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Abstract

Zhang (2008) defines the quotient correlation coefficient to test for

dependence and tail dependence of bivariate random samples. He

shows that asymptotically the test statistics are gamma distributed.

Therefore, he called the corresponding test gamma test. We want to

investigate the speed of convergence by a simulation study. Zhang

discusses a rank-based version of this gamma test that depends on

random numbers drawn from a standard Fréchet distribution. We

propose an alternative that does not depend on random numbers.

We compare the size and the power of this alternative with the

well-known t-test, the van der Waerden and the Spearman rank

test. Zhang proposes his gamma test also for situations where the

dependence is neither strictly increasing nor strictly decreasing. In

contrast to this, we show that the quotient correlation coefficient

can only measure monotone patterns of dependence.
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1 Introduction

Zhang (2008) proposes

Q+ =
max{Xi/Yi}+ max{Yi/Xi} − 2

max{Xi)/Yi} ·max{Yi/Xi} − 1
(1)

as a measure for dependence for two random variables (X, Y ) with margins that are

standard Fréchet distributed.

This measure takes values in [0, 1]. For Xi = Yi, i = 1, 2, . . . , n we get Q+ = 1.

This is the only case with a strictly increasing relationship between Xi and Yi if Xi

and Yi are both standard Fréchet distributed.

If −Yi follows a standard Fréchet distribution there is a strictly decreasing rela-

tionship between Xi and Yi if Xi = −Yi, i = 1, 2, . . . , n. As Q+ is not suitable. In

this case

Q− = −max{Xi/(−Yi)}+ max{−Yi/Xi} − 2

max{Xi)/(−Yi)} ·max{−Yi/Xi} − 1
(2)

can be used as a measure of strictly decreasing dependence. With Xi = −Yi we get

Q− = −1. If Xi and Yi are stochastically independent for i = 1, 2, . . . , n, it follows

Q+ = Q− = 0.

Under the hypothesis of independence Zhang proves that these test statistics are

asymptotically Γ(2, 1) distributed. This result holds not only for a bivariate sample

(X1, Y1), . . . , (Xn, Yn) of independent draws. It also holds if the sample fulfils some

weak mixing properties.

If the marginal distributions FU and FV of (Ui, Vi) are known but not standard

Fréchet distributed they can be transformed by

Xi =
1

− lnFU(Ui)
, Yi =

1

− lnFV (Vi)
, i = 1, 2, . . . , n (3)

or

Xi =
1

− lnFU(Ui)
, Yi = − 1

− ln(1− FV (Vi))
, i = 1, 2, . . . , n. (4)

For this transformed random variables we can compute Q+ resp. Q−.

If Vi = g(Ui) holds with g strictly increasing (decreasing) we get Xi = Yi

(Xi = −Yi), i = 1, 2, . . . , n. This means that the quotient correlation coefficient

measures monotonicity between Ui and Vi. At first glance this contradicts Zhang
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(2008) who discusses the special case Yi = X2
i with Xi ∼ N(0, 1). In this case

he shows that his gamma test indicates dependence. The common alternatives (like

Pearson’s or Spearman’s correlation coefficient) take the value 0 and cannot indicate

the dependence that obviously holds. We will discuss this property later.

Summarizing we get

Q+ =
max{ lnFU (Ui)

lnFV (Vi)
}+ max{ lnFV (Vi)

lnFU (Ui)
} − 2

max{ lnFU (Ui)
lnFV (Vi)

}max{ lnFV (Vi)
lnFU (Ui)

} − 1
(5)

and

Q− = −
max{ lnFU (Ui)

ln(1−FV (Vi))
}+ max{ ln(1−FV (Vi))

lnFU (Ui)
} − 2

max{ lnFU (Ui)
ln(1−FV (Vi))

}max{ ln(1−FV (Vi))
lnFU (Ui)

} − 1
(6)

as quotient correlation coefficient for known margins FU and FV .

If the marginal distributions FU and FV are unknown we have to estimate them

consistently. Zhang discusses several consistent estimators. Kick (2011), p. 12 adds

a further proposal based on ranks. We will discuss this estimator in section 4.

Zhang proposes a rank based version of his quotient correlation coefficient, too.

