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Abstract: 
Storage devices and demand control may constitute beneficial tools to optimize electricity 
generation with a large share of intermittent resources through inter-temporal substitution of 
load. We quantify the related cost reductions in a simulation model of a simplified stylized 
medium-voltage grid (10kV) under uncertain demand and wind output. Benders Decomposition 
Method is applied to create a two-stage stochastic program. The model informs an optimal 
investment sizing decision as regards specific 'smart grid' applications such as storage facilities 
and meters enabling load control. Model results indicate that central storage facilities are a more 
promising option for generation cost reductions as compared to demand management. Grid 
extensions are not appropriate in any of our scenarios. A sensitivity analysis is applied with 
respect to the market penetration of uncoordinated Plug-In Electric Vehicles which are found to 
strongly encourage investment into load control equipment for `smart` charging and slightly 
improve the case for central storage devices. 
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1. Introduction 
 
Since electricity demand and the availability of output from Renewable Energy Sources (RES) 
are intermittent by nature, system operators have to resort to relatively costly measures such as 
reserve energy to maintain system stability. In the coming decade, back-up capacities are set to 
become more relevant with increasing shares of RES penetration. In this context, storage devices 
serve to store excessive electricity generation and feed-in missing energy in times of need. An 
alternative concept of better aligning demand and supply of electricity through two-way digital 
communication technology is commonly referred to as 'smart metering'. Measures to manage 
demand with the help of smart meters include demand response and direct load control. Our 
work emphasises the latter. 
 
The purpose of this paper is to demonstrate how stochastic optimization and Benders 
decomposition method can be sensibly applied to analyze and compare investment options in a 
power distribution system setting. We scrutinize load control and storage facilities as potential 
options targeting at electricity generation cost reductions. With this common purpose, direct load 
control and centralised storage are two competing or possibly complementary solutions from the 
perspective of a power distribution system operator. Besides, we test whether conventional grid 
reinforcements could alleviate the need for storage and load control. The idea is that storage and 
DSM may be used to avoid capacity shortages. If so, avoided shortage adds value to storage or 
DSM devices because of capacity upgrade deferral (Pudjianto et al., 2006).  
 
There exists a broad range of literature dealing with storage sizing decisions. Some of these 
studies perform numerical optimizations in a deterministic setting (Diaf et al., 2007; Arun et al., 
2008). Applications of stochastic patterns of generation and demand can be found in Ekren et al. 
(2009), Ekren an Ekren (2009, 2010) and Tan et al. (2010). Tan et al. (2010) present a stochastic 
optimization model of battery sizing for demand management with emphasis on outage 
probabilities which is not dealt with in this paper. Roy et al. (2010) apply stochastic wind 
generation patterns to a wind-battery system sizing model with deterministic demand. IEA 
(2010) do likewise with Plug-in Electric Vehicles (EV) as storage facilities. 
 
Concerning demand-side management (DSM), we found no research publications to focus on 
investment decisions into DSM appliances from the perspective of a distribution system 
operator. Manfren et al. (2011) focus on distributed generation planning but abstract from any 
investment analysis. Ki Lee et al. (2007) assess investment into demand management systems for 
heating in a national case study for Korea. Neenan and Hemphill (2008) investigate investment 
from a societal perspective while Strbac (2008) and Electricity Journal (2008) found that 
investment into DSM appliances might not be all that profitable in general. We intend to further 
investigate this claim in our analysis.  
 
Our contribution is unique in so far as no study has explicitly compared the cost saving potential 
of storage and DSM in a comprehensive model including grid representation, endogenous 
investment and factors of uncertainty. No study known to the authors has combined a cost-
benefit analysis of 'smart' technologies with a distribution network representation and 
considerations of stochastic demand and production. Whilst an 11kV distribution network 
representation in combination with a benefit analysis for storage and demand response measures 
can be found in Wade et al. (2010), the present work complements Wade et al.’s analysis by 
adding endogeneity to the investment into storage devices and DSM appliances as well as 



uncertainty of demand and wind generation. Furthermore, one of our contributions to the 
research area consists in the application of Benders Decomposition Method to the stochastic 
program. Decomposition methods have been applied to numerous Operations Research topics in 
the energy sector, such as unit-commitment (Niknam, 2009). To our knowledge, though, there 
exists no application to evaluating storage and DSM infrastructure investment as done in this 
work. 
 
The article is divided into a descriptive part, including the methodology and model description, 
an explanation of parameters and scenarios applied. Subsequently, results are outlined, discussed 
and final conclusions are drawn. 
 
