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ABSTRACT 

Multiplicative Background Risk 

by Günter Franke, Harris Schlesinger, Richard C. Stapleton 

We consider random wealth of the multiplicative form x ỹ, where x and ỹ are statistically 
independent random variables. We assume that x  is endogenous to the economic agent, 
but that ỹ is an exogenous and uninsurable background risk. Our main focus is on how 
the randomness of ỹ affects risk-taking behavior for decisions on the choice of x. We 
characterize conditions on preferences that lead to more cautious behavior. We also 
develop the concept of the affiliated utility function, which we define as the 
composition of the underlying utility function and the exponential function. This allows 
us to adapt several results for additive background risk to the multiplicative case. 
 
Keywords: background risk, standard risk aversion, affiliated utility function 
JEL Classification: D81 

ZUSAMMENFASSUNG  

Multiplikatives Hintergrundrisiko 

Wir betrachten den zufälligen Reichtum der multiplikativen Form x ỹ, wo x  und ỹ 
statistisch unabhängige Zufallsvariablen sind. Wir nehmen an, daß x endogen für den 
ökonomischen Agenten ist, aber daß ỹ ein exogenes und nicht versicherbares Hinter-
grundrisiko ist. Unser Hauptaugenmerk liegt darauf, wie die Zufälligkeit von ỹ das 
Risikoverhalten bei Entscheidungen für x  beeinflußt. Wir charakterisieren die Bedin-
gungen der Präferenzen, die zu einem vorsichtigeren Verhalten führen. Wir entwickeln 
auch ein Konzept der „affiliated“ Nutzenfunktion, die eine Zusammensetzung der 
ursprünglichen Nutzenfunktion und der Exponentialfunktion ist. Dies erlaubt es uns, 
mehrere Ergebnisse für additive Hintergrundrisiken auf den multiplikativen Fall anzu-
passen. 
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1.  Introduction 

 

 Consider a risk-averse economic agent whose preferences can be represented 

within an expected-utility framework via the continuously differentiable utility function 

u.  The agent must decide upon choice parameters for a random variable representing 

final wealth, x .  For example, x  might represent wealth from an individual’s portfolio of 

financial assets, or x  might represent random corporate profits based on management 

decisions within the firm. 

 A fair amount of attention in recent years has examined how decisions on x  

might be affected by the addition of an additive risk ε~ , where ε~  and x  are statistically 

independent.  Thus, final wealth or profits can be written as x ε+ .  The market is 

assumed to be incomplete in that ε~  is not directly insurable.  For example, ε~  might 

represent future wage income subject to human-capital risks; or ε~  might represent an 

exogenous pension portfolio provided by one’s employer.  Although it is interesting to 

examine the interdependence between x  and ε~ , the case of independence is of special 

interest and provides for many interesting observations.  In order to focus on the risk 

effects, rather than wealth effects, it is often assumed that 0~ =εE , where E denotes the 

expectation operator.  In such a case, ε~  is often called a “background risk.”  Since any 

non-zero mean for ε~  can be added to the x  term, this assumption does not reduce the 

applicability of the model.  Our purpose in the present paper is to examine the effects of 

introducing a “multiplicative background risk” into the individual’s final wealth 

distribution. 

 The modern literature on additive background risk stems from the papers of 

Kihlstrom, et al. (1981), Ross (1981) and Nachman (1982).  These papers focus on 

interpersonal behavior comparisons, mainly addressing the question:  “If I am willing to 
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pay more than you to rid myself of any fair lottery, would I still be willing to do so in the 

presence of an additive background risk?”  Doherty and Schlesinger (1983) incorporated 

the analysis into intrapersonal models of decision making under uncertainty, focusing on 

differences in optimal behavior with vs. without a background risk.  The literature 

underwent somewhat of a renaissance in the 1990’s thanks to new theoretical tools 

provided by Pratt and Zeckhauser (1987), Kimball (1990) and Gollier and Pratt (1996).   

 One canonical hypothesis concerning additive background risk is that the 

riskiness of ε~  leads to a more cautious behavior towards decisions on x .  For example, 

Guiso, et al. (1996) use Italian survey data to show that individuals with a riskier 

perception of their (exogenously managed) pension wealth react by investing relatively 

more in bonds in their personal accounts.  However, this conclusion need not always be 

the case in theory, unless particular restrictions on preferences are met.  Eeckhoudt and 

Kimball (1992) first examined this direction of research.  Rather than review the large 

body literature for the case of additive background risks, we refer the reader to the 

excellent comprehensive presentation of this material in Gollier (2001). 

 Surprisingly, very little attention has been given to the case where the background 

risk is multiplicative.  Indeed, if one were to ask the reader to think of possible types of 

background risks, we believe that examples with multiplicative types of background risk 

would be at least as prevalent as additive ones.  Our goal in this paper is to provide a 

theoretical foundation for models with a multiplicative background risk.  Under what 

conditions on preferences will the presence of a multiplicative background risk compel 

the agent to behave more cautiously in making decisions about the endogenous wealth 

variable x ?   

 To this end, let y  be a random variable on a positive support that is statistically 

independent of x .  We consider final wealth to be given by the product xy .  The random 

variable y  is considered to be exogenous to the individual and is not insurable.  

Numerous examples of such multiplicative risks include the following: 
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1. Let x  be the pre-tax profits of a firm and let y  represent the firm’s retention 

rate net of taxes, where tax rates are random due to tax-legislation uncertainty.  
 

