
Streitberger, Werner; Eymann, Torsten; Zini, Floriano; Schnizler, Björn; Vo, Hong
Tuan Kiet

Working Paper

Simulator Development - Annual Report Year 3

Bayreuther Arbeitspapiere zur Wirtschaftsinformatik, No. 26

Provided in Cooperation with:
University of Bayreuth, Chair of Information Systems Management

Suggested Citation: Streitberger, Werner; Eymann, Torsten; Zini, Floriano; Schnizler, Björn; Vo, Hong
Tuan Kiet (2007) : Simulator Development - Annual Report Year 3, Bayreuther Arbeitspapiere zur
Wirtschaftsinformatik, No. 26, Universität Bayreuth, Lehrstuhl für Wirtschaftsinformatik, Bayreuth,
https://nbn-resolving.de/urn:nbn:de:bvb:703-opus-3709

This Version is available at:
https://hdl.handle.net/10419/52628

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:de:bvb:703-opus-3709%0A
https://hdl.handle.net/10419/52628
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Bayreuther Arbeitspapiere zur Wirtschaftsinformatik

Lehrstuhl für
Wirtschaftsinformatik

Information Systems
Management

Bayreuth Reports on Information Systems Management

No. 26

2007

Werner Streitberger, Torsten Eymann (University of Bayreuth), Floriano Zini (IRST - Fondazione
Bruno Kessler, Trento), Björn Schnizler, Hong Tuan Kiet Vo (University of Karlsruhe)

Simulator Development - Annual Report Year 3

ISSN 1864-9300

Die Arbeitspapiere des Lehrstuhls für

Wirtschaftsinformatik dienen der Darstellung

vorläufiger Ergebnisse, die i. d. R. noch für

spätere Veröffentlichungen überarbeitet werden.

Die Autoren sind deshalb für kritische Hinweise

dankbar.

 The Bayreuth Reports on Information Systems

Management comprise preliminary results

which will usually be revised for subsequent

publications. Critical comments would be

appreciated by the authors.

Alle Rechte vorbehalten. Insbesondere die der

Übersetzung, des Nachdruckes, des Vortrags,

der Entnahme von Abbildungen und Tabellen –

auch bei nur auszugsweiser Verwertung.

 All rights reserved. No part of this report may

be reproduced by any means, or translated.

Authors: Information Systems and Management
Working Paper Series

Edited by:

Prof. Dr. Torsten Eymann

Managing Assistant and Contact:

Raimund Matros

Universität Bayreuth

Lehrstuhl für Wirtschaftsinformatik (BWL VII)

Prof. Dr. Torsten Eymann

Universitätsstrasse 30

95447 Bayreuth

Germany

Email: raimund.matros@uni-bayreuth.de ISSN

Werner Streitberger, Torsten Eymann (University
of Bayreuth), Floriano Zini (IRST - Fondazione
Bruno Kessler, Trento), Björn Schnizler, Hong
Tuan Kiet Vo (University of Karlsruhe)

1864-9300

IST-FP6-003769 CATNETS

D2.3

Annual Report of WP2

Contractual Date of Delivery to the CEC: 31.08.2007

Actual Date of Delivery to the CEC: 24.09.2007

Author(s): Werner Streitberger (Universität Bayreuth), Torsten Eymann (Universität Bayreuth),

Floriano Zini (IRST - Fondazione Bruno Kessler, Trento), Björn Schnizler (Universität

Karlsruhe), Hong Tuan Kiet Vo (Universität Karlsruhe)

Workpackage: WP2-Simulation

Est. person months: 16

Security: public

Nature: final

Version: 1.0

Total number of pages: 49

Abstract:

This document describes the activities performed in WP2 - Simulation in the third and final year

of the CATNETS project. In particular, it focuses on WP2’s main task namely, Simulation of
application layer networks and refinement.

Keywords (optional):

CATNETS simulator, user guide, simulation environment refinement.

CATNETS Consortium

This document is part of a research project partially funded by the IST Programme of the Commission of the Eu-

ropean Communities as project number IST-FP6-003769. The partners in this project are: LS Wirtschaftsinformatik

(BWL VII) / University of Bayreuth (coordinator, Germany), Arquitectura de Computadors / Universitat Politecnica

de Catalunya (Spain), Information Management and Systems / University of Karlsruhe (TH) (Germany), Dipartimento

di Economia / Università delle Marche Ancona (Italy), School of Computer Science and the Welsh eScience Centre /

University of Cardiff (United Kingdom), Automated Reasoning Systems Division / IRST - Fondazione Bruno Kessler

Trento (Italy) / University of Mannheim (Germany).

University of Bayreuth
LS Wirtschaftsinformatik (BWL VII)

95440 Bayreuth

Germany

Tel: +49 921 55-2807, Fax: +49 921 55-2816

Contactperson: Torsten Eymann

E-mail: catnets@uni-bayreuth.de

Universitat Politecnica de Catalunya
Arquitectura de Computadors

Jordi Girona, 1-3

08034 Barcelona

Spain

Tel: +34 93 4016882, Fax: +34 93 4017055

Contactperson: Felix Freitag

E-mail: felix@ac.upc.es

University of Karlsruhe
Institute for Information Management and Systems

Englerstr. 14

76131 Karlsruhe

Germany

Tel: +49 721 608 8370, Fax: +49 721 608 8399

Contactperson: Daniel Veit

E-mail: veit@iw.uka.de

Università delle Marche Ancona
Dipartimento di Economia

Piazzale Martelli 8

60121 Ancona

Italy

Tel: 39-071- 220.7088 , Fax: +39-071- 220.7102

Contactperson: Mauro Gallegati

E-mail: gallegati@dea.unian.it

University of Cardiff
School of Computer Science and the Welsh eScience Centre

University of Caradiff, Wales

Cardiff CF24 3AA, UK

United Kingdom

Tel: +44 (0)2920 875542, Fax: +44 (0)2920 874598

Contactperson: Omer F. Rana

E-mail: o.f.rana@cs.cardiff.ac.uk

IRST - Fondazione Bruno Kessler Trento
Via Sommarive, 18

38100 Povo - Trento

Italy

Tel: +39 0461 314 314, Fax: +39 0461 302 040

Contactperson: Floriano Zini

E-mail: zini@itc.it

University of Mannheim
Chair of E-Business and E-Government

L 9, 1-2

68131 Mannheim

Germany

Tel: +49 621 / 181-3321, Fax: +49 621 / 181-3310

E-mail: veit@uni-mannheim.de

Changes
Version Date Author Changes

0.1 20.05.07 Werner Streitberger Draft structure

0.2 03.07.07 Floriano Zini Written introduction and added draft material to other

sections

0.3 04.07.07 Floriano Zini Completed sections on automated scenario generator

and infrastructure

0.4 10.07.07 Floriano Zini Added draft material to section on user guide

0.4.1 12.07.07 Floriano Zini Minor refinements

0.5 31.07.07 Bjoern Schnizler,

Werner Streitberger

Description of the parameters for the auctioneers and

the catallactic market

0.5.1 31.07.07 Floriano Zini Re-alignment with version 0.4.1

0.6 08.08.07 Floriano Zini Updated user guide.

0.7 30.08.07 Werner Streitberger Flooding performance added.

0.8 06.09.07 Werner Streitberger Chapter 4 added.

1.0 24.09.07 Werner Streitberger Final editing.

Contents

1 Introduction 3

2 Simulator refinement 6
2.1 Automated scenario generator . 6

2.1.1 Extensions . 6

2.1.2 How to generate a scenario . 10

2.2 Infrastructure . 10

2.2.1 Message delivery failure . 10

2.2.2 Link-load-dependent message latency 11

2.2.3 Event-driven time model . 11

2.3 Centralised market . 12

2.4 Catallactic market . 13

2.4.1 Configuration of the Catallactic market 13

2.4.2 Market Property Generator . 16

2.4.3 Service and Resource Discovery 18

2.4.4 Configuration of the catallactic strategy and learning algorithm . . 21

2.4.5 Simplified Catallactic strategy 23

2.5 Metrics . 23

3 Guide to conducting simulations 34
3.1 Installation and Running . 34

3.1.1 Software Dependencies . 34

3.1.2 CATNETS manual scenario generator 35

3.1.3 CATNETS automated scenario generator 35

3.1.4 CATNETS simulator . 36

3.2 CATNETS simulator parameter file . 37

3.2.1 General Parameters . 37

3.2.2 Central Market Parameters . 38

3.2.3 Market Parameters . 40

3.2.4 Negotiation Parameters . 41

3.2.5 Other parameters . 42

3.3 Simulation output . 42

1

CONTENTS 2

4 Conclusions 43
4.1 Achieved results . 43

4.2 Current Limitations . 44

4.3 Future Extensions . 45

Chapter 1

Introduction

The objective of WP2 - Simulation of the CATNETS project was to identify the required

features of the CATNETS simulator, to develop it, and to incorporate the centralised and

catallactic service/resource market specifications from WP1: Theoretical and Computa-
tional Basis. The simulator is to be used for controlled executions of Application Layer

Network (ALN) scenarios. Results of executions are the basis of performance evaluation

and comparison of the catallactic and centralised allocation mechanisms performed by

WP4 - Evaluation.