 
2. Model Description 
 
We apply a basic direct current (DC) flow model adapted to a situation with DSM and storage 
technologies in a stylized 10 kV medium-voltage grid representative for Germany. The model is 
designed as linear program under a cost minimization regime with hourly time resolution of two 
exemplary holidays (winter/summer). A vertically integrated system operator is considered as 
the cost minimizing agent. As explicated before, the aim of the operator is to reduce generation 
cost by performing load management through storage and DSM. He can decide on whether to 
invest into storage and DSM technology and on how to operate it. We assume a perfectly 
inelastic, hence vertical demand function. This is a suitable approach here, since we focus on the 
producer side. There is no demand response. Still, the operator is able to shift the vertical 
demand curve left and rightwards through direct load control. Thus, our extensive-form cost-
minimisation objective reads as follows. 
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The agent minimizes generation cost cs · Gs,n,t,sc of each technology s as well as investment cost 
of DSM DSM_INVn · dsm_c and storage Sn

capmax
 · s_c. Besides generation and investment, he can 

manipulate storage in- and outflow (SINn,t,sc and SOUTn,t,sc), shed or induce consumption 
(DSMn,t,sc) and transfer electricity from one node to another (∆n,t,sc), subject to constraints 
detailed below. Sets, parameters and variables are further specified in Table 1. 
 

Set Description Unit Range 

I Node - N={0,...,5} 

T time period (summer / winter) H T={1,...,24} 

S generation technology - 9 

L Line - 4 lines 

SC Scenario - 50 scenarios 

Variable Description Unit Range 

DSM n,t,sc demand-side-management kWh Free

SIN n,t,sc storage inflow kWh Positive 

SOUT n,t,sc storage outflow kWh Positive 

G s,n,,t,sc Generation kWh Positive 

DSM INVn DSM investment Consumer 0-360 

Sn
capmax storage capacity investment kWh Positive 
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Δ t,n,sc phase angle difference (choose Δ1=0) - free

Parameter Description Unit Range 

Q n,t,sc Total demand including DSM and storage kWh Positive 

qref n,t,sc Demand kWh Positive 

probsc probability of scenario SC % 0 – 100 

cs variable generation cost (acc. to merit EUR/kWh 0.001 - 0.07 

dsm c DSM investment cost EUR/kWh Positive 

s c storage investment cost EUR/kWh Positive 

Η storage efficiency (zero leakage from % 75

dsmt,n
posmax positive load shift capacity kWh cf. Annex 

dsmt,n,
negmax negative load shift capacity kWh cf. Annex 

lfl,t,sc electricity flow kW see lfl
max 

Bl,n network susceptance matrix 1/Ω see x 

Hl,n weighted network matrix 1/Ω see x 

lnl,n,sc incidence matrix 1 0 or 1 

lfl
max  maximal capacity for line flow kW 1850 

slackn slack variable (with slack1=1) 1 0 or 1 

X reactance of line 1/Ohm 0.4 - 0.5 

Table 1: Sets, variables and parameters used. 

 
On the demand side, consumers are aggregated at each of the 10kV/0.4kV sub-station nodes n. 
Thus, a diurnal pattern of consumer demand (without DSM and storage), denoted by qref

n,t,sc ≥ 0, 
can be approximated using standard averaged load profiles weighted by the number of customers 
at the respective node.  
 
Putting demand, supply and network flows together, the energy balance constraint per node 
reads: 
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This incorporates the simultaneity of generation and consumption as well as the first Kirchhoff 
rule. The consumer demand qref

n,t,sc is supplemented by contributions from DSM and charging of 
a battery to yield total demand Qn,t,sc, as specified in equation 1. 
 
On the supply side, we consider a setup where each generation technology s∈ S at time t ∈ T and 
node n∈ N contributes an amount gs,n,t,sc to total electricity generation at marginal unit cost cs, up 
to its capacity limit Gmax

s,n,t, which is exogenous and time-dependent. 
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A number of grid-related constraints are included to study the grid impact of storage and DSM 
operation. The topology of a lossless DC network with L lines is described by the L x N network 
adjacency matrix ln, where lnl,n = 1 means that line l∈ L starts at node n, while lnl,m = -1 means 
that it ends at node m. Weighting each line with the inverse of its reactance xl, we obtain the 
matrix h (equ. 4.1) and thus the network susceptance matrix B (equ. 4.2). If the phase angle of 
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node n at time t is denoted by Δn,t , the flow along line l at time t is given by equation 4.3, where 
the sign of lf l,t depends on the direction of the flow. Since Δn,t,sc is defined relative to a reference 
bus, slackness conditions slackn Δn,,t,sc = 0  hold, and we choose slack1 = 1 (that is,  Δ1,t,sc = 0) to 
set node 1 as the reference node (equ. 4.5). Equation 4.4 represents the physical constraints of 
the lines (in a DC network, only the thermal limit is relevant).  
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The second set of constraints relates to DSM. When direct load control is made possible, 
electricity consumption may be shifted to earlier or later stages if exact timing is not crucial. This 
is done by the system operator with the aim of saving cost. The option for DSM is reflected in an 
additional contribution to total demand, DSMn,t,sc. Reducing and increasing demand is possible 
up to limits dsmt,n