2. Let x  be the random wealth in an individual’s financial portfolio in period one, 

and let y  denote the return on a mandatory (and exogenously managed) annuity 

account that uses proceeds from x  in period two. 
 

3.  Let x  denote nominal wealth or profit and let y  denote an end-of-period price 

deflator.   
 

4.  Let x  denote profit in some foreign currency for which forward contracts or 

options are not available and let y  denote the end-of-period exchange rate. 
 

5.  Let x  denote the random per-unit profit for a farm commodity and let y  

denote an exogenous random quantity of output.   
 

 In order to isolate the risk effects of y , we will assume that Ey =1 throughout this 

paper.  For the case where y  has a mean that differs from one, we can incorporate this 

mean into x  via a deterministic scaling effect.1  Since ( 1)xy x x y= + − , the assumption 

that Ey =1, together with the independence of x and y , guarantees that xy  is riskier than 

x  alone in the sense of Rothschild and Stiglitz (1970).  We will refer to y , defined in 

this manner with Ey =1, as a “multiplicative background risk.”  

 We should point out at the outset that the results for the multiplicative case do not 

simply mirror those of the additive case.  For instance, consider a simple portfolio 

example with an allocative choice between risky stocks and risk-free bonds.  The 

                                                 
1 Thus, for instance, in our first example above we can let x~ represent after-tax profits based on the 
expected tax rates and let y~ represent a deviation from the expected after-tax retention rates.  Or, in the 
second example let x~ denote wealth including expected annuity returns and let y~ denote a multiplicative 
excess-return adjustment.   
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individual has an initial wealth of 100 and the risk-free rate is assumed to be rf = 0.05.  

The return on the stock portfolio is assumed to be log-binomial with an expected return 

of 0.11Er =  and a standard deviation of 0.20σ =  (implying that, in a binomial model, 

stocks either return about 33% or lose about 10%, each with an equally likely chance).  

Utility is assumed to belong to the HARA class with 21
2( ) ( )u x x a −= − + , where a is a 

constant chosen such that x+a remains positive over relevant wealth levels.  We note that 

preferences satisfy decreasing absolute risk aversion for any choice of a, whereas relative 

risk aversion will be increasing [decreasing, constant] whenever a is positive [negative, 

zero].  We examine the addition of two alternative sources of background risk.  The first 

is an additive background risk, for which final wealth is either increased or decreased by 

30, each with probability one-half.  The second is a multiplicative background risk, for 

which wealth is either increased or decreased by 30 percent, each with a probability one-

half.  The optimal portfolio choices are illustrated in the following table. 

 
TABLE 1:  Bond Proportions:  Multiplicative vs. Additive Background Risk 

(All utility is DARA within the HARA class, 21
2( ) ( )u x x a −= − + , initial wealth = 100) 

(Relative risk aversion is constant for a=0, increasing for a=+25 and decreasing for a=-25) 
 
Utility  Background Risk Proportion in Bonds 
a = 0     None    55% 

   Additive   66% 
    Multiplicative  55% 

 
a = +25    None    45% 

   Additive   54% 
    Multiplicative  41% 

 
a = -25     None    66% 

   Additive   78% 
    Multiplicative  70% 



Multiplicative Background Risk 

 5

 In each case in the above example, the proportion of wealth invested in risk-free 

bonds increases when an additive background risk is included.2  Since DARA inside of 

the HARA class of preferences also implies standard risk aversion (Kimball 1993), we 

know that bond proportions will always increase with an additive background risk.  

However, as the example shows, a multiplicative background risk might cause the bond 

proportion to shrink.  In particular, when a = 25, so that we have both DARA and 

increasing relative risk aversion – hardly considered unusual cases – we then have a 

lower proportion of wealth invested in the risk-free bond.  That is, the investor reacts to 

the multiplicative background risk by taking a more aggressive position in stocks.   

Our paper will show how each of the situations in the example above can be 

determined qualitatively (i.e. whether more or fewer bonds are purchased in the presence 

of a background risk) before calculating the optimal portfolios.  The fact that the 

qualitative effects might be predetermined by the parameters of the model implies that 

care must be taken when modeling various economic and/or financial phenomena.  For 

example, seemingly innocuous assumptions made about preferences might actually 

predispose a model to achieve particular results. 

We begin in the next section by introducing the basic framework.  We next 

examine conditions on preferences that lead to more (or less) cautious behavior towards 

x  in the presence of a multiplicative background risk y .  In section 4, we introduce the 

concept of the affiliated utility function and examine some of its basic properties.  

Section 5 uses the affiliated utility function to apply several extant results from the 

literature on additive background risk in the case of a multiplicative background risk.  

Section 6 examines comparative risk aversion; in particular we determine conditions that 

                                                 
2  Note that, even for the cases with no background risk, since relative risk aversion is decreasing in a, we 
have the bond proportion falls as a rises.  Our point in the table, however, is to compare the levels of bonds 
between various types of background risk for a fixed value of a. 
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preserve the relation “more risk averse” in the presence of a multiplicative background 

risk.  Section 7 provides some concluding thoughts.  

 

2.  The Basic Model 

 

 Consider a risk-averse economic agent with utility function u.  We wish to 

determine how the addition of a multiplicative background risk y~  affects decision 

making on x~ .  Both x~  and y~  are assumed to be strictly positive a.s.  Let F and G denote 

the (cumulative) distribution functions associated with the random variables x~  and y~  

respectively.  Since x~  and y~  are independent, we can write expected utility as the 

iterated integral  

 

(1) 
0 0

( ) ( ) ( ) ( ) [ ( )]F GEu xy u xy dG y dF x E E u xy
∞ ∞

= ≡∫ ∫ . 

