
Balke, Tina (Ed.); Yaich, Reda (Ed.)

Working Paper

Proceedings of the 12th European Agent Systems Summer
School Student Session

Bayreuther Arbeitspapiere zur Wirtschaftsinformatik, No. 50

Provided in Cooperation with:
University of Bayreuth, Chair of Information Systems Management

Suggested Citation: Balke, Tina (Ed.); Yaich, Reda (Ed.) (2010) : Proceedings of the 12th
European Agent Systems Summer School Student Session, Bayreuther Arbeitspapiere zur
Wirtschaftsinformatik, No. 50, Universität Bayreuth, Lehrstuhl für Wirtschaftsinformatik, Bayreuth,
https://nbn-resolving.de/urn:nbn:de:bvb:703-opus-7323

This Version is available at:
https://hdl.handle.net/10419/52633

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:de:bvb:703-opus-7323%0A
https://hdl.handle.net/10419/52633
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Bayreuther Arbeitspapiere zur Wirtschaftsinformatik

Lehrstuhl für
Wirtschaftsinformatik

Information Systems
Management

Bayreuth Reports on Information Systems Management

No. 50

September 2010

Tina Balke, Reda Yaich (Eds.)

Proceedings of the 12th European Agent Systems
Summer School Student Session

ISSN 1864-9300

Proceedings of the

12th European Agent Systems
Summer School

Student Session

Preface

This volume contains the papers presented at the Student Session of the 12th
European Agent Systems Summer School (EASSS) held on 25th of August 2010
in Saint-Etienne, France.

The Student Session, organised by students, is designed to encourage stu-
dent interaction and feedback from the tutors. By providing the students with
a conference-like setup, both in the presentation and in the review process, stu-
dents have the opportunity to prepare their own submission, go through the
selection process and present their work to each other and their interests to
their fellow students as well as internationally leading experts in the agent field,
both from the theoretical and the practical sector.

As the goal of the Student Session is to provide the speakers with construc-
tive feedback and a means to be introduced to the community, the competitive
elements often found in conferences (best paper award, best presentation award)
are intentionally omitted. Preparing a good scientific paper is a difficult task,
practising it is the benefit of this session.

All submissions were peer-reviewed and accepted paper submissions are as-
signed a 30 minute slot for presentation and discussion at the Summer School.
Typically a presentation either details the intended approach to a problem or
asks a specific question, directed at the audience.

The review process itself was extremely selective and many good papers could
not be accepted for the final presentation. Each submission was reviewed by at
least 5 programme committee members, which decided to accept the 4 papers
that are presented in these proceedings.

August 22nd, 2010 Tina Balke
Reda Yaich

Student Session Organization

Programme Chairs

Tina Balke
Reda Yaich

Local Organization

Reda Yaich

Programme Committee

Andrea Addis
Stéphane Airiau
Giulia Andrighetto
Haris Aziz
Nils Bulling
George Christelis
Irina Diana Coman
Fabiano Dalpiaz
Juergen Dix
Jim Duggan
Joseph El Gemayel
Torsten Eymann
Angela Fabregues
Berndt Farwer
José M. Gascueña
Nicola Gatti
Cristian Gratie
Carlos Grilo
Davide Grossi
Akın Günay
Martin Günther
Anthony Hepple
Hanno Hildmann
Benjamin Hirsch
Enda Howley
Sebastian Hudert
Franziska Klügl
Andrew Koster
Ramachandra Kota

Stefan König
Tobias Küster
Benoit Lacroix
João Leite
Shuangyan Liu
Brian Logan
Pablo Lucas
Marin Lujak
Angel Rolando Medellin
Christoph Niemann
Paulo Novais
Julian Padget
Mario Paolucci
Antonio Pereira
Isaac Pinyol
Michele Piunti
Eric Platon
Evangelos Pournaras
Abdur Rakib
Alessandro Ricci
Jordi Sabater Mir
Marco Schorlemmer
Julien Siebert
Robert Siegfried
Martin Slota
Jackeline Spinola de Freitas
Eugen Staab
Tomislav Stipancic
Leon van der Torre
Laurent Vercouter
Harko Verhagen
Serena Villata
Daniel Villatoro
Meritxell Vinyals
Danny Weyns
Yining Wu

Table of Contents

Distributed Reputation Extraction in Multi-Agent Systems 5
Andreea Urzica

From Objects to Agents: Rebooting Agent-Oriented Programming for
Software Development . 12

Andrea Santi

Understanding ecological impacts of recreation through modeling of
spatial visitor behavior . 20

Christopher J. Garthe

A Study of Resource Discovery in Open Multi Agent System and Grid
Environment . 25

Muntasir J. Al-Asfoor

Distributed Reputation Extraction in Multi-Agent Systems
 Andreea Urzica

Politehnica University of Bucharest
Splaiul Independentei 313

Bucharest, Romania
+33662599940

andreea.urzica@cs.pub.ro

ABSTRACT
Trust and reputation models are considered to be key issues in
designing open multi-agent systems. They allow agents to
synthesize the information needed for secure and efficient
interactions when faced with uncertain situations. Existing
literature shows many attempts of providing methods of
evaluating trust and reputation but no consensus has been
reached. Different and multiple components underlie the decision
of trusting another agent. Various sources can be used for
building one's reputation and assembling them all together. Our
aim is to propose an approach that alleviates the agents from
centralized reputation providers, by empowering them to extract
reputation from data collections.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence
– Multiagent systems, Intelligent agents.

General Terms
Documentation, Performance, Design, Reliability

Keywords
Multi-Agent Systems, Trust, Reputation

1. INTRODUCTION
Virtual environments offer multiple opportunities for agent
interactions: transactions on electronic markets, joining forces by
using collaborative frameworks, information exchanges, etc.
These interactions would not take place if the agent would not be
able to estimate a certain degree of trust for an interaction partner.
In order to compute the amount of trust towards a potential
collaborator, an agent must collect and interpret information
concerning his target as well as the context of the interaction.

The paper investigates what are the information sources that could
aid an agent to decide whether entrust or not another in a
transaction or a collaboration. After the interaction took place, the
agent should be able to emit an opinion upon the unfolding of the
interaction, the outcomes and his partner. By collecting the
opinions of multiple agents on similar situations some conclusions
can be drawn, conclusions that reflect the behavior of the actor

involved in those situations. The evaluation resulted from
aggregating multiple opinions is usually referred as the reputation
of the given target. One’s reputation constitutes a useful piece of
information when we are faced with the decision of trusting him
or not. The present paper shows how, by optimizing this circular
influence between trust and reputation within a multiagent system,
we can improve the system functionality regarding agent’s benefit.

An important feature we want to emphasize is the situational
aspect of the evaluations employed by our model. Generally,
reputation is computed and used as an absolute value, one-
measure-fits-all kind of approach, using a single, designer-chosen
aggregation model applied on all data that regards the target
agent. We propose a more precise and personalized solution:
precise, as the data collected is linked to the corresponding
context, and personalized, as the queries are highly customizable,
returning specific answers. A system design is provided,
comprising a trust and a reputation model, both managed directly
by the individual agent.

The paper proposes a system where agents are endowed with
modules able to extract reputation information by independently
aggregating opinions of other community members regarding
situations similar to the one they face at the moment. The system
provides one or more data repositories, containing raw,
homogeneous, multidimensional data. The agent-side modules
connect themselves to any data repository and select a subset of
situations. The subset of situation corresponding to the query is
then used to compute the value best reflecting the community
opinion upon the given situation.

The paper is organized as follows. In Section 2, we motivate our
approach by analyzing the current existing literature. Section 3
argues our vision upon building trust and the use of reputation.
Section 4 investigates the information sources for building trust.
Section 5 defines how the opinion concept is employed. Section 6
describes the repository component in the proposed model.
Section 7 shows how reputation is extracted. Section 8 presents
the axes for future work and Section 7 concludes.

2. RELATED WORK
In this paper, we are interested to see what the information
sources that build trust are, how to extract the social reputation of
the target, how is data aggregated and how is the information
represented. An important amount of models (e.g. [2], [4], [5],
[7], [18], [19]) build trust by relying on two main measures: the
evaluator’s own confidence, and the social reputation of the
target.

Cite as: Distributed Reputation Extraction in Multi-Agent Systems,
Andreea Urzica, Proc. of the 12th European Agent Systems Summer
School (EASSS 2010), August, 23–27, 2010, Saint-Etienne, France.
Copyright © 2010, European Association for Multi-Agent Systems
(http://www.euramas.org/). All rights reserved.

Recently, more and more papers [22], [11], [6] agree that any
trust or reputation value has a rather low significance in the
absence of the facts arguing the decision. The reasons sustaining
this view include the heterogeneity of agents within a system and
the multiple possibilities of interpreting trust even when agents do
utilize the same computational model. This usually arrives due to
individual motivation or different perception capabilities (as they
may have been developed by different companies and are
pursuing individual goals). We consider that trust is context-
dependent. The idea can be found in many works, e.g. [2], [16],
[20], [13]. They state that “in real life, history of interaction will
have to capture not only the outcomes, but also the context in
which a certain outcome was produced” [20], and “information
captured under certain conditions can become worthless under
different conditions” [13]. In [3] for example, a paper proposing
trust mechanisms for peer-to-peer networks, not only the resulted
value, but also data about the observed behavior about agents is
made directly available.
As shown in [15] and [11], the context can be communicated by
defining situations. The model proposed in [11] has been of great
inspiration for our work as it includes the formalization needed
for representing situations. Situations are defined in [11] as tuples
that can capture various aspects of a given interaction (e.g. actors’
identity, timestamp, action, agent role, etc.).
The global view upon a target entity is more accurate and fine
grained when the reputation values are associated to the situations
involving the target and not to the target alone. The satisfaction
values associated to the situation can be further aggregated in
order to produce the reputation value of the situation. In [11] the
tuples < situation, reputation value > are called “agreements” and
they express the consensus reached in the space of reputation
opinions sent by a set of agents about a particular situation. The
model we propose is also based on tuples describing situations,
the association between situations and agents’ satisfaction value
and association between a situation and the aggregation of the
associated set of satisfaction values. In our view, the aggregated
value does not represent a consensus among those who have
expressed their opinions: firstly because they emitted the opinion
solely to reflect their evaluation on the output of the interaction,
and not with the purpose of finding a consensus and secondly as
the role of the aggregation function is usually exactly the one of
finding a compromise between divergent opinions.

We consider interesting the work found in [6] as it introduces the
idea of a hybrid model, attempting to solve problems associated
with both centralized and decentralized reputation models.

An inspiring trust model that defines an agent-based aggregation
engine is presented in [22]. It computes the trustworthiness of
candidates by aggregating their historical contractual evidences
and taking into account important properties of the dynamics of
trust by using a sin-based aggregation curve. We prospect the idea
of using a similar curve in our model, one that should able to
handle the multiple information sources employed by our trust
computation module, some of essentially different nature (e.g. the
set of situations recording the history of encounters and digitally

signed certificates).

In approaches like [17] or [18] reputation consists of a universal
value provided by a global module that applies a predefined
aggregation function on the entire dataset. By contrast, our model
the agent is able to select the situations he is interested in and
perform any aggregation on the ratings associated to those
situations only.

3. OVERVIEW OF THE TRUST MODEL
This section explains our vision upon how trust is built and how
opinions should be used. It stresses the distinction between the
subjective evaluation of the trustworthiness degree of a potential
interaction partner, and the opinion issued by the same agent upon
his collaborator, after the interaction, if the interaction took place.
Figure 1 describes the model organization, placing in a temporal
framework the dependency between the operations and the
concepts employed.

Figure 1 – System Architecture

By the term trust we refer the information computed and used
when faced with the decision of whether accepting or not a
contract and relying on a partner. The input information needed
for computing the amount of trust toward another agent includes a
rather wide range of factors: previous personal experience
(history), information about roles, certificates signed by trusted
authorities, etc.
The Trust Aggregation Module, depicted in Figure 1, uses trust
information from various sources (shown in Section 4), in order to
compute the level of trustworthiness. We propose that each
information source should be handled by a module that stores and
manages the records. The modules may also perform some data
pre-processes, such as normalization or conversion, thus working
as an adapter between the information source and the Trust
Aggregation Module.
Depending on the amount of trust computed by the Trust
Aggregation Module and an agent-specific threshold, the agent
decides if an interaction can or cannot take place (as shown in
Figure 1). The interactions may be of various types: synchronous
or asynchronous, monetary or non-monetary transactions or

collaboration between team members, using or not using norms,
etc. Specifying the type of interaction is out of the scope of this
paper. The result of the entrusting decision may be of binary
nature (the agent either interacts, either not) or, it may imply a set
of adjustments brought to the contract clauses and a re-negotiation
in order to ensure a better protection to risks.
After an interaction took place, an agent is able to express an
opinion (see Section 5) as the degree of fulfillment of the quality
variables agreed upon in the contract and of how much the output
of the interaction met the evaluator’s personal preferences. One
copy of the resulted opinion is added to the agent’s History
Module to be further used as personal experience, while another
copy is sent to the Opinion Repository in order to become
available to the entire community.
We consider opinions to be an important source of raw material to
be processed. While very specific and fine grained, they have the
advantage of allowing selective aggregation. Queries can easily
select the opinions by the fields of interest within the situation
they concern. Thus, the opinions filed in an Opinion Repository
can be combined in multiple, customizable ways, according to the
requester’s preferences and interests. This way a user can extract
the information that answers his specific needs. There are users
that want to find out about the evaluations received by agent X,
without caring about what actions he performed or what roles he
plays while others are interested in obtaining a ranking of the best
agents in all time playing a certain role.
In Figure 1 we have also represented the modules that handle
some other trust input factors besides Reputation. Although we
discuss these factors in more detail in Section 4, the modules that
handle them are out of the scope of this paper.
On a first view it may seem that the system design leaves all the
reputation, trust and decision making complexity on the agent
side. We propose several arguments versus this perception.
Firstly, this design does not change the global aspect of
reputation. Reputation continues to have the same meaning,
reflecting the evaluation of a group (as the system is
decentralized), just that it is now more precise, better able to
answer the agent's needs. We consider this approach to be more
evolved than a fixed single general value to describe the overall
performance of an agent when the trustor in interested just in
some particular aspect. Secondly, the decision making process
does not becomes more complex. The process of computing trust
is not influenced by the way data is gathered. We are aware that
an agent does not have too much time to make his decision, thus
all the Trust Computation Module has to do is to aggregate the
data every time in the same way and then compare the result to a
threshold value. The modules handling trust input factors follow
clear protocols, so that data acquisition does not take long time
either.
The following three sections isolate each system component in
order to better analyze and present its role and features.

4. TRUST
In order to decide whether to trust another or not in a given
context, an agent may combine several measures, each one
revealing arguments pro or against entrusting the target. This
section briefly presents the main factors that can be combined in
order to build trust.

Any model could use a basic value for the cases when the agent
has no previous experience on an issue. This value may reflect the
agent’s predisposition towards trusting others. The Basic Trust
Module is the one producing the value bootstrapping agent
interactions.