neg,max and dsmt,n
pos,max, respectively (equ. 5.1). Note that both parameters are 

defined as positive numbers while contributions have to balance to zero over time (equ. 5.2). 
 
Likewise, storage facilities in the distribution network can take up a positive charge SINn,t,sc  at 
time t, convert it (with some loss η) and subsequently provide positive amounts SOUTn,t,sc, where 
the overall balance is also governed by capacity constraints (equ. 6.2) as well as input and output 
kW power constraints, which are set equal to kWh capacity constraints for reasons of simplicity 
(equ. 6.3). Note that we set energy capacity equal to power limit and that there is no continuation 
value of left-over storage since the storage device is empty at the last time period (equ. 6.1). 
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The problem is formulated as two-stage stochastic optimization program, with initial investment 
at the first stage and operative optimizations at the second stage, cf. Figure 1. We apply Benders 
Decomposition Method (Birge and Louveaux, 1997) with conflicting variables being initial 
investment levels into storage and DSM. The first-stage (master) and the second-stage (recursive 
sub-problem) are successively solved in loops until convergence of the upper and lower level 
objective is reached. In our case, the sub-problem objective represents the upper bound as a 
restriction of the initial problem and the master problem yields a lower bound as a relaxation of 
the initial problem. The solution algorithm stops if the difference between the minimum upper 
bound and the current lower bound is less or equal to a very small number. Otherwise the 
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algorithm continues. Benders optimality cuts are added to the problem set of constraints after 
each iteration. Moreover, feasibility cuts ensure that infeasibilities in the sub-problem due to 
misallocations in the master problem are ruled out, cf. Figure 1. The Benders approach reduces 
computation effort as compared to solving the extensive form expected-value-problem. The 
relaxed master problem objective function now reads: 
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Here, α is the objective value of the sub-problem. The recursive sub-problem objective function 
becomes: 
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The execution of the presented model requires the creation of appropriate scenarios regarding the 
stochastic parameters determining demand and wind production. A random sampling method is 
utilized for the simulation of realizations, cf. Figure 1. Random sampling techniques are popular 
in risk analysis and have been used in previous research on electricity topics (Tan et al., 2010, 
Roy et al., 2010). We obtain a range of demand and wind profiles and assign a uniform 
probability distribution to the occurrence of each scenario. Subsequently, we implement a 
numerical optimization model in the software package General Algebraic Modeling System 
(GAMS).  
 

 
Figure 1: Algorithm used for solving the two-stage problem. (Source: Own illustration) 
 
 
4. Input Parameters 
 
4.1 Demand 
In our stylized system, demand occurs at demand nodes which are connected to individual 
households and commercial units. Specific demand profiles are denoted qref

n,t,sc. Demand is 
treated stochastically under the assumption of zero correlation between wind availability and 
demand. Simulated demand values (cf. Figure 2) are drawn from a normal probability 
distribution with time-varying mean and standard deviation. Standard deviations of demand 
variability are based on empirical demand realizations at the EEX wholesale intraday market 
(2010). Deriving medium-voltage demand variability from wholesale market demand 
fluctuations is reasonable for model systems with aggregation of a high number of consumers. 
Note that the more consumers are aggregated, the less volatile is energy consumption (cf. Widen 
and Wäckelgard, 2010).  
 
The model incorporates electricity consumption of EV into the stochastic reference demand 
qref

n,t,sc. A load pattern is assumed with 8 hours home charging time at a rate of 1.6 kW, cf. 
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Figure 3. 1.6kW is a relatively slow, usually referred to as Level 1 charging. A 12.8 kWh charge 
per night corresponds to a ca. 100 km range. Note that EV are not equivalent to storage facilities 
in our model. This implies we do not consider any vehicle-to-grid technology. Uncontrolled EV 
solely behave as an additional consumer whose load can be curtailed and shifted if DSM 
appliances are installed. Charging behaviour is under full control of the system operator if the 
EV is connected to a smart meter. Different penetration rates of EV are tested from zero to 10%, 
that is zero to 10% of the consumers own an EV.  
 

