of the service copies are initially
switched off and the percentage to check against whether to change the state of the instance is
40%. These values can be changed to adapt the dynamicity levels.

$ more exp_dyn4.tcl
java::call catnet.data.constant setDynamicParameters 50 40 200

exp_25_topo_an1.tcl at first sets some variables for constructing the network and sets the to-
pology of 1 ring by means of an adjacency matrix (section $adjMatrix_ set). The adjacency
matrix describes the links between nodes, 1 indicates that a link exists. It is set with the com-
mand
java::call drcl.inet.InetUtil createTopology [! .] "n" "n" $adjMatrix_ $link_

Then, it attaches protocol stacks and attaches the agents to the nodes (section
 udp drcl.inet.transport.UDP
 resource 101/udp catnet.resource.Resource
 client 102/udp catnet.client.Client
 servicecopy103 103/udp catnet.servicecopy.ServiceCopy).

The numbers 101 et seqq. set the udp-ports which are monitored for incoming messages. Af-
ter that, setknownResources sets the addresses of the neighbouring nodes to allow message
routing.
Finally it sets the links, generated from the adjacency matrix (java::call drcl.inet.InetUtil setu-
pRoutes [! .] $adjMatrix_).

$ more exp_25_topo_an1.tcl
puts "Constructing network"

cd [mkdir drcl.comp.Component /test]

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 54 -

#puts "Define and open database..."
#Syntax: opendatabase "host" "username" "password" "Name of Experiment"
#java::call catnet.log.store opendatabase "drewpc2.iig.uni-freiburg.de/CatNet_Data" "cn" "CatNet" "Cat_01"

puts "Create topology..."

set link_ [java::new drcl.inet.Link]
$link_ setPropDelay 0.01

Variables
set level1 5
set level2 6
set nclients 3
set nscs 1
set anillos 1
set level3 [expr $nclients]
set numnodes [expr $level1 + (($level2)-1)*$level1 + $level1*(($level2)-1)*$level3]

adjacency matrix
set adjMatrix_ [java::new int\[\]\[\] [expr ($anillos * ($numnodes + 1))]]
#set adjMatrix [java::call drcl.inet.InetUtil.getAdjMatrixFromFile "test.brite"]

set currlvl2 [expr $level1]
set currlvl3 [expr $level1*$level2]
for {set l 0} {$l < $anillos} {incr l} {
$adjMatrix_ set [expr ($l * ($numnodes + 1)) + $numnodes] [java::new int\[\] [expr ($level1+2)]]
 for {set i 0} {$i<$level1} {incr i} {

 #if {$l > 0} {
 $adjMatrix_ set [expr $i + ($l * ($numnodes + 1))] [java::new int\[\] 5]
 #}
 #$adjMatrix_ set [expr $i] [java::new int\[\] 5]
 [$adjMatrix_ get [expr $i + ($l * ($numnodes + 1))]] set 0 [expr (($i + 1)%$level1) + ($l * ($numnodes + 1))]
 [$adjMatrix_ get [expr $i + ($l * ($numnodes + 1))]] set 1 [expr (($i - 1)%$level1) + ($l * ($numnodes + 1))]
 [$adjMatrix_ get [expr $i + ($l * ($numnodes + 1))]] set 2 [expr ($level1 + $i*($level2-1)) + ($l * ($numnodes
+ 1))]
 [$adjMatrix_ get [expr $i + ($l * ($numnodes + 1))]] set 3 [expr ($level1 + ($i + 1)*($level2-1) -1) + ($l *
($numnodes + 1))]

 # Set adjacency matrix for the cental pentagons
 [$adjMatrix_ get [expr $i + ($l * ($numnodes + 1))]] set 4 [expr $numnodes + ($l * ($numnodes + 1))]
 [$adjMatrix_ get [expr $numnodes + ($l * ($numnodes + 1))]] set [expr $i] [expr $i + ($l * ($numnodes + 1))]

 # Set adjacency matrix for the subpentagons if {$l > 0} {
 [$adjMatrix_ get [expr $numnodes + ($l * ($numnodes + 1))]] set 5 [expr $numnodes + ($l-1) * ($numnodes
+ 1)]
 [$adjMatrix_ get [expr $numnodes + ($l-1) * ($numnodes + 1)]] set 6 [expr ($numnodes + ($l * ($numnodes
+ 1)))]
 }

 #Set adjacency matrix between the central pentagons
 for {set j 0} {$j<($level2 - 1)} {incr j} {
 $adjMatrix_ set [expr $currlvl2 + ($l * ($numnodes + 1))] [java::new int\[\] [expr 2 + $level3]]
 # Si es el primer nodo del subpentagono
 if {$j == 0} {
 [$adjMatrix_ get [expr $currlvl2 + ($l * ($numnodes + 1))]] set 0 [expr $i + ($l * ($numnodes + 1))]
 } else {
 [$adjMatrix_ get [expr $currlvl2 + ($l * ($numnodes + 1))]] set 0 [expr ($currlvl2 - 1) + ($l * ($numnodes +
1))]
 }
 # If it is the last node of the subpentagon

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 55 -

 if {$j == ($level2 - 2)} {
 [$adjMatrix_ get [expr $currlvl2 + ($l * ($numnodes + 1))]] set 1 [expr $i + ($l * ($numnodes + 1))]
 } else {
 [$adjMatrix_ get [expr $currlvl2 + ($l * ($numnodes + 1))]] set 1 [expr $currlvl2 + 1 + ($l * ($numnodes +
1))]
 }

 #Set adjacency matrix of the vertices of the subpentagons
 for {set k 0} {$k<$level3} {incr k} {
 [$adjMatrix_ get [expr $currlvl2 + ($l * ($numnodes + 1))]] set [expr 2 + $k] [expr $currlvl3 + ($l * ($num-
nodes + 1))]
 $adjMatrix_ set [expr $currlvl3 + ($l * ($numnodes + 1))] [java::new int\[\] 1]
 [$adjMatrix_ get [expr $currlvl3 + ($l * ($numnodes + 1))]] set 0 [expr $currlvl2 + ($l * ($numnodes + 1))]

 set currlvl3 [expr $currlvl3 + 1]
 }

 set currlvl2 [expr $currlvl2 + 1]
 }
 }
 #Set parameters
 set currlvl2 [expr $level1]
 set currlvl3 [expr $level1*$level2]
 puts "Ring [expr $l+1] set"
}

java::call drcl.inet.InetUtil createTopology [! .] "n" "n" $adjMatrix_ $link_

puts "Building..."