Opinions resulting from previous interactions the agent had
experienced can be analyzed and interpreted, adding an important
insight to future decisions. Upon being generated, they are filed in
the History Module up to a customizable storage limit, replacing
the oldest ones with the most recent.

When there is no previous experience, information about role may
be helpful. Generally, when not malicious, agents behave in a
similar way in similar interactions when playing similar roles [4],
thus, knowing what roles other agents play, may help individuals
decide which are the appropriate partners for their goals. The Role
Information module gathers information about the roles inside the
system and discovers the ones associated to the agents to be
evaluated.

As an agent’s trust towards another may depend very much on
how the one to be trusted is rated by the community, an important
component taken into account when evaluating trust is the set of
opinions the other members of the system have on the same
subject. The present paper focuses on this type of information
source. Section 7 describes in detail how the Aggregated
Reputation module operates.

An information source that simplifies the process on the truster
side is the use of trust certificates. The certificates digitally signed
by a trusted authority can used by agents in order to swiftly prove
their trustworthiness and competence on a situation to potential
contractors. This approach may prove itself very useful for the
case when there are few or no information on the target’s
competences on a given situation. Trust certificates are received
and handled by the Certificate Analyzer Module shown in Figure
1.

In order to add information about a potential interaction partner,
an agent may simply choose to ask another who has previously
interacted with the target. We enumerate here some of the reasons
for considering this information source costly and inefficient.
When asked for his rating on a target, an agent does not restart the
evaluation process (information acquisition and comparison to his
standards) as if he was to decide now if to trust it or not, but
provides some of the entries from his own opinion database.
Those opinions may be offered as facts or they may be combined
into a single satisfaction value sent to the requester as there are no
norms regimenting the format of the reply. The receiver cannot
tell how was the satisfaction value obtained from multiple entries,
thus, it may not know how to use it. In addition, even if the
requester attaches the situation description (Situation Profile) he
is interested in, he has no guaranty that the information provider
can interpret it (not to mention the computational overhead). This
third party information approach is costly in terms of time and
resources and the obtained information is little, not homogenous
and it is obtained sequentially, one at a time. Finding the agents
that have interacted with the target (preferable in similar situation)
may be difficult in a distributed environment. Even after
discovering their identities, it may be costly or impossible to
communicate with them. The exchange protocol does also
consume much time and the exchange data may be altered while

crossing the network. This are some of the reasons why we
consider that the use of replicated repositories offer a faster and
more useful information than initiating request to various
individuals.
Any of the methods mentioned above may offer an insight upon
the trustworthiness of another entity; still, they may themselves be
trusted up to various degrees. It depends on agent’s trust policy to
assign different weights to each information source, and combine
them into a useful result. In addition, the rigorousness when
reasoning about trusting another as well as setting a threshold for
cooperation depends heavily on the importance of the situation
from the agent’s point of view. The more important the situation,
the more trust is needed to enter into a cooperative situation with
another agent [15]. Different trust may be assigned to the same
target, by the same evaluator if the situation differs, thus each new
situation requires a re-evaluation, even for the same target agent.
The agent’s trust policy is implemented by the Trust Aggregation
Module (in Figure 1) by using an aggregation function and
establishing a threshold adequate to the importance of the
situation.

5. OPINIONS
Aggregating the available information (as seen in Section 4) about
a potential partner allows an agent to build a certain level of
expectations, counting on which he makes the decision of trusting
the other or not. The output of the interaction may, however, meet
or fall under the expectancy level. It is the difference of concept
between building expectations and evaluating output, when
talking about trust in multiagent systems, that we want to stress in
this paper.
After the interaction took place, the agent is able to emit an
evaluation regarding the performance of his partner in the given
situation. The description of a situation captures key elements of
the context associated to the transaction. By situation we refer the
tuple comprising the actual values for partner’s identification, the
organization he belongs to, his role inside the organization, the
timestamp of the interaction, the performed action as well as some
other domain-specific parameters.
We call the value that reflects the agent’s satisfaction upon the
output of the interaction, a Satisfaction Value. The representation
of the satisfaction value highly depends on the application domain
and expresses the degree of fulfillment or deception towards
agent’s expectation.
An opinion is a tuple consisting of the agent’s identity, the tuple
describing the situation and the satisfaction value assigned by
agent to the output of the interaction. We name “opinion” this
evaluation because it is subjective to the emitter, reflecting his
own perspective relatively to a situation.
An agent’s opinion expressed subsequently to the unfolding of a
contract may serve multiple purposes. First, it may re-enter as
feed-back in recalculating the agent trust towards future
proposals. In this sense, the opinion can be associated to the target
agent and serve as a record for future encounters. It can be
assimilated by using a learning function to enrich the agent’s
general experience and ability to reason about similar situation,
independent to the agent being presently evaluated. The
enrichment of agent’s experience may consist, for example, of
readjustments made on the personal standards concerning the

expected values of the variables describing the quality of an
interaction.
The generated opinion may also count as input for a community
module that computes a shared evaluation, reflecting the target
agent’s real behavior and intentions, such as the artifact described
in [12]. It may also be used by aggregation functions that take
multiple opinions and compute a rating value, the closest to the
one the target agent “deserves”. An agreement upon a situation
can be extracted from the opinions of a group of agents toward the
given situation, the agreement being chosen as the consensus of
those opinions [11]. The model proposed in this paper uses
Repositories (described in Section 6) to store the opinions from
the members of a group and make them available to the group.
The loop closes as set of opinions stored in a Repository may be
filtered and used by any member of the group when he computes
the reputation of another member.
We consider the agent system to be heterogeneous enough in what
concerns preferences and evaluation standards and, in the absence
of general, system-imposed norms, no one can say what is right
and what is wrong when posting an opinion. Right and wrong are
not previously defined and the conditions for utilizing the
repository are minimal: use an account and respect the indicated
format when submitting an opinion, otherwise it would not be
accepted. We expect an emerging set of adjustments in each
agent’s behavior (the aggregation function he selects, the
strictness when assigning a satisfaction value) specific to each
group of agents.
In this paper, the context of each interaction is very clearly
specified and employed. When talking about finding a similar
situation, we do not refer to reasoning on the similarity. Instead
we mean simply applying a mask on a grid (i.e. selecting the
entries in the database that correspond to a pattern). If no entries
correspond to the requested pattern, the agent may choose to
loosen the query (by binding fewer fields to a specific value).
The only rule concerning the satisfaction value is that is has to
belong to a given interval, and the agent made aware of which
value represents the best score. In this paper we do not address the
agent’s mechanism of rating an interaction output, nor impose
norm to regiment it. Each agent is free to evaluate the
performance of his interaction partner according to his own rules.

6. REPOSITORIES
The Repositories defined in this model contain homogenous,
multi-dimensional and non-volatile data. One of the roles of the
repository is to attenuate extreme opinions. We consider it should
be able to host much more entries than there could be stored on an
agent’s local memory. The advantage of being so vast is that it
may offer a more accurate view on the way the members of a
group have regarded various situations over time. In addition, the
data being raw, the agent that extracts it can focus, by applying his
own aggregation function, on the aspects he is interested the most
– for example, he uses a higher weight for a more recent opinion.
Although the public repository could raise the costs of system
maintenance it does not represent a bottleneck issue because it can
be replicated. In addition security policies are simple to
implement in order to control the access given the modular
structure of the system.
The model we propose is conceived having in mind its application
within a virtual organization. For the moment, this paper focuses

only on some key modules and functions, describing the chaining
between modules. The integration of the present model into a
virtual organization and its implementation using a specific
technology will be covered in future work.
An important question that arises is “what entity manages the
repositories?”. If integrated within a virtual organization the
repository management could be assigned to one of the roles
within the organization. Even though it is a single owner that
maintains the availability of the repositories, the model we
propose offers much more flexibility and independence to the
agents, as the opinions they work with and the way they process
them are according to their own values and principles, and not
dictated by the interests and evaluation criteria of the
organization.
The entity managing the repositories should ensure a high
availability and low reply time, as well as a minimum security
policy that guaranties data persistence. In what concerns opinion
anonymity this can be easily obtained as the public available
entries in a repository do not contained any information about the
agent that added his opinion. The manager of the repository can
assign accounts to the agents that want to benefit from the use of
this dataset. As agents are already bind to an identity in the
organization (the larger system), the risk of cheating by re-
entering the system with a different identity we consider to be
rather low. By monitoring the activity of each account, the
repository manager may detect suspicious behavior (e.g. a large
number of posted opinions in a short time span). The collusion
issue remains open, just like in the most part of the work found in
the literature on this subject.
Once the repository system is included into the infrastructure of
an organization, repository replication becomes the responsibility
of the organization.
The repositories contain an important amount of data describing
situation evaluations. Using a single formula to combine all this
data puts the agents in no computational difficulties. Even though
the entire dataset may be huge, by querying the repository in a
very specific manner, the resulted list of interesting entries is not
overwhelming. In addition, in each of the opinions listed, all the
details describing the situation (i.e. the pattern), are the same, they
were used only in the selection process, on the repository side. As
the Reputation Aggregation Module (shown in Figure 1) does not
process the situational details, it only deals with is a set of
satisfaction values, one per opinion. On this array of numerical
values, the Reputation Aggregation Module applies a more or less
complex aggregation function. The aggregation function may be
as simple as one that finds the arithmetical average value. It is true
that for agents beneficing of higher computational capabilities, the
model may be adapted and enriched so that the satisfaction value
contained by an opinion is broken into multiple criteria. The
system is devised having in mind an organizational environment
as a main application field, making use of reasonable-enough
hardware support, thus message emission-reception costs have
been considered insignificant. For agent intended to be deployed
in settings specific to wireless sensor networks, for example, all
this costs should be re-evaluated.
The repositories themselves may offer an interface for choosing
the Situation Pattern. We consider implementing them as artifacts,
following the concept described in [12].

7. REPUTATION
In the model we propose, the reputation value returned by the
Aggregated Reputation Module is user-oriented and shows high
dynamics, following closely the requester’s needs, best answering
his specific questions. The resulted value represents a contextual
reputation, expressing the global opinion of the community
concerning the target’s performance in a given situation.
While trying to evaluate the trustworthiness of a potential partner,
an agent may want to find out the reputation the target agent has
in the system. When on e-Bay, for example, one can easily see
how others have been ranked, thus, the reputation they have, but
the value alone (although relative to a scale) gives them no clue
regarding target’s competence. Supposing I am interested in
buying a television set, how can I know if an agent that is now
selling an electronic device and has a good reputation was well
rated for selling good television sets or for being a good book
seller, for example?
In the model we propose, an agent who tries to find reputation
information is able to obtain specific, context-related opinions by
querying the Opinion Repository. Being parameterized, situation
can be easily filtered by the fields of interest. In order to filter
situation, the model we propose uses Situation Patterns. A
Situation Pattern works as a mask, by freezing one or more fields
within the situation by binding them to the desired actual values,
and lets the actual values of the other fields vary throughout the
dataset. For example, given the structure of a situation represented
by the tuple: <Agent_ID, Organization, Role, Domain, Action,
Timestamp>, we can restrain the set of opinions to those
concerning agentX1, the role “seller” and domain
“television_sets”, in no matter what organization, performing no
matter what action, at no matter what time, by using the following
Situation Pattern: <agentX1, _, seller, television sets, _, _, _ >.
Upon deciding what Situation Pattern the agent is interested in,
the Aggregated Reputation Model sends a query to the Opinion
Repository, that returns all the opinions corresponding to the
requested Situation Pattern. Each opinion contains the
Satisfaction Value associated with the Situation. By applying an
aggregation function on the set of Satisfaction Values, the
Aggregated Reputation Module is able to provide the value best
reflecting the perception of the community upon the Situation of
interest. The aggregation function used may be chosen from a
function library, according to the agent’s preferences. It may be a
simple average function, a weighted mean function or any other
function that combines data into a representative result. In order
to reflect the dynamism of reputation and opinion aging, the
weights associated to the Satisfaction Values may be determined
by using an auxiliary curve function, for example SigAlfa [23].
Another example of auxiliary function that could be employed is
one that counts how many opinions regard a certain Situation
Pattern, thus determining if the agent will take into account or not
the aggregated value. For example, an agent would not use the
aggregated satisfaction values regarding a seller of a certain
product unless there are more than ten opinions on this pattern.
The aggregation function may also be chosen so that it returns the
minimum, the maximum, a ranking or any other statistical
analysis. The way an agent decides what aggregation function to
use is out of the scope of this paper. The Aggregation Function
Selector (shown in Figure 1) may be implemented using the
artifact concept described in [12] and linked to the repository

artifact. We argue that the proposed model allows this very high
flexibility thanks to the structured data used in representing
opinions.
The aggregated reputation value itself will be assigned a weight
and be included into the aggregation function along with other
factors by the Trust Aggregation Module. The aggregation
function for the trust information sources may be also be chosen
from a function library, but it should be much less changing as it
tightly reflects the agent’s trust policy. For example, the weight
for the aggregated reputation value may be influenced by the
number of opinions on the requested Situation Pattern.
We call our reputation model distributed as agents can retrieve
and reason on opinions issued by their peers independently to any
global intermediary factor. There is no central entity to decide the
criteria concerned by the provided reputation value or the
aggregation function used to produce the reputation value.
Opinion Repositories may be replicated through the system in
order to avoid being a single point of failure.

8. FUTURE WORK
As the model presented in this paper is rather abstract and on a
high-level view, there are many directions to be explored in future
work. The first and most important step we will perform is to
build an evaluation setup for this model. We expect the difference
between the agent’s expectation and the interaction output to get
lower as the agent spend more in the system. This would show
that the reputation system helps them better evaluate their trust in
a potential interaction partner. Of course, for bootstrapping
reasons, agents will set their interaction-approving threshold
rather low. In time, the system will tend to become stabilized, not
as a result of the convergence of opinion, but instead as a result of
the way agents learn to use it in order to cover their specific
informational demands.
A second direction is to integrate the model into a more specific
organizational setting that may have associated a certain set of
norms and see how it performs. By defining more precisely the
environment we can better analyze its robustness and evaluate the
possible threats.
Another interesting topic to be discussed concerns how the
expectations influence the way an agent rates his collaborator. He
may choose to evaluate him after the interaction against a general
performance grid used for every similar situation without any
influence of what he expected, or he be may choose to punish the
agent whose performance did not meet the expectations. This
punitive measure may be justified both because the agent lost
other (maybe better) offers by choosing the agent being now
evaluated and, as a social act, to accelerate the convergence of the
bad rating in order to prevent others from being disappointed in
the same way.

9. CONCLUSIONS
The paper proposes a system where agents are able to decide what
aspect of reputation need to extract about others and are able to
aggregate locally the dataset corresponding to their needs. In
addition, the aggregation function is chosen by the agents
themselves in order to best fit the data they have selected. As a
result, agent benefit from obtaining the values reflecting the
quality (or other measures) on the subset of aspects they are
interested in when evaluating their peers.