 

 

Figure 3: Deterministic standard load profile 
with corridor for upper and lower bounds of 
the DSM potential on a winter holiday. 
Additionally, the graph plots one EV 
charging profile. (Sources: Own production 
based on BDEW (2010), Grein et al. (2009), 
Stadler (2008)) 

Figure 2: Convergence of sample demand 
mean with an increasing amount of 
scenarios. (Source: Own production) 
 

 
We assume 360 consumers per 10kV-0.4kV transformer. Each consumer unit is equivalent to a 
1.99-person household, a representative mix for Germany (Prognos et al., 2010). The share of 
commerce and households is 21% and 79% in the model. We abstract from the industrial sector 
in our model because – by law - industrial consumers are already equipped with appliances for 
DSM when yearly consumption exceeds 100,000 kWh. 
 
4.2 Load control 
Investments in load control infrastructure for DSM have the benefit of allowing inter-temporal 
shifts of electricity demand. This may yield peak load reductions and imply infrastructure 
reinforcement deferral. However, we disregard that the installation of DSM appliances could 
yield overall demand reductions. We do this not only because projections of demand reduction 
through DSM devices appear to be fairly uncertain and consumer-specific, ranging between zero 
and 20% (Moura and Almeidaa, 2010 versus Papagiannis et al., 2008, EcoFys, 2009). Our focus 
lies on direct load control exerted by the system operator. Demand response measures and 
related consumption savings driven by consumer behaviour are beyond the scope of this 
operator´s cost-minimization model. 
 
Once appliances for DSM are rolled out, there is a certain time-dependent limit on the load 
shifting potential. Positive and negative shifts are possible and their potential is asymmetric. 
Dneg,max

n,t represents the amount of energy that can be saved at each time by shifting load away to 
another period of the day. Accordingly, the Dpos,max

n,t curve shows the potential load that can be 
added at each time. The potential to increase energy load at each time, Dpos,max

n,t , is generally 
larger than Dneg,max

n,t. The DSM potential for average households and commerce is calculated 
using numbers from a study report for the city of Mannheim, Germany, (Grein et al., 2009) and 
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triangulated with Stadler (2008). EV availability is added to the DSM potential. The resulting 
potential can be observed for each time slice in Figure 3 and Figure 8. Figure 3 plots an average 
load profile for a household with the corridor of maximum and minimum load when DSM 
appliances are installed. 
 
The total cost of equipment for DSM currently figures in between 160 and 350 EUR per installed 
system (EcoFys, 2009). We refer to the Advanced Metering System (AMM), which includes 
two-way communication via an integrated router gateway per house. This system enables time-
of-use pricing and direct load control up to the capacities detailed in Figure 8. The cost figure 
includes investment into hardware such as meter, gateway, router and its initial installation. In 
order to calculate lifetime cost, we apply a 6.5% annual discount rate with a lifetime of 16 years 
(EcoFys, 2009).  
 
4.3 Storage 
The model considers investment into a central large-scale stationary battery with endogenous 
capacity and conversion efficiency factor 75%. We focus on batteries instead of mechanical 
conversion systems (pumped hydro, compressed air storage) for batteries require little up-front 
installation cost. To account for different battery technologies, we vary the cost input data. 
Approximated cost data of equipment and installation is compiled in Table 2 for reference. In 
our cost considerations, we assume a life-time of 3,000 cycles at 80% depth of discharge with 
one cycle being completed every three days, hence a life-time of ca. 12 years. To facilitate 
tractability and increase computation speed, the three dimensioning vectors of a storage unit – 
capacity in kWh, charge rate and discharge rate in kW - are all set equal in this analysis. We 
believe this assumption to be justifiable in a setting with hourly time resolution where ramping 
constraints and thus power limits are of secondary importance in contrast to capacity limits. In 
the real world, actual batteries often feature power limits even higher than energy capacity limit. 
This holds true notably for storage devices that serve as reserve for capacity markets.  
 