The simulator is a component of the high level workflow depicted in Figure 1.1, which

measures technical and economic metrics which the evaluation component uses for com-

putation of several indicators. The components acting in the workflow are:

Scenario Generator. This component takes a set of scenario parameters as an input and

produces a scenario to be simulated as an output.

Simulator. It takes a scenario as an input and executes it by using a service and resource

allocation approach. The output of a simulation is a set of technical and economic

metrics as described in Deliverable D4.1 [WP405].

Evaluator. This component takes a set of technical and economic metrics as input and,

as described in Deliverable D4.1 [WP405], calculates an economical performance

indicator for the allocation mechanism under observation.

The description of the components above is mainly given in Deliverables D2.2 [WP206]

and D4.2 [WP406] produced in project year 2. This deliverable focuses on the activities

performed by WP2 in the third and final year of CATNETS.

According to the work plan of the project, in year 3 WP2 was supposed to work on

task Simulation of Application Layer Networks and refinement. In this document, the

focus is on refinement i.e. on describing how the CATNETS simulator has been improved

after the last review meeting. Detailed account on performed extensive ALN simulations

3

CHAPTER 1. INTRODUCTION 4

Scenario Generator

Evaluator

Simulator

technical metrics

scenario

scenario parameters

ecanomical performance indicator

Alloc.
mech.

Figure 1.1: Architecture for evaluation system.

and simulations of prototype-like scenarios is given in Deliverable D4.3 [WP405], which

includes a comprehensive report of experiments conducted to evaluate the catallactic and

centralised allocation mechanisms.

Some directions for simulator refinement were identified and listed in Deliverable

D2.2 [WP206]. Others derived from reviewers’ comments and suggestions included in

the CATNETS Review Report N o 2. In summary, in project year 3 WP2 worked on the

following refinement tasks.

Automated scenario generator. This tool was needed to produce large-scale scenarios

to be simulated. Its implementation started in project year two and was concluded,

as planned, at T0+28.

Message delivery failure. The simulator was extended by adding the possibility of mod-

eling message delivery failure so that experiments could cover also more realistic

scenarios were communication between ALN sites is error-prone. This task was

CHAPTER 1. INTRODUCTION 5

completed by T0+28.

Link-load-dependent message latency. Variable message latency depending on band-

width currently available between ALN sites was taken into consideration. A mech-

anism implementing this feature, already embedded in the base simulator Optor-
Sim, was analysed, adapted and included in the CATNETS simulator. This task

was completed, as planned, by T0+30.

Event-driven time model. The base simulator OptorSim offered two time models, one

time-based and one event-driven. In the last year of the project, the event-driven

time model was adopted and embedded into the CATNETS simulator. This task

ended at T0+32.

Refinement of centralised mechanism. Some modifications to the implementation

were done in order to increase the service/resource allocation rate when the cen-

tralised allocation mechanism is adopted. This task was completed by T0+28.

Refinement of catallactic mechanism. This tasks involved some bug fixing and the im-

plementation of resource co-allocation. It has been completed by T0+32.

Full implementation of metrics. At the end of project year 2, the CATNETS simulator

implemented the recording of a subset of the technical metrics defined by WP4

in Deliverable D4.1 [WP405]. The implementation of the metrics framework was

completed at T0+31.

The issues listed above are described in Chapter 2. In particular, Section 2.1 describes the

automated scenario generator while Section 2.2 presents the enhancements to the simula-

tor’s messaging system and time model. Sections 2.3 and 2.4 show the implementation

refinements of the centralised and catallactic markets. Finally, Section 2.5 gives an ac-

count on the full implementation of technical metrics and their semantics.

In the rest of the document, Chapter 3 is a user guide which explains how to conduct

simulations and Chapter 4 summarizes the achieved results and gives directions about

how the CATNETS simulator can be further extended.

Chapter 2

Simulator refinement

2.1 Automated scenario generator

The CATNETS automated scenario generator is a tool used for the generation of scenar-

ios to be given as an input to the CATNETS simulator. In Deliverable D2.2 [WP206] the

requirement for this tool were identified. In this section, the focus lies on its implementa-

tion.

The automated generator is based on BRITE [MLMB01b] a topology generation

framework which is able to generate synthetic topologies that accurately reflect many as-

pects of the actual Internet topology. BRITE supports multiple generation models includ-

ing models for flat AS, flat Router and hierarchical topologies. Models can be enhanced

by assigning links with attributes such as bandwidth and delay.

Figure 2.1 shows how to choose the topology model in BRITE. For details about how

to use BRITE the reader is referred to the BRITE user manual [MLMB01a]. BRITE was

extended in order to obtain an automated scenario generator which is able to generate

scenarios compliant to the ALN model presented in Deliverable D2.2 [WP206].

2.1.1 Extensions

Two tabs have been added to the GUI of BRITE. They are called Catnets1 and

Catnets2 and are shown in Figure 2.2 and Figure 2.3, respectively.

Catnets1 - Tab

Tab Catnets1 enables the configuration of complex service types, basic service types,

and resource types, which equal the products available in the application layer network.

The following parameters are included in the tab:

6

CHAPTER 2. SIMULATOR REFINEMENT 7

Figure 2.1: BRITE topology selection.

Resource parameters. The user can define #Res, the number of resource types avail-

able in the scenario, and Qmax, the maximum quantity for each resource type.

#Res resources will be created, each of which having a quantity defined by a ran-

dom integer in the range [1, Qmax].

ARB parameters. The user can define #MaxRes, the maximum number of resources

per Available Resource Bundle, and #ARB, the number of ARBs. #ARB ARBs

will be created, each of which including a number of resources defined by a random

integer in the range [1, #MaxRes].

Quality. The user can add and delete values for the quality of basic services.

Basic Service. The user can define #BS, the number of basic service types.

Complex Service. The user can define #CS, the number of complex services, and

#MaxBS, the maximun number of Basic services per CS. #CS complex ser-

vices will be randomly created, each of which including at most #MaxBS basic

services.

Failure probability. The user can define a range for the site failure probability. Every

site will fail with a probability in the range [MinFailProp, MaxFailProp).

CHAPTER 2. SIMULATOR REFINEMENT 8

Figure 2.2: Automated scenario generator: Catnets1 parameter tab.

Catnets2 - Tab

This tab allows the configuration of the complex service, basic service and resource in-

stances. Distributions are available which assign the instances to network nodes. The

following parameters can be defined:

Allocation mechanism. The user can set the allocation mechanisms, catallactic or cen-
tralised, for which the scenario is being created.

CS schedule. The user can decide if all the Complex Service Agents can run all complex

services or if CSAs can run only a subset which is randomly chosen.

Agents definition and distribution. The user can define #Agents, which is the total

number of agents to be placed in the ALN, the percentages of complex service

agents (%CSAs), basic service agents (%BSAs) and resource agents (%RAs) and

the distributions of probability used for the placement of agents in the ALN. The

following distributions are available:

Uniform. The site for the agent is chosen using uniform probability distribution.

Links (dir). The site for the agent is chosen with probability proportional to the

number of site links (the more the site is connected, the greater the probability

it host agents).

CHAPTER 2. SIMULATOR REFINEMENT 9

Figure 2.3: Automated scenario generator: Catnets2 parameter tab.

Links (inv). The site for the agent is chosen with probability inverse proportional

to the number of site links. The more the site is connected, the smaller is the

probability to host agents.

Dist (dir). The site for the agent is chosen with probability proportional to the dis-

tance between the site and a pivot site (the more the distance, the greater the

probability).

Dist (inv). The site for the agent is chosen with probability inverse proportional to

the distance between the site and a pivot site (the less the distance, the greater

the probability).

Percentage of BSAs providing a specific types of basic service. The user can decide

the percentage of agents providing a specific type of basic service. By clicking

on the Create Tables button, the predefined percentages are shown and the

user can modify them.

Percentage of RAs providing a specific available resource bundles. The user can de-

cide the percentage of agents providing a specific ARB. By clicking on the Create
Tables button, the predefined percentages are shown and the user can modify

them.

CHAPTER 2. SIMULATOR REFINEMENT 10

2.1.2 How to generate a scenario

Once all the parameters have been set, a folder has to be selected for the output files. A

click on the button Build Topology generates the scenario.

Four input files for the CATNETS simulator are created:

• topology.conf: specifies the ALN topology;

• cs.conf: specifies the complex services;

• bs.conf: specifies the basic services;

• arb.conf: specifies the available resource bundles;

Two additional files are created:

• <filename>.brite: specifies the topology in BRITE format;

• <filename>.odf (optional): specifies the the topology in OTTER format (see

http://www.caida.org/tools/visualization/otter/).

<filename> can be specified by the user.

2.2 Infrastructure

2.2.1 Message delivery failure

The communication system of the CATNETS simulator, developed in project year 2, fea-

tures both point-to-point and broadcast/multicast communication. These communication

paradigms are used to implement the negotiation protocols adopted in the centralised and

catallactic markets. In real networks, the delivery of point-to-point or brodcast/multicast

message can fail, the possibility of simulating failure of ALN links has been added to the

CATNETS simulator in project year 3.

Given the base simulator OptorSim, the failure probability was associated to ALN

sites instead of links because of easier implementation:

1. Every ALN site has a given failure probability fp. This is a static parameter spec-

ified in the configuration file topology.conf. The failure probability can be

specified using either the manual or automated scenario generators.