As there is no system authority deciding the aggregation function
and imposing a unique, universal reputation value for each agent,
we may argue that the model we propose concerns dynamic and
situational reputation, not only in the sense that it is recomputed
each time a new opinion is issued, but for being adapted to each
agent’s interests and relative to a given situation.
In this paper we identify features and requirements for multi-agent
systems that help increasing the agents’ degree of independence,
allowing them to better integrate within the system. The paper
highlights both how reputation directly influences trust, and the
indirect influence trust has on reputation through the use of
opinions.

10. ACKNOWLEDGMENTS
This research was supported by Grant CNCSIS ID 1315, 2009-
2011, and Grant POSDRU ID 7713.
This paper relies on the study done during the research mission
abroad at École Nationale Supérieure des Mines de Saint-Étienne,
France.

11. REFERENCES
[1] Abdul-Rahman A, Hailes S. 1997. A distributed trust model.

Proceedings of the 1997 workshop on New security
paradigms - NSPW '97, 48-60.

[2] Abdul-Rahman A, Hailes S. 2000. Supporting trust in virtual
communities. In Proceedings of the 33rd Annual Hawaii
International Conference on System Sciences, 2000. IEEE
Computer Society, 9.

[3] Aberer, K., Despotovic, Z. 2001. Managing trust in a peer-2-
peer information system. In CIKM ’01: Proceedings of the
tenth international Conference on Information and
Knowledge Management, ACM Press. New York, NY, USA,
310–317

[4] Billhardt, H., Hermoso, R., Ossowski, S., & Centeno, R.
2007. Trust-based service provider selection in open
environments. Proceedings of the 2007 ACM symposium on
Applied computing - SAC '07. ACM Press. New York, NY,
USA , 1375. doi: 10.1145/1244002.1244298.

[5] Bin Yu and Munindar P. Singh. 2002. An evidential model
of distributed reputation management. In AAMAS ’02:
Proceedings of the first international joint conference on
Autonomous agents and multiagent systems, ACM Press.
New York, NY, USA, 294–301.

[6] da Silva, T. V., Hermoso, R., & Centeno, R. 2009. A Hybrid
Reputation Model Based on the Use of Organizations, In
Coordination, Organizations, Institutions and Norms in
Agent Systems IV , Springer, 111--125

[7] Dong Huynh, T., Jennings, N., Shadbolt, N. 2004. Fire: An
integrated trust and reputation model for open multi-agent
systems. In: ECAI 2004: 16th European Conference on
Artificial Intelligence, August 22-27, 2004, Valencia, Spain:
including Prestigious Applicants [sic] of Intelligent Systems
(PAIS 2004): proceedings. Ios Pr Inc; 18.

[8] Ganesan, P., Garcia-Molina, H., Widom, J. 2003. Exploiting
hierarchical domain structure to compute similarity. ACM
Trans. Inf. Syst., 21(1):64–93.

[9] Giorgios Zacharia. 1999. Collaborative reputation
mechanisms for online communities. Master’s thesis,
Massachusetts Institute of Technology, September 1999

[10] Hermoso, R., Carlos, J., & Ossowski, S. 2010. Role
Evolution in Open Multi-Agent Systems as an Information
Source for Trust �. In AAMAS 2010.

[11] Hermoso, R., Centeno, R. and Silva, V. 2010. Reputation-
based Agreement for Agent Organisations. In Principles of
Practice in Multi-Agent Systems, Springer, 624 – 631.

[12] Hubner J, Vercouter L, Boissier O. 2009. Instrumenting
multi-agent organisations with artifacts to support reputation
processes. Coordination, Organizations, Institutions and
Norms in Agent Systems IV. 96 – 110.

[13] Huynh, T. 2006. Trust and reputation in open multi-agent
systems. PhD Thesis.

[14] Koster, A., Sabater-Mir, J., Schorlemmer, M. 2009. An
Interaction-oriented Model of Trust Alignment. In Proc. of
the 13th Conference of the Spanish Association for Artificial
Intelligence, CAEPIA, 655 – 664

[15] Marsh, S. 1992. Trust and reliance in multi-agent systems: A
preliminary report. In Proceedings of European Workshop
on Modelling Autonomous Agents in a Multi-Agent World.
94–112.

[16] Ramchurn, S.D., Huynh, T.D., Jennings, N.R.2004. Trust in
multi-agent systems. Knowledge Engineering Review, 1–25

[17] Sabater J, Paolucci M, Conte R. 2006. Repage: Reputation
and image among limited autonomous partners. Journal of
Artificial Societies and Social Simulation. 9(2):3.

[18] Sabater, J., & Sierra, C. 2001. REGRET: a reputation model
for gregarious societies. In Jorg P. Muller, Elisabeth Andre,
Sandip Sen, and Claude Frasson, editors, Proceedings of the
Fifth International Conference on Autonomous Agents,
ACM Press. Montreal, Canada , 194–195.

[19] Sarvapali D. Ramchurn, Carles Sierra, Lluıs Godo, and
Nicholas R. Jennings. 2003. A computational trust model for
multi-agent interactions based on confidence and reputation.
In Proceedings of 6th International Workshop of Deception,
Fraud and Trust in Agent Societies, 69–75.

[20] Sen S. 2002. Believing others: Pros and cons. Artificial
Intelligence. 142(2):179-203

[21] �ensoy, M., Yolum, P. 2006. A context-aware approach for
service selection using ontologies. In: Proceedings of
AAMAS 2006, 931–938

[22] Urbano, J., Rocha, A.P. ,Oliveira, E. 2009. A Trust
Aggregation Engine that Uses Contextual Information. In
Proceedings of EUMAS2009

[23] Urbano, J., Rocha, A.P., Oliveira, E. 2009. Computing
Confidence Values: Do Trust Dynamics Matter? The 14th
Portuguese Conference on Artificial Intelligence, EPIA'2009,
Aveiro, Portugal, October 2009

From Objects to Agents: Rebooting Agent-Oriented
Programming for Software Development

Andrea Santi
DEIS, Università di Bologna

a.santi@unibo.it

ABSTRACT
The notion of agent more and more appears in different
contexts of computer science, often with different meanings.
The main acceptation is the AI (Artificial Intelligence) and
Distributed AI one, where agents are essentially exploited
as a technique to develop special-purpose systems exhibit-
ing some kind of intelligent behavior. In this paper, we in-
troduce a further perspective, shifting the focus from AI to
computer programming and programming languages, seeing
agents and related concepts as general-purpose abstractions
useful for programming software systems in general, concep-
tually extending object-oriented programming with features
that – we argue – are effective to tackle some main challenges
of modern software development. First, we define a concep-
tual space framing the basic features that characterize the
agent-oriented approach, then we show how such features
are dealt with in practice by using a platform called JaCa.
Real-world programming examples are introduced through-
out to clarify the discussion.

1. INTRODUCTION
The notions of agent more and more appear in different

contexts of computer science, often with different meanings.
In the context of computer programming, agents and multi-
agent systems are typically exploited – mainly in AI and
Distributed AI literature – as a technique to develop special-
purpose systems exhibiting some kind of individual or col-
lective intelligent behavior [15, 20].

In this paper we discuss what we believe is a brand new
and unexplored perspective, in which agents are used to de-
fine a general-purpose programming paradigm, providing a
level of abstraction which can be considered an evolution of
objects – as defined in OOP – and actors. So, instead of
exploiting agents as abstractions to support AI techniques,
here we frame the value of multi-agent programming as a
general-purpose paradigm for organizing and programming
software, providing features that we consider effective to
tackle main challenges of modern and future software de-
velopment, such as concurrency, decentralization of control,
autonomy, adaptivity. For instance, concurrency has been
recently raised as one of the issues that (given the grow-
ing diffusion of multi-core architectures and of the broad-
band Internet) will need to be necessarily tackled in main-
stream programming—beside the mere academic research
context where it has been studied for the last fifty years.
This situation is pretty well summarized by the sentence:
“The free lunch is over” as put by Sutter and Larus in [18].
Besides introducing fine-grain mechanisms or patterns to ex-

ploit parallel hardware and improve programs efficiency in
existing mainstream languages, it is now increasingly impor-
tant to introduce higher-level abstractions that “help build
concurrent programs, just as object-oriented abstractions
help build large component-based programs” [18]. We ar-
gue that agent-oriented programming – as framed in this
paper – provides one such level of abstraction.
Actually, the idea of Agent-Oriented Programming is not

new. The first paper about AOP is dated 1993 [16], and since
then many Agent Programming Languages (APL) and lan-
guages for Multi-Agent Programming have been proposed
in literature [1, 2, 3]. The objective of these works was the
introduction of a novel post-OO programming paradigm to
conceive complex applications: actually one can argue that
in spite of this objective these works have not had a signif-
icant impact on mainstream research in programming lan-
guages and software development. We believe that this de-
pends on the fact that (in spite of few exceptions) most of
the effort and emphasis have been put on theoretical issues
related to AI themes, instead of focusing on the key princi-
ples and practice of general-purpose computer programming.
This is the direction that we aim at exploring in this paper.
We first define a clean conceptual space to describe the

basic features of a general-purpose programming paradigm
based on agent-oriented abstractions (Section 2)—based on
recent results in agent-oriented meta-models and middle-
wares [11]. Accordingly, we provide a practical evaluation
by exploiting an agent-oriented platform called JaCa (Sec-
tion 3), which actually integrates two different existing agent
technologies, Jason [4, 5] and CArtAgO [14]. The objective is
to show how to exploit agent-oriented abstractions to con-
ceive and develop real-world programs, and point out re-
lated outcomes and limitations. In particular, several weak-
nesses are related to the fact that main issues for the de-
velopment of mainstream paradigms (such as OOP) have
still to be suitably explored in the context of agent-oriented
programming—e.g., an explicit notion of type and reusabil-
ity. We discuss such issues (Section 3.5) in the context of
our conceptual space, and finally in Section 4 we provide the
paper conclusions.

2. AGENT-ORIENTED ABSTRACTIONS
FOR COMPUTER PROGRAMMING

In this section we consider some main concepts of agent-
oriented programming. While most of these concepts al-
ready appeared in literature in different contexts, our aim
here is to highlight their value for framing a conceptual space
and an abstraction layer useful for defining general-purpose

WHITEBOARD

ARCHIVE

COM. CHANNEL

TASK SCHEDULER

RESOURCE

CLOCK BAKERY
workspace

workers can join
dynamically the workspace

Figure 1: Abstract representation of the A&A
metaphor in the context of a bakery.

programming languages. Our approach is initially concep-
tual, while in the next section these concepts will be exem-
plified in practice using concrete agent technologies.

2.1 A Background Metaphor
Metaphors play a key role in computer science, as means

for constructing new concepts and terminology [19]. In the
case of objects in OOP, the metaphor is about real-world ob-
jects. Like physical objects, objects in OOP can have prop-
erties and states, and like social objects, they can commu-
nicate as well as responding to communications. In the case
of actors, similarly, the inspiration is clearly more anthro-
pomorphic, and a variety of anthropomorphic metaphors in-
fluenced its development [17, 7].

The inspiration for the agent-oriented abstraction layer
that we discuss in this paper is anthropomorphic too (and
refers to the A&A metaphor [11]), however taking human
cooperative work environments as main reference—as ana-
lyzed by Activity Theory and Distributed Cognition. Fig-
ure 1 shows an example of such metaphor, represented by
a human working environment, a bakery in particular. It is
a system where articulated concurrent and coordinated ac-
tivities take place, distributed in time and space, by people
working inside a common environment. Activities are ex-
plicitly targeted to some objectives. The complexity of work
calls for some division of labor, so each person is responsible
for the fulfillment of one or multiple tasks. Interaction is
a main dimension, due to the dependencies among the ac-
tivities. Cooperation occurs by means of both direct verbal
communication and both through tools available in the en-
vironment (e.g. a blackboard, a clock, the task scheduler).
So the environment – as the set of tools and resources used
by people to work – plays a key role in performing tasks effi-
ciently. Besides tools, the environment hosts resources that
represent the co-constructed results of people work (e.g. the
cake).

Following the metaphor, we see a program – or software
system – as a collection of agents working and cooperat-
ing in a common environment Figure 2: on the one side,
agents (like humans) are used to represent and modularize
the pro-active part of the system, i.e. the part in charge to
autonomously perform the tasks in which the overall labor is
split; on the other side, the environment is used to represent

ENVIRONMENT

AGENTS

observe

use

communicate with

ENV. RESOURCES

Figure 2: Abstract representation of an agent-
oriented program composed by agents working
within an environment.

and modularize the functionalities that can be dynamically
composed, adapted and used to perform the tasks.
A main feature of this approach is that it promotes a

decentralized mindset in programming, as also considered by
Resnick in [13]. Such a mindset has two main cornerstones.
The first one is the decentralization and encapsulation of

control : there is not a unique locus of control in the sys-
tem, which is instead decentralized into agents. It is worth
remarking that at this point we are still assuming a logical
point of view over decentralization—not strictly related to,
for instance, physical threads or processes. So, from this
point of view, the agent abstraction extends the basic en-
capsulation of state and behavior of objects: namely, it also
considers encapsulation of control over behavior, i.e., agents
encapsulate the control and this can be one of the aspects
concerning their autonomy.
The second cornerstone is the interaction dimension which

includes coordination and cooperation. There are two ba-
sic orthogonal ways of interacting: direct communication
among agents based on high-level asynchronous message
passing, and environment-mediated interaction (see Subsec-
tion 2.4) exploiting the functionalities provided by environ-
ment resources.

2.2 Structuring Active Behaviour: Tasks and
Plans

Differently from the actor approach, where decentraliza-
tion and encapsulation of control are also main properties,
with the agent abstraction we have an explicit high-level ra-
tionale to structure autonomous behavior by introducing the
explicit notions of task and plan for agents.
The notion of task is introduced to specify a unit of work

that has to be executed—the objective of agents’ activities.
So, an agent acts in order to perform a task, which can be
possibly assigned dynamically. The same agent can be able
to accomplish one or more types of task, and the type of the
agent can be strictly related to the set of task types that it
is able to perform.
Conceptually, an agent is hence a computing machine

that, given the description of a task to execute, it repeatedly
chooses and executes actions so as to accomplish that task.
If the task concept is used as a way to define what has to

be executed, the set of actions to be chosen and performed
represents how to executed such tasks. The first-class con-
cept used to represent one such set is the plan.

sense stage

plan stage

act stage

events

actions

Agent State

Agent Program
(plans)

Agent Ongoing
Tasks

clock

Event
queue (sensor)

Action buffer
(actuator)

Figure 3: Conceptual representation of an agent ar-
chitecture, with in evidence the stages of the execu-
tion cycle.

The agent programmer defines the behavior of an agent
by writing down the plans that the agent can dynamically
combine and exploit to perform tasks. For the same task,
there could be multiple plans, related to different contextual
conditions that can occur at runtime.

On the one side, task and plan can be used to define the
contract explicitly stating what jobs the agent is able to do;
on the other side, they are used (by the agent programmer)
to structure and modularize the description of how the agent
is able to do such jobs, organizing plans in sub-plans.