Conversion Storage type EUR/kWh EUR/kW Cycles (100%) Efficiency 
Supercapacitor 3,800-4,000 100-400 10,000-100,000 95-100 % 
Flywheels 1,000-3,000 300 20,000-60,000 90-95 % 
Pumped Hydro 60-150 500 20,000-50,000 70-85 % 

Mechanical 

Compressed Air 30-120 550 9,000-20,000 70–80 % 
Nickel-metal hydride 700-800 - 500-3,000 65 % 
Nickel-Cadmium 350-800 175 1,000-3,000 60-70 % 
Sodium-Sulfur 200-900 150 2,000-3,000 85-90 % 
Lithium-Ion 200-500 175 3,000-6,000 95-100 % 
Vanadium Redox-Flow 100-1,000 175 2,000-3,000 75-85 % 
Zinc-Bromine 50-400 175 > 2,000 70 % 

Electro-
chemical 

Lead Acid  50-300 175 200-1,100 75 % 

Table 2: Current storage investment cost data compiled from various sources. Mechanical bulk 
storage included for reference but not considered in our calculations. (Sources: EcoFys (2009), 
Schoenung and Eyer (2008), and Electricity Storage Association (2011)) 

 
4.4 Grid 
Investment decisions relating to DSM and storage should ideally consider grid infrastructure 
constraints because load shifting may serve as a mean to avoid capacity shortage and system 
outage probability. This can be notably relevant in grids with relatively disadvantageous 
topology (series connection). Pudjianto et al. (2006) explicitly take into account this “delaying 
capacity replacement” value of DSM devices when appraising the worthiness of DSM. In the 



absence of real-world data of medium-voltage grids, we decide to simulate a stylized 
configuration with characteristics that approximate realistic grids, cf. Figure 4 (Fletcher and 
Strunz, 2007).  
 
The grid representation used in this study consists of five nodes, one of them the grid supply 
point (GSP) and additionally demand nodes with 10kV/400V transformers. The nodes are 
connected in line so as to simulate a ‘worst-case’ topology, cf. Figure 4. The analysis restrains to 
the 10kV-level of a stylized distribution network. An application of the presented DC flow 
model to a 400V level is delicate for the DC load model does not include reactive power. At 
400V level, voltage drop limits and reactive power are of high relevance. Large-scale generation, 
including wind turbines and pump storage are assumed to be connected at the 10kV level, whilst 
DG and EV are part of the underlying 400V grid. 10kV overhead lines have a lateral surface of 
70mm2 with associated capacity of 185 Ampere. In a 10 kV DC setting this results in a 
maximum capacity limit of 1,850 kW. A typical reactance of the 10kV network is around 0.4 
Ohm/km (Pudjianto et al., 2006; Fletcher and Strunz, 2007). Upgrade costs of overhead circuits 
in a comparable 11 kV grid lie at 3,102 €/MW/km (Pudjianto et al., 2006). We assume all lines 
to be 2 km long and line flows do not incur transmission losses.  
 

 
Figure 4: Stylized 5-node distribution grid configuration in series connection. (Source: own 
illustration). 
 
4.5 Generation 
Nine technologies are part of the generation mix in this work: Six technologies – hydro, nuclear, 
lignite, hard coal, gas and biomass – have flexible generation capacities with full availability and 
flexibility at any time (up to a technical factor, e.g. due to maintenance requirements, taken from 
Prognos et al. (2010)). Three technologies have varying availability. Small-scale heat-controlled 
CHP diurnal patterns follow an approximation in Pudjianto et al. (2006) for both winter and 
summer and they are weighted by a seasonal factor based on data in Brunnengräber et al. (1996) 
to account for higher heating demand (and thus more electricity supply) during winter. Likewise, 
photovoltaic power (PV) exposes different daily profiles by season adapted to a Northern 
German location (Solar-Wetter, 2010).  
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Investment decisions into storage and DSM consider a long time frame and confront with 
uncertainty about the future generation technology mix. Whilst an investment appraisal should 
consider today’s investment cost, generation cost reductions accrue in the uncertain future and 
should therefore be estimated accordingly. A sophisticated dynamic investment model could 
explicitly model the evolution of the generation park over time. Such long-term approach is 
beyond the scope of this paper, though. We believe the year 2020 to be a reasonable 
representative ‘average’ year regarding the penetration of renewable energy resources over the 
life-time of a storage or DSM investment these days. Therefore, a hypothetical generation limit 



of each generation technology is derived from a forecast for the year 2020 given in Prognos et al. 
(2010). We scale down the available installed capacity in Germany so that the six base load 
technologies match the maximum demand in our model network. This ensures enough power is 
available at all times, even if the fluctuating sources are not available. Additionally, the three 
intermittent technologies are each scaled by an individual factor so that the total amount of 
diurnal maximum energy production matches the projections for 2020 in Prognos et al. (2010). 
 