Define the derived utility function, see Nachman (1982)3, as the interior integral given in 

equation (1).  That is, 

 

(2) 
0

( ) ( ) ( ) ( )G Gv x u xy dG y E u xy
∞

≡ =∫  

 

Trivially, )(xvG  is increasing and concave since u is.  Thus, equation (1) can be written 

as ( ) ( )F GEu xy E v x= .  Decisions on x~  made in the presence of the multiplicative risk y~  

under utility u are isomorphic to decisions made on x~  in isolation under the risk-averse 

utility )(xvG .   Let Γ( x ) denote the set of positive random variables y~  such that y~  is 

statistically independent from x~  and Ey =1.  Our focus here is in determining conditions 

                                                 
3 Actually, Nachman considers a more general relationship between x~  and y~ .  We adapt his measure to 
the case of multiplicative risks.  The derived utility function for the additive case is described earlier by 
Kihlstrom, et al. (1981).  
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on the utility function u such that the derived utility function, )(xvG , is more risk averse 

than u for all y~ ∈ Γ ( x ).  In other words, we wish to determine conditions on u that will 

guarantee that 

 

(3)  
2" ( ) [ "( ) ] "( )

' ( ) [ '( ) ] '( )
G G

G G

v x E u xy y u x
v x E u xy y u x

− − −≡ ≥      x∀ .4  

 

To avoid excessive notation, we will dispense with the subscripts and simply 

write v(x) and ( )Eu xy , where we assume y~  is an arbitrary member of Γ( x~ ).  We will let 

rv(x) and ru(x) denote the measure of absolute risk aversion for v and u respectively, i.e. 

the left-hand-side and right-hand-side of inequality (3) respectively.   

Since we are involved with a multiplicative background risk, it is often 

convenient to consider the corresponding measures of relative risk aversion, Rv(x) ≡xrv(x) 

and Ru(x) ≡xru(x).  Obviously, for any positive wealth level x, )()( xrxr uv ≥  if and only if 

)()( xRxR uv ≥ .   

For arbitrary x, straightforward manipulation of (3) shows that 

 

(4)  
0

'( )( ) [ ( ) ]
[ '( ) ]v u u x
u xy yR x E R xy R (xy)dη (y)

E u xy y

∞

= ≡ ∫  

 

where 
y

x
0

(y)
[ '( ) ]G

u'(xt)tdG(t)
E u xy y

η ≡ ∫ . 

 

Note that )(yxη  is itself a well-defined probability distribution.  We define xÊ  to 

denote the expectation operator based on the probability distribution )(yxη , which is a 

                                                 
4 In order to keep the mathematics simple, we will take “more risk averse” to be in the weak sense of Pratt 
(1964).  
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type of risk-adjusted probability measure.5  Thus, we see that relative risk aversion for v 

is a weighted average of relative risk aversion for u, namely ˆ( ) [ ( )]v uR x E R xy= . 

 

3.  Risk Aversion Properties 

 

 From equation (4), it follows trivially that v inherits constant relative aversion 

(CRRA), whenever u exhibits CRRA.  More explicitly, if ( )uR x xγ= ∀ , then 

xxRv ∀γ=)(  as well.  Since it then also follows that xxrxr vu ∀= )()( , we see that u 

and v are equivalent utility representations under CRRA.  This is not surprising, since any 

optimal choice of an endogenous x~  also will be optimal for yx~ , for every constant 

positive level of y under CRRA preferences. 

 We next wish to examine conditions under which (3) holds )~(~ xy Γ∈∀ , i.e., we 

want to know when v is more risk averse than u.  We may consider conditions for which 

this holds locally, with )()( xrxr uv ≥ , by examining the equivalent condition 

)()( xRxR uv ≥ .  Our approach is to consider this last inequality for a particular value of 

x, by applying xη  as in equation (4).  If the value of x chosen is arbitrary, so that 

xxRxR uv ∀≥ )()( , then we are done.   

 Suppose that Ru(x) is (not necessarily strictly) convex.  Since )(yxη  is a 

probability distribution, it follows from Jensen’s inequality and equation (4) that 

 

(5)  ˆ ˆ( ) ( ) ( ),v u uR x ER xy R xEy≡ ≥   

 

where 

 

                                                 
5  If we have a representative agent model, and if we confine ourselves to fixed value of x, this measure is 
simply the “risk-neutral probability measure.”  The random variable [ '( ) ] / [ '( ) ]u xy y E u xy y  in equation (4) 
is the Radon-Nikodym derivative of this measure with respect to G, again conditional on a fixed value of x. 



Multiplicative Background Risk 

 9

(6)  
0 0

'( )ˆ ( ) ( ).
[ '( ) ]x
u xy yEy yd y y dG y

E u xy y
η

∞ ∞

= =∫ ∫  

 

Next, note that 

 

(7)  
2 ( ) [ '( ) ] '( )[1 ( )].u
u xy u xy y u xy R xy
x y y

∂ ∂= = −
∂ ∂ ∂

 

 

The sign of (7) tells us whether increases in the level of y will increase or decrease 

the marginal utility of x.  The derivative in (7) will be everywhere positive [negative] if 

yxyRu ∀>< 1][)(  in the support of G.  This implies that increases in y reduce the 

marginal utility of x whenever 1uR > , and increases in y increase the marginal utility of x 

whenever 1uR < .   