set nb_ [mkdir drcl.inet.NodeBuilder .nb]
$nb_ setBandwidth 1000000; # 10Mbps

$nb_ build [! n*]

set starth [expr $level1*$level2]

for {set l 0} {$l < $anillos} {incr l} {
set downerlimit [expr $l * ($numnodes + 1)]
 for {set i $downerlimit} {$i<($starth + $downerlimit)} {incr i} {
 #puts "Set resources and servicecopies on node $i"
 $nb_ build [! n$i] {
 udp drcl.inet.transport.UDP
 resource 101/udp catnet.resource.Resource
 servicecopy103 103/udp catnet.servicecopy.ServiceCopy
 }
 }
}

#puts "done"

Put clients on the outer leaves
for {set l 0} {$l < $anillos} {incr l} {
set downerlimit [expr $starth + ($l * ($numnodes + 1))]
 for {set i $downerlimit} {$i<($numnodes + $downerlimit - $starth)} {incr i} {
 #puts "Set clients&ressources&SCs on node $i"
 $nb_ build [! n$i] {
 udp drcl.inet.transport.UDP
 resource 101/udp catnet.resource.Resource
 client 102/udp catnet.client.Client
 servicecopy103 103/udp catnet.servicecopy.ServiceCopy
 }

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 56 -

 }
}

 puts "SET MSC on node $numnodes"
 $nb_ build [! n$numnodes] {
 udp drcl.inet.transport.UDP
 MSC1 101/udp catnet.servicecopy.MasterServiceCopy
 #MSC2 102/udp catnet.servicecopy.MasterServiceCopy
 }

puts "Set HPs of Ressources und SCs"
for {set l 0} {$l < $anillos} {incr l} {
 # Para los resources internos
 set downerlimit [expr ($l * ($numnodes + 1))]
 for {set i $downerlimit} {$i<($starth + $downerlimit)} {incr i} {
 #puts "Set HP on node $i, ress&SC"
 ! n$i/resource setHP $i 101
 ! n$i/servicecopy103 setHP $i 103
 }
}

puts "Set HPs of Clients und SC103s"
for {set l 0} {$l < $anillos} {incr l} {
 set downerlimit [expr ($l * ($numnodes + 1))]
 for {set i [expr $starth + $downerlimit]} {$i<($numnodes + $downerlimit)} {incr i} {
 #puts "Set HP on node $i, ress&client&SCs"
 # Client
 ! n$i/resource setHP $i 101
 ! n$i/client setHP $i 102
 ! n$i/servicecopy103 setHP $i 103
 }
}

puts "Set MSC HPs on node [expr $numnodes]"
#! n$i/MSC1 setHP [expr $numnodes] 101
#! n$i/MSC2 setHP [expr $numnodes] 102

! n$numnodes/MSC1 setHP [expr $numnodes] 101
#! n$numnodes/MSC2 setHP [expr $numnodes] 102

puts "Setup broadcast routes ..."

for {set l 0} {$l < $anillos} {incr l} {

 set currlvl2 [expr $level1 + $l * ($numnodes + 1)]
 set currlvl3 [expr $level1*$level2 + $l * ($numnodes + 1)]

 for {set i [expr 0 + $l * ($numnodes + 1)]} {$i< $level1 + $l * ($numnodes + 1)} {incr i} {
 #puts "i: $i | numnodes: $numnodes | currlvl3: $currlvl3 | currlvl2: $currlvl2 | level1: $level1"
 if {$l == 0} {
 ! n$i/resource setknownResources [expr ($i - 1)%$level1]
 ! n$i/resource setknownResources [expr ($i + 1)%$level1]
 puts "Hauptpentagon $i: kennt $currlvl2 | [expr $currlvl2 + $level2 - 2] | [expr ($i - 1)%$level1] | [expr ($i +
1)%$level1]"
 } else {
 ! n$i/resource setknownResources [expr ($i - 1 - $l * ($numnodes + 1))%$level1 + $l * ($numnodes + 1)]
 ! n$i/resource setknownResources [expr ($i + 1 - $l * ($numnodes + 1))%$level1 + $l * ($numnodes + 1)]
 puts "Hauptpentagon(l > 0) $i: kennt $currlvl2 | [expr $currlvl2 + $level2 - 2] | [expr ($i - 1 - $l * ($numnodes
+ 1))%$level1 + ($l * ($numnodes + 1))] | [expr ($i + 1 - $
l * ($numnodes + 1))%$level1 + $l * ($numnodes + 1)]"

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 57 -

 };
 ! n$i/resource setknownResources [expr $currlvl2]
 ! n$i/resource setknownResources [expr $currlvl2 + $level2 - 2]
! n$i/resource setknownResources [expr $numnodes]
! n$numnodes/resource setknownResources [expr $i]

 for {set j 0} {$j<($level2 - 1)} {incr j} {
 set temp [expr ($currlvl2)+1]
 # Last node of subpentagon
 if {$j == ($level2 - 2)} {
 #puts "Last node $currlvl2 kennt: $i | [expr $currlvl2-1]"
 ! n$currlvl2/resource setknownResources [expr $i]
 ! n$currlvl2/resource setknownResources [expr $currlvl2 - 1]
 # First node of subpentagon
 } elseif {$j == 0} {
 #puts "first node $currlvl2 kennt: $i | [expr $currlvl2 + 1]"
 ! n$currlvl2/resource setknownResources [expr $i]
 ! n$currlvl2/resource setknownResources [expr $currlvl2 + 1]
 # Other nodes of the subpentagon
 } else {
 #puts "Node $currlvl2 knows: [expr $currlvl2+1] | [expr $currlvl2-1]"
 ! n$currlvl2/resource setknownResources [expr ($currlvl2) - 1]
 ! n$currlvl2/resource setknownResources [expr ($currlvl2) + 1]
 }

 # Build routes between nodes on the outer leaves
 for {set k 0} {$k<$level3} {incr k} {
 ! n$currlvl3/resource setknownResources [expr $currlvl2]
 ! n$currlvl2/resource setknownResources [expr $currlvl3]
 #puts "last node: $currlvl3 knows $currlvl2 and $currlvl2 knows $currlvl3"
 set currlvl3 [expr $currlvl3 + 1]
 }
 set currlvl2 [expr $currlvl2 + 1]
 }
 }
}

Build routes between central nodes
for {set l 0} {$l<$anillos} {incr l} {
set downerlimit [expr $l * ($numnodes +1)]
 for {set i $downerlimit} {$i < $level1 + $downerlimit} {incr i} {
 if {($l - 1) >= 0} {
 #puts "$i kennt [expr $i - $numnodes - 1]"
 ! n$i/resource setknownResources [expr $i - $numnodes - 1]
 };
 if {($l + 1) < $anillos} {
 #puts "$i kennt [expr $i + $numnodes +1]"
 ! n$i/resource setknownResources [expr $i + $numnodes +1]
 }
 }
}

puts "Setup static routes ... (May take a while)"
#for {set i 0} {$i<($anillos*$numnodes+1)} {incr i} {
#for {set j [expr $i+1]} {$j<($anillos*$numnodes+1)} {incr j} {
puts "$i, $j"
java::call drcl.inet.InetUtil setupRoutes [! n$i] [! n$j] "bidirection"
 # puts "[expr $i] -> [expr $j]"
#}
#if {$i % 10 == 0} {
#puts "up to Node [expr $i] set"

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 58 -

}
#}

java::call drcl.inet.InetUtil setupRoutes [! .] $adjMatrix_
puts "Static routes set up"

exp_25_rec.tcl sets some attributes and values to the created resources and service copies, e.g.
initial prices for services and resources, serviceIDs to identify the task of a service, budget
and the address of the Master Service Copy to forward requests to.