Also, this approach makes it possible to frame a smooth
path in defining different levels of abstraction in specifying
plans and, correspondingly, different levels of autonomy of
agents. At the base level, a plan can be a detailed description
of the sequence of actions to execute. In this case task exe-
cution is fully pre-defined, since the programmer is charged
with the entire task specification; the level of autonomy of
the agent is limited in selecting the plan among the possible
ones specified by the programmer.

In a slightly more complex case, a plan could be the de-
scription of a set of possible actions to perform, and the
agent uses some criteria at runtime to select which one to
execute. This enhances the level of autonomy of the agent
with respect to what strictly specified by the programmer.

An even stronger step towards autonomy is given by the
case in which a plan is just a partial description of the possi-
ble actions to execute, and the agent dynamically infers the
missing ones by exploiting information about the ongoing
tasks, and about the current knowledge of its state and the
state of the environment.

2.3 Integrating Active and Reactive Be-
haviour: The Agent Execution Cycle

Integrating both an active and reactive behavior in pro-
gramming is an important programming issue – in particular
for reactive systems – more generally related to the well-
known problem of integrating thread-based and event-based
systems [6]. Active behaviors are typically mapped on OS
threads, and the asynchronous suspension/stopping/control
of thread execution in reaction to an event is an issue in
high-level languages. So, for instance, in order to make a

thread of control aware of the occurrence of some event –
to be suspended or stopped – it is typically necessary to
“pollute” its block of statements with multiple tests spread
around.
In the case of agents, this aspect is tackled quite effec-

tively by the control architecture that governs their execu-
tion, which can be considered both event-driven and task-
driven. The execution is defined by a control loop composed
by a possibly non-terminating sequence of execution cycles.
Conceptually, an execution cycle is composed by three dif-
ferent stages1 (see Figure 3):

• sense stage – in this stage the internal state of the
agent is updated with the events collected in the agent
event queue. So this is the stage in which inputs gener-
ated by the environment during the previous execution
cycle are fetched.

• plan stage – in this stage the next actions to execute
are chosen, based on the current state of the agent,
the agent plans and agent ongoing tasks; additionally,
agent state is also updated to reflect such a choice.

• act stage – in this stage the actions selected in the plan
stage are executed.

The agent machine continuously executes these three stages,
performing one execution cycle at each logical clock tick.
Conceptually, the agent control flow is never blocked—
actually it can be in idle state if, for instance, the executed
plan states that no action has to be executed until a specific
event is fetched in the sense stage. It is worth noting this
is quite similar to the control loop as found in autonomic
systems and, more generally, in any reactive control system.
This architecture easily allows, e.g., for suspending a plan

in execution and execute another plan to handle an event
suddenly detected in the sense stage. While generally speak-
ing this makes an agent machine less efficient than machines
without such loops, this architecture allows to have a spe-
cific point to balance efficiency and reactivity thanks to the
opportunity to define proper atomic actions.

2.4 “Something is Not an Agent”: the Role of
the Environment Abstraction

Often programming paradigms strive to provide a single
abstraction to model every component of a system. This
happens e.g. in the case of actor-based approaches. In
Erlang [8] for instance, which is actor-based, every macro-
component of a concurrent system is a process, which is
the actor counterpart. This has the merit of providing uni-
formity and simplicity, indeed. At the same time, the per-
spective in which everything is an active, autonomous entity
is not really always effective, at least from an abstraction
point of view. For instance, it is not really natural to model
as active entities either a shared bounded-buffer in produc-
ers/consumers architectures or a simple shared counter in a
concurrent programs. In traditional thread-based systems
such entities are designed as monitors, which are passive.
Switching to an agent abstraction layer, there is an ap-

parent uniformity break due to the notion of environment,
which is a first-class concept defining the context of agent
tasks, shared among multiple agents. From a designer and

1Here the terms sense, plan, act are quite general, not refer-
ring to a specific AI-based technique

programmer point of view, the environment is that (non-
autonomous) part of the system that provides functional-
ities that can be exploited at runtime by the autonomous
part. In other words, the environment is both (i) a first-
class entity for agents, to be exploited for executing their
tasks, and (ii) a first class abstraction for programmers to
define functionalities and services to be exploited. Recall-
ing the human metaphor, the environment can be framed
as the set of resources and tools that are possibly shared
and used by agents to execute their tasks. In that perspec-
tive, a bounded-buffer, a shared data-base etc. in an agent-
oriented perspective could be designed and programmed as
a shared resource populating the environment where pro-
ducers/consumers agents work, analogously to monitors.

2.5 Using and Observing the Environment
To be usable by agents, an environment resource provides

a set of operations – that constitutes its usage interface –
encapsulating some piece of functionality. Such operations
are the basic actions that an agent can execute on instances
of that resource type. So the set of actions that an agent
can execute inside an environment depends on the set of
resources that are available in that environment. Since re-
sources can be created and disposed at runtime by agents,
the agent action repertoire can change dynamically.

The execution of an operation (action) performed by an
agent on a resource may complete with a success or a
failure—so an explicit success/failure semantics is defined.
Actions (operations) are performed by agents in the act
stage of the execution cycle seen previously. Then, the com-
pletion of an action occurs asynchronously, and is perceived
by the agent as a basic type of event, fetched in the sense
stage. This can occur in the next execution cycle or in a
future execution cycle, since the execution of an operation
can be long-term. So, an important remark here is that the
execution cycle of an agent never blocks, even in the case of
executing actions that – to be completed – need the execu-
tion of further actions of other agents. This means that an
agent, even if “waiting” for the completion of an action, can
react to events perceived from the environment and execute
a proper action, following what is specified in the plan.

Finally, aside to actions, observable events and observable
properties represent the other side of agent-environment in-
teraction, that is the way in which an agent gets input in-
formation from the environment. In particular, observable
properties represent the observable state that an environ-
ment resource may expose, as part of its functionalities. The
value of an observable property can be changed by the exe-
cution of operations of the same resource. A simple example
is a counter, providing an inc operation (action) and an ob-
servable state given by an observable property called count,
holding the current count value. By observing a resource,
an agent conceptually receives the updated value of its ob-
servable properties as percepts at each execution cycle, in
the sense stage. Observable events represent possible signals
generated by operation execution, used for making observ-
able an information not regarding the resource state, but
regarding a dynamic condition of the resource. Taking as
a metaphor a coffee machine as environment resource, the
display is an observable property, the beep emitted when
the coffee is ready is an observable event. Choosing what to
model as a property or as an event is a matter of environ-
ment design.

falsestopped

stop

PRODUCER
AGENTS

CONSUMER
AGENTS

100n_items_to_produce

put

get

APP_BOARD

HUMAN USER

TOY WORKSPACE

Figure 4: A toy workspace, with producer and con-
sumer agents interacting by means of an app board
artifact.

3. EVALUATING THE IDEA WITH EX-
ISTING AGENT TECHNOLOGIES: THE
JACA PLATFORM

3.1 Overview
The aim of this section is to show more in practice some of

the concepts described in the previous section. To this end,
we will use existing agent technologies, in particular a plat-
form called JaCa, which actually integrates two independent
technologies: the Jason agent programming language [5] –
for programming agents – and the CArtAgO framework [14],
for programming the environment. Following the basic idea
discussed in Section 2 - a JaCa program is conceived as a dy-
namic set of autonomous agents working inside a shared en-
vironment, that they use, observe, adapt according to their
tasks. The environment is composed by a dynamic set of
environment resources which in CArtAgO are called “arti-
facts”2. Agents – by means of proper actions – can dynam-
ically create and dispose artifacts, beside using them.
In the following, we introduce only those basic elements

of agent and environment programming which are necessary
to show the features discussed at the conceptual level in the
previous section. To this end, we use a toy example which is
about the implementation of a producers-consumers archi-
tecture, where a set of producers agents continuously and
concurrently produce data items which must be consumed
by consumer agents (see Figure 4). Further requirements –
which make the example more interesting for our purposes
– are that (i) the number of items to be produced is fixed,
but the time for producing each item (by the different pro-
ducers) is not known a priori; (ii) the overall process can be
interrupted by the human user in each moment. The task of
producing items is divided upon multiple producer agents,
acting concurrently—the same holds for consumer agents.
To interact and coordinate the work, agents share and

use an environment resource, the app board artifact, which
functions both as a buffer to collect items inserted by pro-

2the term was inspired by Activity Theory and Distributed
Cognition, where it is used to refer to any object that has
been specifically designed to provide some functionality and
which is used by humans to achieve their objective

00 n_items_produced(0).
01 !produce.
02
03 +!produce
04 <- !setup;
05 !produce_items.
06
07 +!setup
08 <- focus("app_board").
09
10 +!produce_items : not n_items_to_produce(0)
11 <- !produce_item(Item);
12 put(Item);
13 -n_items_produced(N);
14 +n_items_produced(N+1);
15 !produce_items.
16
17 +!produce_items : n_items_to_produce(0)
18 <- !finalize.
19
20 +!produce_item(Item) <- ...
21
22 +!finalize : n_items_produced(N)
23 <- println("completed - items produced: ",N).
24
25 -!produce_items
26 <- !finalize.
27
28 +!stopped(true)
29 <- .drop_all_intentions;
30 !finalize.

Table 1: A producer agent in Jason.

ducers and to be removed by consumers and as a tool to
control the overall process by the human user. The resource
provides on the one side operations (actions for the agent)
to insert (put), remove (get) items and to stop the overall
activities (stop); on the other side, observable properties
n_items_to_produce and stopped, keeping track of, respec-
tively, the number of items still to be produced (which starts
from an initial value and is decremented by the resource each
time a new item is inserted) and the stop flag (initially false
and set to true when the stop operation is executed).

In the following, first we give some glances about agent
programming in Jason by discussing the implementation of
a producer agent (see Table 1), which must exhibit a pro-
active behavior – performing cooperatively the production
of items, up to the specified number – but also a reactive
behavior: if the user stops the process, the agents must in-
terrupt their activities. Then we briefly consider the im-
plementation of the app board artifact, to show in practice
some elements of the environment programming.

3.2 Programming Agents in Jason
Being inspired by the BDI architecture, the Jason lan-

guage constructs that programmers can use can be sepa-
rated into three main categories: beliefs, goals and plans.
An agent program is defined by an initial set of beliefs, rep-
resenting the agent’s initial knowledge about the world, a set
of goals, which corresponds to tasks as defined in Section 2,
and a set of plans that the agent can dynamically compose,
instantiate and execute to achieve such goals.

In JaCa agents beliefs can represent two types of knowl-
edge:

• the agent internal state – an example is given by the
n_items_produced(N) belief, which is used by the pro-
ducer agent to keep track of the number of items pro-
duced so far.

• the observable state of the resources of the envi-

ronment which the agent is observing – in the ex-
ample, producer agents all observe the app board
resource, which has two observable properties:
n_items_to_produce, representing the number of
items still to be produced, and stopped, a flag which
is set if/when the process needs to be stopped.

An agent program may explicitly define the agent’s initial
belief-base and the initial task or set of tasks that the agent
has to perform, as soon as it is created. In Jason tasks are
called goal and are represented by Prolog atomic formulae
prefixed by an exclamation mark. Referring to the exam-
ple, the producer agent has an initial task to do, which is
represented by the !produce goal. Actually, tasks can be
assigned also at runtime, by sending to an agent an achieve-
goal messages.
Then, the main body of an agent program is given by

the set of plans, which defines the pro-active and reactive
behavior of the agent. The actions contained in a plan body
can be split in two categories:

• internal actions, that are actions that are related
uniquely to the internal state of the agent. Exam-
ples are actions to create sub-tasks (sub-goals) to be
achieved (!g), to manage task execution – for instance,
to suspend or abort the execution of a task – to update
agent inner state – such as adding a new belief (+b),
removing beliefs (-b);

• external actions, that are actions that are related to
the environment, both to create/dispose/lookup/use
artifacts, and to the direct communicate with other
agents, to send them messages asynchronously.

Referring to the example, the producer agent has a main
plan (line 03-05), which is triggered by an event +!produce
representing a new goal !produce to achieve. Since the agent
has an initial !produce goal, then this plan will be triggered
as soon as the agent is booted. By means of an internal
action !g, the main plan generates two further subgoals to
be achieved sequentially: !setup and !produce_items.
The plan to handle !setup goal (line 07-08) exploits an

external action called focus to start observing the app board
artifact. Then, two plans are specified for handling the goal
!produce_items. One (line 10-15) is executed if there are
still items to produce, i.e. if the agent has not the belief
n_items_to_produce(0). Note that the value of this belief
depends on the current state of the app board resource. This
plan first produces a new item (subtask !produce_item),
then inserts the item in the buffer by means of a put ac-
tion3 – whose effect is to execute the put operation on the
resource; if this action succeeds, the plan goes on by up-
dating the belief n_items_produced incrementing the num-
ber of items produced and generates a new subgoal !pro-
duce_items to repeat the task.
The other plan (line 17-18) is executed if there are no

more items to produce: in this case the !finalize task is
executed, which prints on the console the number of items
produced by the agent.
The reactive behavior of an agent can be realized by plans

triggered by a belief addition/change/removal – which cor-

3When executing an external action – such as put – it is pos-
sible to explicitly denote the artifact providing that action,
in order to avoid ambiguities, by means of Jason annota-
tions: put(Item) [artifact_name("app_board")];

00 public class AppBoard extends Artifact {
01
02 private LinkedList<Object> items;
03 private int bufSize;
04
05 void init(int bufSize, int nItemsToProduce){
06 items = new LinkedList<Object>();
07 this.bufSize = bufSize;
08 defineObsProperty("n_item_to_produce",nItemsToProduce);
09 defineObsProperty("stopped",false);
10 }
11
12 @OPERATION(guard="bufferNotFull")
13 void put(Object obj){
14 boolean stopped = getObsProperty("stopped").booleanValue();
15 if (!stopped){
16 items.add(obj);
17 ArtifactObsProperty p =
17 getObsProperty("n_item_to_produce");
18 updateObsProperty("n_item_to_produce", p.intValue() - 1);
19 } else {
20 failed("no_more_items_to_produce");
21 }
22 }
23
24 @GUARD boolean bufferNotFull(Object obj){
25 return items.size() < nmax;
26 }
27
24 @OPERATION(guard="itemAvailable")
25 void get(OpFeedbackParam<Object> result){
26 Object item = items.removeFirst();
27 result.set(item);
28 }
29
30 @GUARD boolean itemAvailable(OpFeedbackParam<Object> res){
31 return items.size() > 0;
32 }
33
34 @OPERATION void stop(){
35 updateObsProperty("stopped",true);
36 }
37 }

Table 2: The implementation of the app board in
CArtAgO.

responds, e.g., to changes in the state of the environment –
and by the failure of a plan in achieving some goal. In the
example, the producer agent has a plan (line 28-30) which
is executed when the belief stopped about the observable
property of the artifact is updated to true. This means that
the human user wants to interrupt and stop the production.
So the plan stops and drops all the other possible plans in
execution – using an internal action .drop_all_intention

– and the !finalize subtask is executed.
Finally, the producer agent has also a plan (line 25-26)

to react to the failure of the !produce_items task, which is
expressed by the event -!produce_items. This can happen
when the agent, believing that there are still items to be
produced, starts the plan to produce a new item and tries to
insert it in the buffer. However, the put action fails because
other agents produced in the meanwhile the missing items.