 Since '( ) 1,
[ '( ) ]
u xy yE

E u xy y
 

= 
 

 we see from (6) and (7), for example, that 1uR >  

everywhere implies that the probability measure )(yxη  puts relatively more weight on 

lower values of y than does the true probability measure G(y).  The opposite is true if 

1uR < .  We thus obtain the following result from (6) and (7). 

 
Lemma 1: ˆ 1 if ( ) 1 ( )uEy Ey R xy y Supp G= ∀ ∈ . 

We are now ready to prove the following result: 

 

Proposition 1:  Suppose that )(xRu  is convex and that one of the following conditions 

holds )()(),( GSuppFSuppyx ×∈∀ : 

 (i)  )(xyRu >1 and uR  is decreasing, 

or (ii) )(xyRu <1 and uR  is increasing. 

Then v is more risk averse than u. 
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Proof: Since )(xRu  is convex, it follows from equation (4) that ˆ( ) ( )v uR x R xEy≥  by 

Jensen’s inequality.  If 1uR > , then Êy <1 from Lemma 1.  Hence, ˆ( ) ( )u uR xEy R x≥  

under the assumption of decreasing relative risk aversion (DRRA).  If 1uR < , then it 

follows from Lemma 1 that Êy >1.  Hence, ˆ( ) ( )u uR xEy R x≥  under the assumption of 

increasing relative risk aversion (IRRA).  Thus we have )()( xRxR uv ≥  whenever 

condition (i) or (ii) holds. ▄ 

 

Interestingly, if we have CRRA preferences, we have already seen that u and v are 

equivalent regardless of whether or not relative risk aversion exceeds one.  If relative risk 

aversion is increasing in wealth, as originally postulated by Arrow (1971) and empirically 

supported by much literature, most recently by Guiso and Paiella (2001), then v will be 

more risk averse than u whenever Ru is convex and less than 1.  If Ru is everywhere 

greater than 1 and exhibits increasing relative risk aversion, we cannot use Proposition 1 

to verify that v is more risk averse than u.  Indeed, if we have Ru>1 and if Ru is (not 

necessarily strictly) concave, it is easy to show that v is then less risk averse than u.  

Indeed, the following two cases are easy to show.  

 

Proposition 2:  Suppose that )(xRu  is concave and that one of the following conditions 

holds )()(),( GSuppFSuppyx ×∈∀ : 

 (i)  )(xyRu >1 and uR  is increasing, 

or (ii) )(xyRu <1 and uR  is decreasing. 

Then v is less risk averse than u. 

 

Proof: The proof is similar to Proposition 1 and left to the reader. ▄ 

 

 Of course, whether risk aversion exhibits constant-, increasing-, or decreasing 

relative risk aversion, or none of these, is an empirical question.  Certainly constant 
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relative risk aversion is very common in equilibrium asset-pricing models.  But empirical 

support also exists for both increasing relative risk aversion (e.g. Guiso and Paiella 

(2001)) and for decreasing relative risk aversion (e.g. Ogaki and Zhang (2001)).  Whether 

relative risk aversion might be concave or convex in wealth has not received much 

attention at all until fairly recently.  For example, Aït-Sahalia and Lo (2000) examine 

S&P 500 option prices to find some evidence of an oscillating level of relative risk 

aversion, although they do find R to be decreasing and convex at relatively low levels of 

wealth.6  Aït-Sahalia and Lo (2000) also review much of the literature examining whether 

relative risk aversion is greater- or less-than one, with most support these days finding 

R>1. 

 To illustrate Proposition 1 and 2, consider the following examples: 

 

Example 1: Let kxexu −−=)(  where 0>k .  This is the case of constant absolute risk 

aversion (CARA).  In this case '( )uR x k=  and ''( ) 0uR x = .  Thus, uR  is increasing and is 

both convex and concave.  If we consider x~  and y~  such that kxy /1<  ∈∀ ),( yx  

( ) ( )GF SuppSupp × , then vxyRu and1)( <  is more risk averse than u by Proposition 1.  

However, if )(Supp)(Supp),(/1 GFyxkxy ×∈∀> , then ( ) 1 anduR xy v>  is less risk 

averse than u by Proposition 2.   

 

Example 2: Let 2)( kxxxu −=  where 0>k .  We restrict 1
2kx <  so that marginal 

utility is positive.  This is the case of quadratic utility.  It is straightforward to show that 
1)21(2)( −−= kxkxxRu  and that uR  is both strictly increasing and convex.  Moreover, 

1)( <xyRu  if 1
4 ( , ) Supp( ) Supp( )kxy x y F G< ∀ ∈ × , so that v  is more risk averse 

than u  by Proposition 1.  In other words, v  is more risk averse than u  over the first half 

of the relevant (upward-sloping) range of the quadratic utility function.  On the other 

                                                 
6  See also Jackwerth (2000). 
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hand, if 1 1
4 2 ( , )k kxy x y< < ∀ ∈  ( ) ( )GF SuppSupp × , then ( ) 1uR xy > , but we cannot 

apply Proposition 1 (since uR  is increasing) or Proposition 2 (since uR  is convex). 