His proposal depends on a sequence of realizations z1, . . . , zn of random variables

Z1, . . . , Zn that are standard Fréchet distributed. Denote R1, . . . , Rn the ranks of

X1, . . . , Xn and S1, . . . , Sn the ranks of Y1, . . . , Yn. z(1) < . . . < z(n) are the realiza-

tions of the corresponding order statistics of Z1, . . . , Zn. Then

Q̃+ =
max{z(Ri)/z(Si)}+ max{z(Si)/z(Ri)} − 2

max{z(Ri)/z(Si)} ·max{z(Si)/z(Ri)} − 1
(7)

is the rank based version of the quotient correlation coefficient proposed by Zhang.

This measure depends on the realizations of Z1, . . . , Zn. To reduce this dependence

Zhang proposes to draw several sequences of realizations, calculate Q̃+ for every

sequence and use the mean of all values for Q̃+ as test statistic. This procedure

does not affect the asymptotic properties.

Zhang does not discuss how fast the convergence of the distributions of Q+ and

Q̃+ to a Γ(2, 1) distribution is. We want to investigate this speed of convergence by a

simulation study. Furthermore, we propose an alternative rank based version of the

quotient correlation coefficient. This version neither depends on the distribution of

the population and nor on the realization of a sample of standard Fréchet distributed
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random variables. Our aim is to show that Zhang’s measure of dependence is not

suitable for non monotonic patterns of dependence. Although this measure does not

depend on copulas explicitly we will give some hints that it does not hold Lehmann’s

ordering of dependence. Finally, we compare the power of the rank gamma test on

dependence with the power of several of his competitors, especially the Spearman

and the van der Waerden test. The critical values will be computed for the exact

distribution as well as for the asymptotic distribution under the null.

2 Convergence speed for Zhang’s quotient corre-

lation

With FQ+ we denote the exact distribution of Q+. Γ(.; 2, 1) is the distribution func-

tion of a gamma distributed random variable with parameter vector (2, 1). F−1Q+ and

Γ−1(.; 2, 1) denote the corresponding quantile function (=inverse distribution func-

tion). As a measure of distance between the exact and the asymptotic distribution

of Q+ we use the Kolmogorov-Smirnov distance

KS = sup
x∈R
|FQ+(x)− Γ(x; 2, 1)|. (8)

n KS F−1Q+(1− α) 1− FQ+(Γ−1(1− α; 2, 1))

3 0.049 8.739 0.130

5 0.026 5.546 0.074

10 0.014 4.672 0.048

25 0.006 4.697 0.047

50 0.005 4.688 0.047

100 0.008 4.741 0.050

Table 1: Differences between the exact (simulated) and

the asymptotic distribution of nQ+ for some sample

sizes n and α = 0.05.

To check whether the test keeps its size α if we use the asymptotic distribution, we

compare the critical values F−1Q+(1 − α) and Γ−1(1 − α; 2, 1) and the given test size

α with 1− FQ+(Γ−1(1− α; 2, 1)) for alternative sample sizes n. We discuss the case

α = 0.05 with Γ−1(0.95; 2, 1) = 4.744.

4



The results presented in table 1 show that for small sample sizes the distance

between the true and the asymptotic distribution is relatively small. If the marginal

distributions are known and the sample size exceeds 10, the test size of 5% will be

kept.

3 Sensitivity of Zhang’s rank based gamma test

Zhang’s rank based gamma test depends on the realization of a sample from the

standard Fréchet distribution. To exemplify how sensitive the gamma test is with

respect to this initial sample, we draw 10 different samples of the size n = 10 and

calculate the Kolmogorov-Smirnov distance between the exact and the asymptotic

gamma distribution, the exact critical value F−1
Q̃+(1 − α) and the realized test size

1− FQ̃(Γ−1(1− α; 2, 1) of Zhang’s rank based gamma test.

KS F−1
Q̃

(1− α) 1− FQ(Γ−1(1− α; 2, 1))

0.315 4.233 0.023

0.206 2.788 0.001

0.669 1.236 0.000

0.963 0.129 0.007

0.473 2.229 0.002

0.791 9.885 0.753

0.492 5.857 0.150

0.349 5.576 0.103

0.240 4.370 0.032

0.302 2.639 0.001

0.241 3.606 0.008

Table 2: Dependence of the Kolmogorov-Smirnov dis-

tance, the critical value and realized test size on the

initial sample from a standard Fréchet distribution

Zhang proposes to calculate the mean of test statistics for all 10 samples. This

strategy cannot be recommended if the value of the statistics varies extremely from

sample to sample as is shown by the results in table 2.

