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A Scalability Analysis of Grid Allocation
Mechanisms

Michael Reinicke∗, Werner Streitberger∗ and Torsten Eymann∗

∗Chair of Information Systems Management
University of Bayreuth, Germany

Email: {reinicke,streitberger,eymann}@uni-bayreuth.de

Abstract—Grid Computing is a paradigmatic application for
the requirements associated with the exponentially growing
complexity in the engineering, operation and maintenance of
today’s information systems. Grid Computing comprises ever-
growing global communication infrastructures and millions of
possible system elements into the picture. Self-organizing, agent-
based Grids share many properties and research questions
with Autonomic Computing. In both concepts, the procedure of
matching service provisioning to service demand is often centrally
(geographically) realized by a dedicated resource broker instance.
However, one of the prerequisites of this resource broker would
be that it scales with the increasing size of the system. This article
examines the broker’s behavior with regard to a varying number
of participating nodes and shows that incremental losses have to
be accepted in central resource allocation when introducing new
nodes. In comparison, a self-organizing, decentralized, bilateral
bargaining approach shows more evenly behavior in response
times and allocation efficiency.

Index Terms—Grid Computing, Resource Allocation, Resource
Broker, Scalability Analysis

I. RESOURCE BROKERAGE IN SELF-ORGANIZING GRID
NETWORKS

Since several years, companies like Sun, IBM and HP are
working on software architectures that allow clients to obtain
computing services on demand from anywhere in a computer
network [1] [2] [3].

This so-called Service Oriented Computing paradigm allows
bundling remote resources from diverse providers in the net,
creating economies of scale as well as economies of scope.
The term Grid Computing [4] describes global, Internet-based
bundling and on-demand access of computational resources
like processor power or data storage. Aggregated processor
power worldwide combines to a virtual computer with an
immense amount of capacity, enabling users to process
computation-intense jobs. Being connected via powerful
network links, it is irrelevant where this accomplishment
will be fulfilled. Usual examples are systems for number-
crunching applications, like computations in climate change,
cancer therapy or decoding the human genome [5].

The Grid network forms a virtual organization of service
providers and clients and thus possesses a system identity.
Every service provider knows whether it belongs to the system
or not, and the client addresses its requests ”to the Grid
network” rather than to a bunch of unknown resources.

As the demand and offer situation in the network
continuously and (assumably unpredictably) varies, the Grid
system reconfigures these resources such that the objectives
of availability and resource usage are sufficiently met. On
the application level, this variation might be caused by nodes
entering or leaving the network (like in P2P networks); on a
technical level, network connections might disappear or get
overly congested. This requires self-adaptation and learning
mechanisms, which lead to a self-healing of the system and
to continuous self-optimization of its processes.

This paper focuses on a specific functionality of an Grid
system, which can be either solved by a centralized or a
self-organizing solution. Out of a list of candidate service
provider instances, a matchmaker (or resource broker) usually
selects a match between client and provider which satisfies
both parties. The selection process will, in the likely case of
multiple, redundant service instances, need to order available
alternatives according to some optimization criterion. These
can be of technical nature, like fastest response time, or
economic, like overall allocation efficiency.

Grid Computing systems show characteristics that highly
affect the performance of a chosen service selection method
and resource broker instance implementation:

• Dynamicity: Networks are changing environments and
there is a continuous need for adaptation.

• Large scale: Grids contain a large number of nodes,
possibly tens of thousands, and it is necessary to use
mechanisms that can scale up.

• Partial knowledge: It is not possible to determine at any
point in time (or a priori) the complete state of the system.

• Evolutionary: The system is evolving in directions that
cannot be foreseen in the initial setup.

The remainder of this article is structured as follows.
Section II presents some related work concerning service
selection. Section III develops a formalization of the simulated
centralized service selection approach and section VI draws
a comparison to a novel decentralized selection strategy.
Section V shows a simulation, analyzing the behavior of
a generalized economic allocation mechanism. This will be
followed by an evaluation showing the scalability behavior of
both mechanisms. Section VI finally presents a conclusion and
draws an outlook for further research.
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Fig. 1. Centralized Service Discovery and Service Selection

II. RELATED WORK

The most common implementation for service selection
is that of a centralized matchmaker or resource broker.
The candidate list is evaluated centrally by the matchmaker
instance, and the requesting client receives only the resulting
match (see Figure 1). Clients and service providers update
the centralized resource broker in synchronized rounds about
service requests and effective availability. Receiving and
storing this data, the resource broker periodically selects –
after collecting a certain amount of incoming information
– providers and clients to commit a temporary relationship.
After notifying the clients and resources about the respective
allocation, it is up to the clients to claim the resource directly.

Existing matchmaking approaches are realized in Condor-G
[6], Darwin [7], Globus [8], which rely on using a centralized
instance which implements both service selection and service
discovery procedures.