 Both utility functions above belong to the so-called HARA class of utility, as does 

CRRA utility.7  Since we already showed that u  and v  are equivalent under CRRA, we 

see that no general results seem to apply to the HARA class of utility.  However, we have 

more tractability in the shape of Ru under HARA.  Let 1( ) ( )xu x γ
γξ η −= + , where 0x

γη + >  

and (1 ) 0ξ γ
γ
− > .  Straightforward calculations show that 2'( ) ( )x

uR x γη η −= +  and that 
12"( ) [ ( ) ] '( )x

u uR x R xγ γη −= − + .  Thus, for the case of constant absolute risk aversion 

(γ → ∞ ), we obtain '( )uR x k=  and ''( ) 0uR x = , as in Example 1.  If we have increasing 

absolute risk aversion, then we must have γ > 0 and η > 0.  It follows that '( ) 0uR x >  and 

"( ) 0uR x > , so that we must have Ru increasing and convex, as is the case with our 

quadratic utility in Example 2.  On the other hand, if we have decreasing absolute risk 

aversion (DARA), then γ < 0.  Hence, sgn "( ) sgn '( )u uR x R x= − .  Consequently, we must 

have Ru either (i) constant, (ii) decreasing and convex, or (iii) increasing and concave.  

Consequently, if preferences are DARA within the class of HARA utility functions, it 

follows that we might have v either more risk averse than u, less risk averse than u or 

equally as risk-averse as u.  In particular, corresponding to cases (i) - (iii) above: 

(i) If u satisfies CRRA, then v and u are equivalent. 

(ii) If 1uR > , which is the case in our example in the introduction of this 

paper (see Table 1), as well as decreasing and convex, then v is more risk 

averse than u by Proposition 1. 

(iii) If 1uR > , as well as increasing and concave, then v is more less averse 

than u by Proposition 2. 

                                                 
7  Utility belongs to the HARA class if [r(x)]-1 is linear in x. 
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4.  Affiliated Utility Functions 

 

 In this section, we obtain additional results by considering ln( ) ln lnxy x y= + .  

This allows us to adapt several results from the case of additive background risks to the 

multiplicative case.  In order to accomplish this, we define the affiliated utility function, 

û , such that ˆ'( ) '(ln )u x u x= , where we restrict 0>x .  Equivalently, we can substitute 

ln xθ =  to define ˆ '( ) '( )u u eθθ θ≡ ∀ ∈ .  In other words, ˆ 'u  is the composite of u’ 

with the exponential function.  Since ˆ'( ) '(ln ln )u xy u x y= + , we will examine the 

additive risks yx ~ln~ln +  in this section.8 

 

 In order to obtain ˆ 'u as defined above, we define the affiliated utility function û  

as follows: 

 

(8) 1 '( )ˆ(ln ) ( ) u xu x x du x dx
x

−≡ =∫ ∫ . 

 

Note that the definition in (8) implies that: 

 

(9) 
2

ˆ '(ln ) '( )
ˆ ''(ln ) ''( )
ˆ '''(ln ) ''( ) '''( ).

u x u x
u x xu x
u x xu x x u x

=
=
= +

 

 

From (9), we see that û  will be both increasing and concave, whenever u is.  In other 

words, û  is itself a well-defined risk-averse utility function. 9 

 
                                                 
8  The reason for defining ˆ'( ) '(ln )u x u x= , rather than ˆ( ) (ln )u x u x= , is that we obtain stronger results.  
9  We caution however that û  is only a useful device and does not represent anyone’s utility directly. 
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 Although the definition of affiliated utility in (8) might seem a bit strange, it is 

essentially the derivatives in (9) that interest us.  The function û  is well defined for 

positive x.  For example, consider the following three common utility functions: 

 

Example 3:  

 
(a) Let 11

1( )u x x γ
γ

−
−= .  This is CRRA with relative risk aversion R = γ. 

 
In this case, we define 
 

1'( )ˆ(ln ) u x xu x dx dx x
x x

γ
γ

γ

−
−= = = −∫ ∫ .   

Thus,    
 
ˆ '(ln ) '( )u x x u xγ−= = . 

 
 
(b) Let 1( ) ax

au x e−= − , which is CARA with absolute risk aversion r = a.   
 
Now define û  via the power series 
 

2 3( ) ( )ˆ(ln ) ln ...
2 2! 3 3!

axe ax axu x dx x ax
x

− − −= = − + + +
⋅ ⋅∫    

 
which implies that  
 
ˆ '(ln ) '( )axu x e u x−= = . 

 
 
(c) Let 2 1

2( ) for ku x x kx x= − < , which is quadratic utility. 
 
For quadratic utility we define 
 

1 2ˆ(ln ) ln 2kxu x dx x kx
x

−= = −∫  

 
so that 
 
ˆ '(ln ) 1 2 '( )u x kx u x= − = . 
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 Let )(ˆ θr  denote the measure of absolute risk aversion for ),(ˆ θu  i.e. 

)(ˆ/)(ˆ)(ˆ θ′θ′′−=θ uur .  Straightforward calculations show that 

 

(10) 
ˆ (ln ) ˆ( ) (ln )
ˆ (ln )u u
u xR x r x
u x
′′

= − =
′

. 

  

 

 Similarly using the definition of v(x) in (2), define ˆ( )v x  such that ˆ '(ln ) '( )v x v x= . 

Then, in a manner analogous to equation (10) we can further derive  

 

(11) 
ˆ ''(ln ln ) ˆ( ) (ln )
ˆ '(ln ln )v v

Eu x yR x r x
Eu x y

+= − ≡
+

. 

