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1 Introduction

K-nearest neighbour (KNN) matching estimators (Abadie and Imbens, 2006) are popular

for estimating, non-parametrically, the average causal effect of a binary variable on an

outcome in observational studies, where confounders are observed and controlled for.

Abadie and Imbens (2008) showed that classical bootstrap schemes fail to provide correct

inference for KNN matching estimators. In particular, bootstrap variance estimators

were shown to be biased. The resampling schemes considered by Abadie and Imbens were

typical in the sense that bootstrap copies were obtained by sampling with replacement

from the data (assumed to be a random sample). Their finding is interesting because

it highlights the fact that bootstrap inference does not always work and hence must be

taken with caution in situations lacking theoretical justification.

In particular, more complex resampling schemes may be needed in cases not falling

within the usual range of applicability of the bootstrap. This is the case for KNN match-

ing estimators which, as Abadie and Imbens (2008) noted, are unsmooth functions of

the data. In this paper, we present two resampling schemes, which we show provide

correct inference. We resample “estimated individual causal effects” (EICE), i.e. the

differences in outcomes between matched pairs, whose average forms the matching esti-

mator of interest. This has two major advantages. Because matching is performed only

once on the original data, the bootstrap scheme is extremely fast to perform (in contrast

to bootstrapping the original data, which implies that matching has to be performed

for each bootstrap replicate). However, most importantly, bootstrapping EICEs as de-

scribed formally below yields valid inference. Note that the KNN matching estimator is

a smooth function of the EICEs. Still the latter cannot be naively resampled because

they are dependent. This is tackled by ordering the EICEs with respect to the match-

ing covariate (or a score summarizing several covariates) and by using a circular block

bootstrapping scheme, which is used for stationary and non-stationary time series (e.g.,

Künsch, 1989, Carlstein, 1986, Lahiri, 1992 and Sjöstedt, 2000). In contrast to typical

time series situations the bootstrapped EICEs have a known dependence structure and

we therefore propose using this knowledge to find an appropriate blocking scheme.
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The above sketched resampling scheme does typically not work if the EICEs have

mean (conditional on the covariate and the assignment to the causal agent) which varies,

i.e. we have heterogeneous causal effects. We overcome this difficulty by taking differ-

ences in EICEs ordered with respect to the matching covariate, and again using a block

bootstrap strategy on these differences. This second bootstrap scheme yields correct

inference under rather general forms of heterogeneity in the causal effects.

Two inferential procedures are considered for constructing confidence intervals, either

using a subsampling variance estimate together with the asymptotic normality of the

estimator, or using bootstrap estimated quantiles of the distribution of the estimator.

We provide proofs of the validity of the different resampling based inferences proposed,

relying on previous results obtained on block-bootstrapping for non-stationary sequences

(Sjöstedt, 2000). The resampling inference studied herein constitutes a new and not

straightforward application area of such results which have previously been used in time

series and spatial data contexts (Ekström and Sjöstedt-de Luna, 2004).

In the next section KNN matching estimators are introduced in the context of the

potential outcome framework. Section 3 summarizes our theoretical justifications of the

bootstrap schemes. A simulation study illustrating finite sample properties is presented

in Section 4. Abadie and Imbens (2006) matching based variance estimators are used as

benchmarks. All proofs are delayed to the Appendix.

2 Matching estimators for average causal effects

Consider the situation where we observe the variables Y, Z, and X for a random sample

of individuals, where Z is binary (causal agent: treatment, intervention, etc.), Y is an

outcome on which the causal effect of Z is to be evaluated, and X is a vector of covariates

not affected by Z.

Assume that the sample consists in n individuals with Z = 1 (group of interest,

often called treated) and N individuals with Z = 0 (reference group), indexed such that

Zi = 1 for individuals i = 1, . . . , n and Zi = 0 for i = n+ 1, . . . , n+N .

The effect evaluation we consider here consists in estimating the following average
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causal effect (in the literature often called average treatment effect on the treated)

τ = E(Yi(1)− Yi(0)|Zi = 1),

where Yi(1) and Yi(0) are the so called potential outcomes, i.e. outcomes arising when

individuals are assigned to Zi = 1 and Zi = 0 respectively; see Neyman (1923), Rubin

(1974), Imbens (2004). Note that only one of the two potential outcomes Yi(1) and Yi(0)

is observed for individual i.