Finally, we assume that generation capacities are distributed differently between the nodes of our 
small network – while the bulk of power will be available via the grid supply point, some of the 
CHP, PV and biomass capacity is located at the demand nodes. These assumptions are 
summarized in the parameters Gmax

s,t,n, specifying the maximum available power from each 
generation technology per time slot and per node. Incremental generation cost is illustrated in 
Table 3. The figures are independent from the utilization rate of a generation technology. 
 

Available energy (per day, aggregated over all nodes) 

demand peak [kW] 989.25           

Technology   Wind PV CHP  Biomass hydro nuclear lignite coal gas Total 

Type Source 
time-
dependent 

time-
dependent 

time-
dependent Flexible flexible Flexible flexible Flexible flexible   

installed capacity 
(Germany 2020) [GW] 

Prognos et al. 
(2010) 

40.9 33.3 4 5.7 7.7 6.7 22.4 28.5 24.4 173.6 

electricity generation 
(Germany 2020) [TWh] 

Prognos et al. 
(2010) 

94 31 20 37 7.5 49.2 145.2 120.2 40.4 544.5 

capacity utilization 
(where relevant) Calculation 

26.2% 10.6% 57.1%        

technical availability 
(where relevant) 

Prognos et al. 
(2010) 

   88% 90% 93% 86% 84% 84%  

installed capacity [kW]  
(in model) Calculation 

483.00 393.25 47.24 92.70 90.93 79.12 264.53 336.56 288.15 2075.48 

available energy, per day 
[kWh] (in model) Calculation 

3041.29 1002.98 647.08 1957.88 1964.11 1766.00 5459.84 6785.12 5809.02 28433.33 

 
Technology Wind PV Hydro CHP nuclear lignite coal Gas biomass

Marginal cost [EUR/kWh] 0.005 0.009 0.005 0.003 0.010 0.04 0.038 0.07 0.016 

Table 3: Available capacity and projections of marginal generation cost incl. carbon cost in 
2020. (Sources: Based on Prognos et al. (2010)) 
 
Special attention is given to generation data of wind power which is treated as stochastic 
parameter. In order to calculate power density - the distribution of wind energy at different 
average wind speeds - the power of wind speeds is multiplied with the probability of each wind 
speed, drawn from a Weibull probability distribution with shape parameter 2 (typical for Central 
Europe) and a scale parameter which varies by time-of-day (Ekren et al., 2009; Roy et al., 2010) 
and which is calibrated to match a typical on-shore location in Northern Germany. A random 
sample of wind speeds is created in accordance with the inverse Weibull distribution with w, the 
wind speed in m/s, x, a uniform random number between 0 and 1, a scale and a shape parameter:   

shape

1

] x)-ln(1 [-   scale  =W ⋅  
 
Knowing that energy potential per second (the power) varies in proportion to the cube of the 
wind speed (in m/s) it is then possible to calculate actual wind energy production in kWh. The 
number of wind rotors and their conversion efficiency were calibrated so as to match a share of 
wind energy in total production conform to projections in Prognos et al. (2010). Cut-in, rated and 
cut-out wind speeds are assumed to figure at 2.8 m/s and 16.5 m/s respectively whilst rated wind 
speed ends at 7 m/s, cf. Figure 5 (Roy et al., 2010).  
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Figure 5: Frequency of wind speeds with average wind speed 5.22 m/s at specified cut-in and 
cut-out rates. (Source: Own production based on Roy et al. (2010))  
 
 
5. Results  
 
The linear problem is implemented in GAMS, using the solver CPLEX 9.0 with standard 
options. Our 1.3 GHz CPU machine executes the stochastic linear program for one exemplary 
day in between 2 and 8 minutes time, depending on cost parameter values. Up to 20 iterations are 
needed. The deterministic model is solved within a few seconds time. 
 
As shown in Figure 6, we find storage devices to pay off at investment cost below 900 
EUR/kWh of capacity. For instance, if costs amount to 300 EUR/kWh, storage devices are 
profitable up to a size of roughly 0.5 MWh capacity (and MW power limit) in the framework of 
our model, depending on the degree of EV penetration. That corresponds to ca. one fourth of 
installed generation capacity (2.075 MW) and one half of peak demand (ca. 0.989 MW) in the 
system. In total, we find that less than 1 % of aggregated electricity consumption is stored in 
most scenarios, cf. Figure 7. A higher number of EV, hence additional load, further improves the 
case for storage devices. Given these numbers, it can be concluded that even relatively expensive 
technologies such as Nickel-Cadmium and Nickel-metal hydride batteries seem to be profitable 
in medium-voltage grids of our type. In contrast, super-capacitors and flywheels need to severely 
cut their cost in order to become competitive. Current investment cost lies between 2,000 and 
4,000 EUR/kWh.  
 