 

From (10) and (11), we easily observe the following result. 

 

Lemma 2:  (i) ( ) ( )v uR x R x≥  if and only if ˆ ˆ(ln ) (ln )v ur x r x≥ , 

and      (ii) ( )tR x  is decreasing if and only if ˆ (ln )tr x  is decreasing ,  t = u, v. 

 

Note that, equivalent to (i) above, we also can write )()( xrxr uv ≥  if and only if 

ˆ ˆ(ln ) (ln )v ur x r x≥ .   

 Consider now the set of )~(~ xy Γ∈ , so that 1~ =yE .  For any )~(~ xy Γ∈ , 

0)~(ln ≤yE , with equality only holding in the degenerate case, where a.s.1~ =y   We 

know from Gollier and Pratt (1996) that the addition of a nonpositive-mean, additive 

background risk will always make the derived utility function more risk averse if and 

only if utility is risk vulnerable.  Applying the Gollier and Pratt result to û , it follows that 

v is more risk averse than u for every multiplicative background risk )~(~ xy Γ∈  if and 
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only if )(ˆ xu  is risk vulnerable.10  Since risk vulnerability is not an easy trait to verify, 

Gollier and Pratt offer us several useful sufficient conditions for risk vulnerability that are 

easy to check.  In particular, we can apply their results and Lemma 2(i) to obtain the 

following result. 

 

Proposition 3: The derived utility v is more risk averse than u if either 

 (i) ur̂  is decreasing and convex, 

or (ii)  û  exhibits standard risk aversion (see Kimball, 1993, and below). 

 

 In some instances, we might be able to check the conditions on û  in Proposition 3 

directly.  For instance, using our example from Table 1 in the introduction, we had 
21

2( ) ( )u x x a −= − + .  Consider the case where a<0 and where we restrict x+a>0.  In our 

example we saw that v was more risk averse than u.  We also saw in the previous section 

how this followed from Proposition 1(i).  This result also follows directly from 

Proposition 3(i).  To see this, define 3ˆ '(ln ) '( ) ( )u x u x x a −= = + .  Straightforward 

calculations show that ur̂  is decreasing and convex, when a<0.  Indeed, Proposition 1(i) 

requires that Ru > 1, which holds in this example.  Indeed Ru > 3 when a < 0 for all x with 

this utility function.  However, Ru > 1 is not required for Proposition 3 to hold.  For 

example, if we define 1/ 2( ) 2( )u x x a= +  with a < 0, then Proposition 3(i) will apply. 

 

5.  Properties of Utility and its Affiliate 

 

 In this section, we examine some conditions on the utility function u(x) that must 

hold if its affiliated utility function )(ˆ θu  satisfies the properties given in Proposition 3(i) 

                                                 
10  More directly, we would use Gollier and Pratt to examine the behavior of ˆ ˆ(ln ) (ln ln )v x Eu x y≡ +  for 
any nondegenerate y~  with 0~ln ≤yE , rather than with 0~ln <yE .  However, the distinction is nil if 
utility is differentiable. 
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or 3(ii).  We first show that )(xRu  is decreasing and convex, whenever )(ˆ θur  is 

decreasing and convex.  We then show how there is an isomorphic relationship between 

standard (absolute) risk aversion of the affiliated utility function û  and standard relative 

risk aversion of u.  

 From equation (10), we see that  

 

(12) 1 ˆ'( ) '(ln )u uR x r x
x

=  

and 

(13) 2

1 ˆ ˆ"( ) [ "(ln ) '(ln )]u u uR x r x r x
x

= − . 

 

Consequently, since x>0, it follows from equation (12) that )(xRu  is decreasing in x if 

and only if ˆ (ln )ur x  is decreasing in ln x .  Moreover, if ûr  is decreasing and convex, it 

follows from equation (13) that )(xRu is also convex.  As a consequence, the conditions 

holding in Proposition 3(i) imply those of Proposition 1(i), so that Proposition 3(i) is 

actually a more inclusive sufficient condition that Proposition 1(i). 

 The property of standard risk aversion, as presented in Kimball (1993), is 

analyzed at length in Gollier (2001).  It is especially useful since it is easily characterized 

by decreasing absolute risk aversion and decreasing absolute prudence, where absolute 

prudence is measured as '''( )( )
''( )

u xp x
u x

= − .  If 0)(''' >xu , preferences are said to be 

prudent.  If the affiliated utility function is standard risk averse, we may apply 

Proposition 3(ii) to conclude that v is more risk averse than u.   

 We first obtain a preliminary result that will prove useful.  Straightforward 

calculations show that  

 

(14) 
2

2

''( ) '( ) '''( ) '( ) [ ''( )]'( ) ( )[1 ( ) ( )]
[ '( )]u u u u

u x u x xu x u x x u xR x r x P x R x
u x

− − += = − + , 
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where 
)(''

)(''')(
xu

xxuxPu
−≡  denotes the measure of relative prudence.  Consequently, we 

directly obtain the following result. 

 
Lemma 3:  '( ) 0uR x   if and only if  ( ) 1 ( )u uP x R x+ . 

 

 We already know that û  is risk averse whenever u is: that is, û  inherits risk 

aversion from u.  Unfortunately, the same cannot always be said for the property of 

prudence.  Indeed, from the derivatives in (9), we can calculate relative prudence: 

 

(15) 
ˆ'''( ) '''(ln ) ˆ( ) 1 (ln ) 1
ˆ''( ) ''(ln )u u

xu x u xP x p x
u x u x

− −≡ = + ≡ + . 