We assume that if a given individual i is assigned a given value for Zi, this does

not affect the values taken by the potential outcomes for this individual or any other

individual in the study (stable individual value assumption, Rubin, 1991). Moreover, the

following assumptions are assumed to hold in the sequel, thereby granting, for instance,

that τ is identified (e.g., Rosenbaum and Rubin, 1983, Abadie and Imbens, 2006).

(A.1) : Conditional on the assignment to the causal agent Zi = j, (Yi(j), Xi) are inde-

pendently drawn from the distribution law L{(Yi(j), Xi) | Zi = j}, for j = 0, 1.

Let also ns/(ns +N)→ α as n→∞, 0 < α < 1, for some s ≥ 1.

(A.2) : For all x in X , where X is the support of the distribution of the random variable

Xi:

i) Zi and Yi(0) are independently distributed given Xi = x,

ii) Pr(Zi = 1|Xi = x) < 1.

Assumption (A.2-i) is violated if there are unobserved confounders, that is variables

that affect both Zi and Yi(0) which are not included in Xi. By assumption (A.2-ii), we

ensure that all those in the group of interest could as well have been in the reference

group for a given Xi.

Another commonly targeted average causal effect is E(Yi(1) − Yi(0)). The latter is

equal to τ , for instance, when Yi(1)−Yi(0) = τ (constant individual causal effect) for all

individuals in the population. However, in general the latter does not hold and stronger

assumptions are needed to identify E(Yi(1)−Yi(0)); see, e.g., Imbens (2004). Moreover,
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in many applications the group of interest has far fewer individuals than the reference

group and it is therefore most realistic to focus on τ rather than on E(Yi(1)− Yi(0)).

We now define the KNN matching estimator as

τ̂ =
1

n

n∑
i=1

(Yi(1)− Ŷi(0)), (1)

where Ŷi(0) is a K-nearest neighbour estimator of the unobserved outcome Yi(0). Thus,

for K = 1 we have

Ŷi(0) = Yj(0) such that j = argmin
j=n+1,...,n+N

|Xj −Xi|,

where | · | is a vector norm. Generally, for K > 0 and for i = 1, . . . , n, denote by jK(i)

the index j ∈ {n + 1, . . . , n + N} that makes
∑n+N

l=n+1 1{|Xl − Xi| ≤ |Xj − Xi|} = K,

where 1{A} is the indicator function which is equal to one when A is true and zero

otherwise. The set of indices for the K-nearest matches for individual i is then JK(i) =

{j1(i), j2(i), . . . , jK(i)}. Then, a K-nearest neighbour estimator of the unobserved out-

come Yi(0) is Ŷi(0) = 1
K

∑
j∈JK(i) Yj(0), i.e. the average of the K observed reference

individuals which are closest to individual i in terms of X.

Abadie and Imbens (2006) derived the asymptotic properties of (1), and under given

regularity conditions the KNN matching estimator is asymptotically normal. They con-

sider the marginal variance V ar(τ̂) as well as the conditional variance V ar(τ̂ |X,Z),

where X and Z are vectors containing the observed values Xi and Zi, i = 1, . . . , n+N ,

respectively, and introduce consistent estimators for these two variances (Abadie and

Imbens, 2006, Theorems 6 and 7), which we shall use as benchmarks in the Monte Carlo

study below.

3 Resampling estimated individual causal effects

We now introduced bootstrapping and subsampling schemes that can be used to perform

inference on τ .

Denote by

Din = Yi(1)− Ŷi(0)
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the estimated individual causal effects (EICE). Hence, the KNN matching estimator (1)

can be written as τ̂ = 1/n
∑n

i=1Din. Note that the EICEs depend on Xi through the

matching process.

(H.1) Xi is a scalar- and continuous-valued random variable with compact and convex

support X and density function f(x) such that 0 < f(x) <∞ for x ∈ X .

In the multivariate covariate case, the covariate vector is typically replaced by a one-

dimensional continuous summarizing score (e.g., Rosenbaum and Rubin, 1983, Hansen,

2008, Waernbaum, 2010) to avoid the curse of dimensionality, thereby falling back into

our context.