The centralized approach has several drawbacks, some of
which cannot be solved by incremental development: One
prerequisite is that the coordinator needs to have actual,
global knowledge on the state of the network. This is mostly
achieved by calculating the time steps such that actual status
information from all nodes arrives safely at the coordination
instance. However, if the diameter of the network is too
large, this approach leads to long latency times for the
nodes. Furthermore, during this time the environment must
not change in order for the optimization mechanism to produce
results applicable to the problem set.

Grid computing networks, however, are very dynamic and
fast changing systems, service demands and communication
paths changes are frequent [9], and new different services
can be created and composed continuously [10]. Thus,
dynamic networks need a continuously updating coordination
mechanism, which reflects the changes in the environment.
When increasing the number of participants in the network
that rely on the centralized matchmaker to allocate the jobs to
the resources, issues of scalability arise. Due to the increase
in complexity, a centralized resource broker will supposedly
not be able to cope with an increasing number of connected

nodes and resources.

III. FORMALIZATION OF A CENTRALIZED GRID MARKET
SCENARIO

This section formalizes a simple Grid Computing market
scenario to analyze different matchmaking procedures. Two
types of agents are created. Sellers provide the resource broker
with service offers, Buyers send bids to request a proper
job allocation. The seller represents both a physical resource
and a software instance (software agent) running on top of
it, analogous to an autonomic computing resource and an
autonomic manager instance, respectively. This ”service copy”
instance can exclusively process one transaction at a time.

A. Obtaining Bids

T is assumed to be a fixed time duration, during which
the resource broker collects bids by opening an auction. The
auction begins when a buyer k1 requires the desired good
at a certain time t0 and offers a maximum price K1 for
that good (bid). The sellers receive a message requesting to
propose a counteroffer (ask). A busy seller, whose service
copy is occupied at the time of reception of the buyers’
offer, immediately rejects the offer by sending a reject to the
resource broker. Other sellers send counteroffers during the
interval [t0, t0 + T ]. When this time span ends, the resource
broker selects a winner out of the received bids and determines
a – at least for this round – valid market price.

B. Determining the Market Price

The buyers that have issued an offer to the resource broker
in time interval [t0, t0 + T ] are denoted by

k1, . . . , kN

and the corresponding bids are

K1, . . . ,KN .

Analogous are
v1, . . . , vM

the sellers, who have issued the offers

V1, . . . , VM

in the same time interval.
For any set A ⊂ R let the function

IA : R −→ {0; 1} , IA : p �→
{

1, if p ∈ A
0, if p /∈ A

be the indicator function of A.
A buyer having bit Ki will buy the good at price p, when

p ≤ Ki

and buyer ki contributes to the aggregated demand curve

p �→ I[0;Ki](p) .
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Thus, an aggregated demand curve against the price p results:

D : p �→
N∑

i=1

I[0;Ki](p) .

Accordingly,

S : p �→
M∑

j=1

I[Vj ;∞[(p)

is the cumulated supply function against price p.
Now, let

p1 ≤ p2 ≤ p3 ≤ · · · ≤ pN+M

be the ordered bids K1, . . . ,KN , V1, . . . , VM (index by size).
To determine the equilibrium price, the Surplus

Δ(pi) = S(pi)−D(pi)

is calculated for each price pi and i ∈ {1, . . . , N +M}. Δ(pi)
describes the surplus of sellers respectively buyers at price
Pi. As the demand and supply curves are not continuous,
generally no market clearing price p∗ could be determined
where Δ(p∗) = 0 applies. The value

Δ∗ = min{|Δ(p1)|, . . . , |Δ(pN+M )|}
describes the minimum of this surplus at a price p∗ and

Δ∗ = |Δ(p∗)|
maximizes the transactional volume.

As D and S are monotonous functions, and pi+1 for i ∈
{1, . . . , N +M−1} is a jump discontinuity of D respectively
S finds that

D(pi) > D(pi+1)

or
S(pi) < S(pi+1)

hold. Therefore is

S(pi)−D(pi) < S(pi+1)−D(pi+1) ,

i.e.

Δ(pi) < Δ(pi+1) ∀ i ∈ {1, . . . , N + M − 1} .

So, only two cases are possible:
• First case: It exists only one p∗ ∈ {p1, . . . , pN+M} with

Δ∗ = |Δ(p∗)| .
In this case the price p∗ will be determined as market
price by the resource broker.

• Second case: Two prices exist, p∗1, p
∗
2 ∈ {p1, . . . , pN+M},

both satisfying the equation

Δ∗ = |Δ(p)| for p ∈ {p1, . . . , pN+M}.
In this case additionally Δ(p∗1) = −Δ(p∗2) holds.
The resource broker then determines the price p∗ ∈
{p∗1, p∗2} as a market price, obtaining

Δ(p∗) > 0 .

C. Allocation of Buyers and Sellers

In this model buyers and sellers reside at fixed, but different
locations in the network. The distance between the agents will
be identified by node reference points that have been passed by
the messages. This will be an integer number and is denoted
for agents a1, a2 by

d(a1, a2) ∈ N.