 

The following results follow directly from (15): 

 

Lemma 4:  Affiliated utility û  is prudent if and only if relative prudence of u exceeds one.   

 

Lemma 5:  If u exhibits decreasing relative risk aversion, the affiliated utility function û  

exhibits prudence. 

 

Proof:  From Lemma 3, decreasing relative risk aversion of u implies that 

( ) 1 ( )u uP x R x> + .  Since Ru is positive, the conclusion follows from Lemma 4. ▄ 

 

 We are now ready to prove that standard relative risk aversion of u is equivalent 

to standard (absolute) risk aversion of û .  This is precisely the grounds for our defining 

the affiliated utility function as we do in (8). 
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Lemma 6:  The following two conditions are equivalent: 

(i)  û  exhibits standard risk aversion  

(ii) u exhibits standard relative risk aversion (i.e. relative risk aversion and 

relative prudence that are both decreasing in wealth.) 

 

Proof:  From (12), we know that û  exhibits decreasing absolute risk aversion if and only 

if u exhibits decreasing relative risk aversion.  From (15), it follows that  

 

(16) 1 ˆ'( ) '(ln )u uP x p x
x

= . 

Hence, û  exhibits decreasing absolute prudence if and only if u exhibits decreasing 

relative prudence as well. ▄ 

 

 From Lemma (6) and Proposition 3(ii), we obtain our main result of this section: 

 

Proposition 4:  Standard relative risk aversion of u is sufficient for v to be more risk 

averse than u. 

 

Proposition 4 is a direct counterpart to the result of Eeckhoudt and Kimball 

(1992), who showed that standard risk aversion is sufficient to cause an individual to 

behave more cautiously in the presence of an additive background risk.  Here we see that 

standard relative risk aversion plays the same role for the case where we introduce a 

multiplicative background risk.   

 

Suppose once again that u belongs to the HARA class of utility functions, 
1( ) ( )xu x γ

γξ η −= + .  Now 
1

( )u
xR x

xγη
=

+
.  Thus, it follows easily that u exhibits 

decreasing relative risk aversion if and only if 0η <  and 0γ > .  To see that u exhibits 
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standard relative risk aversion, note that 1( ) ( )u uP x R xγ
γ
+= .  Thus, u exhibits decreasing 

relative prudence if and only if u exhibits decreasing relative risk aversion.  Thus we 

obtain the following useful result, which we list as a consequence of Proposition 4. 

 

Corollary to Proposition 4:  If utility is of the HARA class, then decreasing relative risk 

aversion of u is sufficient for v to be more risk averse than u. 

 

 

 

6.  Comparative Risk Aversion 

 

 We start here by examining some intrapersonal characteristics of risk aversion.  

We will later examine some interpersonal characteristics.  From equation (4), we see 

trivially that )(xRv  will be everywhere greater than [less than] one if )(xRu  is 

everywhere greater than [less than] one.  This result is more than just a technicality.  

Since many results in the literature on choice under uncertainty specify a global condition 

that either )(xRu >1 or )(xRu <1, such results also will hold in the presence of a 

multiplicative background risk, since )(xRv  also will satisfy the appropriate property. 

 More generally, it follows trivially from equation (4) that 

 

Proposition 5:  Given any ( )y x∈Γ , with distribution function G, 

{ } { }inf ( ) ( ) sup ( ) ( )u v uR xy R x R xy y Supp G≤ ≤ ∀ ∈ . 

 

 A key result in the literature on additive background risk is that the properties of 

constant absolute risk aversion and decreasing absolute risk aversion for utility are 

carried over to the derived utility function.  On the other hand, the property of increasing 

absolute risk aversion does not always carry over.  We next develop analogous results for 
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relative risk aversion in the case of a multiplicative background risk.  We have already 

seen that v inherits constant relative risk aversion from u.  Indeed, the level of constant 

risk aversion is identical.  To see that the same holds true for decreasing relative risk 

aversion, we first require the following Theorem, which is due to Gollier and Kimball 

(1996).  A proof of this Theorem can also be found in Gollier (2001). 

 

Lemma 7 (Diffidence Theorem, Gollier and Kimball):  Let Λ denote the set of all random 

variables with support contained in the interval [a,b]  and let f and g be two real-valued 

functions.  The following two conditions are equivalent:  

  (i)  For any , ( ) 0 ( ) 0.y Ef y Eg y∈Λ = ⇒ ≥  

 (ii)  m∃ ∈  such that ( ) ( ) [ , ].g y mf y y a b≥ ∀ ∈    

 

 We now are ready to show that v also inherits decreasing relative risk aversion 

from u.11   

 

Proposition 6:  Let y~  have a bounded support.  If u exhibits nonincreasing relative risk 

aversion, then so does the derived utility function v.  

 

Proof:  It follows from Lemma 3, that we need to show that, x∀ , 

 

(17) ( ) 1 ( ) ( ) 1 ( )u u v vP x R x P x R x≥ + ⇒ ≥ + . 

That is, we must show that  

 

(18) 
3 2

2

'''( ) ''( ) 1
''( ) '( )

Eu xy y x Eu xy y x
Eu xy y Eu xy y

− −≥ + . 