 
Figure 6: Investment into storage and DSM under varying investment cost and penetration 
degree of electric vehicles. The dotted line corresponds to results of the deterministic model. 
Curves are interpolated from several mode runs. (Source: Own production) 
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Appliances for DSM prove hardly profitable in the deterministic model setting, which echoes a 
finding of Strbac (2008) and Electricity Journal (2008). Likewise, the stochastic model predicts 
DSM to be little beneficial in the absence of EV. Only if all-inclusive investment costs boil down 
to 200 EUR per consumer, investment into load control technology may become beneficial. Note 
that current costs for AMM systems lie at 260 EUR in average and projections for 2020 figure at 
around 160 EUR minimum (EcoFys, 2009). The break-even point (tolerance threshold) for 
investment into DSM increases to 700 EUR when 10% of consumers own electric vehicles. Such 
strong shift clearly outlines that a high number of EV induces investment into load control 
equipment. When in competition to each other at current cost, investment into storage devices is 
thus clearly favored to DSM systems. This effect is minimal or partly reversed when EV 
penetration is high. Obviously, storage devices offer more flexibility to load shifting than does 
DSM.  
 

  

Figure 7: Storage operation, DSM operation and line flows in the course of a day in two 
scenarios. Summed over all nodes, there are 117 kWh storage capacity (left graph) and 1118 of 
the 1440 consumers have DSM appliances installed (right graph). (Source: Own production) 

 
The grid capacity is sufficient for a securely functioning system in all scenarios. Even with high 
penetration of EV, grid capacity constitutes no severe shortage since line flows do not exceed 
60% of thermal capacity limits at any time slice and any scenario, cf. Figure 7 (total limit 1850 
kW). Moreover, alternative grid configurations such as a meshed grid would rather improve the 
situation. We conclude no grid reinforcements are required at 10 kV level. This does not mean 
grid extensions are not needed at 400 V low-voltage level. In order to undertake studies at 400 V 
level, an AC network model would be appropriate. Such model would incorporate reactive 
power and voltage drops which are of high relevance in low-voltage grids.  
 
Figure 7 nicely illustrates how line flows narrowly coincide with storage use indicating that line 
flows are to a great extent driven by storage operations. We expected investment into storage and 
DSM to decrease the capacity utilization rate implying a drop in outage probabilities. While it is 
hard to assign a monetary value to drops in outage probabilities, it could then at least be stated 
that this percentage constitutes a further positive value of storage and DSM investments. 
Interestingly, though, we find that the introduction of storage devices could enhance line flows at 
certain moments, cf. Figure 7. This implies a stronger capacity use rate than in the absence of 
storage. Since storage devices are located at demand nodes, their demand for electricity 
sometimes passes from the grid supply point to the demand nodes and thereby increases grid 
capacity use. This happens notably in peak periods, i.e. midday. Accordingly, we conclude that 
storage devices can occasionally deteriorate and sometimes improve grid system reliability. All 
in all, no clear picture arises. The same holds true in the case of DSM operations. This result may 
have emerged because we include no penalty factor for the capacity use rate in the cost function.  
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A sensitivity study regarding the presence of EV in the year 2020 is illustrated in Figure 6. This 
is done to address the question of how EV modify the value of storage and load control. 
Obviously, a high number of vehicle charging augments demand and uncertainty and therefore 
strengthens the case for storage devices and DSM. If 10 % of the consumers own and drive EV, 
investment into DSM appliances is likely to rise by more than 50 % as compared to a world in 
absence of EV. All in all, results suggest that EV strongly induce investment into load control 
facilities. This result pretty much reflects the trivial fact that most EV are currently sold to home 
owners who also include smart metering systems. A potential alternative to smart EV home 
charging solutions could have been to install central storage devices and let EV owners charge 
whenever they like (so-called dumb charging). However, the value of storage increases only 
slightly in the EV scenario. This result indicates that installing DSM appliances for EV owners 
to allow for smart charging is a much better solution than installing central storage surrogates.  
 
 
6. Discussion 
 
What is the point of using a stochastic model? Results of the deterministic model indicate a 
tendency to under-investment as compared to the stochastic model’s outcome. Figure 6 indicates 
that deterministic investment levels (dotted line) can be up to 50% lower than in the stochastic 
model (continuous lines) for storage. For both, storage and DSM, investment levels are 
consistently higher in the stochastic model. We estimate the value of the stochastic solution 
(VSS) to figure at around 0.5% to 5% of total system costs, indicating a gain in efficiency when 
using the stochastic model as opposed to the deterministic model. The VSS allows us to obtain 
the goodness of the expected solution value when the expected values are replaced by the 
random values for the input variables. We conclude that the cost of disregarding uncertainty lies 
at around 0.5% to 5% of total generation costs. On the other hand, the execution time of the 
stochastic model with a sample of 50 draws is roughly 15 times higher than the deterministic 
model. Computation times largely vary depending on the cost input data, though. All in all, we 
deem the stochastic model to be superior for it provides efficiency gains at reasonable additional 
CPU effort. The deterministic model appears to induce wrong long-term investment decisions. 
 