Now let {ki1 , . . . , kir} be the set of buyers for which holds

Ki ≥ p∗ .

These are the buyers, that are willing to pay the market price.
Furthermore {vj1 , . . . , vjl

} is the set of the sellers for that
holds

Vj ≤ p∗ .

These are the sellers that are willing to accept the market price.
The buyers {ki1 , . . . , kir} now select the available sellers

according to the lowest distance to their location. Therefore,
the mapping

τ : {i1, . . . , ir} −→ {0, j1, . . . , jl}

will be defined as follows:

• τ(ih) = jf means that buyers kih
buy the concerning

good from seller vjf
.

• τ(ih) = 0 means that for buyer kih
no seller is remaining.

This might happen when the surplus at price p∗ is
negative and means that a buyer surplus exists.

• τ(ih) 	= jf ∀ ih ∈ {i1, . . . , ir} means that for seller , vjf

no buyers are remaining to that the good could be sold.
This might happen if the surplus at price p∗ is positive,
thus it exists a seller surplus.

The allocation of a seller to a buyer kih
occurs as follows:

• First case: {j1, . . . , jl}\{τ(i1), . . . , τ(ih−1)} 	= ∅, means
that at least one seller is remaining.
Now is τ(ih) ∈ {j1, . . . , jl} \ {τ(i1), . . . , τ(ih−1)} , so
that

d(kih
, vτ(ih)) = min

{
d(kih

, v)
∣∣ v ∈ {vj1 , . . . , vjl

}

\{vτ(i1), . . . , vτ(ih−1)}
}

.

Yet, the set of available sellers is

v ∈ {vj1 , . . . , vjl
} \ {vτ(i1), . . . , vτ(ih−1)} ,

among these the buyer kih
will be selected who shows

the lowest distance to the seller.
• Second case: {j1, . . . , jl}\{τ(i1), . . . , τ(ih−1)} = ∅, i.e.

no seller is remaining.
In this case holds

τ(ih) = 0 .
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Fig. 2. Decentralized Service Discovery

IV. THE CATALLAXY AS AN ALTERNATIVE
DECENTRALIZED APPROACH

Having defined a formal model for using a central
matchmaker in a Grid network, this section describes
an alternative, decentralized model. This decentralized
matchmaking mechanism implements the selection decision
in the requesting client itself. Related realizations of
decentralized matchmaking are found in P2P Networks, where
Gnutella [11] is a typical example.

An optimization of network performance is out of the scope
of the clients behavior; in contrast, the selfish conduct of each
peer leads to performance and congestion problems in the P2P
network, which are principally hard to solve [11]. Gnutella
uses a flooding algorithm for service discovery (see Figure 2).

P2P algorithms are thus giving no guarantees whether a
service is available at all, and their use of bandwidth is
highly inefficient, as they were in 2004 responsible for approx.
56% of all network traffic measured by ISPs and 20% of
the backbone traffic, counting only the search requests [12].
Innovative P2P applications like Chord, Pastry or CAN avoid
this message abundance by introducing an overlay structure
[13].

In decentralized matchmaking models, agents communicate
directly with each other, decide on their own, and do not take
the system state into account. In the Edgeworth process [14],
economic subjects trade bilaterally with each other only if their
utility is supposed to increase after the barter. In that case, the
sum of all utilities increases after each successful barter; the
final state is Pareto-optimal and has maximum system utility.

A theoretical fundament for how dynamic market
processes, heterogeneous agents and choice under incomplete
information works together, can be found in Neo-Austrian
Economics, in particular in Friedrich August von Hayeks
Catallaxy concept [15]. Catallaxy describes a state of
spontaneous order, which comes into existence by the
community members communicating (bartering) with each
other and thus achieving a community goal that no single user
has planned for.

The implementation of Catallaxy, described in this

paper, uses efforts from both agent technology and
economics, notably agent-based computational economics
[16]. Autonomous software agents negotiate with each other
using an alternating offers protocol [17] and adapt their
negotiation strategies using feedback learning algorithms
(evolutionary algorithms, Numerical optimization e. g.
Nelder/Meads simplex method [18], hybrid methods e.g.
Brenners VID model [19]). Ongoing communication by using
price signalling leads to constant adaptation of the system as
a whole and propagates changes in the scarcity of resources
throughout the system. The resulting patterns are comparable
to those witnessed in human market negotiation experiments
[20] [21] [22].

A. Setup and Variables Definition

While the notation for buyers, sellers and goods is the same
as in the centralized matchmaker case, we need to add some
definitions for the decision-making process (the strategy) of
the agents. The negotiation strategy described here is based
on the AVALANCHE strategy [23] [24]. The strategy consists
of 5 basic parameters, which define the individual behavior
(genotype) of each agent.

For every tradeable good there are two types of agents,
buyer and seller. Let agent k be a buyer and agent v a seller
of a tradeable good.