                                                 
11  Although aesthetically unappealing, the limitation to bounded supports is not particularly restrictive.  
We already limit x  and y  to be positive, so set a=0.  Now, for any ε>0, we can always find a value for b 
such that the probability that y b>  is less than ε.   
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Inequality (18) is equivalent to the following: 

 

(19) 2 3 2[ ''( ) ( 1) '( ) ] 0 [ '''( ) ''( ) ] 0E u xy y x u xy y E u xy y x u xy yλ λ+ − = ⇒ + ≥ . 

By the Diffidence Theorem, (19) will hold if we can find a real number m, such that 

 

(20) 3 2 2'''( ) ''( ) [ ''( ) ( 1) '( ) ]u xy y x u xy y m u xy y x u xy y yλ λ+ ≥ + − ∀ . 

The left-hand side of (20) can be written as 

 

(21) [ ]''( ) '( ) '''( ) '( )( ) ( )
'( ) ''( ) u u

xyu xy u xy y xyu xy u xy yR xy P xy
u xy x u xy x

λ λ 
+ = − − 

 
. 

 

Since )(1)( xRxP uu +≥ , it follows from (20) and (21) that 

 

(22) [ ]3 2 '( )'''( ) ''( ) ( ) 1 ( )u u
u xy yu xy y x u xy y R xy R xy

x
λ λ+ ≥ − − − . 

From (20) and (22), we would be done if we could find an m, such that 

 

(23) [ ] 2'( )( ) 1 ( ) [ ''( ) ( 1) '( ) ]

'( ) [ 1 ( )].

u u

u

u xy yR xy R xy m u xy y x u xy y
x

mu xy y R xy

λ λ

λ

− − − ≥ + −

= − −
 

 

This follows by taking xm /)1( λ−= , since we then obtain (23) is equivalent to 

 

(24) [ ] 2( ) 1 ( ) ( 1)[ 1 ( )] [ 1 ( )] 0u u u uR xy R xy R xy R xyλ λ λ λ− − − + − − − = − − ≥ . 

 

Hence, (17) holds and v exhibits decreasing relative risk aversion.  ▄ 

 

 We next turn to examining some interpersonal characteristics of comparative risk 

aversion.  Kihlstrom, et al. (1981) and Ross (1981) examined these for the case of an 
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additive background risk.12  Their results are special cases of more general results found 

in Nachman (1982). Nachman is one of the few who considers the case of multiplicative 

background risks as a special case of his general results, albeit briefly.  The basic 

question we address is the following:  If agent 1 is more risk averse than agent 2, will this 

property be preserved in the presence of a multiplicative background risk?  That is, if 1u  

is more risk averse than 2u , when will it follow that 1v  is also more risk averse than 2v ?  

One result that is quite easy to obtain is the following: 

 

Corollary to Proposition 5:  Let au  and bu  be risk-averse utility functions such that au  

is more risk averse than bu , i.e. ( ) ( )a b
u uR x R x x≥ ∀ .  If λ∃ ∈  such that 

x∀ )()( xRxR b
u

a
u ≥λ≥ , then av  is more risk averse than bv .  

 

Proof:  Follows directly from Proposition 5 and equation (4).  ▄ 

 

 The proof of the Corollary also follows directly from the following more general 

result, which is due to Nachman (1982).  We include it here for completeness. 

 

Proposition (Nachman):  Let au  and bu  be risk-averse utility functions such that au  is 

more risk averse than bu , i.e. xxRxR b
u

a
u ∀≥ )()( .  If there exists a function cu  such that 

xxRxRxR b
u

c
u

a
u ∀≥≥ )()()(  and )(xRc

u  is nonincreasing, then av  is more risk averse 

than bv . 

 

 It follows easily from Nachman’s result that av  will be more risk averse than bv  

if either of the utility functions, au  or bu , exhibits nonincreasing relative risk aversion.  

                                                 
12  Actually, Ross considers the background risk to be mean-independent, which is not as restrictive as the 
assumption of independence.   
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This result is a direct counterpart to the result by Kihlstrom, et al. in the case of additive 

background risk.   

 

7.  Concluding Remarks 

 

 The notion that markets are complete is a mathematical nicety that does not hold 

true in practice.  Many types of political, human-capital and social risks, as well as some 

financial risks, are not represented by direct contracts.  Obviously, many of these risks 

can be hedged indirectly - - so-called “cross hedging.”  However, even when such 

“background risks” are independent of other risks and cannot be “hedged” per se, they 

may have an impact upon risk-taking strategies that are within the control of the 

economic agent.  Much has been done over the past twenty years in examining the effects 

of additive background risks.  But surprisingly little has been done to systematically 

study economic decision making in the presence of a multiplicative background risk.   

 This paper is a first step towards developing a comprehensive theory of 

background risk in this direction.  As the few examples in our introduction show, models 

with such multiplicative background risks are not hard to find within the literature.  

Whereas properties of absolute risk aversion play a key role in analyzing the effects of an 

additive background risk, properties of relative risk aversion are the most important in 

examining behavior in the presence of a multiplicative background risk.  However, 

results for the case of a multiplicative background risk do not simply “mirror” those for 

the case where the background risk is additive.  An understanding of the basic concepts 

presented here hopefully might help us understand a multitude of results for which 

standard theories (in the absence of any background risk) yield predictions that seem at 

odds with everyday observations of reality.   

 Since risk aversion captures all the essential information about preferences within 

an expected-utility framework, our focus here has been on comparing risk aversion with 
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and without a multiplicative background risk.  As we learn more about these inherent 

properties, we hopefully will be able to find better models to use in the realm of positive 

theories. 
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