$ more exp_25_rec.tcl
#Edit variables
for {set l 0} {$l < $anillos} {incr l} {
set downerlimit [expr $l * ($numnodes + 1)]
 for {set i $downerlimit} {$i<($starth + $downerlimit)} {incr i} {
 #puts "Daten setzen für Ressource $i"
 # Info resource
 ! n$i/resource setPrice 0 1 6
 ! n$i/resource setPrice 1 17 27
 ! n$i/resource setMoney_balance 20000

 #Info serviceCopy en puerto 103
 ! n$i/servicecopy103 setServiceID 2
 ! n$i/servicecopy103 setPrice 0 5 11
 ! n$i/servicecopy103 setPrice 1 25 35
 ! n$i/servicecopy103 setPrice 2 20 30
 ! n$i/servicecopy103 setPrice 3 20 30
 ! n$i/servicecopy103 setMoney_balance 20000
 ! n$i/servicecopy103 setMasterServiceCopy $numnodes 101
 }
}

#puts "Set variables in the outer leaves ..."

for {set l 0} {$l < $anillos} {incr l} {
set downerlimit [expr $starth + ($l * ($numnodes + 1))]
for {set i $downerlimit} {$i<($numnodes + ($l * ($numnodes + 1)))} {incr i} {
 #puts "Daten setzen für Client&SC $i"
 # Info resource
 ! n$i/resource setPrice 0 1 6
 ! n$i/resource setPrice 1 20 27
 ! n$i/resource setMoney_balance 10000

 #Info serviceCopy en puerto 103
 ! n$i/servicecopy103 setServiceID 2
 ! n$i/servicecopy103 setPrice 0 5 11
 ! n$i/servicecopy103 setPrice 1 17 35
 ! n$i/servicecopy103 setPrice 2 20 30
 ! n$i/servicecopy103 setPrice 3 20 30
 ! n$i/servicecopy103 setMoney_balance 10000
 ! n$i/servicecopy103 setMasterServiceCopy $numnodes 101

 # Client
 #set currressource [expr ($i - ($level1*$level2) + ($level1*$level3))/($level3)]
 set currressource [expr ($i - ($level1*$level2) - ($l*($numnodes + 1)) + ($level1*$level3))/($level3) + ($l *
($numnodes + 1))]
 ! n$i/client setKnownResources 1 [java::new long\[\] 1 [expr $currressource]]
 ! n$currressource/resource addKnownClient [expr $i] 102
 ! n$i/client setPrice 2 25 70
 ! n$i/client setPrice 3 23 51
 ! n$i/client setMoney_balance 40000

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 59 -

 }
}

Next, the "density level” is set up in exp_25_rec_den2.tcl. Like already mentioned above, all
resource nodes could contain service copies/instances. However, the ratio of capacity of re-
sources and the number of service copies is variable. Thus, these density levels differ in the
capacity of the resources and the placement – respectively concentration – of the service cop-
ies. The number of deployable services is always fixed to 300 (resource capacity * number of
service copies = const.) to guarantee comparability. For a high concentration scenario ("low
density”), many copies are situated on a few resource nodes which have a high capacity of
resources to offer. SCDis0.txt to SCDis4.txt determine the number of service copies and also
their placement and are generated by
java catnet.util.createSCDistribution $number_of_rings_per_node $rings.
For density level 2, all existing resource nodes have 12 resource units to sell. SCDis2.txt con-
tains 25 numbers of resource nodes, where the service copies should be placed on.
exp_25_rec_den2.tcl reads the text file and instantiates the service copies. 25 service copies
are set on 25 different resource nodes and each resource node can sell 12 resources. Please
note, that resource nodes are on all nodes, but only a few of them host service copies.

$ more exp_25_rec_den2.tcl
set f [open "SCDis2.txt" "r"]
set out [read $f]
close $f

foreach i [split $out "\n"] {
 if {$i > 0} {
 if {$i < ($numnodes+($anillos-1)*($numnodes+1))} {
 puts "Construct node $i for Density 2"
 set knowscs_ [java::new long\[\] 1]
 set knowscsID_ [java::new int\[\] 1]
 set knowscsPort_ [java::new int\[\] 1]
 $knowscs_ set 0 [expr $i]
 $knowscsID_ set 0 2
 $knowscsPort_ set 0 103
 ! n$i/resource setKnownServiceCopies 1 $knowscs_ $knowscsPort_ $knowscsID_
 ! n$i/resource setBW 12
 }
 }
}

exp_25_dem.tcl is the last script, that starts the simulation (the rt . commands). The script {}
commands start some methods in the agents, like periodical services (to pay tax periodically
to the system), initiate service requests on the clients (startDemand) etc. Do not change any-
thing in this script.

$ more exp_25_dem.tcl
puts "Start NAM-Support"
#set nam [java::call drcl.inet.InetUtil setNamTraceOn [! .] "100.nam" [_to_string_array "red blue yellow green
black orange"]]
set complogfilename "./logs/$netlogfilename"
set nam [java::call catnet.util.CatNetMonitor setCatNetMonitorOn [! .] $complogfilename]

puts "Start simulation...
"
set time_ 0.001
set dynTop_ [mkdir catnet.util.DynamicTopology .dynTop]
set sim [attach_simulator .]

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 60 -

puts "Start demand"
script {! n*/client startDemand $demandfilename} -at 0.05 -on $sim
script {! n*/client start_periodical_services 5} -at 0.05 -on $sim
script {! n*/resource start_periodical_services 5} -at 1.05 -on $sim
script {! n*/servicecopy103 start_periodical_services 5} -at 0.05 -on $sim
script {! .dynTop setDynamicTopologyOn [! /test]} -at 0.02 -on $sim

rt . stop
run .
rt . resume

Launch of experiments
The experiments are launched with the shell script frun.sh. The compulsory command line
arguments are described below.