Following Kick (2011), p. 12, we will discuss an alternative rank based version

of the gamma test which does not depend on an arbitrarily chosen initial sample.
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4 Rank quotient correlation coefficient

We consider a random sample (U1, V1), . . . , (Un, Vn) from a bivariate distribution

with continuous margins FU and FV . Ri and Si denote the ranks of Ui and Vi in

(U1, . . . , Un) and. (V1, . . . , Vn) for i = 1, 2, . . . , n.

As a nonparametric version of the quotient correlation we propose

Q+
R =

max{ln Ri

n+1
/ ln Si

n+1
}+ max{ln Si

n+1
/ ln Ri

n+1
} − 2

max{ln Ri

n+1
/ ln Si

n+1
} ·max{ln Si

n+1
/ ln Ri

n+1
} − 1

(9)

Q+ can only measure positive dependence between U and V . For negative depen-

dence we have to define an alternative version

Q−R = −
max{ln Ri

n+1
/ ln n−Si+1

n+1
}+ max{ln n−Si+1

n+1
/ ln Ri

n+1
} − 2

max{ln Ri

n+1
/ ln n−Si+1

n+1
} ·max{ln n−Si+1

n+1
/ ln Ri

n+1
} − 1

(10)

Q+
R = 0 and Q−R = 0 hold, if U and V are independent. Perfect positive (negative)

dependence between U and V leads to Q+
R = 1 (Q−R = −1).

With a suitable rearrangement of Ri and Si we get Ri = i, i = 1, 2, . . . , n.

Si, i = 1, 2, . . . , n are now the ranks of Vi after this rearrangement. With this

simplification we get

Q+
R =

max{ln i
n+1

/ ln Si

n+1
}+ max{ln Si

n+1
/ ln i

n+1
} − 2

max{ln i
n+1

/ ln Si

n+1
} ·max{ln Si

n+1
/ ln i

n+1
} − 1

(11)

and

Q−R = −
max{ln i

n+1
/ ln n−Si+1

n+1
}+ max{ln n−Si+1

n+1
/ ln i

n+1
} − 2

max{ln i
n+1

/ ln n−Si+1
n+1

} ·max{ln n−Si+1
n+1

/ ln i
n+1
} − 1

. (12)

In this version Q+
R and Q−R depend only on (S1, . . . , Sn). This vector of ranks is

uniformly distributed over the space of permutations of {1, 2, . . . , n} under the null

of independence of U and V . Under this hypothesis the exact distributions of Q+
R

and Q−R can be calculated as the empirical distribution of all n! values of the test

statistics generated from all permutations. This procedure works only for small

sample sizes. For larger sample sizes the distributions of Q+
R and Q−R can be cal-

culated approximately by simulation. Thus, we draw many elements from the set

of permutations with equal probability, calculate the test statistic for each element

and, based on these values, the empirical distribution. If the number of repeti-

tions is sufficiently large the exact distribution will be approximated very precisely.
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The number of repetitions is chosen to be 100000. In this case the exact and the

simulated distribution almost coincide.

Zhang (2008) seems to be not interested in this exact distribution. He derives the

asymptotic distribution with the help of the asymptotic for maxima and minima.

He does not check for which sample sizes the fixed and the realized test sizes are

almost identically.

We have to estimate the unknown marginal distributions FU and FV consis-

tently. Let F̂U and F̂V be such consistent estimators. Zhang (2008) proves that the

asymptotic distribution of Q does not change if

Xi = − 1

ln F̂U(Ui)
und Yi = − 1

ln F̂V (Vi)

for i = 1, 2, . . . , n will be inserted in (5).

Due to Pfeiffer (1989) one possibility to estimate FU and FV consistently is

F̂U(u) = ]{Ui|Ui ≤ u}/(n+ 1) resp.F̂V (v) = ]{Vi|Vi ≤ v}/(n+ 1)

for u, v ∈ R. This is a modified version of the empirical distribution function. This

modification prevents the estimator from achieving the extreme values 0 or 1 for

which the transformation to the standard Fréchet distribution becomes a problem.