Let ik be the number of negotiations, agent k has started
and iv the number of negotiations, agent v has started. It is
irrelevant how many negotiations were finished successfully.

A genotype defines the behavior of the agents in the
negotiation strategy. Let the genotype of agent k during his
negotiation ik be

Gik

k ∈ [0; 1]5

with

Gik

k = (Gik

k,1, . . . , G
ik

k,5)
τ = (aik

k , sik

k , tik

k , bik

k , wik

k )τ

where

aik

k acquisitiveness
sik

k satisfaction
tik

k priceStep
bik

k priceNext
wik

k weightMemory.

Acquisitiveness defines the probability of sticking with the
last offer made, and not to make an unilateral concession in
the following negotiation step. The value interval is between
0 and 1, and will be challenged by a stochastic probe in
every negotiation step. A value of 0.7 means a probability
of 70% that the agent will not make a concession – a highly
competitive strategy. An agent with acquisitiveness value 1.0
will never change his price and an agent with acquisitiveness
value 0.0 will always make an unilateral concession. If the
probe succeeds, a buyer agent will rise his offer, a seller agent
will lower his price.

The exact change of the bid value is defined by
the concession level (priceStep). The concession level is
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represented by a percentage of the difference between the
initial starting prices. A value of priceStep = 0.25 means a
computation of the concession level as 1/4 of the first stated
difference. If both opponents are homogenously negotiating
and always concede, they meet each other on the half way
in the third negotiation round under the assumption of no
negotiation abortion.

Obviously, with an Acquisitiveness level set high, and a
priceStep set low enough, the opponents might never reach
an agreement. The Satisfaction parameter determines if an
agent will drop out from an ongoing negotiation. The more
steps the negotiation takes, or the more excessive the partner’s
offers are, the sooner the negotiation will be discontinued.
Effectively, this parameter creates time pressure. Like for
Acquisitiveness, it does this by doing a stochastic probe against
a set value between 0 and 1. A satisfaction value of 0.75
means, that the agent has a chance of 75% to continue the
negotiation process. An agent with satisfaction = 0.0 will abort
all negotiation at once and an agent with satisfaction = 1.0 will
never abort.

The last piece of the strategy is an expression of selfishness.
Behind each successful negotiation lies a future opportunity
for gaining more of the utility share, by negotiating harder.
priceNext thus modifies the starting bid. A successful seller
will increase his offer price, a successful bidder will start with
a lower bid next time.

For a viable strategy, the participants will have a close
eye on what others deem to be the market price. If not,
they risk being tagged as ”excessive” and their bids will
fail the satisfaction probe. They thus weigh current price
information and historic price information in a specified ratio
weightMemory, balancing short-time price fluctuation and
longer-term opportunities.

In a formal representation, the genotype of an agent v during
his negotiation iv is

Giv
v ∈ [0; 1]5

with

Giv
v = (Giv

v,1, . . . , G
iv
v,5)

τ = (aiv
v , siv

v , tiv
v , biv

v , wiv
v )τ .

At the beginning of the simulation the genes Gi∗
∗,j for

∗ = k, v and j ∈ {1, . . . , 5} are distributed according to the
probabilities:

Ufo
(
[mj − δj ; mj + δj ]

)
Thereby, the constants mj and δj for j ∈ {1, . . . , 5} are
defined so that [mj − δj ; mj + δj ] ⊂ [0; 1] .

Additionally, the agent k has the following variables:

M ik

k is the market price, which is estimated by
agent k during his negotiation ik.

P ik

k is the price of the the last successful
negotiation 1, 2, . . . , ik of agent k.

Oik

k is the last offer, which the negotiation opponent
has made in negotiation number ik the agent k
before the negotiation ended.

pik

k is the number of stored plumages of agent k

direct after his negotiation ik.

The related variables of agent v are defined in the same way.
These variables build the basis for decision making during a
negotiation.

B. The Negotiation Strategy

When agent k and agent v negotiate, agent k is the buyer
and agent v the seller. The sequence (Pj)j∈N0 ⊂ [0,∞[
constitutes the offer in chronological order. The buyer always
makes the first offer. This means, all offers

P2m ∀m ∈ N0

originate from the buyer and the offers

P2m+1 ∀m ∈ N0

come from the seller.
At the beginning of a negotiation the buyer k determines

his initial price K and his maximum price K:

K = M ik

k · (1− bik

k ) , K = M ik

k

The seller v determines his starting price V and his minimum
price V :

V = M iv
v · (1 + biv

v ) , V = M iv
v

The buyer starts with the first bid:

P0 = K

First Case: K ≥ V
Then v offers also

P1 = K

and the negotiation will be closed successfully to the price P1.

Second Case: K < V
Then v offers his initial price

P1 = V .