The semantics of the execution of plans reacting to events
is defined by Jason reasoning cycle [5], which is a more artic-
ulate version of the execution cycle described in Section 2.
In particular, the plan stage in this case includes multiple
steps, to select – given an event – a plan to be executed. So
an agent can have multiple plans in execution but only one
action at a time is selected (in the plan stage) and executed
(in the act stage). A detailed description of the cycle – as
well as of the Jason syntax – can be found in [5].

3.3 Programming The Environment in
CArtAgO

The implementation of the app board artifact is shown in
Table 2. Being CArtAgO a framework on top of the Java
platform, artifact-based environments can be implemented
using a Java-based API, exploiting the annotation frame-
work. Here we don’t go too deeply into the details of such
API – the interested reader can refer to CArtAgO papers [14]
and user manual4 – we just introduce the main concepts that
have been mentioned in Section 2.
In CArtAgO, an artifact type can be defined by extend-

ing a base Artifact class. Artifacts are characterized by
a usage interface containing a set of operations that agents
can execute to get some functionalities. In the example, the
artifact app board provides three operations: put, get and
stop. The put operation inserts a new element in the buffer
– decrementing the number of items to be produced – if the
stopped flag has not been set, otherwise the operation (ac-
tion) fails. The get operation removes an item from the
buffer, returning it as a feedback of the action. The stop

operation sets the stopped observable property to true.
Operations are implemented by methods annotated with

@OPERATION. The init method is used as constructor of the
artifact, getting the initial parameters and setting up the ini-
tial artifact state. For each operation, a guard can be spec-
ified, as a condition over artifact state specifying if (when)
the operation is either enabled or disabled—in the example,
bufferNotFull for put and bufferNotEmpty for get. There-
fore, an operation can change dynamically its status, from
enabled to disabled and vice-versa, according to the state of
the artifact. If the guard is disabled and an agent executes
that operation, the agent action is suspended.
Operations are executed in a mutual exclusive way—so

only one operation can be in execution at a time inside an
artifact, the other ones are suspended. In JaCa, executing
an environment action for a Jason agent means that the
agent plan (activity) including such action is suspended until
the corresponding artifact operation has completed (i.e. the
action completed). Then, the action succeeds or fails when
(if) the corresponding operation has completed with success
or failure. It is worth noting that, in the meanwhile, the
agent execution cycle can go on, making it possible for the
agent to get percepts and select and perform other actions.
Besides operations, artifacts may define also a set of ob-

servable properties (n_items_to_produce and stopped in
the example), as data items that can be perceived by agents
as environment state variables. Instance fields of the class –
instead – are used to implement the non observable state of
the artifact—for instance, the list of items items in the ex-
ample. Observable properties are defined, typically during
artifact initialization, by means of the defineObsProperty

primitive, specifying the property name and initial value
(line 08-09). Inside operations, observable properties value
can be inspected and changed dynamically by means of two
basic primitives: getObsProperty to retrieve the current
value of an observable property (see, for instance, line 14
and 17) and updateObsProperty to update the value (line
18, 35).
Besides observable properties, an artifact can make it ob-

servable also events occurring when executing operations.
This can be done by using a signal primitive, specifying

4CArtAgO is available at http://cartago.sourceforge.net

the type of the event and a list of actual parameters. For
instance, signal("my_event", "test",0) generates an ob-
servable event my_event("test",0). In the app board exam-
ple, to notify the stop we could generate a stopped signal in
the stop operation, instead of using an observable property.
Observable events are perceived by all agents observing the
artifact—which could react to them as in the case of observ-
able property change.

3.4 Using JaCa In Real-World Application
Contexts

We are applying this programming model in different ap-
plication domains, to stress the benefits but also the weak-
nesses of the approach.

One is the development of distributed applications based
on Service-Oriented Architectures and Web Services in par-
ticular. In that context, agents and multi-agent systems
are deserving increasing attention both from the applicative
viewpoint, as an effective technique to build complex ser-
vices and applications dynamically composing and orches-
trating services [10], and from the foundational viewpoint,
as a reference meta-model for the service-based approach, as
suggested by the W3C document about Web Services Archi-
tecture5. To this end, programming models and platforms
are needed that make it possible to build SOA/WS applica-
tions as agent-oriented systems in a systematic way, exploit-
ing the existing agent languages and platforms to their best,
while enabling their co-existence and fruitful co-operation.
In that context, we devised a library of artifacts on top of the
JaCa platform, enabling the development of SOA/WS appli-
cations in terms of workspaces populated by agents and arti-
facts. Agents encapsulate the responsibility of the execution
and control of the business activities and tasks that charac-
terize the SOA-specific scenario, while artifacts encapsulate
the business resources and tools needed by agents to oper-
ate in the application domain. In particular, artifacts in this
case are exploited to model and engineer those parts in the
agent world that encapsulate Web Services aspects and func-
tionalities – eventually wrapping existing non-agent-oriented
code – to be used, but also changed and adapted by agents
at runtime, by need. First results of this work are available
here [12].

We are also investigating the approach for the engineering
of advanced mobile computing applications, in particular for
pervasive and context-aware computing scenarios. To this
end, JaCa has been ported on the Android platform6, en-
abling the development of Android applications using agent-
oriented programming. The project is called JaCa-Android7.
Actually, besides porting the technology, JaCa-Android in-
cludes a library of artifacts that allows agents running into
an Android application to seamlessly access and exploit all
the features provided by the smart-phone and by the An-
droid SDK. Just to have a taste of the approach, Table 3
shows a snippet of an agent playing the role of smart user
assistant, with the task of managing the notifications related
to the reception of SMS messages: as soon as an SMS is re-
ceived, a notification must be shown to the user. A SMSAr-

tifact artifact is used to manage SMS messages, in particu-
lar this artifact generates an observable event sms_received

5http://www.w3.org/TR/ws-arch/
6http://developer.android.com
7http://jaca-android.sourceforge.net/

00 !init.
01
02 +!init
03 <- focus("SMSArtifact");
04 focus("SMSArtifact");
05 focus("ViewerArtifact").
05
07 +sms_received(Source, Message)
08 : not (state("running") & session(Source))
09 <- showNotification("jaca.android:drawable/notification",
10 Source, Message, "jaca.android.sms.SmsViewer", Id);
11 +session(Source, Id).
12
13 +sms_received(Source, Message)
14 : state("running") & session(Source)
15 <- append(Source, Message).

Table 3: Source code of the Jason agent that manages
the SMS notifications.

each time a new SMS is received. A ViewerArtifact arti-
fact is used to show SMS messages on the screen and to
keep track – by means of the state observable property –
of the current status of the viewer, that is if it is currently
visualized by the user on the smartphone screen or not. Fi-
nally, a StatusBarArtifact artifact is used instead to show
messages on the Android status bar, providing a showNoti-

fication operation to this end. Depending on what the user
is actually doing and visualizing, the agent shows the noti-
fication in different ways. The behavior of the agent, once
completed the initialization phase (lines 00-05), is governed
by two reactive plans. The first one (lines 7-11) is appli-
cable when a new message arrives and the ViewerArtifact

is not currently visualized on the smartphone’s screen. In
this case, the agent performs a showNotification action to
notify the user of the arrival of a new message using the
status bar (Figure 5, (a)). The second plan instead (lines
13-15) is applicable when the ViewerArtifact is currently
displayed on screen and therefore the agent could notify the
SMS arrival by simply appending the SMS to the received
message list showed by the viewer (Figure 5, (b)): this is
done by executing the append operation provided by View-

erArtifact.
From the example, it should be clear that for a developer

able to program using the JaCa programming model, moving
from one application context to another is a quite straight-
forward experience. Indeed, she can continue to engineer
the business logic of the applications by suitably defining
the Jason agent’s behavior, and it only need to acquire the
ability to work with the artifacts that are specific of the new
application context.

3.5 Weaknesses
As said at the beginning of section Section 3, JaCa is

just our first attempt to adopt agent-based abstractions and
technologies for the conceiving and developing of real-world
programs. Therefore the JaCa platform, as well as the pro-
gramming model upon which it is based, still suffers of some
limitations and weaknesses.
One of the main weakness is that the proposed approach

still does not consider any explicit notion of type, neither for
agents nor for artifacts. Therefore features like sub-classing,
polymorphism, etc. are still not usable in the development of
agent-based applications based on the JaCa platform. This
is a quite strong limitation due to the fact that such features
are the key for providing reusability of the code produced
by the developers and therefore are quite essential for: (i)

Figure 5: The two different kinds of SMS notifica-
tions: (a) notification performed using the standard
Android status bar, and (b) notification performed
using the ViewerArtifact.

the engineering of real-world applications and (ii) for the
diffusion of the AOP as a mainstream paradigm.

Another weakness regards the lack of a seamless integra-
tion between the model/platform – in particular on the Jason
side – with the Object-Oriented and Functional program-
ming layer. Currently, for using objects/functions or for
integrating any kind of software library (such as for e.g. a
library for XML-manipulation), we need to use some sort of
wrap mechanism for making them available when program-
ming agents. Now we can realize this sort of wrapping in
two ways: (i) extending the set of Jason internal actions for
directly provide to the agents the required features or (ii) en-
capsulating the required object-oriented/functional-oriented
code inside proper artifacts operations.

Finally, another weakness of the approach concerns the
weak modularization provided by Jason plan construct. Cur-
rently the overall behavior of an agent is defined by a flat list
of plans. The absence of a hierarchical structure for plans,
explicitly relating plans with sub-plans, could make the un-
derstanding of complex agent behavior quite problematic.

4. CONCLUSION
Quoting Lieberman [9], “The history of Object-Oriented

Programming can be interpreted as a continuing quest to
capture the notion of abstraction – to create computational
artifacts that represent the essential nature of a situation,
and to ignore irrelevant details”. Following this perspective,
in this paper we discussed agent-oriented programming as an
evolution of Object-Oriented Programming representing the
essential nature of decentralized systems where tasks are in
charge of autonomous computational entities, which inter-
act and cooperate within a shared environment. We showed
in practice some of the main concepts underlying the ap-
proach by exploiting the JaCa platform, which is based on
existing agent-oriented technologies—the Jason language to
program agents and CArtAgO framework to program the en-
vironment. However, we believe that in order to stress and
investigate the full value of the agent-oriented approach, a
new generation of agent-oriented programming languages is
needed, tackling main aspects that have not been considered

so far in existing agent technologies – being not related to
AI but to the principles of software development. This is
the core of our current and future work.

5. REFERENCES
[1] Multi-Agent Programming Languages, Platforms and

Applications - Volume 1, volume 15 of Multiagent
Systems, Artificial Societies, and Simulated
Organizations. Springer, 2005.

[2] Multi-Agent Programming Languages, Platforms and
Applications - Volume 2, Multiagent Systems,
Artificial Societies, and Simulated Organizations.
Springer, 2009.

[3] R. Bordini. A survey of programming languages and
platforms for multi-agent systems. In Informatica 30.

[4] R. Bordini and J. Hübner. BDI agent programming in
AgentSpeak using Jason. In CLIMA VI. Springer,
2006.

[5] R. Bordini, J. Hübner, and M. Wooldridge.
Programming Multi-Agent Systems in AgentSpeak
Using Jason. John Wiley & Sons, Ltd, 2007.

[6] P. Haller and M. Odersky. Scala actors: Unifying
thread-based and event-based programming.
Theoretical Computer Science, 2008.

[7] W. A. Kornfeld and C. Hewitt. The scientific
community metaphor, 1981. MIT Artificial
Intelligence Laboratory.

[8] J. Larson. Erlang for concurrent programming.
Commun. ACM, 52(3):48–56, 2009.

[9] H. Lieberman. The continuing quest for abstraction.
In ECOOP 2006, 2006.

[10] M. N. Huhns, M. P. Singh, and M. e. a. Burstein.
Research directions for service-oriented multiagent
systems. IEEE Internet Computing, 2005.

[11] A. Omicini, A. Ricci, and M. Viroli. Artifacts in the
A&A meta-model for multi-agent systems.
Autonomous Agents and Multi-Agent Systems, 2008.

[12] M. Piunti, A. Santi, and A. Ricci. Programming
SOA/WS systems with BDI agents and artifact-based
environments. In MALLOW-AWESOME, 2009.

[13] M. Resnick. Turtles, Termites and Traffic Jams.
Explorations in Massively Parallel Microworlds. MIT
Press, 1994.

[14] A. Ricci, M. Piunti, M. Viroli, and A. Omicini.
Environment programming in CArtAgO. In
Multi-Agent Programming: Languages, Platforms and
Applications, Vol. 2.

[15] S. Russell and P. Norvig. Artificial Intelligence, A
Modern Approach (second edition). Prentice Hall.

[16] Y. Shoham. Agent-oriented programming. Artificial
Intelligence, 60(1):51–92, 1993.

[17] B. C. Smith and C. Hewitt. A plasma primier, 1975.
MIT Artificial Intelligence Laboratory.

[18] H. Sutter and J. Larus. Software and the concurrency
revolution. ACM Queue: Tomorrow’s Computing
Today, 3(7):54–62, Sept. 2005.

[19] M. D. Travers. Programming with Agents: New
metaphors for thinking about computation.
Massachusetts Institute of Technology, 1996.

[20] M. Wooldridge. An Introduction to Multi-Agent
Systems. John Wiley & Sons, Ltd, 2002.

Understanding ecological impacts of recreation through
modeling of spatial visitor behavior

 Christopher Garthe
Institute for Environmental Planning,

Leibniz University Hannover,
Herrenhäuser Str. 2

30419 Hannover, Germany.
+49 (0)30 77008019

christopher.garthe@gmx.de

ABSTRACT
This paper presentes the concept and development of a simplistic
model for the spatial visitor behavior around campsites. After
describing the model, first results of a local sensitivity analysis
comprise general hypothesis on the relationship between
environmental characteristics and the visitor behavior.

Categories and Subject Descriptors
I.6.5 [Simulation and Modeling]: Model Development, I.6.4
[Simulation and Modeling]: Model Validation and Analysis

General Terms
Human Factors, Management

Keywords
Simulation of recreational use, agent based modeling, protected
area management, spatial visitor behavior, visitor flows

1. INTRODUCTION
1.1 Problem statement
Nature and National parks are not only areas protected for nature
conservation but at the same time attractive regions for
recreationists and destinations for tourists. The increasing
importance of recreation and tourism in general and recreational
activities in nature in particular (Opaschowski 1999) has led to a
rising recreational pressure on protected areas (Eagles et al.
2002). Thus, protected area managers are regularly confronted
with this conflict of objectives.

To come to an informed decision about recreational use in
protected areas knowledge about the effects of this use on the
protected habitats are crucial. These ecological effects of
recreation are studied in the field of recreation ecology since the
1960s. The impacts could be differentiated between the altered
ecological components or the type of use and the type of impact
respectively. Impacts alter amongst others soil, vegetation, fauna
and water. Types of impact comprise the development of informal

trails, trampling, contamination through feces, disturbance of
wildlife etc. (Cole 1986; Leung, Marion 2000).