CHAPTER 2. SIMULATOR REFINEMENT 11

2. The site failure probability fp is used by P2P mediators located in every site1: when-

ever a P2P mediator is requested to delivery a message, the message is forwarded

to the recipient(s) with a probability p = 1 − fp.

If the failed message is a point-to-point message, a single agent will not receive it. In

other words the link between one sender and one receiver agent is not working. If the

message is a multicast/broadcast message, the P2P will not propagate it to neighbour sites

and multiple agents will not receive it. In this case, the site failure probability can be

interpreted as the failure of all site’s out-links.

This implementation of message delivery failure permits the simulation of a wide

range of real situations, including the real world characteristic that failure of broad-

cast/multicast delivery has certainly a greater overall impact on the course of simulation

than point-to-point delivery failure.

2.2.2 Link-load-dependent message latency

The CATNETS simulator has been refined by adding the possibility of simulating deliv-

ery of messages dependent on the current network traffic (i.e. how much bandwidth is

consumed by the messages currently being delivered) along the path between sender and

receiver.

The message transfer implementation provided by OptorSim was adapted. Every mes-

sage transfer between sites is handled by an instance of the class MessageTransfer.

This class takes care of message transfers over the simulated ALN. It notifies other

MessageTransfer instances that it is starting (and therefore changing the network

situation) and waits until the transfer is complete. If the waiting is interrupted by another

MessageTransfer start, the time left to transfer the message is recalculated based on

the new network load. The MessageTransfer instance which started before waits

again until the transfer is complete. When the transfer has finished, it notifies all the other

currently running MessageTransfer instances.

2.2.3 Event-driven time model

The base simulator OptorSim includes two time models to be used for simulation, one

time-based and one event-driven time model. Simulation runs with both time models de-

livering the same end results. In project year 3, the event-driven time model was adopted

for the CATNETS simulation scenario.

In the time-based model, the simulation proceeds in real time. The simulation time

equals the wall clock time to complete a simulation run by simulating all complex service

1P2P Mediators deal with management of all messages: when a message has to be sent by an agent

located on a site, actual delivery (also to other local agents) is performed by the local P2P mediator.

CHAPTER 2. SIMULATOR REFINEMENT 12

requests.

In the event-driven model, the simulation time is advanced to the point when the next

thread should be activated. The use of the event-driven model speeds up the running of

the simulation considerably, whereas the time-based model may be desirable for demon-

stration or debugging purposes.

The event-driven time model is implemented by using a thread called

TimeAdvancer which controls the advance of time. The thread runs as a lowest prior-

ity thread which only starts working in general when all other threads are sleeping. When

it runs, it continually checks to see if all other threads are sleeping. If there are all threads

sleeping, it finds out the thread which should be activated again. It advances time to this

point and wakes up the thread.

2.3 Centralised market

In the second project year, we conceptualized a model for generating values for the bids in

the central case [WP106]. The purpose of the model was to determine what and when an

agent bids in the auctioneer cases. What denotes the valuation and the reservation prices

of agents, i.e. the maximal price which an agent is willing to pay for a service (resp. the

minimum price an agent has for selling a service). When denotes the timing of bids, i.e.

which event induces an agent to bid for a service. Both cases are different in the central

and decentral scenario. As such, it was important to find concepts that are applicable

for both scenarios and, thus, make the results comparable. As a result, a rather complex

model was developed with the aim of imitating the co-evolutionary learning algorithms

[WP106], which is used in the catallactic allocation approach.

Preliminary simulation runs evinced that the model was too complex to analyze and

to identify specific effects of the implemented auction mechanisms. This originates in

the fact that too many parameters of the model influenced the overall outcome. As a

consequence, the reasons for particular outcomes cannot be easily identified.

In order to observe and identify specific effects of the auction mechanisms, a simpler

bidding model was developed in the third project year. Valuation and reservation prices

of agents are drawn from a normal distribution where mean and standard deviation can be

set by means of a configuration file. As the simulation scenarios show, the simpler model

allows a more profound analysis of the metrics to be observed.

Both models can be selected by means of a configuration file (see Section 3.2.2 for

details).

CHAPTER 2. SIMULATOR REFINEMENT 13

2.4 Catallactic market

The components of the Catallactic strategy, presented in Deliverable D1.1 and formalized

in Deliverable D2.1, were optimized during the simulation of several test scenarios in

project year 3. A configuration file was introduced for defining the traded products on the

Catallactic market, which enables the configuration of the catallactic market properties

(see subsection 2.4.1). Besides the configuration of the Catallactic market properties, all

parameters of the Catallactic strategy could be configured with configuration files, too.

Subsection 2.4.2 presents a visual tool for generating the market properties which eases

the creation of the market product configuration file. Improvements to the strategy are

presented in the following subsections. In subsection 2.4.3, a performance analysis of the

flooding algorithm is introduced. Several simulation runs evidenced that the performance

of the discovery algorithm has large impact on the allocation performance in the Catal-

lactic allocation approach. The performance analysis gives advice how to set the number

of hops for the flooding algorithm.

A simplified Catallactic strategy implementation is presented in subsection 2.4.5. In-

stead of using a iterative bargaining with several negotiation rounds, this strategy uses

only one negotiation round for reaching an agreement. This helps to reduce the messag-

ing complexity of the Catallactic iterative bargaining implementation.

2.4.1 Configuration of the Catallactic market

The configuration of the Catallactic market includes the initialisation of the traded prod-

ucts, its price ranges and several constraints of the Catallactic market. These constraints

improve the performance of the Catallactic strategy in the examined scenarios. A detailed

description of the Catallactic market configuration contains the following properties:

• Service market products: Each basic service type (BSi), which is traded on the

service market, has to be configured for the Catallactic strategy. The complex

service agent as a buyer and the basic service agent as a seller of the service can be

configured with its initial trading price range setting a minimum and a maximum

price (minPrice and maxPrice). The hard lower and upper limits are additional

constraints preventing usuary bids. A seller will never sell his basic service below

the given lower limit whereas a buyer will never submit a bid higher than his budget

(hard upper limit). All basic services instances of the same type use the same hard

lower and upper limits. The next configuration parameter assigns resource bundles

to the given basic service type. This allows a basic service agent to choose between

different resource bundles and buy them on the resource market. The order of the

resource bundles is important, a bundle at first place has higher preference than a

bundle at second place. If there is a list resource bundles, the co-allocation switch

of the simulator has to be turned on. This allows the basic service agent to buy

from more than one resource provider. The basic service agent tries to fulfill his

CHAPTER 2. SIMULATOR REFINEMENT 14

resource demand with the resource bundle specified at the first place before he

selects a resource bundle of the second specified type (resource.itemids).

< BSi > .seller.minPrice =< double >
< BSi > .seller.maxPrice =< double >
< BSi > .buyer.minPrice =< double >
< BSi > .buyer.maxPrice =< double >
< BSi > .hard.lower.limit =< double >
< BSi > .hard.upper.limit =< double >
< BSi > .resource.itemids =< RB1 > ... < RBn >

An example configuration is presented below. Both the complex service agents

and the basic service agents start with the same initial price range. The budget

of the complex service is 50, the minimum costs for the basic service (bs1) is 20.

This lower bound can be seen as the production costs for a basic service provider.

Both, the seller and buyer start with the same price range between 25 and 40. The

specified basic type is only allowed to buy resources of product r1.

bs1.seller.minPrice = 25
bs1.seller.maxPrice = 40
bs1.buyer.minPrice = 25
bs1.buyer.maxPrice = 40
bs1.hard.lower.limit = 20
bs1.hard.upper.limit = 50

bs1.resource.itemids = r1

• Resource market products: The reason for specifying resource market products is

the general demand of resources in the basic service configuration. The strategy

works on product level. This means the catallactic reasoner estimates his price for

a given set of traded products. For a resource bundle of the basic service config-

uration, either each single resource is traded and its prices are summed up or a

predefined set of resource bundles can be traded on the resource market. The Catal-

lactic mechanism chooses the second option which allows a more flexible way to

trade products on the resource market. We assume, there are base resources on the

market. Each resource provider defines his individual set of resource bundles and

price ranges and shares the intended meaning with the basic service. In the service

market configuration, the basic service consumer defines which of these resource

bundles can be bought to fulfill his resource demand on the resource market.

A resource provider defines its resource product out of a set of basic resources and

chooses an arbitrary name for the resource bundle. The resource bundle determines

the base units of each resource. A resource consumer requests a multiple of these

CHAPTER 2. SIMULATOR REFINEMENT 15

resource bundle base units. Like in the service market configuration, the same ini-

tial resource market price s has to be configured along with the initial minimum and

maximum prices for buyers and seller, which trade this product and hard upper and

lower limit prices. The lower limit price is the minimum price a resource provider

is willing to sell this product and the hard upper limit price is the budget of the re-

source consumer. Finally, each resource provider reads the list of possible resource

products (arb.itemids) and decides according to his available resource items, if he

is able to provide this resource product.

< resource product id > .resourceids =< resource1 > ... < resourcen >
< resource product id > .baseunit. < resource1 >=< int >
...
< resource product id > .baseunit. < resourcen >=< int >
< resource product id > .seller.minPrice =< double >
< resource product id > .seller.maxPrice =< double >
< resource product id > .buyer.minPrice =< double >
< resource product id > .buyer.maxPrice =< double >
< resource product id > .hard.lower.limit =< double >
< resource product id > .hard.upper.limit =< double >

arb.itemids =< resourceproductid1 > ... < resourceproductidn >

An example of one resource product is shown below. The resource bundle consists

of three base resources. Multiples of 1 ram unit, 2 cpu units and 1 storage unit are

tradeable. Both, resource buyer and resource seller start with the same initial price

range. The budget of the buyer is set to 50 and the seller’s minimum price is 20.