$./frun.sh
Use: frun DemandQuantity DemandTime Rings Repetitions ExperimentName

DemandQuantity: Length of demand queue (randomly spread over the clients)
Values of 2.000-10.000 are reasonable

DemandTime: minimum time between requests, changes have a significant impact on the re-
sults (used spectrum: 25ms-100 ms)

Rings: this value describes the number of rings (each 106 nodes) used for the simulation to-
pology (for CatNet we exclusively used 1 ring). See Figure 26.

Repetitions: number of repetitions the experiment shall be run (implemented for a statistical
analysis, in CatNet always set to 1)

ExperimentName: every experiment should have a name, indicating the set of values or what-
ever might be reasonable. The log files will be stored in a directory "logs/ExperimentName”.
Thus, a simulation launch could look like this:

$./frun.sh 2000 75 1 1 test &

frun.sh distributes the jobs on the connected machines. These connected machines are in the
Freiburg configuration a cluster of 16 double processors on 16 interconnected computers with
one file system. The URLs of the machines are loginX.uni-freiburg.de. The X is filled from
all numbers in machinas.txt (1 to 16), so login1.uni-freiburg.de is a valid example. This
should be adjusted to the conditions on the platform the simulation hould run on. In frun.sh
some while-loop distribute the jobs on the machines.

while ["$i" -lt 5]
 do
 local j=0;
 while ["$j" -lt 5]
 do
 ((k+= 1))
 echo "Executing ./exp25${i}${j}_${rings}.sh on login$(($k%16+1))"
 ssh "login$(($k%16+1))" "source /home/reinickm/catnet/setPath.sh;cd /home/reinickm/ catnet/script; nohup
./exp25${i}${j}_${rings}.sh &" &
 ((k+=1))
 echo "Executing ./exp25b${i}${j}_${rings}.sh on login$(($k%16+1))"

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 61 -

 ssh "login$(($k%16+1))" "source /home/reinickm/catnet/setPath.sh;cd /home/reinickm/ catnet/script; nohup
./exp25b${i}${j}_${rings}.sh &" &
 ((j+=1))
 done
 ((i+=1))
 Done

The outer while loop runs all dynamics scenarios, the inner one sets the density levels. In each
loop circle, an ssh connection is built and the environment is set and the simulation run
launched. It is recommendable to use the nohup command, to avoid loosing the processes
when the connection fails during the simulation.

When the simulation finishes successfully, the evaluation is run immediately and an email is
sent to reinicke@uni-bayreuth.de, containing an attachment with the aggregated results. This
address can be adjusted in the last lines of frun.sh.

An experiment (including 50 scenarios), set up with a demand queue of 2000, may take up to
1 hour, dependent on the simulation platform.

./status.sh shows the number of jobs running on all machines

./stop.sh kills all experiment jobs on the machines

Evaluation of raw experimentation results
When the experiments are finished, the raw results are to be processed and be put together in
one file. This can be initiated by the command $ sh get-logs.sh, which calls the script jun-
tar_logs.sh and juntar_logs.pl. These scripts copy the logs to the directory ExperimentName
and calculate the metrics response time (REST), service distance, allocation efficiency (RAE),
social welfare (SWF), # of messages and # of message hops.

REST: How long does it take on average to fill a request; time between "cfp” and "accept”

RAE: The ratio of matched transactions divided by the number of all proposals: #accepts/
#proposals

SWF: The sum of all individual utilities / income from negotiations

All results are stored in tot.log, which is depicted below.
When using the frun.sh script, these scripts are initiated automatically when the simulations
are completed.

The results are presented in two row sets. The upper row always describes the catallactic data,
the lower one the baseline approach. This file can now be used for further analysis.

$ more tot.log

REST serv. dist. RAE SWF #Mess #Hops

Den0 / Dyn0
1042.1692 5.174074 81.0 3340.1395535658676 49311 76707
268.5367 4.3853106 91.0 54641.142169686835 48078 74648

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 62 -

Den0 / Dyn1
997.18097 5.120211 76.0 3948.859722135588 49171 76165
390.625 4.592033 75.0 38305.681918176255 47997 74683

Den0 / Dyn2
715.4252 4.8339624 81.0 3900.231710857463 51842 79296
462.54504 4.623123 68.0 31839.423511077934 48148 74869

Den0 / Dyn3
813.18726 5.180305 72.0 8544.793870284384 49337 76431
531.9764 4.1739864 61.0 25703.634225436028 47962 74408

Den0 / Dyn4
765.76373 4.8220067 63.0 16118.718105337906 48876 75600
638.0683 4.113852 54.0 22039.828603541722 48453 75055

Den1 / Dyn0
667.33295 4.728049 82.0 3858.5112218442823 52451 80454
259.52737 3.7743018 92.0 56438.31634161309 51674 81126

Den1 / Dyn1
715.4252 4.8339624 81.0 3900.231710857463 51842 79296
337.73126 3.4780362 79.0 41966.05086153074 52633 82755

Den1 / Dyn2
672.16583 4.8329015 79.0 4761.467196100835 51732 79186
437.71494 3.402715 68.0 31944.72857394768 52683 83176

Den1 / Dyn3
715.4252 4.8339624 81.0 3900.231710857463 51842 79296
544.1159 3.268166 59.0 24402.0124574632 52540 82852

Den1 / Dyn4
715.4252 4.8339624 81.0 3900.231710857463 51842 79296
731.1757 3.3995817 49.0 18852.7071224058 53162 83886

Den2 / Dyn0
620.0532 4.9480357 80.0 3498.508561091525 58153 87553
250.72044 3.0563536 93.0 57299.63702543375 60258 99858

Den2 / Dyn1
607.365 4.9642415 82.0 3822.3491869351874 57536 86424
356.75632 2.758988 77.0 39482.89167042516 61641 103365

Den2 / Dyn2
601.9464 4.991272 82.0 4576.027380070221 57300 86187
460.4977 2.7557251 67.0 31385.36216960587 62746 105632

Den2 / Dyn3
579.13293 4.8886075 81.0 7293.879719026896 57140 85962
631.06226 2.7641509 54.0 21514.17967967256 62791 106097

Den2 / Dyn4
542.0889 4.4946094 76.0 18892.570642088165 58375 88462
709.23615 2.6324434 50.0 19104.46955254291 62882 106558

Den3 / Dyn0
601.0859 4.673077 79.0 3752.893403877148 68964 99435
247.69482 2.429054 91.0 55632.901188618285 74875 128876

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 63 -

Den3 / Dyn1
555.3876 4.5776396 81.0 4176.954373544788 69239 99606
340.09933 2.0556293 77.0 40499.722998574536 79325 137893

Den3 / Dyn2
558.13214 4.6683292 82.0 4593.692632761087 68167 98126
453.9735 2.172897 66.0 30990.009391433272 80885 141984