The ecological components as well as the protected habitats differ
greatly in extent and with regard to their sensitivity and resistance
to these impacts as well as their ability to recover. Besides the
status of protection of the habitats, these characteristics have to be
considered by the park management when deciding on the level of
recreational use of an area.

It becomes obvious that it is crucial to know where the
recreational use takes place within a protected area, in order to
come to an informed management decision which does justice to
nature conservation as well as visitor management.

1.2 Existing research
Currently there are three major research approaches to cope with
the problem described. The most direct approach is to incorporate
a spatial perspective in recreation ecology studies; e.g. analyzing
the observed effects for spatial patterns (e.g. Leung 1998; Cole,
Monz 2004; Kangas 2007).

A second approach is to monitor the visitors in the area. Apart
from observation or self-registration approaches various
techniques have been developed comprising sensor mats, infrared
visitor counts, video cameras and GPS-tracking of visitors
(Arnberger, Hinterberger 2003).

A third approach is to model the movement and distribution of
visitors within an area. The field of recreation use simulation has
started in the 70s. Cole (2005) and Gimblett (2008) give a good
overview of the development of the field as well as recent
approaches. Complex models that are currently used to simulate
visitor behavior in protected areas comprise two verified models
from Itami et al. (2003) and Jochem et al. (2006).

1.3 Research deficit
The two models from Itami and Jochem are adjusted to a large
scale comprising a complete protected area. They are not
explicitly designed to simulate visitor flows on a smaller scale
like specific recreation sites. Other work on modelling of
microscopic pedestrian behavior has been done (e.g.
Hoogendoorn 2002), but mostly under other circumstances, for
which reason these results do not seem to be applicable on the
situation of spatial visitor behavior in nature reserves. However,
habitats and ecological components often change on a smaller
spatial scale; protected areas, especially in middle Europe, consist

Cite as: Christopher Garthe (2010): Understanding ecological impacts
from recreation through modeling of spatial visitor behavior. In:
Proceedings of the EASSS 2010.

of a mosaic often at a small scale. Thus, to further understand the
ecological impacts of recreation the model presented in this paper
aims at simulating spatial visitor behavior on a smaller scale.

Furthermore, most research approaches in this field look at
visitors moving on trails, therefore using linear-based models.
Behavior rules for agents are based on route choice decisions.
When studying small-scale areas, e.g. the vicinity of picnic sites
or campsites, visitors usually do not move on trails. Therefore, a
model has to employ a grid-based approach that also
acknowledges decision processes, different from models looking
on spatial behavior, which is confined to infrastructure like streets
or trails.

Up to this day, the author knows of no model that looks at spatial
visitor behavior in natural surroundings on a small scale with
visitors moving freely in the vicinity of an initial point.

1.4 Objective
The objective of this research is to gain understanding on the
spatial movement of visitors in the vicinity of campsites through
the development of an agent-based model. The model is not
designed to predict concrete visitor movement at specific sites,
but aims to identify the crucial parameters and driving forces,
which influence this visitor movement.

The results of the model could inform protected area managers to
better plan and implement location-specific visitor management
actions. Thus, the model contributes to an effective protected area
management that acknowledges both, nature conservation needs
and demand for recreation.

Furthermore, the model results could be an important input for
future model developemnts that aim to simulate location-specific
visitor movement at recreational sites.

2. METHODS
To simulate the processes of recreational use in the vicinity of
campsites, an agent-based model was developed. An overview of
the model will be given by using the standard protocol for
describing agent-based and individual based models (Grimm et al.
2006). Input into the model development process, e.g. relevant
parameters and processes, was gathered from literature on
recreational visitor behavior as well as recreation use simulation
(e.g. Cole 2005; Gimblett 2008).
After the development process, the model was programmed using
the software environment Netlogo (Sklar 2007).
To gain preliminary results about the importance of parameters, a
local sensitivity analysis was executed (Railsback 2010). Based
on the reference parameter set, all parameters were varied by +5%
and -5%. For all parameter settings, the model was run 50 times to
estimate the mean of the output parameters. The sensitivity was
calculated using the following equation:

S+ = (C+ - C) / (dP / P)
S+: Sensitivity (for value P+dP)
C+: mean output (for value P+dP)
C: mean output (for value P)
dP: amount by which P is varied (here: 5%)
P: reference value of the parameter

3. MODEL DEVELOPMENT
This section should clarify the purpose of the model as well as the
design concepts used during development. It also describes in
detail the entities and the programmed processes of the model.

3.1 Overview
3.1.1 Purpose
The model was designed to understand how specific
characteristics of a campsite and its surroundings influence the
movement of visitors in the vicinity of this site. The model tries to
simulate the movement of the visitors in a rather simplistic way
and thus revealing the importance of various parameters. Crucial
questions guiding the development process were: How do
environmental characteristics influence the distance visitors move
away from their campsite?

3.1.2 Entities, state variables and scales
Entities of the model are individuals, in this case visitors, and
square patches of the model world. The model comprises three
types of patches: the campsite, attractions around this site and the
circumjacent environment. The campsite is the starting point of
the visitors. The attractions are points of interest for the visitors in
the vicinity of the site, e.g. a source for drinking water, a spot to
observe wildlife or a vista over a valley. The attractions are
described by its attractiveness. The visitors are described by their
location, which is the patch they are on. They also have three
state variables, which are important for their behavior: i) time
budget, which is the time they have before the start to move back
to their campsite; ii) time for attractions, a amount of time they
will spend on an attraction visited, iii) interest in attractions,
which will determine when they will start to move towards an
attraction nearby.
The model world is represented by a square with an edge length
of 200 patches. Model runs last until all visitors have returned to
the campsite. This, of course, is determined by the starting value
of their time budget. As the model is generic, the size of each
patch, the overall extent of the model world and the length a time
step represents are not specified.

3.1.3 Process overview and scheduling
After the individuals are born, they start to roam in the vicinity of
the site. Each individual moves once on each time step. If they are
on an attraction, they stay there until their time for attraction is
up; if it is up, they start to roam again. As the individuals do not
interact with each other, it is not important in which order they
move.
Each time step the time budet of all individuals is reduced by one.
If the time budget of an individual is zero, its starts to move back
to the campsite.

3.2 Design concepts
The following design principles should ensure to produce model
results that describe the extent of spatial visitor movement around
campsites.
The spatial movement of the individuals and thus, the values of
the output parameters emerge from the adaptive behavior of the
individuals as well as the characteristics of the campsite, the
attractions and the environment.

The adaptive behavior of
individuals concerns their
reaction to the model world,
more precisely to the values
of variables of the different
patches. This adaptive
behavior is based on a few
simple empirical rules: i)
visitors want to move to
‘attractions’ in the vicinity of
the site, ii) which attraction
they want to visit is
determined by the
attractiveness as well as the
distance of the specific
attraction, iii) once they
found an attraction, they
want to spend some time
there, iv) visitors want to move back to the campsite after a
certain amount of time.
Individuals also change their adaptive traits over time, as the
model comprises a very simple learning mechanism: Individuals
have a history of visited attractions, so they do not move to the
same attraction twice.
Although sensing of the individuals is the basis for their adaptive
behavior, it is programmed through an indirect equation, which
uses the attractiveness of the attractions, the distance of
individuals to the attractions and the interest for the attractions.
Thus, individuals are assumed to know all these variables as well
as their own time budget.
Although much work has been done on the effects of interactions
on the individual behavior of agents (e.g. Hoogendoorn 2007),
interaction does not seem to be a major factor in this model
development.
As this is model does not simulate the visitor movement in a
specific area, but is a generic model, stochasticity is used to setup
the model world. In addition, stochasticity is used to represent the
direction of movement individuals, after they visited an attraction.
For observation of the model outome two output parameters are
defined: the maximum distance of any individual from the
campsite and the mean distance from the campsite of all
individuals.

3.3 Details
During intialization of the model, the values of varaibles are
asigned to the patches. The number of attractions is chosen.
Stochasticity influences the disposition of the attractions and the
attractiveness of attractions. The mean of the attractiveness of the
attractions is defined. The number of visitors could be defined and
their initial location is the campsite, a specific patch in the middle
of the model world. The variables time budget, time for
attractions and interest for attractions are defined during
initialization.
As this generic model does not simulate a specific recreational
site, and as the environmental values are assumed to be constant
there is no input data.
There are only two submodels: roaming and visiting attractions.
When roaming, individuals start to move in a random direction.

The interest for attractions serves as a threshold when the
individuals start to consider moving towards an attraction: if the
value of interest is bigger than the attractiveness of an attraction
divided by the distance to it, the individuals ‘sense’ it as a
relevant attraction. The individual startes to move towards the
attraction, which value of attractiveness divided by distance is the
highest.
This simple behavioral rule should reflect the complex decision
processes in this situation, aknowledging the two most important
factors for the decision: the importance, or attractiveness, of the
site for the visitor as well as the distance to it.
 When an individual has moved on an attraction patch, it starts the
submodel visiting. The individual stays on this patch and each
time step the time for attractions of this individual is reduced by
one. When the time for attractions is equal or below zero, the
individual starts to roam again, resets his time for attractions on
the original value and adds this attraction to the list of visited
attractions.
Individuals return to the campsite after the time budget is equal or
lower than zero. When all individuals have reached the campsite
the model run is finished.

4. PRELIMINARY RESULTS AND
DISCUSSION
First model runs were used for testing and parametrizing the
model and submodels. A local sensitivity analysis was executed
for the two output currencies maximum distance from campsite
and mean distance from campsite. Table 1 shows the parameters
and the associated sensitivity for the output currencies.
Looking at table 1, it becomes obvious that for the output
currency ‘maximum distance from the campsite’ the individuals’
interest for attractions is especially important. Thus, the
relationship between interest and maximum diatance was further
analyzed. Figure 1 shows the results of ten model runs for each
step of this parameter. The relationship is best described by a
logarithmic function.
As the decision process of the individuals whether to move
towards an attraction or not is defined by the interest parameter,
these results suggest that more input is needed to increase the
quality of knowledge to calibrate this parameter.

Process and
parameter

Parameter description Reference
value

Sensitivity S+

 Maximum distance
from campsite

Mean distance
from campsite

Environment
AttrNum Number of attractions in the vicinity 10 15.65 9.45
AttrAtrractiveness Mean Attractiveness of the attractions 50 17.72 14.73
Visitors
VisNum Number of visitors 10 14.78 -2.39

VisTime-Budg
Time visitors have before they return
the campsite 100 -4.71 4.54

VisTime-Attr Time visitors spend at the attractions 5 -8.08 -7.13

VisInterest
Threshold defining when visitors are
moving towards the attractions 20 27.24 1.71

Table 1: Results of the local sensitivity analysis

5. LIMITATIONS
The model presented is a generic model that does not aim to
simulate visitor behavior in real world environments. Because of
the simplistic assumptions for the initialization of the model
world as well as the behavioral rules for visitors, the model has
various limitations.
A major limitation is the input data used to develop the model. As
the data was only generated by literature research, detailed
empirical data is yet to be implemented in the model. A next step
will be to conduct interviews of protected area managers,
unobstrusive observations of visitor behavior as well as surveys of
objectives and characteristics of visitors (Millonig 2010). The
obtained data could be used to further calibrate the model. This
seems to be sepecially important to better programm the decision
process of the individuals through the interest parameter.
The model presented does only include parameters that drive
visitors to leave the campsite and visit attractions. Other factors
that drive visitors to stay at the campsite might also be worthwhile
to incorporate into the model. So crucial questions for further
model devleopment could be: Which factors detain individuals
from visiting attractions in the vicinity? How does the
infrastructure of the campsite influence the spatial visitor
behavior?
Another limitation is that interactions between visitors are not
accounted for. However, with an increasing number of visitors,
interactions could become important as visitors might want to
move to attractions with fewer other visitors. So with strongly
increasing group sizes staying at the campsite, interactions could
become an important factor for the spatial use of the area.
A further limitation is the small extent of the model world, which
was used due to limited computer resources to run the model. To
simulate visitor movement in a greater area around the campsite
the extent of the model world has to be increased.

6. OUTLOOK
The model presented could be used to further
investigate the general relationship between the use
of campsite surroundings and the parameters
included in the model. By further analysis of the
model, hypothesis could be geenrated that could be
tested in future experiments or recreation ecology
research.
To make more applied use of the model outcomes,
it would be desirable to expand the model in order
to simulate visitor behavior or movement at a
specific recreational site.
To achieve this, more parameters have to be
incorporated into the model, it has to become more
complex with regard to the behavioral processes of
the individuals and the input of detailed
environmental data is essential.

7. REFERENCES
[1] Arnberger, Arne; Hinterberger, Beate (2003):

Visitor monitoring methods for managing
public use pressures in the Danube Floodplains National
Park, Austria. In: Journal for Nature Conservation, Is. 11, N.
4, pp. 260–267.

[2] Cole, David N. (1986): Resource impacts caused by
recreation. In: The President's Commission on Americans
Outdoors (Ed.): A literature review. Washington: The
President's Commision On American Outdoors (INT 4901
Publication #166), INT 4901 - Publication#165, pp. 1–11.

[3] Cole, David N. (Ed.) (2005): Computer Simulation
Modeling of Recreation Use. Current Status, Case Studies,
and Future Directions: U.S. Department of Agriculture,
Forest Service Publications (General Technical Report,
RMRS-GTR-143).

[4] Cole, David N.; Monz, Christopher A. (2004): Spatial
patterns of recreation impact on experimental campsites. In:
Journal of Environmental Management, Is. 70, N. 1, pp. 73–
84.

[5] Eagles, Paul F. J.; Haynes, Christopher D.; McCool,
Stephen F. (2002): Sustainable tourism in protected areas.
Guidelines for planning and management. Gland: IUCN
The World Conservation Union (Best Practice Protected
Area Guidelines Series, 8).

[6] Gimblett, H. Randal; Skov-Peterson, Hans (Eds.) (2008):
Monitoring, simulation, and management of visitor
landscapes. Tucson: University of Arizona Press.

[7] Grimm, Volker; Berger, Uta; Bastiansen, Finn; Eliassen,
Sigrunn; Ginot, Vincent; Giske, Jarl et al. (2006): A
standard protocol for describing individual-based and agent-
based models. In: Ecological Modelling, Is. 198, N. 1-2, pp.
115–126. Online:
http://www.sciencedirect.com/science/article/B6VBS-
4K606T7-3/2/1dad6192bec683f32fce6dee9d665b51.

[8] Hoogendoorn, S.; Bovy, P.; Daamen, W. (2002):
Microscopic pedestrian wayfinding and dynamics
modelling. In: Schreckenberg, M.; Sharma, S. (Eds.),

Figure 1: Relationship between maximum distance of visitors from campsite
and their interest for attractions

Pedestrian and Evacuation Dynamics, pp. 123–155.
Springer.