With nF̂U(Ui) = Ri and nF̂V (Vi) = Si there is a simple relationship between the

empirical distribution functions and the ranks. Inserting the consistent estimator in

(5) gives Q+
R for Q+ and Q+

R for Q−. Therefore, under the null hypothesis and for

continuous margins FU and FV

nQ+
R

V→ Z, Z ∼ Γ(2, 1).

holds. The so called antiranks n−Si+1 results from considering the random variable

−V . Then, under the usual assumptions we also get

−nQ−R
V→ Z, Z ∼ Γ(2, 1).

We call the tests on independence rank gamma tests if they are based on this asymp-

totic distribution.

To check whether the rank gamma test does not exceed the test size α we compare

the critical values F−1
Q+

R

(1− α) and Γ−1(1− α; 2, 1) and α with the realized test size

1 − FQ+
R

(Γ−1(1 − α; 2, 1)) for several sample sizes. We restrict the discussion to

α = 0.05 which gives the approximative critical value Γ−1(0.95; 2, 1) = 4.744.
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n KS F−1Q (1− α) 1− FQ(Γ−1(1− α; 2, 1))

5 0.280 3.445 0.008

10 0.260 4.047 0.020

50 0.245 4.410 0.033

100 0.243 4.423 0.034

200 0.240 4.440 0.034

500 0.238 4.447 0.035

1000 0.236 4.423 0.033

2000 0.237 4.449 0.035

5000 0.237 4.458 0.036

10000 0.235 4.440 0.034

Table 3: Differences between the exact (simulated) and

the asymptotic distribution of nQ+
R for some sample

sizes n and α = 0.05.

As an important result we see that the convergence of nQ+
R towards its limiting

distribution is very slow. The Kolmogorov-Smirnov distance is almost constant for

sample sizes from 50 to 10000. This results contrasts the well known property of

alternative test procedures (like the Spearman test) with a normal distribution as

limiting distribution. For these tests sample sizes of around 20 are sufficient to

guarantee that exact and asymptotic distribution are almost identical.

As a positive property of the rank gamma test we can state that the test is

conservative as the realized test size is always smaller than 5%.

For the comparison of power between the rank gamma test and several of his

competitors we need to specify some realistic alternatives of dependence. Before we

can do this, we have to clarify what kind of dependence the quotient correlation

coefficient is able to measure.

5 What kind of dependence does the rank quo-

tient correlation coefficient measure?

As already mentioned in the introduction the quotient correlation coefficients mea-

sures how monotone the relationship between two random variables (X, Y ) is because
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the extreme values 1 or −1 will be achieved, if Y is a strictly increasing or decreasing

function of X.

In contrast, this measure rank correlation coefficients are copula based and main-

tain the well known Lehmann ordering of dependence. This ordering implies for two

pairs of random variables (X, Y ) and (X ′, Y ′) with bivariate distribution functions

F and F ′ and corresponding copulas C and C ′ that (X, Y ) is less dependent than

(X ′, Y ′), if

C(u, v) ≥ C ′(u, v) u, v ∈ [0, 1]

holds. Up to now, this properties has not been discussed for Q+ and Q+
R either.

The problem is that these measures are sample based and not copula based. We do

not know the corresponding functional for the populations distribution. Therefore,

we try to get an idea whether Q+ maintains the Lehmann ordering by a simulation

study. For this purpose we consider the Farlie-Gumbel-Morgenstern (FGM-) copula

C(u, v; θ) = uv + θ(1− u)(1− v), ∀u, v ∈ [0, 1] (13)

with the special setting θ = 0.2 and θ = 0.8 for the parameter of dependence. For

this setting we have

C(u, v; 0.2) ≤ C(u, v; 0.8) u, v ∈ [0, 1].

We draw 100000 random samples of size n from C(u, v; 0.2) and C(u, v; 0.8), compute

Q+ and Spearman’s ρ and count how often the values of Q+ and ρ are smaller for

θ = 0.2 than for θ = 0.8. We get the following result:
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n Q+ ρ

10 0.59 0.64

100 0.64 0.93

1000 0.65 1.00

Table 4: Proportion of 100000 repetitions such that the

values of Q+ or of Spearmans ρ are smaller for θ = 0.2

than for θ = 0.8

In one third of all repetitions the rank quotient correlation coefficient cannot identify

the true ordering of dependence even if the sample size is 1000. In contrast to

Spearman’s ρ the Lehmann ordering will be maintained for the moderate sample

size of n = 100. Of course, this does not a proof the rank quotient correlation

coefficient not maintaining the Lehmann ordering. But it is a hint that there could

be a problem to interpret the way this coefficient measures dependence.