Both agents determine now her steps δj∗∗ for price concessions:

δi∗∗ = (V −K) · ti∗∗ for ∗ = k, v

In the subsequent negotiation rounds, let A1, A2, A3, . . .
and S1, S2, S3, . . . be stochastic independent random variables
with the following binomial distributions:

A2m =
{

1 with probability aik

k

0 with probability 1− aik

k

∀m ∈ N

A2m+1 =
{

1 with probability aiv
v

0 with probability 1− aiv
v

∀m ∈ N

S2m =
{

1 with probability sik

k

0 with probability 1− sik

k

∀m ∈ N

S2m+1 =
{

1 with probability siv
v

0 with probability 1− siv
v

∀m ∈ N

• Offer number 2m; it is the buyer’s k turn:
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If S2m = 0 and P2m−1 ≥ P2(m−1)−1 with m 	= 1, then the
buyer k cancels the negotiation. This means, Oik

k = P2m−1

and Oiv
v = P2(m−1) .

Otherwise, the buyer k makes the following offer:

P2m =
(

max
{
K, (P2(m−1) + δik

k ), P2m−1

})A2m ·
(
P2(m−1)

)1−A2m

• Bid number 2m + 1; it is the seller’s v turn: If S2m+1 = 0
and P2m ≤ P2(m−1), then the seller v cancels the negotiation.
That means, Oiv

v = P2m and Oik

k = P2(m−1)+1 .
Otherwise the seller v makes the following offer:

P2m+1 =
(

min
{
V , (P2(m−1)+1 − δiv

v ), P2m

})A2m+1 ·
(
P2(m−1)

)1−A2m+1

The negotiation ends if either one of the agents cancels the
negotiation or the negotiation ends successfully with

Pj = Pj+1

for a j ∈ N. In this case, it holds Oik

k = Pj = Oiv
v . With the

end of a successful negotiation to the price Pj the negotiation
compute their estimated profit

Πik

k = M ik

k −Pj respectively Πiv
v = Pj −M iv

v . (1)

Additionally, both agents update after every negotiation their
estimated market price using

M ik+1
k = wik

k ·Oik

k + (1− wik

k ) ·M ik

k

respectively

M iv+1
v = wiv

v ·Oiv
v + (1− wiv

v ) ·M iv
v .

This last step is independent of the success of a negotiation.

C. Gossip Learning

The learning concept used in this simulation is derived
from so-called gossip learning. This means that the agents
learn from received information about other transactions in the
market. This information may not be accurate or complete, but
serves as an indication about the gross direction of the market.
In our implementation, this gossip information is created and
broadcast by a successful agent, in analogy to issuing an ad-
hoc information in stock market periodicals.

Let n be an agent and

g1, . . . , gd

the tradeable goods. The agent n has finished his negotiation
in successfully with an estimated profit of Πin

n (g) for the good
g ∈ {g1, . . . , gd}. A learning step according to the learning
algorithm (see subsection IV-D) is performed by agent n last
time at the end of his negotiation jk. This means

Gjn+1
n = Gjn+2

n = · · · = Gin
n .

If agent n with the negotiation numbers

jn + 1, jn + 2, . . . , in

has successfully completed at last 10 negotiations for every
good, he sends a Plumage

(Gin
n , F in

n )

to all other agents of his type. Then, his updated fitness is F in
n ,

which is computed like the following:
(a) For every good gj ∈ {g1, . . . , gd} the next profit

value Π(gj) is determined t: Let be

Π1(gj), . . . ,Π10(gj)

the estimated profits of the last 10 successful
negotiations of agent n for the good gj . Then, the
fitness is

F in
n (gj) =

1
10

(
Π1(gj) + · · ·+ Π10(gj)

)
.

(b) The updated fitness F in
n finally is

F in
n =

1
d

(
Π(g1) + · · ·+ Π(gd)

)
.

The agents used in the simulations for this paper are only
able to negotiate one type of good (d = 1).

D. The Learning Algorithm

After having received some gossip information message, the
agent may modify his own strategy. Comparing his own results
with those of the strategy received, can lead to recognizing
that the other strategy is much better than his own. In this
case, the agent will try to cross both strategies to gain
competitive advantage. In practice, out of a list of received
genotype/performance-tuples, the agent will choose the best
performing external genotype, and then mix, cross and mutate
with his own genotype.

Let be n an arbitrary agent at the end of his negotiation in
and let be pin

n the number of plumages, the agent n has stored
directly after his negotiation in. The last learning step was
performed by agent n after his negotiation jk. Let be ein

n the
number of negotiations, an agent n of the negotiation numbers

jn + 1, jn + 2, . . . , in

has successfully finished.
Let be

p = 1 . (2)

If
pin

n < p or ein
n < 10

applies for agent n after his negotiation in, no learning step
will be performed. This means, his genotype will not change:

Gin+1
n = Gin

n .

Hence, if

pin
n ≥ p and ein

n ≥ 10

applies, the agent n performs a learning step. The genotype
of agent n changes like the following:

First, the stored plumage of agent n with the highest fitness
is selected. Let be

Gf = (Gf,1, . . . , Gf,5)τ = (af , sf , tf , bf , wf )τ
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the related genotype. Second, a crossover is performed. In
doing so, a new genotype G̃in+1

n is created, which contains a
random mixture of genes of the genotypes Gin

n and Gf . This
process follows a mutation step third: Using the genotype
G̃in+1

n and changing its genes slightly will result in the
genotype G

in+1
n .