Den3 / Dyn3
527.33417 4.634783 82.0 5891.628974576442 67939 97932
593.6347 2.1457565 55.0 22059.496031275015 82025 144862

Den3 / Dyn4
485.2979 4.130829 79.0 20571.84634816571 69438 100858
697.3492 2.1363637 50.0 18432.458012472485 82405 145985

Den4 / Dyn0
601.2161 4.700521 77.0 3918.727433016509 79104 109894
248.02135 2.1089888 91.0 54831.009274982425 87696 152331

Den4 / Dyn1
586.67773 4.8280253 80.0 4076.161422768566 77477 107538
329.532 1.9084967 78.0 41214.266800785925 96492 172058

Den4 / Dyn2
715.4252 4.8339624 81.0 3900.231710857463 51842 79296
479.45734 1.8743961 63.0 28371.55460683753 99435 179072

Den4/ Dyn3
516.5589 4.452381 81.0 7069.994795747933 78855 109592
510.11804 1.8853289 61.0 25753.40992741804 100072 181094

Den4 / Dyn4
505.87903 4.032258 76.0 19980.32083520734 79713 111970
704.9562 1.914405 49.0 17862.27122642783 100921 183593

Scripts
For completeness the scripts frun.sh and the evaluation scripts are presented.

$ more frun.sh
#!/bin/bash

createDemand() {
 echo "Creating Demand"
 java catnet.util.createRandomDemand exp25_demmand.txt $demandQuantity 1 30 105 $rings 106 $demand-
Time
}

createSC() {
 echo "Creating SC"
 java catnet.util.createSCDistribution 105 $rings
}

startExperiments() {
 local currentRun=1;
 while ["$currentRun" -le "$numEx"]
 do
 runExperiment $currentRun

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 64 -

 echo
 echo "Run finished. Now creating logfiles..."
 getLogs $currentRun
 ((currentRun+=1))
 done
}

runExperiment() {
 local currentRun=$1
 echo
 echo "Now Starting Run" $currentRun
 date
 echo "==================="
 local i=0;
 local k=-1;
 while ["$i" -lt 5]
 do
 local j=0;
 while ["$j" -lt 5]
 do
 ((k+= 1))
 echo "Executing ./exp25${i}${j}_${rings}.sh on login$(($k%16+1))"
 ssh "login$(($k%16+1))" "source /home/reinickm/catnet/setPath.sh;cd /home/reinickm/catnet/script; nohup
./exp25${i}${j}_${rings}.sh &" &
 ((k+=1))
 echo "Executing ./exp25b${i}${j}_${rings}.sh on login$(($k%16+1))"
 ssh "login$(($k%16+1))" "source /home/reinickm/catnet/setPath.sh;cd /home/reinickm/catnet/script; nohup
./exp25b${i}${j}_${rings}.sh &" &
 ((j+=1))
 done
 ((i+=1))
 done
 #list the jobs
 #we need to wait untill all jobs have finished
 echo "Waiting for run to complete"
 wait
 date
 echo "All jobs completed."
}

getLogs() {
 sh get-logs.sh ${experimentName}"/"$1
}

sendMail() {
 echo "Sending Notification"
 date
 echo "Experiment $experimentName finished." | mail -s "StatusReport: frun.sh :: $experimentName" re-
inicke@uni-bayreuth.de -a /home/reinickm/catnet/script/logs/$experimentName
/tot.log
}

#THE SCRIPT ACTUALLY STARTS HERE

if [-z "$5"]; then
 echo "Use: frun DemandQuantity DemandTime Rings Repetitions ExperimentName"
else
 #now rename input parameter variables
 demandQuantity=$1
 demandTime=$2
 rings=$3

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 65 -

 numEx=$4
 experimentName=$5
 echo "Codename: ${experimentName}. We will be doing ${numEx} Repetitions and use ${rings} Rings.
Demand Quantity is ${demandQuantity}, Demand Time is ${demandTime}"
 echo
"===
=="
 #create the sc distribution
 createSC
 #create a demand
 createDemand
 #start the java subprocesses
 startExperiments
 #process logfiles
 getLogs
 #send notify email
 sendMail
fi

$ more get-logs.sh
#!/bin/zsh
INDX=0
#LOGDIR=logs/logs_`date +'%Y%m%d_%H%M'`
LOGDIR=logs/$1
mkdir -p "$LOGDIR"
for DIN in 0 1 2 3 4
do
 for DEN in 0 1 2 3 4
 do
 #CURR=${MACHINAS[$INDX]}
 #MACHINA=arvei-"$CURR"
 LOGC=exp25"$DIN""$DEN"_graph.log
 LOGC_STUFF=exp25"$DIN""$DEN"_somestuff.log
 LOGB=exp25b"$DIN""$DEN"_graph.log
 LOGB_STUFF=exp25b"$DIN""$DEN"_somestuff.log
 echo "[** -- Computing exp25DINDEN and exp25bDINDEN **]"
 #scp "$MACHINA":"./catnet/script/logs/*.log" ./"$LOGDIR"
 #ssh "$MACHINA" "cd catnet/script; rm -f; logout;"
 #echo $LOGDIR/$LOGC $LOGC_STUFF
 java catnet.util.TimeComputeSomeStuff logs/"$LOGC" "$LOGDIR"/"$LOGC_STUFF"
 java catnet.util.TimeComputeSomeStuff logs/"$LOGB" "$LOGDIR"/"$LOGB_STUFF"
 cp logs/exp25"$DIN""$DEN".log "$LOGDIR"
 cp logs/exp25b"$DIN""$DEN".log "$LOGDIR"
 cp logs/exp25"$DIN""$DEN"_rae.log "$LOGDIR"
 cp logs/exp25b"$DIN""$DEN"_rae.log "$LOGDIR"
 cp logs/exp25"$DIN""$DEN"_netinfo.log "$LOGDIR"
 cp logs/exp25b"$DIN""$DEN"_netinfo.log "$LOGDIR"
 done
done
/home/reinickm/catnet/script/juntar_logs.sh "$LOGDIR" >"$LOGDIR/tot.log"
#tar -cf "$LOGDIR".tar.gz "$LOGDIR"

$ more juntar_logs.sh
cd $1
INDX=1
for DEN in 0 1 2 3 4
do
 for DIN in 0 1 2 3 4
 do
 LOGC=exp25"$DIN""$DEN".log
 LOGCW=exp25"$DIN""$DEN"_swf.log
 LOGCR=exp25"$DIN""$DEN"_rae.log

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 66 -

 LOGCS=exp25"$DIN""$DEN"_somestuff.log
 LOGCN=exp25"$DIN""$DEN"_netinfo.log
 LOGB=exp25b"$DIN""$DEN".log
 LOGBW=exp25b"$DIN""$DEN"_swf.log
 LOGBR=exp25b"$DIN""$DEN"_rae.log
 LOGBS=exp25b"$DIN""$DEN"_somestuff.log
 LOGBN=exp25b"$DIN""$DEN"_netinfo.log
 cat "$LOGC" | grep SWF | cut -f 2 >"$LOGCW"
 /home/reinickm/catnet/script/juntar_logs.pl $LOGCR $LOGCS $INDX $LOGCN $LOGCW
 cat "$LOGB" | grep SWF | cut -f 2 >"$LOGBW"
 /home/reinickm/catnet/script/juntar_logs.pl $LOGBR $LOGBS $INDX $LOGBN $LOGBW
 echo ""
 done
 echo ""
done
cd ..