The extensive form stochastic model solves in about the same time as the Benders 
decomposition model. If we were to extend the model so as to diminish stylization, we would 
expect the Benders model computation time to improve in comparison to the extensive form. Our 
conjecture is supported by studies such as Niknam et al. (2009). As a matter of fact, Benders 
decomposition is most suitable for outsized problems characterized by a capacious set of 
variables, nodes and parameters. In these conditions it may be valuable to isolate a group of 
decision variables and investigate the problem partially with Benders method. The 
decomposition model presented here shall constitute a basis for further models of larger size. 
 
 
7. Conclusions 
 
We have presented a DC load flow model applied to investment in storage and DSM facilities in 
a stylized medium-voltage grid. The model incorporates uncertainty in demand and wind output 
and uses Benders Decomposition to distinguish the investment choices from operative 
optimizations.  
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The model results indicate that grid reinforcements at 10 kV level are not necessary in any 
scenario. Capacity utilization rates do not hit the 60% bound which implies there is little harm to 
system stability. 
 
Results suggest that storage devices are beneficial at capacity cost of up to 900 EUR/kWh in the 
stipulated conditions. This implies that relatively expensive storage technologies such as Nickel-
Cadmium and Nickel-metal hydride storage should be profitable at current cost. Flywheels and 
large-scale capacitors are little competitive unless current cost is cut by factor four minimum. 
 
DSM proves hardly beneficial in any scenario, especially not in the deterministic model. 
Investment is beneficial up to an all-inclusive cost of ca. 200 EUR per consumer. This break-
even point (tolerance threshold) boosts when consumers own EV, implying that EV strongly 
encourage investment into load control systems. The finding reflects the actual fact that most EV 
are sold along with smart metering systems. 
 
As a logical consequence, we identify that investment into storage is likely to crowd out 
investment into DSM appliances in our model setting. Since both options are direct alternatives 
for energy management, we predict ‘smart meters’ to be of little economic value to the system 
operator in the absence of EV. Unless governments strongly encourage DSM through obligations 
(beyond current obligations) and financial incentives or the promotion of EV, we believe that 
storage facilities are the better option for a vertically integrated distribution system operator 
facing the conditions of this model. We aimed at modeling conditions that would be 
representative for a section of a stylized distribution system in Germany. 
 
It could be shown, that the stochastic model produces more efficient solutions compared to its 
deterministic counterpart. The cost of disregarding uncertainty lies at 0.5-5% of total generation 
cost. Our analysis demonstrates that a stochastic treatment of wind and demand patterns 
significantly augments the case for the use of storage. The break-even point for investment 
decisions into storage increases from 350 to 900 EUR/kWh when uncertainty of wind and 
demand are taken into account. Hence, the deterministic model leads to considerable under-
investment into storage.  
 
All in all, the results are highly sensitive to the assumed investment cost for storage and load 
management devices. EV are another cause for variations, yet, to a lesser extent.  
 
There are a number of caveats to our analysis which constitute areas for improvement. Energy 
saving through demand response is entirely factored out. Our model may therefore underestimate 
the value of DSM to a minor extent. Furthermore, the investment cost for batteries is calculated 
on a diurnal basis with a fixed number of cycles per day. Fixing the cycles is a necessary step to 
obtain an exogenous cost figure but somewhat arguable since the cycles are endogenously 
determined in the model. Another drawback of our model is that some potential business cases of 
batteries and DSM are not included. Besides peak load reductions and network reinforcement 
deferral, Wade et al. (2010) point to other benefits of using storage devices. For instance, 
balancing markets as potential business field for batteries are not included in the present model. 
If balancing markets were to be considered, an hourly time resolution may not be optimal. Other 
shortcomings are the stylized grid configuration and the absence of ramping constraints for 
storage, which can be included in a further model of larger size. 
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Appendix:

 
Figure 8: DSMneg,max and DSMpos,max for households and commercial units in kW during a day. 
EV profiles excluded. (Source: Own production based on Stadler (2008), Grein et al. (2009)) 
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