[9] Hoogendoorn, S.; Daamen, W. (2007): Microscopic
Calibration and Validation of Pedestrian Models: Cross-
Comparison of Models Using Experimental Data. In:
Schadschneider, A.; Pöschel, T.; Kühne, R.; Schreckenberg,
M.; Wolf, D. E. (Eds.): Traffic and Granular Flow’05,
pp. 329–340. Springer Berlin Heidelberg.

[10] Itami, Robert; Raulings, Rob; MacLaren, Glen; Hirst,
Kathleen; Gimblett, Randy; Zanon, Dino; Chladek, Peter
(2003): RBSim 2: simulating the complex interactions
between human movement and the outdoor recreation
environment. In: Journal for Nature Conservation, Is. 11, N.
4, pp. 278–286.

[11] Jochem, Rene; Pouwels, Rogier; Visschedijk, Peter A. M.
(2006): MASOOR: The Power to Know. A Story About the
Development of an Intelligent and Flexible Monitoring
Instrument. In: Siegrist, Dominik; Clivaz, Christophe;
Hunziker, M.; Iten, S. (Eds.): Exploring the Nature of
Management. Proceedings of the Third International
Conference on Monitoring and Management of Visitor
Flows in Recreational and Protected Areas. Switzerland, 13-
17 September 2006. Rapperswil, pp. 347–350.

[12] Kangas, K. Sulkava P. Koivuniemi P. Tolvanen A.
Siikamäki P. Norokorpi Y. (2007): What determines the
area of impact around campsites. A case study in a Finnish
national park. In: Forest Snow and Landscape Research, Is.
81, N. 1-2, pp. 139–150.

[13] Leung, Yu-Fai (1998): Assessing and evaluating recreation
resource impacts. spatial analytical approaches.
Unpublished thesis. Blacksburg. Virginia State University,
Forestry.

[14] Leung, Yu-Fai; Marion, J. F. (2000): Recreation impacts
and management in wilderness. A state-of-knowledge
review. In: Cole, David N.; McCool, Stephen F.; Borrie,
William T.; O’Loughlin, J. (Eds.): Wilderness science in a
time of change - Vol. 5. Wilderness ecosystems, threats, and
management. Wilderness Science in a Time of Change
Conference, MISSOULA, MT. May 23-27, 1999. Ogden,
UT: U.S. Department of Agriculture, Forest Service
Publications (Proceedings, RMRS-P-15-VOL-5), RMRS-P-
15-VOL-5, pp. 23–48.

[15] Millonig, A.; Gartner, G. (2010): A Multi-Method
Approach to the Interpretation of Pedestrian Spatio-
Temporal Behaviour. In: Klingsch, W. W. F.; Rogsch, C.;
Schadschneider, A.; Schreckenberg, M. (Eds.): Pedestrian
and Evacuation Dynamics 2008, pp. 563–568. Springer
Berlin Heidelberg.

[16] Opaschowski, H. W. (1999): Umwelt, Freizeit, Mobilität:
Konflikt und Konzepte. Opladen (Freizeit- und
Tourismusstudien, 4).

[17] Railsback, Steven F.. & Grimm, Volker (2010): A Course in
Individual-based and Agent-based Modeling. Princeton
University Press. Forthcoming.

[18] Sklar, Elizabeth (2007): Software review: NetLogo, a multi-
agent simulation environment. In: ARTIFICIAL LIFE, Is.
13, N. 3, pp. 303–311.

A Study of Resource Discovery in Open Multi Agent
System and Grid Environment

Muntasir J. Al-Asfoor

School of Computer Science and Electronic Engineering

Essex University, Wivenhoe Park, Colchester, UK CO4 3SQ

mjalas@essex.ac.uk

ABSTRACT

 In this paper, we have�discussed the resource
discovery in open distributed systems (Grid). A study of
the related work and the research’s directions as well as
the advantages and disadvantages of each method have
included. Based on intensive literature reviews, we
proposed architecture for an open distributed system
which facilitates the characteristics of Grid networking
and the use of multi agent techniques for the purpose of
resource sharing. The main objective of the proposed
method is to improve the resource discovery performance
by decreasing the request answer time as well as keeping
the quality of matching.

1- INTRODUCTION

In the early-to-mid 1990s, there were numerous
research projects underway in the academic and industry
communities that were focused on distributed computing.
One key area of research focus was on developing tools
that would allow distributed high performance
computing systems to act like one large computer [1].
Analogous to an electricity power grid, Grid computing
views computing, storage, data sets, expensive scientific
instruments and so on as utilities to be delivered over the
Internet seamlessly, transparently and dynamically as and
when needed, by the virtualization of these resources
[19]. A Grid is a very large scale, generalised distributed
system that can scale to Internet-size environments with
machines distributed across multiple organisations and
administrative domains [3].

The fundamental problem in Grid computing is the
discovery of resources in such a heterogeneous
computing environment as well as the dynamicity of
resource enrolment and leaving processes. Resource
discovery is a key concept in the distributed Grid
environment; it defines the process of locating resource’s
providers and retrieving resource’s descriptions [23].

Grid computing enables virtual organisations to
share geographically distributed resources as they pursue
common goals, assuming the absence of central location,
central control and an existing trust relationship [1].

A virtual organisation represents an institution that
offers one or more Grid services. Virtual organisations
can span from small corporate departments that are in the
same physical location to large groups of people from

different organisations that are spread out across the
globe. It can be large or small, static or dynamic [1, 12].

A resource is an entity that is to be shared. It can be
computational such as a personal digital assistant, laptop,
desktop, workstation, server, cluster, and super computer
or a storage resource such as a hard drive in a desktop,
(redundant Array of Inexpensive Disks), and a terabyte
storage device. Bandwidth is yet another resource that is
used in the activities of the virtual organisations.

An absence of a central location and central
control imply that the Grid resources do not require a
particular central location for their management [1].

Nowadays, the syntax based and name lookup
matching techniques used by web search engines lack the
ability to discover a service or resource according to the
meaning of the term that represents them. They employ a
simple string matching to compare two terms with only
two possibilities: either finding the exact match or not.
Accordingly, these techniques are not suitable for Grid
environments where different users might describe the
same term in a different ways.

In the Grid environment where so many different
implementations are available, the need for semantic
matching based on a defined ontology becomes
increasingly important. In service discovery, an ontology
description is very useful in supporting a customised
service discovery process [18]. In order to support the
discovery of relevant information with respect to a target
request, resources need to be described in a way that is
understandable and usable by the networked
organisations. An ontology defines a common
vocabulary for those who need to share information in a
domain. In other words, an ontology constitutes common
ground for those wishing to engage in meaningful
interaction [9].

The Grid and agent communities have both
developed concepts and mechanisms for open distributed
systems [10]. Agents with different expertise and
computational resources which may be distributed over a
network can come together and coordinate to solve a
complex task [9].

The rest of the paper is organised as follows:
section (2) presents an intensive literature review of the
related works in the fields of resource sharing in Grid
environment, semantics and multi agent systems. The
problem description and research objectives have been
explained in section (3). Section (4) discusses conceptual
system architecture as well as a high level description of
the system components. Section (5) suggests two
implementation scenarios based on two different ways of
dealing with the problem. Proposed contributions have
been discussed in section (6) and conclusions and future
works have explained in section (7).

�
�

2- LITERATURE REVIEW
 Researchers in the industry and academia have
developed many frameworks and tools for managing
resource description and discovery in Grid environments.
The Globus toolkit [21] Monitoring and Discovery
System (MDS4) has developed a set of monitoring and
discovery techniques for services and resources in a
distributed environment. It makes use of WSRF (Web
Services Resource Framework) but in a centralised way.
With this centralised way for managing the monitoring
and discovery of resources, any problem that might occur
in the node where all the indexing information is stored,
will lead to the halt of the entire system.

Grid resource brokering algorithms are
presented by [7] for enabling advance reservations and
resource selection based on performance predictions.
They suggested a decentralized broker to select
computational resources based on actual job
requirements, job characteristics, and information
provided by the resources, with the aim to minimize the
total time to delivery for the individual application. The
main drawback of this method is how to determine the
job requirement which needs an intervention from the
user to fix the job requirements.

Erdil et. al [8] employed gossiping protocols
for resource discovery. They made use of three types of
gossiping protocols, in which each node can disseminate
its resource information to the neighbouring nodes, and
then they disseminate the information to their neighbours
and so on. In this scenario, each node could be a
requester or a provider. Accordingly, a resource is
characterised by a resource descriptor triple (Type, Units,
and time Slots); A request is characterised by the same
three parameters. No semantic matching is employed in
this method and a simple type matching is used to match
the request and advertisement.

Another philosophy to deal with Grid resource
management is used by [15]. They proposed a Grid
service platform that dynamically provisions resources
for both interactive and batch applications to meet their
Quality of Services (QoS) constraints while ensuring
good resource utilisation. In this research, the authors
believed that relying on an agent-based approach for
resource management will allow a more flexible, robust
and scalable solution. The research is based on a multi-
agent approach to capture the heterogeneity of hosted
applications (in terms of allocation semantics) as well as
to provide good dependability. In this research, the
authors focused more on computational aspects like fault
tolerance rather than matching and description.

A Virtual Organisation (VO) infrastructure is
presented by [11]; according to this infrastructure, the
resource broker needs to deal with an organisation
instead of an individual user. Each VO then enables its
users to use the resources according to VO-specific
policies. The research found that it is hard to understand
the tasks behaviour from the application level. Their
approach was to use bounds within which allocations
could be supported. However, this approach can
introduce inefficiencies, which may decrease utilization
for the resource provider.
 A Grid environment was studied in [4]. They
have utilised semantic matching in their work with the
aim of making the Grid system more transparent in the
application level. In this research the authors tried to
achieve some sort of scalability by imposing
homogeneity of resources on a virtual organisation.

Using this technique is on the opposite of the idea of
Grid resource sharing with main principle for resources
to be heterogeneous.

Research work of building a Grid service
discovery middleware with semantic web technologies is
proposed by [13]. In this work, they employed the
semantic web discovery technologies in the field of Grid
resource discovery by adding machine-processable
explicit knowledge into the interaction between pervasive
devices and Grid services. The system uses a profile
model to describe Grid resources. According to their
results, the system has showed an increase in service
discovery time compared to the traditional service
discovery mechanism while a significant improvement in
the system function has been obtained.

 Amaranth et. al [2] proposed a semantic
component in conventional Grid architecture to support
ontology-based representation of Grid metadata and
facilitate context-based information retrieval that
complements Grid schedulers for effective resource
management. They have proposed a domain-based
ontology template to describe all the possible resources
which means all the requesters and providers have to use
this template. In a highly heterogeneous environment like
the Grid, users or agents might use different ontologies to
describe the resources and might not use the same
ontology template. Furthermore, the system uses a
centralised semantic repository which makes the system
fragile to any error may occur in the node that hold the
repository.

 Somasundaram et. al [22] Addressed the need
of semantic component in the Grid environment to
discover and describe the Grid resources semantically by
introducing a knowledge layer above the resource broker.
In this research the system relays on Gridbus1 to describe
and discover the resources. The authors assumed that the
description of resources will base on a predefined
ontology template to capture the resource heterogeneity
while practically it is not preferable to force the providers
to use a predefined ontology template. Each provider
may use different ontology template or description to
describe the same terms.

Resource information integration and searching
over the semantic small world2 has been proposed in
[17]. In this paper, the system uses lightweight
characteristics of each node by using an Ontology
Signature Set (OSS) so the similarity is measured by
matching these small set of OSS. This approach forms
some sort of distributed ontology matching approach but
at the same time it will cause a high heterogeneity among
nodes in the network by employing different ontology for
each node.
 A semantic supported and agent-based
decentralised Grid resource discovery mechanism is
proposed by [14]. The algorithm allows individual
resource agents to semantically interact with
neighbouring agents based on local knowledge and to
dynamically form a service chain to complete a
predefined task. In this research, the system is modelled

�� �������������������
��See http://www.cloudbus.org/broker/�

��The small-world networks exhibit special properties,
namely, a small average diameter and a high degree of
clustering, which make them effective and efficient in
terms of spreading and finding information [16].�

�
�

as a network graph consisting of n nodes or agents. The
authors assumed that the node should have the ability to
find neighbouring nodes to form a resource chain.
 Different techniques were used by [25] for
semantic discovery in a Grid environment. They
considered the system with super nodes that hold
resources. Users can locate a resource by performing a
desired web service query. The system can help the user
to search the web services which match his requirement
and then notify that user. The paper uses Profile
matchmaking techniques to decide the degree of
matching two concepts.
 Castano et. al [5] have proposed an algorithm
for resource discovery based on the idea of considering
both linguistics features of the concepts in the ontology
as well the semantic relations among concepts in a peer
ontology. They made use of the H-MATCH algorithm to
compute the degree of similarity between two terms
represent two concepts. The first step in this algorithm is
to use the WordNet thesaurus paths to compute the
Linguistic Affinity (LA). Secondly, they compute the
Relational Affinity (RL) for the concepts relations and
properties based on weights taken from the ARTEMIS
[24] framework. Finally, they used both the LA and RL
to compute the Contextual Affinity (AC) which
represents the degree of similarity between the two
terms. In this system the accuracy of the results is based
on WordNet thesaurus which might not be efficient to
find the degree of similarity between two concepts from
different domains or using different vocabularies.
Furthermore, according to their evaluation the system has
showed some increasing in the query answering time
when compare with the conventional matching methods.

As shown in the literature review many
research works have dealt with the topic of resource
management in Grid environment. These researches have
focused partially on the problem with each one see the
problem from different points of view.

Some researchers have seen the problem from
the network performance point of view focusing on
different layers of networking to improve the overall
network functionality. In this case, the efforts were
focusing on network aspects like (network topology,
network technology) with the aim of improving factors
like (bandwidth, delay, etc.). This research direction is
not related to our objectives.

 Other researchers have focused on the jobs
requirements prediction in order to develop mechanisms
for advance resource reservations. Using these
techniques required a user intervention to provide
information about the jobs like requirements and
characteristics.

 Our concern is regarding the semantic
resource discovery in open distributed systems
(computational Grid) environment with the aim of
improving this process and keeping the characteristics of
the system, more specific the heterogeneity and
dynamicity. Many researchers have worked on this topic
but partially. Some directions are in contrary with the
philosophy of open distributed systems like homogeneity
and centralisation. Furthermore, some systems are using
non-semantic matching techniques like type matching
and profile matching.

3. The Problem Statement and research
objectives

In open distributed systems where the
resources are geographically distributed across
heterogeneous nodes, an efficient resource discovery
method has become an essential requirement. Nowadays,
many resource discovery systems are using the simple
keyword (syntactic) matching methods to match the
user’s request with the provided resources. Using this
matching method the result would be either exact
matching (i.e. either the request matches the
advertisement exactly) or not.

 As the resources are highly heterogeneous and
the way the providers advertise their resources might
vary from the one the requester uses; many researchers in
the academia and industry have built frameworks to
discover the resources semantically depending on the
functionalities of the resources rather than simple name
matching methods. Accordingly, these methods have
dealt partially with the problem as shown in section (2).
As the open distributed systems are heterogeneous and
dynamic, the main factors which play a crucial role are:

• The quality of matching (i.e. how relevant the
advertisement is to the request), for this purpose many
researchers have employed the ontology description
along with semantic reasoners. In this case, the main
issues are the matching of a request and advertisements
which are described ontologically using different
description languages.
• The response time: in a highly dynamic environment
like open distributed systems time is the most important
factor. It is obvious that semantic discovery is more time
consuming since it involves more checking and
computation than simple keyword matching.