After all, we want to answer the question whether the quotient correlation coef-

ficient can measure non monotonic dependence. Zhang considers as an alternative

hypothesis two dependent variables with the first variable U following a standard

normal distribution and the second variable V = U2 a χ2(1) distribution. Zhang

simulates the power of the gamma test in this special case. Now, we replicate Zhang’s

simulation study for a test size of 5% and different sample sizes. The critical value

will be again calculated with the exact and with the limiting distribution.
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n exact asympt.

3 0.162 0.264

5 0.120 0.138

10 0.102 0.096

25 0.667 0.653

50 0.983 0.982

100 1.000 1.000

Table 5: Exact and approximative power of the gamma

test for Ui = V 2
i with Vi iid standard normal for i =

1, 2, . . . , n.

The results in table 5 seem to confirm Zhang’s assertion that the gamma test can

discover non monotonic dependence. The well known alternative tests like the t-test

based on Pearson’s correlation coefficient or Spearman’s ρ indicate independence in

the special case of V = U2. At first glance, the gamma test seems to be suitable

for more general alternatives. But if we use Q− to test on negative dependence,

the null hypothesis of independence will also be denied for V = U2. In this case

we get Q+ = −Q− because the standard normal distribution is symmetric around

0 such that FV (v) = 1 − FV (−v) holds for v ∈ R. Thus, the gamma tests detect

positive as well as negative dependence. Therefore, the gamma test is only suitable

for monotone dependence like his competitors the t-test and the Spearman test.

6 Power comparisons

6.1 Rank correlation test

Spearman’s rank correlation coefficient ρ based on the ranks (Ri, Si) of the bivariate

sample (U1, V1), . . . , (Un, Vn) is given by

ρ =

∑
(Ri − R̄)(Si − S̄)√∑

(Ri − R̄)2
∑

(Si − S̄)2

For continuous margins and after some rearrangement we get Ri = i, i = 1, 2, . . . , n.

Finally, we get

ρ = 1− 6
∑n

i=1(i− Si)
2

(n− 1)n(n+ 1)
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(see f.e. Büning & Trenkler (1994), p. 232ff.). The distribution of ρ can be obtained

via permutations of {1, 2, . . .} for small sample sizes, via simulation or approxima-

tively by using the limiting distribution. For the limiting distribution it holds that

ρ√
1

n−1

V→ Z, Z ∼ N(0, 1).

under the null hypotheses of independence.

Spearman’s ρ is a special case of the linear rank statistic∑n
i=1 a(i)a(Si)∑n

i=1 a(i)2
.

a(.) is the so-called score function a(.) with the property
∑n

i=1 a(i) = 0. The special

choice

a(i) = 2

(
i

n+ 1
− 1

2

)
, i = 1, 2, . . . , n.

leads to the Spearman’s test. The corresponding scores will be called Wilcoxon

scores.

An alternative choice is

a(i) = E
(
Φ−1(U (i))

)
, i = 1, 2, . . . , n,

where U (i) is the ith order statistic of a random sample from an uniform distribu-

tion on (0, 1). These scores will be called Terry-Hoeffding scores. Interchanging of

expectation and the quantile function Φ−1(.) gives the van der Waerden scores

a(i) = Φ−1
(

i

n+ 1

)
, i = 1, 2, . . . , n.

Under the null hypothesis of independence the limiting distribution of the general

linear rank statistic is given by

√
n− 1

∑n
i=1 a(i)a(Si)∑n

i=1 a(i)2
V→ Z, Z ∼ N(0, 1).

(see Hájek & Šidák (1967), p. 167).