$ more juntar_logs.pl
#!/usr/bin/perl

open(fitxer1,$ARGV[0]);
open(fitxer2,$ARGV[1]);
open(fitxer3, $ARGV[3]);
open(fitxer4, $ARGV[4]);

$line1 = <fitxer1>;
($tmpa, $tmpb, $RAE) = split(' ',$line1,3);
chop($RAE);
$RAE = substr($RAE,0,length($RAE)-1);

$ACCTIME = <fitxer2>;

$line3 = <fitxer3>;
($totalpackets, $totalhops) = split(' ', $line3, 2);
$totalpackets = substr($totalpackets,0,length($totalpackets)-1);
chop($totalhops);
$totalhops = substr($totalhops,0,length($totalhops)-1);

$SWF = <fitxer4>;
chop($SWF);

($info, $r) = split('_',$ARGV[0],2);
($r, $bits) = split('25',$info,2);
if(length($bits) == 2){
 $sim = "0";
}
else{
 $sim = "1";
}
$densidad = chop($bits);
$dinamismo = chop($bits);

print STDOUT $ACCTIME, "\t", $RAE, "\t", $SWF, "\t", $totalpackets ,"\t", $totalhops,
"\r\n";

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 67 -

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 68 -

8 References

Abramson, D., R. Buyya, et al. (2002). "A Computational Economy for Grid Comput-
ing and its Implementation in the Nimrod- G Resource Broker." Future Gen-
eration Computer Systems 18(8): 1061-1074.

Adar, E. and B. A. Huberman (2000). "Free Riding on Gnutella." First Monday 5(10).
Ardaiz, O., F. Freitag, et al. (2002). CatNet - Catallactic Mechanisms for Service Con-

trol and Resource Allocation in Large Scale Application-Layer Networks. Proc.
Workshop on Global and Peer-to-Peer Computing on Large Scale Distributed
Systems, 2nd IEEE/ACM International Symposium on Cluster Computing and
the Grid, Berlin.

Arndt, O., B. Freisleben, et al. (1999). Batch Queueing in the WINNER Resource
Management System. Parallel and Distributed Processing Techniques and
Applications, Las Vegas, Nevada.

Bachmann, F., L. Bass, et al. (2004). Software Architecture Documentation in Prac-
tice: Documenting Architectural Layers. Pittsburgh, PA, Carnegie Mellon Uni-
versity.

Balakrishnan, H., M. F. Kaashoek, et al. (2003). "Looking Up Data In P2P Systems."
Communications of the ACM 46(2): 43-48.

Bichler, M. (2001). The Future of E-Commerce: multi-dimensional market mecha-
nisms. New York, Cambridge University Press.

Brenner, T. (1996). Learning in a Repeated Decision Process: A Variation-Imitation-
Decision Model. Papers on Economics & Evolution. Jena, Max-Planck-Institut
für die Erforschung von Wirtschaftssystemen.

Brenner, T. (2002). "A Behavioural Learning Approach to the Dynamics of Prices."
Computational Economics 19: 67-94.

Burghes, D. and A. Graham (1980). Introduction to control theory including optimal
control. West Sussex, Ellis Horwood.

Bussmann, S. and K. Schild (2000). Self-Organizing Manufacturing Control: An In-
dustrial Application of Agent Technology. Proc. of the 4th International Confer-
ence on Multiagent Systems (ICMAS), Boston.

Buyya, R. (2002). Economic-based Distributed Resource Management and Schedul-
ing for Grid Computing, Monash University, Melbourne, Australia. Ph.D.

Buyya, R., D. Abramson, et al. (2001). A Case for Economy Grid Architecture for
Service-Oriented Grid Computing. 10th IEEE International Heterogeneous
Computing Workshop (HCW 2001), San Francisco.

Buyya, R., D. Abramson, et al. (2002). "Economic models for resource management
and scheduling in Grid computing." Journal of Concurrency and Computation:
Practice and Experience 14(13-15): 1507-1542.

Casanova, H., G. Obertelli, et al. (2000). The AppLeS parameter sweep template:
user-level middleware for the grid. ACM/IEEE Conference on Supercomputing,
Dallas, TX, IEEE Computer Society.

Catnet Project (2003). Assessment Final Report. Barcelona.
Chandra, P., A. Fischer, et al. (2001). "Darwin: Customizable Resource Management

for Value-Added Network Services." IEEE Network 15(1): 22-35.
Chawathe, Y., S. Ratnasamy, et al. (2003). Making Gnutella-like P2P Systems Scal-

able. ACM SIGCOMM'03, Karlsruhe, Germany, ACM Press.
Cheng, J. Q. and M. P. Wellman (1998). "The WALRAS algorithm: A convergent dis-

tributed implementation of general equilibrium outcomes." Computational Eco-
nomics 12: 1-24.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 69 -

Chun, B., D. Culler, et al. (2003). "PlanetLab: An Overlay Testbed for Broad-
Coverage Services." ACM Computer Communication Review 33(3).

Chun, B. N. and D. E. Culler (2000). Market-based Proportional Resource Sharing for
Clusters. Berkeley, University of California.

Clearwater, S. H. (1996). Market-based control. A paradigm for distributed resource
allocation. Singapore, World Scientific.

Cliff, D. and J. Bruten (1998). Less than Human: Simple adaptive trading agents for
CDA markets. Proceedings of the IFAC Symposium on Computation in Eco-
nomics, Finance, and Engineering: Economic Systems (CEFES'98).

Cohen, B. (2003). Incentives build robustness in BitTorrent. Workshop on Economics
of Peer-to-Peer Systems, Berkeley, CA.

Erev, I. and A. E. Roth (1998). "Predicting How People Play Games - Reinforcement
Learning in Experimental Games with Unique, Mixed Strategy Equilibria."
American Economic Review 88(4): 848-881.

Eymann, T. (2003). Digitale Geschäftsagenten. Heidelberg, Springer Xpert.press.
Eymann, T. and H. Morito (2004). Privacy Issues of Combining Ubiquitous Comput-

ing and Software Agent Technology in a Life-Critical Environment. Proc. of the
IEEE International Conference on Systems, Man and Cybernetics, Den Haag,
IEEE Press.