There is only one product tradeable on the resource market. The resource providers

check, if they are able to provide resource bundle r1.

r1.resourceids = ram cpu storage
r1.baseunit.ram = 1
r1.baseunit.cpu = 2
r1.baseunit.storage = 1
r1.seller.minPrice = 25
r1.seller.maxPrice = 40
r1.buyer.minPrice = 25
r1.buyer.maxPrice = 40
r1.hard.lower.limit = 20
r1.hard.upper.limit = 50

arb.itemids = r1

CHAPTER 2. SIMULATOR REFINEMENT 16

2.4.2 Market Property Generator

A visual tool, the market property generator (MPG), was developed to help creating this

property file for the catallactic market configuration. The market property generator reads

the arb.conf and bs.conf files which are created by the manual or automated scenario

generator. These files are expected to be in the root directory of the market property

generator.

The process of generating the market property file is divided into two steps which are

illustrated by two screens respectively. Within step one, tradable products on the resource

market are specified. In a second step, pricing limits are set for each basic service type

and a resource product is assigned to each basic service type. An outline is given for both

steps, which are illustrated by an example in the following.

Specification of Products

Starting the MPG will result in the screen depicted in Figure 2.4. This screen is divided

into four different regions. Within region 1 all possible product types are shown in a drop

down box. By selecting one of these types the user is enabled to instantiate a product type

by pressing the add button on the right. Every instantiated product will appear in region 2.

Instances of the same type are distinguishable by means of a number behind the identifier.

Marking a single instance of a product type in region 2 makes it possible to customize it

within region 3. Here, all product specific options are addressable. After customizing the

products listed in region 2 the next button in section four hast to be pressed.

Figure 2.4 shows a snapshot of MPG which uses the example data provided below.

Two different product types are instantiated, storage (one instance) and cpuram (two in-

stances). The screen shot shows the available option for product storage 0.

#
Available resource bundles
#
arb cpu 30
arb ram 40 storage 80

#
Basic services
#
bs1 bs1 silver storage 10
bs2 bs2 silver cpu 20 ram 88
bs3 bs3 silver cpu 22 ram 22

CHAPTER 2. SIMULATOR REFINEMENT 17

1

2

3

4

Figure 2.4: Screen one of MPG.

CHAPTER 2. SIMULATOR REFINEMENT 18

Products and basic services

The second screen of MPG is depicted in Figure 2.5 which is divided into two regions. In

region 1, every basic service type is enumerated with its specific options. Each of those

options has to be changed by the user. The final option is presented in a drop down box.

This box assigns a resource product to each particular type of basic service. If the box

is empty, no resource product has been defined previously. Pressing the previous button

allows the user to proceed on screen one. The generate button produces the catallactic

market properties file.

Figure 2.5 shows the configuration for the example data set. In that specific case, there

are two different products which could serve bs2 needs. The user needs to choose which

one he wants to assign to his basic service type.

1

2

Figure 2.5: Screen two of MPG.

2.4.3 Service and Resource Discovery

Large-scale Grids will borrow some of the characteristics of today’s P2P systems in re-

source participation: unreliable resources and intermittent participation will constitute a

significant share. This environment is likely to scale to thousands of resources shared

by thousands of participants; no central, global authority will have the means and the in-

CHAPTER 2. SIMULATOR REFINEMENT 19

centive to administrate such a large collection of distributed resources. The nodes offer

resource bundles as a service or application services (basic services and complex ser-

vices) that other nodes (services) want to use. An issue central to such Grids is how to

locate a service in the distributed system that provides it. There are various approaches

to service discovery. In CATNETS, we consider a decentralized discovery mechanism

based on flooding. With flooding a node that wants a particular resource or service con-

tacts all neighbours in the system, which in turn contact their own neighbors until a node

that provides the requested service is reached. Flooding enables resource discovery with-

out directories or knowledge about the specific topology of the system, thus, offering an

attractive mechanism for resource discovery in dynamically evolving systems.

In abstract terms, we assume a distributed system with N nodes where each node

provides a number of resources or services. There are R different types of resources,

which use the configuration explained in the previous section. Each node knows about d

other nodes called neighbours. The system is modelled as directed graph G(V, E) where

each node of the graph corresponds to a node of the distributed system and there is an

edge from A to each node A’s neighbours. Because each edge in G may not correspond to

a physical link, graph G is called the overlay network. There is no knowledge about the

size of the network.

We assume an overlay network where each node has d neighbors and maintains no

cache about former searches. When a node A needs a particular type of resource or ser-

vice x, it always floods the network with its call-for-proposal messages. Node A sends

a message querying all or a subset of its neighbors, which in turn propagate the message

to their neighbors, and so on. To avoid overwhelming the network with search requests,

search is limited to a maximum number of steps t (similar to the Time To Live (TTL) pa-

rameter in many network protocols). In particular, the search message contains a counter

field initialized to t. Any intermediate node that receives the message first decrements

the counter by one. If the counter value is not 0, the node proceeds as normal; otherwise

the node does not contact its neighbours. A node sends only a positive response to the

inquiring node if x is found and has enough free capacity.

When the search ends, the inquiring node A will either have the contact information

for resource x or nothing if all resources are used or currently down due to a failure. In

the latter case, node A assumes that a node offering the resource cannot be found.

The implemented search strategy is pure flooding. With pure flooding, a node A that

searches for a resource x checks its local resource and contacts all its neighbours. In turn,

A’s neighbours check their local resources and propagate the search message to all their

neighbours. The procedure ends when either the resource is found or a maximum of t

steps is reached. The scheme, in essence, broadcasts the inquiring message.

In the CATNETS simulator, the number of hops is controlled by two parameters be-

cause of different broadcast messages:

• Call-For-Proposal and Announce message hop count: The Call-For-Proposal mes-

CHAPTER 2. SIMULATOR REFINEMENT 20

sage broadcast the demand to available seller within the given hop limit. An An-

nounce message informs all agents about the results of the discovery phase. The

behaviour is the following: A Call-For-Proposal message receiver blocks its basic

service instance or resource bundle until an announce message is received. If the

number of hops is high, the requestor of e.g. a basic service gets a higher number of

basic services for selection, but blocks these basic service for any other requests un-

til the announce message is received. This blocking policy leads to a low allocation

rate of the system for a high number of hops defined in the hop count parameter and

produces a high number of messages which have to be sent over the P2P network.

Addressing both problems, the number of hops should be kept fairly low to 2 or 3

hops for a network with a high density of available services or resources. If there is

a low density of available services, this number should be increased. To overcome

the problems of the implemented blocking policy, the discovery time of a requestor

(the time to receive an answer for a call-for-proposal message) is randomized. This

gives the seller agents the opportunity to respond to other call-for-proposals, when-

ever they receive a reject with an announce message for the current selection. If

the requestor would like to execute a long running service, there is the possibility

to specify a counter of how many discovery time periods a requestor should wait

receiving an answer for his call-for-proposal message. Of course, this increases the

overhead time until the service execution can start.

In the example implementation below, a requestor decides to wait 10 times a ran-

domized discovery timeout until he gives up his search for a basic service instance

or a resource bundle.

Random rand = new Random();
_time.gtSleep((int)(_params.getDiscoveryTimeout())+
Math.round((int)(_params.getDiscoveryTimeout())

*rand.nextDouble()));

while (_proposals.isEmpty()&&discoveryCounter<10) {
_time.gtSleep((int)(_params.getDiscoveryTimeout())+
Math.round((int)(_params.getDiscoveryTimeout())

*rand.nextDouble()));
discoveryCounter++;
}

• Learning message hop count: This hop counter controls the speed of spreading

plumages to other agents of the same role. The number of hops should also kept

low because of the increasing number of messages which are needed to flood the

network with new plumage information.

CHAPTER 2. SIMULATOR REFINEMENT 21

2.4.4 Configuration of the catallactic strategy and learning algo-
rithm

In year 3 of the project the parameters of the catallactic strategy and the learning algorithm

were externalized to ease the configuration for simulation runs. Two configuration files

were introduced:

• strategy.conf: This file contains a the configuration of the catallactic strategy. The

dealRange property defines which policy to use for adapting the deal range after a

negotiation. The value fixed leads to not changing the deal range after a negotiation.

The price ranges of the market configuration stay the same in every negotiation

during the simulation run. The static policy adapts the price range according to the

priceNext parameter of the genotype. The length of the deal range stays the same

as defined in the market configuration. The fixed and static policies don’t take into

account the market price estimation for changing their deal range. This feature is

provided by the dynamic policy. This policy uses the estimated market price of the

agent to create the new deal range. The estimated market price is median of the deal

range, its lower and upper bounds are computed using the priceNext parameter.

Finally the ringSize parameter specifies how many prices of successful negotiations

an agent should store before he forgets these achievements. Low values lead to high

jumps of the markets prices whereas high values lead to very slow adaption to new

market prices.