It is well known (f.e. from Hájek & Šidák (1967), p. 75) that linear rank

correlation tests with suitable chosen scores are locally optimal in the set of all

linear rank tests, if the following alternative hypothesis will be considered:

Xi = X∗i + ∆ · Zi, Yi = Y ∗i + ∆ · Zi (H1 : ∆ > 0)

resp. Yi = Y ∗i −∆ · Zi (H1 : ∆ > 0).
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X∗i , Y ∗i , Z∗i are independent random variables for i = 1, 2, . . . , n. ∆ determines the

strength of the relationship between (X∗i , Y
∗
i ). If the second moment of X∗i , Y

∗
i and

Zi exists, the Pearson correlation coefficient of (Xi, Yi) is given by:

∆2V ar(Zi)

(V ar(X∗i + ∆2V ar(Zi))V ar(Y ∗i + ∆2V ar(Zi)))1/2
.

Then, the test statistic

n∑
i=1

E

[
−f

′

f
(F−1(U (Ri)))

]
E

[
−f

′

f
(F−1(U (Qi)))

]
gives a locally optimal linear rank test under mild conditions concerning the marginal

density f of X∗i and Y ∗i .

Especially, the linear rank tests with Terry Hoeffding scores and with Wilcoxon

scores are locally optimal for the normal and the logistic distributions. Both tests

are also asymptotically optimal in the class of all tests. Additionally, the linear

rank test with van der Waerden scores is asymptotically optimal for the normal

distribution (see Hájek & Šidák (1967), p. 254).

We want to compare the power of the rank gamma test with some rank correla-

tion tests in situations where the rank correlations tests are locally or asymptotically

optimal. As competitors we consider the Spearman test (based on ρ) and the linear

rank test with van der Waerden scores. The Terry Hoeffding scores are omitted

because they are numerically tedious.

6.2 Comparison of power for the normal distribution (α =

0.05)

We discuss the power of the t test, the linear rank test with van der Waerden scores,

the Spearman test and the rank gamma test. Under the null hypothesis, for the t

statistic holds

t = r

√
n− 2

1− r2
∼ t(n− 2).

The corresponding t test is optimal for one-sided alternatives and normal populations

(see Büning & Trenkler (1994), p. 238).

The test size is 5%. The corresponding critical values will be calculated for the

exact and the asymptotic distribution.
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∆ t van der Waerden Spearman-Test rank gamma test

exact asympt. exact asympt. exact asympt.

n = 10

0.1 0.0562 0.0502 0.0517 0.0508 0.0553 0.0487 0.0178

0.5 0.1441 0.1358 0.1344 0.1261 0.1318 0.1130 0.0483

1.0 0.4688 0.4092 0.4056 0.3802 0.4036 0.3302 0.1945

2.0 0.9300 0.8749 0.8744 0.8621 0.8681 0.7857 0.6143

3.0 0.9926 0.9736 0.9746 0.9697 0.9738 0.9289 0.8367

n = 100

0.1 0.0580 0.0596 0.0593 0.063 0.062 0.0556 0.0363

0.5 0.6391 0.6312 0.6353 0.6130 0.6083 0.2574 0.2168

1.0 1.0000 0.9999 0.9999 0.9997 0.9997 0.8363 0.8017

2.0 1.0000 1.0000 1.0000 1.0000 1.0000 0.9987 0.9995

n = 1000

0.1 0.0909 0.1007 0.0933 0.0848 0.9040 0.0588 0.0422

0.5 1.0000 1.0000 1.0000 1.0000 1.0000 0.4030 0.3430

1.0 1.0000 1.0000 1.0000 1.0000 1.0000 0.9696 0.9607

Table 6: Comparison of power of t test, van der Waerden

test, Spearman test and rank gamma test for different

sample sizes n and dependence parameter ∆

The results presented in table 6 confirm the theoretical considerations. The van der

Waerden as well as the Spearman test show a power that coincides almost with the

power of the optimal t test even for relatively small samples. This result remains

true if the critical value will be computed by the limiting distribution. It can be

explained by the well known high speed of convergence of the distribution of linear

rank tests to the normal distribution. In contrast to these tests, the rank gamma

test has a substantial lower power for all sample sizes. Due to the low speed of

convergence the power differs significantly for the exact and approximative critical

value.

It is worth to mention, that the exact power was calculated by simulation. There-

fore, there are small deviations between the actual results and the results that should

be expected by theoretical reasons. For example, the power of the van der Waerden

test for n = 100 and ∆ = 0.1 is greater than the power of the optimal t-test.
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6.3 Comparison of power for the Farlie Gumbel Morgen-

stern copula (α = 0.05)

Assuming that the population is normal distributed ensures that the t-, the van der

Waerden test and the test based on ρ have to have superior power. Now, we consider

the Farlie-Gumbel-Morgenstern copula (13) with dependence parameter θ ∈ [−1, 1].