Eymann, T., B. Padovan, et al. (2002). "A Prototype for an Agent-based Secure Elec-
tronic Marketplace Including Reputation Tracking Mechanisms." International
Journal of Electronic Commerce 6(4): 93-114.

Fausett, L. V. (1994). Fundamentals of Neural Networks, Prentice Hall.
Ferguson, D. F., C. Nikolaou, et al. (1996). Economic Models for Allocating Re-

sources in Computer Systems. Market-Based Control - A Paradigm for Dis-
tributed Resource Allocation. Singapore, World Scientific: 156-183.

Foster, I., C. Kesselman, et al. (1999). A Distributed Resource Management Architec-
ture that Supports Advance Reservation and Co-Allocation. Proceedings of the
International Workshop on Quality of Service.

Freedman, M. J., E. Freudenthal, et al. (2004). Democratizing Content Publication
with Coral. 1st USENIX/ACM Symposium on Networked Systems Design and
Implementation, San Francisco, CA, ACM Press.

Frey, J., T. Tannenbaum, et al. (2002). "Condor-G: A Computation Management
Agent for Multi-Institutional Grids." Cluster Computing 5(3): 237-246.

Friedman, D. P. (1993). The Double Auction Market. Santa Fe Institute studies in sci-
ences of complexity. Reading, Massachussets., Addison-Wesley.

Furubotn, E. G. and R. Richter (1998). Institutions and Economic Theory: The Contri-
bution of the New Institutional Economics. Detroit, University of Michigan
Press.

Gehring, J. and A. Reinefeld (1996). " MARS - A Framework for Minimizing the Job
Execution Time in a Metacomputing Environment." Future Generation Com-
puter Systems 12(1): 87-99.

Goldberg, D. (1993). Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Reading MA, Addison Wesley.

Gomoluch, J. and M. Schroeder (2003). Market-based Resource Allocation for Grid
Computing: A Model and Simulation. 1st International Workshop on Middle-
ware for Grid Computing, Rio de Janeiro, Brazil.

Grimshaw, A. S., W. A. Wulf, et al. (1994). Legion: The Next Logical Step Toward a
Nationwide Virtual Computer, University of Virginia.

Hayek, F. A. v., W. W. Bartley, et al. (1989). The collected works of F.A. Hayek. Chi-
cago, University of Chicago Press.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 70 -

Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control and artificial intelligence. Cam-
bridge, MIT Press.

Hoppmann, E. (1999). Unwissenheit, Wirtschaftsordnung und Staatsgewalt. Freiheit,
Wettbewerb und Wirtschaftsordnung. V. Vanberg. Freiburg, Haufe Verlag:
135-169.

Horwitz, S. (2003). Catallaxy, Competition, and 21st Century Capitalism: An Agenda
for Economics. Annual Conference of the International Confederation for the
Advancement of Pluralism in Economics, Kansas City, University of Michigan
Press.

Huberman, B. A. (1988). The Ecology of Computation. Amsterdam, North-Holland.
IBM (2/12/01/). Autonomic Computing Manifesto. Yorktown Heights, NY, IBM.
Izal, M., G. Urvoy-Keller, et al. (2004). Dissecting BitTorrent: Five Months in a Tor-

rent's Lifetime. Passive and Active Measurements (PAM), Antibes Juan-les-
Pins.

Jennings, N. R., P. Faratin, et al. (2001). "Automated negotiation: prospects, meth-
ods and challenges." International Journal of Group Decision and Negotiation
10(2).

Kearney, P. J., R. E. Smith, et al. (2000). "Integration of computational models in-
spired by economics and genetics." BT Technology Journal 18(4): 150-161.

Kephart, J. O. and D. Chess (2003). "A Vision of Autonomic Computing." IEEE Com-
puter 36 (1): 41-50.

Kephart, J. O., J. E. Hanson, et al. (1998). Dynamics of an information filtering econ-
omy. Second International Workshop on Cooperative Information Agents
(CIA'98), Heidelberg, Springer.

Krauter, K., R. Buyya, et al. (2001). "A taxonomy and survey of grid resource man-
agement systems for distributed computing." Software - Practice And Experi-
ence 32(2): 135-164.

Lavoie, D., H. Baetjer, et al. (1990). "High-Tech Hayekians - Some Possible Re-
search Topics in the Economics of Computation." Market Process 8(Spring):
120-147.

Lomuscio, A. R., M. J. Wooldridge, et al. (2000). A classification scheme for negotia-
tion in electronic commerce. LNAI. Heidelberg, Springer: 19-33.

Malkhi, D., M. Naor, et al. (2002). Viceroy: A scalable and dynamic emulation of the
butterfly. 21st annual ACM symposium on Principles of distributed computing,
ACM Press.

Miller, M. S. and K. E. Drexler (1988). Markets and Computation: Agoric Open Sys-
tems. The Ecology of Computation. B. A. Huberman. Amsterdam, North Hol-
land: 133-176.

Mojo Nation. (2003). "Mojo Nation Website." Retrieved 2003/01/01/, from
http://www.mojonation.net/.

Müller, J. and T. Eymann (2003). Optimizing Strategy in Agent-based Automated Ne-
gotiation. Wirtschaftsinformatik 2003, Dresden, Physica Verlag.

Nabrzyski, J., J. M. Schopf, et al., Eds. (2003). Grid Resource Management. Amster-
dam, Kluwer.

Neal, R. M. (1996). "Bayesian Learning for Neural Networks." Lecture Notes in Statis-
tics 118.

North, D. C., R. Calvert, et al. (1990). Institutions, Institutional Change and Economic
Performance - Political Economy of Institutions and Decisions. Cambridge,
Cambridge University Press.

Preist, C. (1998). Economic Agents for Automated Trading. Bristol, Hewlett Packard
Laboratories.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 71 -

Press, W. H., S. A. Teukolsky, et al. (2002). Numerical Recipes in C++ - The Art of
Scientific Computing. Cambridge, MA, Cambridge University Press.

Pruitt, D. G. (1981). Negotiation behavior. New York, Academic Press.
Rabinovich, M. and A. Aggarwal (1999). RaDaR: A scalable architecture for a global

Web hosting service. The 8th International World Wide Web Conference, To-
ronto.

Ratnasamy, S., P. Francis, et al. (2001). A Scalable Content-Addressable Network.
Conference on Applications, technologies, architectures, and protocols for
computer communications, San Diego, ACM Press.

Regev, O. and N. Nisan (1998). The POPCORN market - an online market for com-
putational resources. International Conference on Information and Computa-
tion Economies, Charleston, SC, ACM Press.