This file configures the catallactic strategy

modify deal range
values: fixed, static, dynamic
dealRange = dynamic

ring size
ringSize = 40

• learning.conf: This file initializes the genotype of the strategy and sets param-

eters of the co-evolutionary learning algorithm. The maturityThreshold and the

courterThreshold properties control the sending and receiving of plumages. In the

example setting below, an agent waits 5 successful negotiations until he broadcasts

his plumage, whereas he would wait for 20 incoming plumages until he selects one

for crossover. The crossoverProbability defines the probability for a gene to be

selected for crossover. The CATNETS strategy has 5 genes: acquisitiveness, sat-

isfaction, priceStep, priceNext and weightMemory. If the crossover parameter is

set to 0.20, one gene is chosen on average for crossover in every selection round.

A mutation step follows the crossover and is performed after every successful ne-

gotiation. The property mutationProbability defines the probability for a gene to

CHAPTER 2. SIMULATOR REFINEMENT 22

be mutated. The ringSize parameters stores the agreement prices of an agent in

an ring array which is used for market price computation. There are two policies

implemented concerning how to select a genotype for crossover. The first policy se-

lects one plumage which is better than my own current plumage whereas the second

policy selects the best received plumage for crossover. The property crossOverSe-
lectionModel sets this selection policy. In CATNETS, all genes are float genes with

values between /]0, 1/[. To prevent the genes to reach 0 or 1, there is the possibility

to set the maximum value the genes are allowed to reach with the properties min
and max. An important value is the size of the mutation step. This size is set by the

gaussWidth parameter. A random value is drawn from a gaussian distribution with

the given width and added to the selected gene. In the example, the gaussWidth
parameter is set to 0.01. This results in small changes of the genotypes. The last

section of the configuration file controls the initialisation of the genotype. There is

the possibility to start the simulation environment with a randomized genotype or a

fixed genotype for all agents. For a detailed explanation of the genotype, we refer

to Deliverable D2.2.

setup learning

send plumages
maturityThreshold = 5

receive plumages
courterThreshold = 20

crossover probability
crossoverProbability = 0.20

mutation probability
mutationProbability = 0.70

ring size
ringSize = 100

crossOverSelectionModel
(0) select plumages which are better than my plumage
(1) select best received plumage
crossOverSelectionModel = 0

init float gene
gaussWidth = 0.01
min = 0.001
max = 0.999

CHAPTER 2. SIMULATOR REFINEMENT 23

setup genotype

randomize genotype
values: yes/no
genotype.randomize = no

if randomize == no, use this genotype
genotype.acquisitiveness = 0.05
genotype.satisfaction = 0.99
genotype.priceStep = 0.5
genotype.priceNext = 0.05
genotype.weightMemory = 0.9

2.4.5 Simplified Catallactic strategy

The catallactic strategy uses bilateral bargaining, which comes along with a high number

of messages to be transferred between the trading partners. To reduce this number of mes-

sages, a simplified version of the Catallactic strategy was implemented. This simplified

strategy uses the same discovery mechanism. The ranking of received proposals is done

according to its price. Instead of starting a bilateral bargaining with the cheapest proposal,

the simplified strategy accepts the proposal, if this proposal is lower than his budget. The

following learning step remains the same.

2.5 Metrics

This section presents the final set of metrics implemented in the simulation environment.

The metrics are measured during simulation runs and stored in several text files. Analysis

scripts use these text files and compute the metrics pyramid. In detail, the files are:

• Filename: accepts.txt

Description: This file records the successfully ended negotiations (accept) for one

simulation run. Each accept equals one entry in the accepts file.

Sample entries:

3725 CSA5@Site20 BSA0@Site24 accepts Negotiation0 seller
6534 CSA0@Site3 BSA0@Site5 accepts Negotiation2 buyer

Column description: time stamp in milliseconds (long), ID of the agent (String), ID

of the agent (String), name of metric (String), negotiation id (String), role (String,

buyer or seller which made the acceptance decision)

CHAPTER 2. SIMULATOR REFINEMENT 24

• Filename: basic service allocation time.txt

Description: This file lists the start and end events of basic service allocations. Both

events are recorded by a complex service agent. A complex service agent measures

the start event, when he issues a new basic service request. When a complex service

agent receives an end of negotiation signal, he adds the end event to the basic service

allocation time file. Using these start and end events, the basic service allocation

time is computed as the different between the start and end event time.

Sample entries:

3000 CSA5@Site20 basic_service_allocation_time
start Negotiation0

3740 CSA5@Site20 basic_service_allocation_time
end Negotiation0 success

Column description: time stamp in milliseconds (long), ID of the agent (String),

name of the metric (String), value (start or end entry), Negotiation ID (String),

result of the negotiation (failure or success, only written for ”end” entries)

• Filename: basic service provisioning time.txt

Description: Time needed for basic service provisioning (This includes execution

time and successful and failed negotiations)

Sample entry:

1178575207841 CSA6@Site9 basic_service_provisioning_time
3146 success

Column description: time stamp, name of the agent, name of the metric, time

needed for allocation, failure/success

• Filename: BS R Mapping.txt

Description: Mapping of service market negotiation to resource market negotiations

Sample entry:

1178575203777 BSA1@Site9 BS_R_Mapping Negotiation0
Negotiation1

Column description: time stamp, name of the agent, name of the metric, negotiation

id of the service market negotiation, list of negotiation ids of the related resource

negotiations

• Filename: catallactic initial price range.txt

Description: Initial price range of agent

Sample entry:

CHAPTER 2. SIMULATOR REFINEMENT 25

1178575383665 CSA0@Site0Buyer
catallactic_initial_price_range
bs1 104.41305177623482 134.41305177623482

1178575383685 CSA19@Site25Buyer
catallactic_initial_price_range
bs1 93.78254079037917 123.78254079037917

1178575383755 RA0@Site0Seller
catallactic_initial_price_range
r1 112.4561961146844 142.45619611468442

Column description: time stamp, name of the agent and role (Buyer and seller),

name of the metric, type of the requested service, initial lower limit, initial upper

limit

Note: Only used in the catallactic approach

• Filename: catallactic strategy BSA buyer.txt, catallactic strategy BSA seller.txt,

catallactic strategy CSA.txt, catallactic strategy RA.txt

Description: Genotype, prices and internal status values of the strategy Sample en-

try:

1178575229131 CSA9@Site12 catallactic_strategy_CSA
Negotiation59 0.10000000149011612 0.6000000238418579
0.30000001192092896 0.9990000128746033 0.5 0.0 0
bs1 101.09558068467088 111.14513166071382
96.14513166071382 126.14513166071382

Column description: time stamp, name of the agent, name of the metric, negotia-

tion id, acquisitiveness, price step, price next, satisfaction, weight memory, average

profit, learning generation, product id, price, estimated market price, lower limit,

upper limit

Note: Only used in the catallactic approach

• Filename: cfps.txt

Description: Number of received call-for-proposal messages for each seller agent.

Sample entry:

1178575208583 RA0@Site15 Seller cfps 5123

Column description: time stamp, name of the agent, role, name of the metric, num-

ber of call-for-proposal messages received

Note: Only used in the catallactic approach

• Filename: cfps sent.txt

Description: Sent call-for-proposal messages, one entry for each call-for-proposal

message sent

Sample entry:

CHAPTER 2. SIMULATOR REFINEMENT 26

1178488801492 CSA15@Site20 cfps_sent Negotiation0 1

Column description: time stamp, name of the agent, name of the metric, name of

the negotiation id, number (not used)

Note: Only used in the catallactic approach

• Filename: complex service allocation rate.txt

Description: Allocation rate for each complex service

Sample entry:

1178498801492 CSA1@Site1 complex_service_agent_allocation_rate
0.10183299389002037

Column description: time stamp, name of the complex service, name of the metric,

allocation rate

• Filename: complex service provisioning time.txt

Description: Sum of basic service provisioning times; This includes successful and

failed allocations.

Sample entry:

1178488805241 CSA10@Site13 complex_service_provisioning_time
2749 failure

Column description: time stamp, name of the agent, name of the metric, complex

service provisioning time, failure/success

• Filename: CS BS Mapping.txt

Description: Mapping of complex service request to basic service negotiation id

Sample entry:

1178488803204 CSA10@Site13 CS_BS_Mapping
cs1_2 Negotiation1

Column description: time stamp, name of the agent, name, name of the metric, id

of the request, related basic service negotiation id

Note: The current central implementation does not support this metric

• Filename: csa demand distribution.txt

Description: The distribution of the complex service demand

Sample entry:

1178488801492 CSA15@Site20 csa_demand_distribution cs1 cs1_1
1178488802492 CSA10@Site13 csa_demand_distribution cs1 cs1_2

CHAPTER 2. SIMULATOR REFINEMENT 27

Column description: time stamp, name of the agent, name of the metric, type of the

requested complex service, id of the complex service request

• Filename: distance.txt

Description: The distance between the seller and buyer

Sample entry:

1178488803219 CSA10@Site13 BSA0@Site23 distance 2 Negotiation1

Column description: time stamp, name of the buyer agent, name of the seller agent,

name of the metric, distance, negotiation id

• Filename: latency.txt

Description: Latency between two negotiation partners

Sample entry:

1178488804211 CSA14@Site17 BSA0@Site28 latency 31 Negotiation3

Column description: time stamp, name of the buyer agent, name of the seller agent,

metric name, latency, negotiation id

• Filename: market price resource central.txt

Description: Market prices for resources on the resource market

Sample entry:

1178748042878 RMAA0@CentralAuctioneerSite
market_price_resource_central r1 7.692018032073975

Column description: time stamp, site, name of the metric, resource type, price

Note: Only used in the central case

• Filename: market price service central.txt

Description: Market prices for services on the service market

Sample entry:

1178748022048 SMAA0@CentralAuctioneerSite
market_price_service_central bs1 4.70427463424487

Column description: time stamp, site, name of the metric, service type, price

Note: Only used in the central case

• Filename: negotiation messages.txt

Description: Negotiation messages sent for an accept or reject

Sample entry:

CHAPTER 2. SIMULATOR REFINEMENT 28

1178488802297 BSA0@Site9 negotiation_messages service
reject Negotiation0 15

1178488803219 BSA0@Site23 negotiation_messages service
accept Negotiation1 5

Column description: time stamp, name of the agent which write the metric, name

of metric, market, result of negotiation, negotiation id, number of messages

Note: Only used in the catallactic approach

• Filename: rejects.txt

Description: List of rejects and the role which rejected

Sample entry:

1178488802297 CSA15@Site20 BSA0@Site9 rejects Negotiation0
buyer

Column description: time stamp, name of the buyer agent, name of the seller agent,

name of the metric, negotiation id, role which rejected

Note: Only used in the catallactic approach

• Filename: resource allocation time.txt

Description: The resource provisioning time (includes the execution time)

Sample entry:

1178488803219 BSA0@Site23 resource_allocation_time
start Negotiation0

1178488804195 BSA0@Site23 resource_allocation_time
end Negotiation0 success

Column description: time stamp, name of the writing agent, name of the metric,

event type (start or end), negotiation id, result of the negotiation (only written for

”‘end”’ events)

• Filename: resource buyer bid central.txt

Description: Bid of a basic service agent on the resource market

Sample entry:

36533 Site14 BSA0@Site3 resource_buyer_bid_central
13.169972617048721 r1

Column description: time stamp, receiver site (auctioneer), bidding agent, name of

the metric, valuation (highest price to pay), resource id

Note: Only used in the central case

CHAPTER 2. SIMULATOR REFINEMENT 29

• Filename: resource seller bid central.txt

Description: Bid of a resource service agent on the resource market

Sample entry:

11126 Site14 RA0@Site15 resource_seller_bid_central
3.0790178353823725 r1

Column description: time stamp, receiver site (auctioneer), bidding agent, name of

the metric, reservation price (minimum price to trade), resource id

Note: Only used in the central case

• Filename: resource usage.txt

Description: The resource usage, one line per ”‘start”’ and ”‘end”’ event.

Sample entry:

1178488804294 RA0@Site28 resource_usage start
Negotiation2 {r1=1}

1178488805282 RA0@Site28 resource_usage end
Negotiation2 {r1=1}

Column description: time stamp, name of the writing agent, name of the metric,

event type (start or end), negotiation id, the resource bundle which was used

• Filename: service buyer bid central.txt

Description: Bid of a complex service agent on the service market

Sample entry:

17615 Site14 CSA7@Site23 service_buyer_bid_central
8.995795995659913 bs1

Column description: time stamp, receiver site (auctioneer), bidding agent, name of

the metric, valuation (highest price to pay), service id

Note: Only used in the central case

• Filename: service seller bid central.txt

Description: Bid of a basic service agent on the service market

Sample entry:

11136 Site14 BSA0@Site29 service_seller_bid_central
14.11408399533697 bs1

Column description: time stamp, receiver site (auctioneer), bidding agent, name of

the metric, reservation price (minimum price to trade), service id Note: Only used

in the central case

CHAPTER 2. SIMULATOR REFINEMENT 30

• Filename: service usage.txt

Description: The service usage, one line for each ”‘start”’ and ”‘end”’ event

Sample entry:

1178488804195 CSA10@Site13 BSA0@Site23 service_usage
start Negotiation1 1

1178488805256 CSA10@Site13 BSA0@Site23 service_usage
end Negotiation1

Column description: time stamp, name of the buyer, name of the seller, name of the

metric, event type (Start or end), negotiation id, an integer value (deprecated)

• Filename: simulation time.txt

Description: The time needed for simulation

Sample entry:

0 NoSite simulation_time start 0
10003325 NoSite simulation_time end 10003325

Column description: time, site, name of metric, event type, start/end time

• Filename: successful CS request.txt

Description: Successful complex service requests, one line for each complex ser-

vice

Sample entry:

1178498801492 CSA4@Site7 successful_CS_requests 2
1178498801492 CSA0@Site0 successful_CS_requests 21

Column description: time stamp, name of the writing agent, name of the metric,

successful cs requests

• Filename: total cs requests.txt

Description: Total complex service requests received by each complex service, one

line for each cs

Sample entry:

1178498801492 CSA4@Site7 total_CS_requests 465
1178498801492 CSA0@Site0 total_CS_requests 507

Column description: time stamp, name of the writing agent, name of the metric,

number of cs requests

• Filename: trade resource central.txt

Description: Maps basic service agents and resource service agents that trade

Sample entry:

CHAPTER 2. SIMULATOR REFINEMENT 31

1179784806500 Negotiation29 trade_resource_central
Negotiation0

Column description: time stamp, negotiation Id buyer (basic service), name of the

metric, negotiation Id seller (resource service)

• Filename: trade service central.txt

Description: Maps complex service agents and basic service agents that trade

Sample entry:

1179784817625 Negotiation81 trade_service_central
Negotiation88

Column description: time stamp, negotiation Id buyer (complex service), name of

the metric, negotiation Id seller (basic service),

• Filename: util satisfaction buyer resource central.txt

Description: Utility metric of a basic service on the resource market

Sample entry:

20983 Negotiation80 BSA0@Site9
util_satisfaction_buyer_resource_central 0 remove

21053 Negotiation108 BSA1@Site3
util_satisfaction_buyer_resource_central
0.9222974262273637 success

Column description: time stamp, negotiation Id, name of the writing agent, name of

the metric, satisfaction value, remove/success (remove if the order was withdrawn

due to a time out, success otherwise)

Note: Only used in the central case

• Filename: util satisfaction buyer service central.txt

Description: Utility metric of a complex service on the service market

Sample entry:

23747 Negotiation117 CSA5@Site20
util_satisfaction_buyer_service_central
0.8951489201843724 success

26071 Negotiation109 CSA8@Site24
util_satisfaction_buyer_service_central 0 remove

Column description: time stamp, negotiation Id, name of the writing agent, name of

the metric, satisfaction value, remove/success (remove if the order was withdrawn

due to a time out, success otherwise)

Note: Only used in the central case

CHAPTER 2. SIMULATOR REFINEMENT 32

• Filename: util satisfaction resource buyer decentral.txt

Description: Resource buyer’s utility

Sample entry:

1178488804195 BSA0@Site23
util_satisfaction_resource_buyer_decentral
Negotiation1 0.21748918596452227

1178488805317 BSA0@Site28
util_satisfaction_resource_buyer_decentral
Negotiation3 0.0013210052001667583

Column description: time stamp, name of the writing agent, name of the metric,

negotiation id, utility

Note: Only used in the catallactic approach

• Filename: util satisfaction resource seller decentral.txt

Description: Resource seller’s utility

Sample entry:

1178488808659 RA0@Site28
util_satisfaction_resource_seller_decentral
Negotiation9 0.10714285524219869

1178488810254 RA0@Site11
util_satisfaction_resource_seller_decentral
Negotiation11 0.0795453827887711

Column description: time stamp, name of the writing agent, name of the metric,

negotiation id, utility Note: Only used in the catallactic approach

• Filename: util satisfaction seller resource central.txt

Description: Utility metric of a resource service on the resource market

Sample entry:

20983 Negotiation85 RA0@Site3
util_satisfaction_seller_resource_central
0 remove

21053 Negotiation112 RA0@Site3
util_satisfaction_seller_resource_central
0.08424893267942524 success

Column description: time stamp, negotiation Id, name of the writing agent, name of

the metric, satisfaction value, remove—success (remove if the order was withdrawn

due to a time out, success otherwise)

Note: Only used in the central case

CHAPTER 2. SIMULATOR REFINEMENT 33

• Filename: util satisfaction seller service central.txt

Description: Utility metric of a basic service on the resource market

Sample entry:

26071 Negotiation111 BSA0@Site3
util_satisfaction_seller_service_central
0 remove

26842 Negotiation135 CSA1@Site8
util_satisfaction_seller_service_central
0.8700211740132909 success

Column description: time stamp, negotiation Id, name of the writing agent, name of

the metric, satisfaction value, remove—success (remove if the order was withdrawn

due to a time out, success otherwise)

Note: Only used in the central case

• Filename: util satisfaction service buyer decentral.txt

Description: Service buyer’s utility

Sample entry:

1178488804234 CSA14@Site17
util_satisfaction_service_buyer_decentral
Negotiation3 0.19718347083943188

1178488807691
CSA6@Site9 util_satisfaction_service_buyer_decentral
Negotiation7 0.07608043102226603

Column description: time stamp, name of the writing agent, name of the metric,

negotiation id, utility

Note: Only used in the catallactic approach

• Filename: util satisfaction service seller decentral.txt

Description: Service seller’s utility

Sample entry:

1178488803219 BSA0@Site23
util_satisfaction_service_seller_decentral
Negotiation1 0.0

1178488804211 BSA0@Site28
util_satisfaction_service_seller_decentral
Negotiation3 0.1668412999533775

Column description: time stamp, name of the writing agent, name of the metric,

negotiation id, utility

Note: Only used in the catallactic approach

Chapter 3

Guide to conducting simulations

This chapter describes first how to install and run the CATNETS scenario generators and

simulator and then how to set the various parameters of the simulation.