1) Crossover: Let be C1, . . . , C5 stochastic independent
random variables with the following binomial distribution:

Cj =
{

1 with probability 0, 5
0 with probability 0, 5 ∀ j ∈ {1, . . . , 5}

Then it is imperative

G̃in+1
n,j = (1− Cj) ·Gin

n,j + Cj ·Gf,j ∀ j ∈ {1, . . . , 5} .

2) Mutation: Let be M1, . . . ,M5, X1, . . . , X5 stochastic
independent random variables with the following distributions:

Mj =
{

1 with probability 0, 05
0 with probability 0, 05 ∀ j ∈ {1, . . . , 5}

Xj ∼ N (0 , 1) ∀ j ∈ {1, . . . , 5}

That means, Xj is ∀ j ∈ {1, . . . , 5} standard normal
distributed.
Then, it holds

Gin+1
n,j = max

{
0 ; min

{
G̃in+1

n,j +

Mj ·
(
(

1
10

Xj) mod(1)
)
; 1

}}

∀ j ∈ {1, . . . , 5} .

V. SIMULATION AND EVALUATION

Having now a formalized description of both a centralized
and decentralized allocation mechanism, this section evaluates
their performance in a simulation environment. The simulation
runs in terms of varying numbers of participants (requesters
and resources) and computing requests.

The fundament of the simulation environment is the network
simulator J-Sim. J-Sim is an object oriented, components-
based package for the discrete simulation of freely definable
topologies [25]. The network attributes (like protocols,
bandwidths, loss rates etc.) can be freely determined. In our
case, messaging is based on UDP/IP and software agents are
attached to the nodes to simulate clients, nodes and services.
The configuration is easily described using Tcl/Tk-scripts,
which are generated dynamically.

This simulation environment used has been implemented
first in the CatNet project [26] and is consequently enhanced
and extended. To evaluate the simulation findings, we first
need to create a metrics reference framework, which is the
topic of the following subsection.
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Fig. 3. Matching technical and economical metrics

A. Inferring Economic from Technical Metrics

The behavior of a matchmaking mechanism could
principally be evaluated by technical and economic metrics,
or a combination of both.The economic criteria are mostly
inferred from the technical parameters. Directly measurable
metrics are
• the resource allocation rate, which counts the number of

accomplished contracts in relation to launched requests,
• costs of second source management,
• the time duration between the launch of the initial request

and the successful allocation of the requested resource,
and

• the amount of necessary messages for the allocation
process (infrastructure costs).

In the considered context, these technical metrics are
transferable to economic metrics:
• An increased allocation rate leads to a higher number

of contracts and thus to an increase in the requestors’
welfare utility, as the needs of the agents are satisfied
more often.

• The allocation efficiency describes the ratio of satisfied to
initiated requests. This metric can be associated with the
opportunity costs of failure of the network infrastructure,
in particular the risk for not getting a service in time.

• The longer a client has to wait until it can access a
service, the higher is the risk that a desired schedule
will be missed. Insofar, lower waiting times decrease
opportunity costs and thus add to the client’s welfare.

Exogenous shocks like failures of resources or usage peaks
negatively impact the performance of the system, which also
shows in economic terms. A system that recovers faster allows
the expectation of higher profits in comparison to a system that
does not recover rapidly. If sufficient values of the economic
metrics can be guaranteed and a system can be regarded as
more reliable in performance, this will reduce the costs for
risk management, both on the side of the service providers
and the clients.

Figure 3 presents a metrics pyramid that combines
the technical and economic metrics. Utility is expressed
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by computing revenue - costs. These are affected by
infrastructure costs and by changing levels of resource
availability.

Infrastructure costs can be roughly measured by counting
the number of messages multiplied by the message size, which
determines the bandwidth consumption.

Revenue is closely related to availability; service providers
being open for business. Availability is impacted by long
negotiation times and sluggish access times. Responsible for
these can be either network problems, leading to message
loss, or negotiation problems, marked by non-matching bids
and offers. The occurrence of message loss is assumed to be
stochastically related to the distance between provider and
client, quantifiable by the number of message hops. Non-
matching bids and offers also lead to long negotiation duration,
measurable by the ratio of request to accept communication
primitives and defined as allocation efficiency.

The risk of non-availability can principally be mitigated
through an insurance. Insurance and risk costs are influenced
by the standard deviations of the technical metrics.

The exact setup of the pyramid is still part of on-going
research, so in the remainder of this article, only the technical
metrics at the lowest level are taken into account.