According to these two factors, the question now is:

how to achieve as high quality of matching as possible
while keeping the required time as short as possible?

To deal with the question has mentioned above
the research will address the trade-off between the
quality of the matching algorithm and the required time
for completion. Furthermore, the research will compare
between the linguistics and contextual matching methods
according to the quality and time factors. To achieve this
goal, the research will follow two directions: the first
direction is to improve the request and the advertisement
description to make it more compatible with search and
matching algorithms.

Afterwards, the research will address the case
of “no match” (i.e. if the matching process returns false
“no match”). By employing multi-agent system
techniques, the research will exploit the agent’s
capabilities to reform the requests in a way that decreases
the user’s requirements via negotiation over less
important requirements.

4. The Proposed Architecture

 To accomplish the stated objectives in section (3),
general conceptual system architecture has been designed
to show the main parts of the proposed method as well as
the interactions among them.

�
�

 Figure (1) shows the interactions among the
system components for two nodes interacting together.
As the system subject to this study is a Grid system
which consists of N number of providers and M number
of requesters, the system components are distributed as
follows:

• Resource Broker, Resource Descriptor and Query
Generator: are attached with each node.
• Indexer and Matchmaker: there are many Indexers and
Matchmakers distributed across the network.
 As shown in figure (1), the system gets two inputs:
the first input is the resource request from the requester
(user or agent); the second input is the resource
advertisement from the provider. The system will process
the inputs as follows: For the first input (the request), the
requester’s node will send a request for the required
resources to accomplish its job to the query generator.
The query generator is the part of the system that is
responsible for converting all the requests from the
heterogeneous nodes on the open distributed system into
a standard unified form3 which is compatible with the
matching method and the advertisement description.

• The output of the query generator is a query in a
standard format that will be passed to the main part of
the system which is the resource broker.

• The resource broker is responsible for brokering
between the requester’s node and the provider’s node.
First of all, the resource broker will ask the
matchmaker for matches to check the available
advertisements and their nodes contact addresses.

• According to our proposal the system will be open and
decentralised so the advertisements will be stored in
distributed databases to make the system more
immune to any point of failure. Furthermore, the
databases will be classified according to the stored
resources’ functionalities. According to that, the
matchmaker will ask the indexer about the appropriate

�� �������������������
3 For example by using a standard message format like
SOAP message format.

database index. Using this idea, the matchmaker will
apply the matching algorithm partially for a subset of
the databases rather than all the databases which will
reduce the required time to answer the query.

• After that, the matchmaker will return the contact
address of the relevant nodes, with advertisements
semantically close to the query, to the resource broker.

• The next step is the negotiation where the resource
broker will establish the connection between the
requester and the available providers to find the best
deal for providing the required resources.

For the second input: the resource advertisement from the
provider,

• The provider sends the resource specifications to the
resource descriptor. Thereafter, the resource descriptor
will form a standard description for resource reflecting
its functionalities. This step will improve the
registering process and accordingly the matchmaking.

• The standard resource description will be passed to the
indexer which is responsible, in this case, of storing
the resource description in the relevant database
according to its functionality specified by the
description.

5. The Suggested Implementation

Scenarios
 According to the proposal, the system is an
open multi agent distributed system; after investigation
there are two approaches to implement the system based
on the architecture shown in figure (1), these scenarios
are:
 The first scenario is to build the network from
scratch; in this scenario, the system’s simulation will be
built using a network simulator like Opnet4 or NS25.
Accordingly, using this scenario, many issues should be
taken in consideration like:
• What type of application will be implemented?
Usually, Grid computing uses for applications that need
intensive computing power which are usually scientific
research applications like (High Energy Physics HEP,
Disaster’s Predictions, etc.) where there is a need to
process a huge amount of data that would scale to
terabytes. Furthermore, there are some commercial
applications which need a high computational power like
(IPTV: Internet Protocol Television, Peer to Peer mobile
resource sharing, etc.) can make use of Grid computing.
• The type of network to be used (Wire or Wireless) and

which technology to be used (ex. Wi-Fi, WiMAX,
etc.).

• The measures that should be used to assess the fidelity
of the implemented methods or algorithms as well as
the factors that affect the system performance. In this
case there are many factors like: delay, bandwidth,
packet size, network topology and messaging system,
etc.

The second scenario is to use the
Internet/World Wide Web (WWW) as an infrastructure
for Grid networking. In this case, any node connected to
the Internet can participate in the resource sharing and

�� �������������������
4 See http://www.opnet.com

5 See http://www.isi.edu/nsnam/ns

Figure (1) The proposed system architecture

�
�

requesting process. As one of the most important issues
to be considered in open distributed systems is the
message passing management, using this scenario we can
make use of platform independent message passing
protocols like Simple Object Access Protocol (SOAP).
As SOAP messages have much overhead information
which might affect the performance of the overall
performance in term of time, one of our contribution will
be the improvement of SOAP messages in a way that
makes the SAOP message passing faster and more
efficient, keeping the properties of SOAP messages
unchanged.

In this scenario, the resources (Hardware,
Databases, Programs, Humans, etc.) are described by the
services they provide (i.e. describe the resources as
services). Service interactions will be facilitated by
messages exchange across the system.

By employing multi agent systems techniques,
the service providers and requesters will be fully
autonomous; service description and implementation will
be independent from one node to another. Since the main
purpose is to share resources (services in this case), and
technically the providers and requesters are sharing
information about the services not the services
themselves, clear and effective negotiation and
contracting policies are required to insure a meaningful
information exchange.

To sum up, as described above, in the first
scenario, the research work will be more in the direction
of network performance with most of the work related to
the lower layers of networking like (network and data
link layers). In this case, the research will be more
application dependent with the intention to improve the
network’s performance (i.e. developing methods and
algorithms to enhance the application itself in order to
improve the network performance). This scenario is not
suited with our proposal where is has nothing to do with
semantic discovery of resources across an open
distributed system.

The second scenario, the use of Internet as an
infrastructure and the facilities of WWW for interactions
among nodes (providers and requesters) is more suitable
for our proposal. As described before, the nodes will
share information about the resources or services rather
than the services themselves so it is more realistic to use
semantic techniques in service discovery and information
exchange. Furthermore, we can achieve nodes
independency, negotiation and contracting using multi
agent system’s techniques.

6. PROPOSED CONTRBUTIONS

The first contribution will be the system architecture
itself, as shown in figure (1); the system will be
engineered as a completely decentralised system. First of
all, no node has a full control of the system (i.e. each
node is responsible for its own control), using this
architecture the system will overcome the problem of
single point of failure. Furthermore, the advertisements
will be stored in many databases distributed across many
nodes.

Secondly, the Indexer will classify the
advertisements yet the queries according to the resource
functionalities across distributed repositories.
Accordingly, this technique will facilitate and speed up
the job of Matchmaker by looking for matches just in a

part of the repository rather than searching all the
databases.

 Furthermore, the system will not use a software
toolkit to gather the resources’ information because it
might make the system highly dependent on this toolkit.
The provider agent will infer the node resources itself
and send it to the resource descriptor in a standard
platform independent message format associated with the
required information for the classification process. Using
this standard message format will facilitate the process of
interaction among the system components whatever kind
of networking is used.

The main contribution will be in the
matchmaking process. As the main trade-off in any
resource discovery system is between the time and
accuracy, our main contribution will be to modulate the
search and matching methods in a way to increase the
accuracy and decrease the time. The system will employ
semantic (linguistic and contextual) features of the
resource description as well as non-semantic features.
Employing these features is a time consuming process
but it will enhance the quality of the matching results. In
our research, the main idea is to use complex matching
methods (semantic and non-semantic) but at the same
time maintaining the time consuming by: first apply the
search and matching algorithm for sub-part of the
database and secondly by pre-processing the request in a
way that makes it more compatible with the
advertisements which leads to more accurate result in
less time.

Another case to be studied more during our research
time is the case where no match is found (i.e. after
applying the matching algorithm the result is no match).
In this case, the Broker will start to negotiate with the
requester agent in order to reduce its requirements
according to the available resources.

7. CONCLUSIONS AND FUTURE
WORKS

In this paper, a study of resource discovery in
distributed environment is presented. We have
suggested a decentralised architecture for resource
management to improve the overall discovery
performance. Two implementation techniques have
been studied (building a separated network or relay
on the Internet infrastructure and make use of the
available WWW tools). From the investigation of
these two scenarios we recommend the second
scenario which is standard and more compatible with
multi agent techniques. The next step in this research
is test the fidelity of the suggested architecture as
well as the advantages and disadvantages of using
multi agent techniques to solve the distributed
systems problems.

8. REFERENCES

[1] Abbas, A. (2004). Grid Computing: a Practical
Guide to Technology and Applications. Charles
River Media.

[2] Amarnath, B., Somasundaram, T., Ellappan, M.
And Buyya R. (2009). Ontology-based Grid
Resource Management. Software, Practice and

�
�

Experience (39), pp. 1419-1438.
[3] Bote-Lorenzo, M., Yannis, A., and G´omez-

S´anchez, E.(2004). Grid Characteristics and
Uses: A Grid Definition Across Grids, Lecture
Notes in Computer Science 2970, pp. 291–298.

 [4] Brooke, J., Fellows, D., Garwood, K., and
Goble, C. (2004). Semantic matching of Grid
Resource Descriptions. In 2nd European Across-
Grids Conference. Lecture Notes in Computer
Science 3165, pp.240-249.

[5] Castano, S., Ferrara, A. and Montanelli, S.
(2005). H-MATCH: an Algorithm for
Dynamically Matching Ontologies in Peer-based
Systems. in proceedings of the 1st International
Workshop on Semantic Web and Databases, pp.
231-250.

[6] Castano, S., Ferrara, A. and Montanelli, S.
(2006). Ontology-based Interoperability
Services for Semantic Collaboration in Open
Networked systems. Springer London, book
chapter, pp.135-146.

[7] Elmroth, E., and Tordsson, J. (2008). Grid
resource brokering algorithms enabling advance
reservations and resource selection based on
performance predictions. Future Generation
Computer Systems 24(2008): 585–593.

[8] Erdil, D. And Lewis, M.(2007). Grid Resource
Scheduling with Gossiping Protocols, In the
proceeding of the 7th IEEE international
conference on peer to peer Computing, Galway,
Ireland, pp. 193-202.

[9] Fasli, M. (2007). Agent Technology for e-
Commerce. John Wiley & sons Inc.

[10] Fattahi, S. and Charkari, N. (2009). Distributed
ACS Algorithm for Resource Discovery in Grid.
International Conference on IT to Celebrate S.
Charmonman's 72nd Birthday, March 2009,
Thailand.

[11] Freeman,T., Keahey, K.,, Foster1, I., Rana, A.,
Sotomoayor1, B., and Wuerthwein, F. (2006) .
Tools for Growing and Scaling Grids. Lecture
Notes in Computer Science 4294,pp.40-51.

[12] Gonble C. and De Roure D. (2007). The
Semantic Grid: Myth Busting and Bridge
Building. In proceedings of the 16th European
Conferece on Artificial Intelligence, ECAI-
2004, pp. 1129–1135.

[13] Guan, T., Zaluska, E. and De Roure, D. (2009).
An Autonomic Service Discovery Mechanism to
Support Pervasive Devices Accessing the
Semantic Grid, International Journal of
Autonomic Computing, pp. 34-49.

[14] Han, L. and Berry D. (2008). Semantic
Supported and Agent Based Decentralised Grid
Resource Discovery, Future Generation
Computer Systems, pp. 806-812.

[15] Lenica, A., Ogel, F., Peshanski, F., and Briot, J.-
P. (2006). Agent-based Grid resource
management. In the 2006 International

Conference on Computational Science
(ICCS'2006), Reading, Royaume-Uni-
University, mai.

[16] Li, J. And Vuong, S. (2006). Grid Resource
Discovery Based on Semantic P2P
Communities. In Proceedings of ACM
Symposium in Applied Computing, SAC2006,
pp. 754–758.

[17] Li, J. (2010). Grid Resource Discovery Based on
Semantically Linked Virtual Organisations,
Future Generation Computer systems 26(2006),
pp. 361-373.

[18] Ludwig, S. and Reyhan,S. (2006). Semantic
Approach to Service Discovery in a Grid
Environment, journal of web semantics: science,
services and agents on the wide world web
4(2006), pp. 1 -13.

[19] Ludwig, S. and Van Santen, P. (2002). A Grid
Service Discovery Matchmaker Based on
Ontology Description. In proceedings of the
Second International EuroWeb2002 Conference,
Oxford, UK, pp. 17-18.

[20] Rood, B. and Lewis, M. (2008). Scheduling on
the Grid via Multi-State Resource Availability
Prediction. In Proceedings of the 2008 9th
IEEE/ACM International Conference on Grid
Computing, pp. 126-135.

[21] Schopf, J., Pearlman, L., Miller, N., Kesselman,
C., Foster, I., D’Arcy, M., and Chervenak,
A.(2006). Monitoring the Grid with the Globus
Toolkit MDS4. Journal of Physics: Conference
Series 46 (2006), pp. 521–525.

[22] Somasundaram, T. Balachandar1, R.A.,
Kandasamy, V., Buyya, R., Raman, R.,
Mohanram, N., and Varun1, S. (2006).
Semantic-based Grid Resource Discovery and
its Integration with the Grid Service Broker.
Technical Report, GRIDS-TR-2006- 10, Grid
Computing and Distributed Systems Laboratory,
The University of Melbourne, Australia.

[23] Timm, I. and Pawlaszczyk, D. (2005).Large
Scale Multi-agent Simulation on the Grid. In
Proceedings of the 5th IEEE International
Symposium on Cluster Computing and the Grid
(CCGrid'05) – (1), pp. 334-341.

[24] Tuchinda, A., Thakkar, S. and Gil, Y. and
Deelman, E. (2004). ARTEMIS: Integrating
Scientific Data on the Grid. In Proceedings of
the 16th conference on Innovative applications
of artifical intelligence, pp. 892-899.

[25] YANG, Y. (2007). A Scalable Semantic-based
Resource Discovery Service for Grids. Master
of Science Thesis, Swedish Institute of
Computer Science.

ISSN

This volume contains the papers presented at the
Student Session of the 12th European Agent
Systems Summer School (EASSS) held on 25th of
August 2010 at Ecole Nationale Superieure des
Mines de Saint-Etienne, France.
The Student Session, organised by students, is
designed to encourage student interaction and
feedback from the tutors. By providing the
students with a conference-like setup, both in the
presentation and in the review process, students
have the opportunity to prepare their own
submission, go through the selection process and
present their work to each other and their
interests to their fellow students as well as
internationally leading experts in the agent field,
both from the theoretical and the practical sector.

1864-9300