3.1 Installation and Running

These instructions describe how to install and run CATNETS scenario generators and the

CATNETS simulator. Three ZIP files of the needed packages can be downloaded from

the CATNETS web site:

http://www.catnets.org/download/

The first ZIP file, called catnets-manual-scenario-generator.zip
includes the source code, the the generated class files, and the javadoc doc-

umentation of the manual scenario generator. The second ZIP file, called

catnets-automated-scenario-generator.zip includes the source code, the

generated class files, and the javadoc documentation of the automated scenario genera-

tor. The third ZIP file, called catnets-simulator.zip includes the source code, the

generated class files, the javadoc documentation and usage examples of the simulator.

3.1.1 Software Dependencies

• Java(TM) 2 Platform Standard Edition Development Kit 5.0 or greater

• Ant: Version 1.6.5 or greater (to re-build the code after any changes or to run func-

tional tests)

34

CHAPTER 3. GUIDE TO CONDUCTING SIMULATIONS 35

3.1.2 CATNETS manual scenario generator

Installing

1. Start by unpacking the code from the ZIP file by using an archiving package such

as WinZip (do not open the file directly from the browser but save it to disk first

and then open it).

2. Go down into the catnets-manual-scenario-generator directory.

catnets-manual-scenario-generator is now ready to run!

Running

• The main executable is called catnets-msg.bat and can be found in the main

catnets-manual-scenario-generator directory.

• When running catnets-msg the user must have write permission to the current

directory so catnets-msg can write output files.

• catnets-msg is run from the command line and takes zero arguments

Usage:

$ catnets-msg.bat$

• The usage of the manual scenario generator is explained in D2.1 [WP206], Section

3.

3.1.3 CATNETS automated scenario generator

Installing

1. Start by unpacking the code from the ZIP file by using an archiving package such

as WinZip (do not open the file directly from the browser but save it to disk first

and then open it).

2. Go down into the catnets-automated-scenario-generator directory.

catnets-automated-scenario-generator is now ready to run!

CHAPTER 3. GUIDE TO CONDUCTING SIMULATIONS 36

Running

• The main executable is called catnets-asg.bat and can be found in the main

catnets-manual-scenario-generator directory.

• When running catnets-asg the user must have write permission to the current

directory so catnets-asg can write output files.

• catnets-asg is run from the command line and takes zero arguments

Usage:

$ catnets-msg.bat$

• The usage of the automated scenario generator is explained in Section 2.1.

3.1.4 CATNETS simulator

Installing

1. Start by unpacking the code from the ZIP file by using an archiving package such

as WinZip (do not open the file directly from the browser but save it to disk first

and then open it).

2. Go down into the catnets-sim directory.

catnets-sim is now ready to run!

Running

• The main executable is called catnets-sim.bat and can be found in the main

catnets-simulator directory.

• When running catnets-sim the user must have write permission to the current

directory so catnets-sim can write output files.

• catnets-sim is run from the command line and takes either zero or one

arguments. The optional argument is the parameters file (explained in the

next section), and if no file is specified the default parameters file located at

examples/parameters catnets.conf is used.

Usage:

$ catnets-sim.bat [parameters file]$

CHAPTER 3. GUIDE TO CONDUCTING SIMULATIONS 37

3.2 CATNETS simulator parameter file

The parameter file for the CATNETS simulator had already been partially described in

Deliverable D2.2 [WP206]. For the sake of clarity, the full description of the parameter

file is given here again.

The simulation parameters are set manually by the user in a parameters file. The

default parameters file is examples/parameters catnets.conf. Following is

an explanation of each parameter.

3.2.1 General Parameters

aln.topology.file - The configuration file to describe the ALN topology.

aln.bs.file - The configuration file to describe the basic services.

aln.arb.file - The configuration file to describe the available resource bundles.

cs.configuration.file - The configuration file to describe the complex services.

number.complexservices - The number of CSs submitted during the simulation run.

users - Determines the pattern in which ALN users submit CSs to the Complex Service

Dispatcher. Options:

1. Simple: submit CSs at regular intervals until all CSs have been submitted.

The interval is set by the cs.delay parameter (below).

2. Random: submit CSs at intervals which are uniformly random between zero

and twice the cs.delay.

policy - Determines the scheduling policy of the Complex Service Dispatcher. Options:

1. Random: CSs are scheduled randomly to any CSA that will run the CS.

2. Queue Length: schedules to the CSA with the shortest queue of waiting CSs.

If two CSAs have the same shortest queue length one of them is chosen at

random.

cs.delay - The basic time interval (in milliseconds) between CSs being submitted to the

ALN by the Users during simulation. The actual submission interval depends on

the type of user chosen (see above).

access.pattern.generator - Determines the order in which BSs are accessed within a CS.

Options:

1. SequentialAccessGenerator: CSs are accessed in the order stated in the CS

configuration file.

CHAPTER 3. GUIDE TO CONDUCTING SIMULATIONS 38

2. RandomAccessGenerator: CSs are accessed using a uniform random distri-

bution;

3. RandomWalkUnitaryAccessGenerator: CSs are accessed using a unitary

random walk, starting from a CS chosen using a uniform random distribution.

4. RandomWalkGaussianAccessGenerator: CSs are accessed using a Gaus-

sian random walk, starting from a CS chosen using a uniform random distri-

bution.

random.seed - Determines whether the seed used by various methods within the CAT-

NETS simulator where random numbers are required is fixed or random. If this is

set to yes, it will be random; if no, it will be fixed. For example, if it is yes, a

different set of CSs will run each time the simulation is run. If it is no, the same

CSs will run each time.

max.queue.size - The maximum number of CSs the CSA will hold in its queue before it

refuses to accept any more.

bs.execution.time - The time in milliseconds for a CSA to execute each BS.

3.2.2 Central Market Parameters

The parameters for the auctioneers are stored in the properties file

market central.properties. In the following, the semantics of each pa-

rameter is briefly discussed.

Basic Service Agent Parameters

These parameters affect the behavior of a basic service agent.

basic.useServiceMarketPrice Defines the pricing model to be used

• basic.useServiceMarketPrice = 1: Use the price on the service market as a

maximum bid for the resource market (e.g. bought ServiceA for 10, bid at

most 10 on the resource market).

• basic.useServiceMarketPrice = 0: Draw the valuation for the resource market

from an independent distribution.

Service Market Parameters

These parameters affect the behavior of a service market auctioneer.

service.kprice k ∈ (0..1) value for the k-pricing schema on the service market. Set this

to 0.5 in most cases.

CHAPTER 3. GUIDE TO CONDUCTING SIMULATIONS 39

Resource Market Parameters

The following parameters affect the behavior of a resource market auctioneer.

resource.kprice k ∈ (0..1) value for the k-pricing schema on the resource market. Set

this to 0.5 in most cases.

resource.numberattributes The number of attributes each resource has

resource.updateunsuccessful Defines if valuation and reservation prices should be up-

dated

• resource.updateunsuccessful=0: Valuation/Reservation of unsuccessful

agents are not changed after each clearing period

• resource.updateunsuccessful=1: The Valuation/reservation price of unsuc-

cessful agents should be updated after each clearing period

resource.orderbook.finddisjunctivesets A boolean value that defines if the optimiza-

tion engine should search for disjunctive order sets on the resource market.

resource.orderbook.split This is a fixed value which has to be 0.

resource.allocator.model This is a fixed value which has to be 3.

resource.allocator.solver Determines the external solver to be used

• resource.allocator.solver=0: Use CPLEX to solve the winner determination

problem on the resource market

• resource.allocator.solver=1: Use LPSolve to solve the winner determination

problem on the resource market

resource.allocator.timelimit Time-Out (integer value in ms) for the solver

Valuation Generator Parameters

The following parameters affect the behavior of the valuation generator.

valuation.imitateStrategy See Section 2.3 for details.

valuation.smallestvalue Defines the smallest value for a valuation or reservation price

(try to avoid zero values).