If θ > 0 we get positive dependence in the sense of Lehmann. This means that

C(u, v) ≥ uv, u, v ∈ [0, 1] holds.

For different positive parameter values θ we draw alternative 100000 bivariate

samples from the FGM copula. Then we check how often the null hypothesis of

independence is denied. Because the results for the van der Waerden and the Spear-

man test are very similar, we restrict the discussion to the power of Spearman’s test

and the rank gamma test.

θ rang gamma test Spearman test

exact asympt. exact asympt.

n = 100

0.1 0.0608 0.0443 0.0989 0.0972

0.2 0.0809 0.0572 0.1764 0.1644

0.4 0.1290 0.1072 0.3824 0.3812

0.6 0.1972 0.1597 0.6562 0.6436

0.8 0.3080 0.2515 0.8526 0.8576

1.0 0.4201 0.3577 0.9659 0.9670

n = 1000

0.1 0.0703 0.0489 0.2756 0.2691

0.2 0.0865 0.0626 0.6864 0.6392

0.4 0.1405 0.1363 0.9864 0.9943

0.6 0.2213 0.1827 1.0000 1.0000

0.8 0.3435 0.2885 1.0000 1.0000

1.0 0.4829 0.4233 1.0000 1.000

Table 7: Comparison of power for the Spearman- and

the rank gamma test for alternative sample sizes n and

dependence parameter θ

Again, we can identify the well known picture. The power of the rank gamma test
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increases slowly with sample size and strength of dependence. In contrast to this

result the power of the Spearman test is already high for moderate sample sizes (f.e.

n = 100) and dependence parameter values.

6.4 Comparison of power for the Resnick case (α = 0.05)

Zhang (2008), p. 1020 discusses an example for an alternative going back to Resnick.

This alternative models an extremely positive form of dependence. Consider two

random variables U and V depending on an uniform random variable W and a

standard normal variable Z, where W and Z are independent:

U = 1/W, V = 1/(1−W ) + Z.

For this extreme situation one can expect the rank gamma and the Spearman test

to show high power.

n rank gamma test Spearman test

exact asympt. exact asympt.

10 0.6591 0.4799 0.8803 0.8803

100 0.9042 0.8800 1.0000 1.0000

1000 0.9551 0.9396 1.0000 1.0000

Table 8: Comparison of power for the Spearman- and

the rank gamma test in the Resnick case of extreme

positive dependence

Now, the rank gamma test shows the expectable high power. But the Spearman

again has superior properties. This holds especially for small sample sizes.

7 Summary

We identified some restrictions for the test on independence proposed by Zhang.

Firstly, the quotient correlation coefficient can only measure the strength of mono-

tone patterns of dependence. Whether this coefficient maintains the Lehmann or-

dering is still an open question. We got some hints that the quotient correlation

coefficient does not. Secondly, the asymptotic of the gamma test is rather sim-

ple. But the speed of convergence is very slow except in the unrealistic situation

16



of known marginal distributions. Thirdly, Zhang’s rank based gamma test strongly

depends on the initial sample from the standard Fréchet distribution. We cannot

recommend to use this test. Fourthly, comparisons of power show that the rank

gamma test is significantly inferior to the well known traditional linear rank tests

like the Spearman test for several alternatives.

It remains to investigate the power of the test if we give up the assumption of

independently identically distributed random variables. The asymptotic of Zhang’s

gamma test still works for stochastic processes with special mixing conditions. To

our knowledge similar results for the asymptotic distribution of the linear rank test

have not been established.

Zhang modifies the gamma test to test for tail independence. Again, investigating

the power of this test in comparison to well known competitors which have been

discussed f.e. in Schmidt & Stadtmüller (2006) and Schmid & Schmidt (2007)

remains an open task.
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[2] Hájek, J. & Šidák, Z. (1967). Theory of Rank Tests. New York.

[3] Kick, K. (2011). Quotientenkorrelation und Finanzmarktdaten. Diplomarbeit.

Universität Erlangen-Nürnberg.
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