Ripeanu, M. (2001). Peer-to-Peer Architecture Case Study: Gnutella Network. Chi-
cago, University of Chicago.

Ripeanu, M., I. Foster, et al. (2002). "Mapping the gnutella network: Properties of
large-scale peer-to-peer systems and implications for system design." IEEE
Internet Computing 6(1).

Rosenschein, J. S. and G. Zlotkin (1994). Rules of encounter - designing conventions
for automated negotiation among computers. Cambridge, MIT Press.

Rowstron, A. and P. Druschel (2001). Pastry: Scalable, Distributed Object Location
and Routing for Large-scale Peer-to-peer Systems. 18th IFIP/ACM Interna-
tional Conference on Distributed Systems Platforms, Springer.

Roy, A. and V. Sander (2003). GARA: A Uniform Quality of Service Architecture. Grid
Resource Management: State of the Art and Future Trends. J. Nabrzyski, J.
M. Schopf and J. Weglarz. Amsterdam, Kluwer Academic Publishers: 377-
394.

Sandholm, T. W. (1996). Negotiation Among Self-Interested Computationally Limited
Agents. Amherst, University of Massachusetts.

Sandholm, T. W. and R. H. Crites (1995). On Multiagent Q-Learning in a Semi-
competitive Domain. IJCAI-95 Workshop on Adaptation and Learning in Multi-
agent Systems.

Saroiu, S., P. K. Gummadi, et al. (2002). A measurement study of peer-to-peer file
sharing systems. SPIE/ACM Conference on Multimedia Computing and Net-
working (MMCN 2002).

Sarshar, N., P. O. Boykin, et al. (2004). Percolation Search in Power Law Networks:
Making Unstructured Peer-to-Peer Networks Scalable. Fourth International
Conference on Peer-to-Peer Computing (P2P'04), Zürich, Switzerland, IEEE
Computer Society.

Sathi, A., M. S. Fox, et al. (1989). Constraint-directed Negotiation of Resource Allo-
cations. Distributed Artificial Intelligence 2, Morgan Kaufmann.

Simon, H. A. (1957). Models of Man - Social and Rational. New York, John Wiley &
Sons.

Singh, M. P. and M. N. Huhns (2005). Service-Oriented Computing: Semantics,
Processes, Agents. New Jersey, John Wiley & Sons.

Smale, S. (1976). "Dynamics in general equilibrium the theory." American Economic
Review 66(2): 284-294.

Smith, A. (1776). An inquiry into the nature and causes of the wealth of nations. Lon-
don, Printed for W. Strahan; and T. Cadell.

Smith, R. E. and N. Taylor (1998). A Framework for Evolutionary Computation in
Agent-Based Systems. Proceedings of the 1998 International Conference on
Intelligent Systems, ISCA Press.

EU-IST Project IST-FP6-003769 CATNETS
CATNETS - Evaluation of the Catallaxy paradigm for decentralized operation of dynamic application networks

- 72 -

Snelling, D. and T. Priol (2003). Next Generation Grid(s). European Grid Research
2005 - 2010. Brussels, Information Society - DG, Grids for Complex Problem
Solving.

Stonebraker, M., R. Devine, et al. (1994). An economic paradigm for query process-
ing and data migration in Mariposa. 3rd International Conference on Parallel
and Distributed Information Systems, Austin, TX.

Sycara, K., L. Gasser, et al. (1989). Multi-agent Compromise via Negotiation. Distrib-
uted Artificial Intelligence 2, Morgan Kaufmann.

T-Online AG (2003). T-Online PDF Creator: Easy document conversion.
Tanenbaum, A. S. (1996). Computer Networks. Upper Saddle River, N.J, Prentice

Hall PTR.
Tesfatsion, L. (1997). How Economists can get Alife. Santa Fe Institute Studies. W.

B. Arthur, S. Durlauf and D. A. Lane. Redwood City, CA, Addison Wesley:
533-564.

Truex, D. P., R. Baskerville, et al. (1999). "Growing Systems in Emergent Organiza-
tions." Communications of the ACM 42(8): 117-123.

Varian, H. R. (1995). Mechanism Design for Computerized Agents. Talk presented at
the Usenix Workshop on Electronic Commerce, New York.

Waldspurger, C. A., T. Hogg, et al. (1992). "Spawn: A Distributed Computational
Economy." IEEE Transactions on Software Engineering 18(2): 103-117.

Walras, L. (1954). Elements of pure economics. London, Allen and Unwin.
Weinhardt, C., C. Holtmann, et al. (2003). "Market Engineering." Wirtschaftsinfor-

matik 45(6): 635-640.
Weiser, M. (1991). "The Computer for the Twenty-First Century." Scientific American

265(3): 94-104.
Wellman, M. P. (1993). "A market-oriented programming environment and its applica-

tion to distributed multicommodity flow problems." Journal of Artificial Intelli-
gence Research 1: 1-23.

Wellman, M. P. (1996). Market-Oriented Programming: Some Early Lessons. Market-
Based Control: A Paradigm for Distributed Resource Allocation. S. H. Clear-
water. Singapore, World Scientific: 74-95.

Wellman, M. P. and W. E. Walsh (2003). "Decentralized supply chain formation: A
market protocol and competitive equilibrium analysis." Journal of Artificial Intel-
ligence Research 19: 513-567.

Wolski, R., J. Brevik, et al. (2003). Grid Resource Allocation and Control Using Com-
putational Economies. Grid Computing: Making The Global Infrastructure a
Reality. F. Berman, G. Fox and A. Hey. San Francisco, Wiley & Sons.

Wooldridge, M. J. (1999). Intelligent Agents. Multiagent Systems. G. Weiss. Cam-
bridge, MA, MIT Press: 27-78.

Yamaki, H., M. P. Wellman, et al. (1996). A Market-Based Approach to Allocating
QoS for Multimedia Applications. Second International Conference on Multi-
agent Systems (ICMAS'96), Kyoto.

Ygge, F. (1998). Market-Oriented Programming and its Application to Power Load
Management, Lund University, Sweden. Ph.D.

Zhao, B., J. Kubiatowicz, et al. (2001). Tapestry: An infrastructure for fault-tolerant
wide-area location and routing. Berkeley, Computer Science Division, Univer-
sity of California.

ISSN

Die Arbeit beschreibt die Spezifikation und das
Design von Softwarekomponenten, um das
Konzept der Katallaxie in Grid-Systemen
umzusetzen. Eine Einführung ordnet das
Konzept der Katallaxie in bestehende Grid-
Taxonomien ein und stellt grundlegende
Komponenten vor. Anschließend werden diese
Komponenten auf ihre Anwendbarkeit in
bestehenden Application Layer Netzwerken
untersucht.

1864-9300