• valuation.imitateStrategy=0: Use a normal distribution for generating valua-

tions and reservation prices

• valuation.imitateStrategy=1: Imitate the decentral strategy

CHAPTER 3. GUIDE TO CONDUCTING SIMULATIONS 40

• if valuation.imitateStrategy = 0

valuation.normal.mean Mean of the normal distribution

valuation.normal.deviation Standard deviation of the normal distribution

• if valuation.imitateStrategy = 1

valuation.strategy.markepriceweight Weight of the current market price

valuation.strategy.coldstartvaluation Value that is returned if there are no

market prices or valuations in the queue (cold start problem)

valuation.strategy.normalmutationmean Mean of the normal distribution

to imitate mutation

valuation.strategy.normalmutationdeviation Standard deviation of the

normal distribution to imitate mutation

valuation.strategy.normalpricestepmean Mean for the price step distribu-

tion

valuation.strategy.normalpricestepdeviation Standard deviation for the

price step distribution

valuation.strategy.depthweightedaverage Depth of the weighted average

(maximum age of the historical price information)

valuation.strategy.buyersellermultiplier Scaling factor for the generated

valuations and reservation prices

3.2.3 Market Parameters

The following parameters are specific for the service/resource allocation mechanisms.

market.model - Set to 1 to use the catallactic allocation mechanism or 2 to use the

centralised mechanism.

market.decentral.file - Configuration file including parameters for the catallactic market

(see Section ?? for detatils).

price.range.randomize - Randomize initial price range of the agents. This parameters

gives the possibility to randomize the initial price ranges of the catallactic market

configuration. A value of 0 means change of the initial price range.

market.connect - Connect the prices of the service market and resource market. If value

is yes, the basic service seller’s outcome is the budget of the basic service buyer

on the resource market.

resource.model - Resource model selection (resource); values: shared,
dedicated. The catallactic strategy implementation is able to handle dif-

ferent resource models. In the shared resource model, the resource provider can

CHAPTER 3. GUIDE TO CONDUCTING SIMULATIONS 41

allocate different resource bundles to different basic services. The dedicated
resource model allocates the whole resources exclusively to one basic service.

cfp.selection.model - How to select proposals: 0 fifo - one shot; 2 best price - one

shot. The fifo selection model takes the fastest received proposal and starts the

negotiation, whereas the best price policy ranks all received proposals and

selects the cheapest one for negotiation.

max.coallocation - Maximum number of co-allocated resources. This property defines

the number of different resource providers a basic service is allowed to allocate.

market.central.service.clear - Clearing policy for the centralised service market: 1 Call

Market or 2 Continuous.

market.central.service.clearinterval - Call market clearing interval for the centralised

service market; defines after how many ms the market will be cleared.

market.central.resource.clear - Clearing policy for the centralised Resource Market: 1
Call Market or 2 Continuous

market.central.resource.clearinterval - Call market clearing interval for the centralised

resource market; defines after how many ms the market will be cleared.

3.2.4 Negotiation Parameters

The following parameters regulate how negotiations are conducted in both the catallactic

and centralised mechanisms.

cfp ann.hop.count - Regulates the propagation of cfps or announce messages over the

network when the catallactic mechanisms is adopted.

learning.hop.count - Regulates the propagation of learning messages over the network

when the catallactic mechanisms is adopted.

discovery.timeout - Time in milliseconds agents wait for proposal after they’ve sent cfps.

timeout - Time in milliseconds agents wait for non-blocking reception of messages dur-

ing negotiations for services or resources.

message.size - Size of messages (in Kbytes) - size = 0 implies instantaneous message

delivery.

CHAPTER 3. GUIDE TO CONDUCTING SIMULATIONS 42

3.2.5 Other parameters

time.advance - Use advanced grid time (yes) or not (no) (see Section 2.2 for details).

time.of.day - The time of day used as starting point. Should be in hours, with minutes

after the decimal point e.g. 22.5 for 22:30, and must be on the hour or half-hour.

metrics.path - The path where files recording metrics collected during simulations are

stored.

3.3 Simulation output

Every simulator run produces the set of technical metrics described in Section2.5. One

file is generated for every metric, the file name being <metric name>.txt. All the

files produced by a run are stores in a newly created directory, whose name is the result

of the Java call System.currentTimeMillis() which returns the current absolute

time in milliseconds.

Chapter 4

Conclusions

4.1 Achieved results

The CATNETS simulation environment poses low requirements on simulation run. Im-

plemented in pure JAVA, the CATNETS simulator runs on all machines which are sup-

ported by the Java Runtime Environment. This enables small scale simulation on desktop

machines and large scale simulation on multi-core 32 and 64 bit server machines. The

pure JAVA implementation gives the possibility of easy adoption of the current code to

new simulation scenarios of application layer networks in utility computing or autonomic

computing areas.

The high resource and service abstraction and the two-tiered market implementation

supports various areas of application. The introduction of resource bundles enables the

modeling of not only a specific resource type like data resources, but complex resource

products for future peer-to-peer enabled Grid applications. We assume, visualization tech-

niques and local resource managers are in place and offer an abstract resource bundle to

services. In CATNETS, we implemented two different allocation policies for these re-

source bundle, a centralized auctioneer using a multi-attributive combinatorial auction

and the catallactic approach using bilateral bargaining.

A resource provider can select between two implemented resource models for his re-

source service, a shared and a dedicated resource model. Using the dedicated resource

model, super computing or autonomic computing can be simulated, whereas the shared

resource model represents scenarios of the utility computing field. Both resource models

allow co-allocation of resource bundles from different resource providers. This allows

the simulations of basic services with high resource demands like the execution of batch

jobs in the super computing area. Not all possible co-allocation scenarios are supported

by the current catallactic implementation because of its high complexity. In the catallac-

tic approach, we assume the co-allocated resources have the same resource bundle size,

capacity and product id. The central approach supports all co-allocation combinations

which allows allocation of bundles with different size and capacity.

43

CHAPTER 4. CONCLUSIONS 44

The service market decouples the service requests from the resource market. A com-

plex service doesn’t have to know how many resources there are and how many resources

he needs for his service. The complex service can focus on creating value added services

to the user. Currently, the complex service sequentially request a list of basic service. This

could be enhanced in future releases of the CATNETS simulator with more sophisticated

workflow engines. As on the resource market, an service allocation policy is applied to al-

locate services. In CATNETS, we implemented two allocation approaches, a continuous

double auction and the catallactic bargaining.

Supporting both allocation mechanisms, the simulator provides proactive and reactive

interfaces for software agents. Proactive agents act on their own. They periodically check,

if there is new demand or supply and send their bids to the auctioneer. In the reactive

agent model, the agents wait for new events like incoming messages before they act on

new situations.

The simulator provides a rich messaging model including a large set of different mes-

sage types, a P2P messaging layer with flooding, load-link dependent message delay, and

a simple message failure model. This enables the simulation of real life influences on the

resource allocation approaches. Interfaces ease the implementation of an improved P2P

layer or new message types.

Various tools were developed to support the configuration of the simulator. Scenario

generators help to create new scenarios or configure the catallactic market. The simu-

lator supports plain text file based configuration. This allows fast reconfiguration of the

scenarios between simulations runs.

A large set of metrics was implemented in the simulator. This set of metrics helps to

debug and evaluate the simulation runs. Technical and economic metrics are written into

text files which are evaluated with MATLAB scripts ex-post. Again, the use of text files

gives the possibility to use any tool for analysis.

The simulation environment and all developed tools will be released under an open

source licence. This will give other researchers the possibility to modify and extend the

simulator for their own research.

4.2 Current Limitations

The simulator and its current implementation of the CATNETS scenario have some lim-

itations. These limitations result from assumptions made to reduce the implementation

complexity.

Currently, the allocation approaches don’t support parallel negotiations. Seller and

buyers can negotiate with only one other negotiation partner at the same time. In CAT-

NETS, we abstracted from internal behaviour of the agents using random number gener-

ators. We adapted here a common process used in simulation as a research method. For

CHAPTER 4. CONCLUSIONS 45

commercial use, a more detailed decision model has to implemented which fits exactly to

the given environment.

The advanced Grid time model of the CATNETS simulator is limited to the catallactic

allocation approach. This leads to long running simulations of scenarios of the central

allocation approach compared to the catallactic case. More person months than originally

planned were needed to fix bugs of the simulator code. Therefore, this feature could not

be implemented.

The same reason holds for the support of co-allocation and the shared resource model.

Both are supported only with limitations in the catallactic model.

Large simulations consume lots of memory. Therefore, these simulations should be

executed only on servers with at least 2GB of main memory.

4.3 Future Extensions

The simulations environment will be used and extended in the EU project eRep. Repu-

tation will be added to the simulation scenario. The implementation model of the agent

will be replaced by BDI agents and electronic institutions will be introduced. For more

information, the reader is referred to the eRep web site: http://megatron.iiia.csic.es/eRep/.

Furthermore, the failure model if the sites, resources and service will be extended

and risk management techniques will be introduced. This will enable the simulation of

different quality of service levels on the resource and service market.

Bibliography

[MLMB01a] A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE: Universal Topology

Generation from a User’s Perspective, April 2001. http://www.cs.
bu.edu/brite/user_manual/BritePaper.html.

[MLMB01b] A. Medina, A. Lakhina, I. Matta, and John Byers. BRITE: An Approach to

Universal Topology Generation. In Proc. of the International Workshop on
Modeling, Analysis and Simulation of Computer and Telecommunications
Systems - MASCOTS ’01, Cincinnati, Ohio, USA, August 2001.

[WP106] WP1. Annual Report of WP1. Technical Report WP1 - D2, CATNETS EU

IST-FP6-003769, 2006.

[WP206] WP2. Annual Report of WP2. Technical Report WP2 - D2, CATNETS EU

IST-FP6-003769, 2006.

[WP405] WP4. Metrics Specification. Technical Report WP4 - D1, CATNETS EU

IST-FP6-003769, 2005.

[WP406] WP4. Annual Report of WP4. Technical Report WP4 - D2, CATNETS EU

IST-FP6-003769, 2006.

46

ISSN

This document describes the progress of the
simulator development with in the third year of
the CATNETS project. The refinement of the
simulator as well as a detailed guide to
conducting simulations is presented.

1864-9300