B. Simulation Setup of Network Attributes
For the simulation, the matchmaker instance was embedded

in a service network consisting of 106 nodes, with 75
clients on the edges, and 300 redundant service/resource
instances, randomly distributed in the network (see Figure
4). The network topology has been arbitrarily chosen. We
now simulate five different physical resource concentration
setups and five degrees of service availability (see Table 1
and Table 2). In total, we thus have 25 scenario combinations
to experiment with, to pitch 2 resource allocation methods
against each other – 50 simulation runs for one network with
a fixed number of participants.

Some of the scenarios mirror existing, real-world networks.
In Content Distribution Networks or Edge Networks, Web sites
are replicated among few servers, but requested by millions of
web clients, like Akamai [27]. In the simulation, this scenario
is represented by density level 0. In Ubiquitous Computing
scenarios, representing huge numbers of small, mobile devices
with only a small number of services on each, resources
are often widely distributed and on each site/node just one
computing resource is located. Density level 4 represents this
scenario.

Levels 1 to 4 then depict the transition from concentration
to complete dispersion. Dynamicity level 0 defines total
stability - reliable nodes and links of a service network,
almost guaranteeing the availability of resources. A real-
world example are LANs, where the owners can maintain
the availability through organizational actions (e.g. enterprise
networks). Dynamicity level 4 constitutes a highly variable
network, in which nodes and links often fail. This behavior can
be noticed in peer-to-peer (P2P) and file sharing applications,
with nodes frequently leaving and re-entering the network.

To scale the simulation to an increasing number of
participants in the network, we can add a second and a third

added for 2 Rings-Topology
added for 3 Rings-Topology

Simulation Topology

Resource Broker

Fig. 4. Simulation network topology

TABLE I
DENSITY DISPERSION OF THE 300 SERVICE INSTANCES PER RING

Level of Density Number of nodes containing amount of services

0 6 Nodes each with 50 services

1 15 Nodes each with 20 services

2 25 Nodes each with 12 services

3 50 Nodes each with 6 services

4 75 Nodes each with 4 services

ring (see Figure 4). Within one experiment, the 75 clients issue
2000 requests for service instances. When using two rings,
150 clients launch 4000 requests and so on. The duration of
the resource usage is fixed to 50ms. The interval between the
requests is 75ms, so that the system is always under load
(sensitivity experiments can be found at [26]).

C. Simulation Results for the Centralized Approach

This section presents the results for the two metrics
allocation rate (RAE) and response time (REST).

1) Resource Allocation Efficiency: Figure 5 shows the
allocation rate RAE, in dependence to the level of dynamicity
and the number of rings, when fixing the resources to few
locations in the network (Density 0). In a stable network
(Dynamicity 0), we can reach an allocation rate up to 93%,
which decreases significantly when increasing dynamicity.
The reason for this shortfall of successful allocations is the
increasing problem of the resource broker to produce a still

TABLE II
DYNAMICITY PROBABILITY OF SERVICE FAILURE (TO BE MEASURED

EVERY 200MS)

Level of Dynamicity Probability of failure

0 0 %

1 15 %

2 30 %

3 45 %

4 60 %
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Fig. 5. Centralized: Resource Allocation in Density 0
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Fig. 6. Centralized: Resource Allocation in Density 4

applicable solution set for a changing problem. In the scenario
Dynamicity 4 / Density 0, only 51% of the requests can be
successfully allocated.

Obviously, increasing the number of participants by
attaching ring 2 and 3 does not have a significant effect. The
curve smoothes a little, which can be explained by a greater
selection choice of the matchmaker; if a resource fails, he can
easily select another resource that is still available.

The picture changes when distributing the resources over
more network nodes. Figure 6 shows the allocation rate in
density level 4 (The aspect of the diagram has changed
to present a clearer view). Starting only 75 clients in ring
1 achieves a rate of more than 90%, while increasing
the number of participants by attaching ring 2 and 3 is
responsible for a clear decrease of the allocation rate.
This is not surprising: the less system elements, the easier
can the resource broker compute an optimum allocation.
Both with increasing dynamicity and distribution of system
elements, complexity increases. Increasing dynamicity shows
a continuing loss of the rate down to 31% when running 225
clients in 3 rings.
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Fig. 7. Centralized: Response Time in Density 0

2) Response Time: The response time (REST) is an
important metric from the client’s perspective, as it represents
the waiting time when requesting a desired computing
resource. It is measured here from the initial request of the
client until the final delivery of the service, and thus possibly
spans over several failed attempts.
In a network with services and resources distributed over
a few nodes (Density 0), the response time develops as
shown in Figure 7. Changing the dynamicity has a significant
impact on the response time. The explanation is that higher
dynamics clearly lead to more failed allocations and therefore
to time-consuming new requests and allocations. Adding more
rings and clients seems not to have a great impact on the
measurement, aside from a small valley for ring 2. This might
be a result of two influences. First, the rising number of
participants leads to more available service providers, enabling
the selection algorithm to allocate more efficiently. However,
an increasing network topology (ring 3) leads to higher
response times, as misallocations increase and the distance
between the agents increases.

Figure 8 shows the response time for density level 4, which
means that resources are distributed all over the network. The
picture is now very different, compared to Figure 7. The
response time is very sensitive to the number of network
elements, but not to the dynamics. Higher distribution in the
network also means more alternative routes between clients
and services, so that one failure does not change much. Larger
distances however do matter significantly, because there is a
higher probability that any link in a given route fails, which
then leads to new requests and a long time until the resource
service is successfully enacted.

D. Simulation Results for the Decentralized Approach

1) Resource Allocation Efficiency: Figure 9 shows the
graphical development of the allocation rate in density level 0
for a decentralized scenario without resource broker (note the
changed aspect to present a clearer view of the diagram).

Still, the best results can be obtained for networks with a
low level of dynamicity. Values over 85% can be achieved.
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Increasing the level of dynamicity immediately shows a
decrease in the allocation rate.

Given a failure probability of 60% (dynamics level 4), less
than 55% of the requests are saturated. However, a noticeable
increase is found when more rings are attached. With both
ring 2 and 3 attached, nearly 99% of the service requests can
be fulfilled in the lower dynamics scenarios.

The allocation rate increases about 20%, compared to the
simulation run with only 1 ring and nearly 35% higher than
with a centralized resource broker. When dynamicity is high,
the rate drops down to 75% – which is still 23% more than
with using a broker. As a caveat, this might be a result of
the increased number of market participants which balances
demand and supply on the market – a subject of future
investigation.

Figure 10 shows the highest density level of 4. It is obvious
that an increase of dynamicity affects the rate slightly from
81% to 74%. Attaching ring 2, the rate increases to 95%
(dynamicity 0) and 88% (dynamicity 4), ameliorating the
results of the centralized approach approximately 50% in
dynamicity level 4. Running the decentralized strategy in a
third ring, results seem to be similar to the ones obtained from
two rings whilst in the centralized case results become even
worse.
It seems that a higher number of market participants enables
an equilibrium, allowing the system to reach a more stable
allocation rate and cope easily with demand or supply
fluctuations.

2) Response Time: Figure 11 shows the response time
results of the decentralized approach with density = 0.
Comparing to Figure 7 – the centralized approach – it is
obvious that the data is completely different: The range of
the results is wider in the centralized case. For dynamicity
= 0, the centralized reponse times are about 300ms, which is
unbeatable. Even in that static case, the decentralized approach
will take longer because of the more complex negotiation
strategy to be processed.

When increasing dynamicity, the centralized approach
shows deteriorating results in Figure 7, as was expected. In the
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Fig. 10. Decentralized: Resource Allocation in Density 4

decentralized case, we see a slight minimum in the simulation
runs with 2 rings, and much less increase in the 3-ring
simulation. This is probably caused by a inverse scalability
effect: more participants lead to averaging message latency,
the more so because the average distance does not principally
change, even when adding more rings. Dynamicity has thus a
marginal effect on the response times.

This becomes even clearer when increasing density. The
response time in density 4 (see Figure 12) seems to be lower
in all ring topologies. Response times in the range of 800ms
up to 1200 in density 0 are replaced by times between 400ms
and 550ms in density 4. This is a consequence of the ubiquity
of the services, that is that they are distributed widely.

The effect of message latency in dependence of the topology
is nearly not visible: Response times decrease moderately and
dynamicity does not affect the results much.

Overall, a REST of approx. 400ms is the maximum for the
decentralized case here. This is probably a consequence of
the search algorithm which has to flood the whole network to
get an adequate number of replies. There is also a maximum
visible at the higher density levels, which seems to be nearly
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independent of the dynamics level and lies below 520ms.
In comparison to the centralized approach, these values are
lower, more stable and therefore better. An improvement for
the decentralized approach in low density cases might lie in a
revised discovery algorithm (e. g. CAN, Chord).

VI. CONCLUSION AND OUTLOOK

This paper focuses on scalability issues of resource
management mechanisms in Grid Computing systems. It
can be shown how different resource allocation mechanisms
are effected by varying dynamics and resource density in
computing networks. In short, using a broker faces problems
with scalability and a greater inability to cope with network
dynamics, like link and node failures, when increasing the
number of participants.

A self-organizing, decentralized ”Catallactic” approach
shows more robust behavior when varying input parameters.
However, the simulation results need to be investigated in more
detail. The modeling of the centralized matchmaker might
be oversimplified, as the used allocation mechanism is rigid
and does not take dynamics into account. Using decentralized

mechanisms shows a good scalability and promises to provide
stable allocation results.
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ISSN

Grid Computing is a paradigmatic application for 
the requirements associated with the 
exponentially growing complexity in the 
engineering, operation and maintenance of 
today’s information systems. Grid Computing 
comprises evergrowing global communication 
infrastructures and millions of possible system 
elements into the picture.  This article examines 
the broker’s behavior with regard to a varying 
number of participating nodes and shows that 
incremental losses have to be accepted in central 
resource allocation when introducing new 
nodes.
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