From now on we consider the EICEs to be ordered according to their corresponding

Xi values:

D1n, D2n, . . . , Dnn, where

X1n ≤ X2n ≤ . . . ≤ Xnn,

with Xin, i = 1, . . . , n, the sequence of ordered (ascendant) X ′is. The EICEs are locally

dependent, because two EICEs may be computed using one or several identical indi-

viduals from the reference group. This dependence implies that we cannot bootstrap

the EICEs as if they were independently distributed and we henceforth consider block

resampling schemes.

3.1 Block bootstrap

We now describe a (circular) block bootstrap scheme and give conditions under which it

is theoretically justified for estimating the variance of τ̂ and for constructing confidence

intervals; see Politis and Romano (1992) and Sjöstedt (2000).

Construct consecutive blocks of data of size b < n such that Bj = {Djn, Dj+1,n, . . . , Dj+b−1,n},
j = 1, . . . , n, where Dn+j,n = Djn; see Figure 3. Furthermore, let D·jn =

∑j+b−1
i=j Din. A

resampling copy (a pseudo sample) of {D·jn}nj=1 is denoted {D∗·jn}nj=1 and is constructed

by drawing n items1 with replacement from {D·jn}nj=1. Define D̄∗·n = 1
nb

∑n
j=1D

∗
·jn

1We could instead draw n∗ items such that n∗b ≈ n. This is not necessary but probably slightly
better.
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D1n

B1n
Bnn

Dnn

Dn−1,n

D2n

D3n

D4n

Db−1,n

Dbn
. . .

...

Figure 1: Circular blocking scheme.

and D̄·n = 1
nb

∑n
j=1D·jn. Because of the circular blocking scheme we have that D̄·n =

τ̂ . Under some additional assumptions given below we show that the distribution

L{
√
bn(D̄∗·n − D̄·n)|data} asymptotically mimics the centered distribution of

√
nτ̂ con-

ditional on X and Z.

As noted above, the sequence {D1n, . . . , Dnn} is locally dependent due to the fact that

the same individuals from the reference group can be used in different estimates Ŷi(0).

Thus, there is a dependence between Din and all its neighbours using the same reference

individuals, forming thereby a cluster of dependent EICEs. By letting mn be equal to

the maximum size of the n clusters, we have that {D1n, . . . , Dnn} are mn-dependent,

i.e., Din and Djn are independent when |i− j| > mn, given X and Z.

We will use the following assumptions.

(H.2) For all n, we have that supn=1,2,...mn < m <∞ a.s.

(H.3) There is a δ > 0 such that supn=1,2,...
j=1,...,n

E
[
|Djn|2+δ | X,Z

]
<∞ a.s.

Let τin = E(Yi(1) − Yi(0) | X,Z) = τ(Xin), the expected individual causal effect
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estimated by Din, and define τ·jn =
∑j+b−1

i=j τin, τ̄·jn = 1
b
τ·jn, and τ̄·n = 1

n

∑n
i=1 τin.

We need further the following assumptions.

(H.4) i) b
n

∑n
j=1(τ̄·jn − τ̄·n)2 = o(1) a.s.,

ii) b = b(n)→∞ as n→∞, and b(n) = o (n1−r), r > 0.

(H.5) E(Yi(0) | Xi = xi, Zi = 0) is Lipschitz on X .

Assumption (H.4-i) allows for vanishing variation (asymptotically) and could thus

be called “asymptotically homogeneous causal effect assumption.” Thus, a different re-

sampling scheme is introduced in the next section to cover heterogeneous causal effects.

Finally, (H4-ii) tells us how the block size must increase with sample size n in or-

der to achieve consistency, while (H.5) allows us to have control on the matching bias

E(Yi(0)− Ŷi(0) | X,Z).

Below we use the concept of weakly approaching sequences in probability (wa(P ),

introduced by Belyaev and Sjöstedt-de Luna, 2000), which is a generalization of the well

known concept of weak convergence, but without the need to have a limiting distribution;

see the Appendix for definitions.

Theorem 1 Assume (A.1-2) and (H.1-5). Then, as n→∞

L{
√
bn(D̄∗·n − D̄·n) | X,Z,Y} wa(P )↔ L{√n(τ̂ − τ̄·n) | X,Z},

where Y is the vector containing the observed outcomes Yi(1), i = 1, . . . , n, and Yi(0),

i = n+ 1, . . . , n+N .

The latter result tells us how we can mimic the distribution law L{√n(τ̂−τ̄·n) | X,Z}
using bootstrap (see below). Note that the target distribution is conditional on X and

Z and centered on the parameter τ̄·n, sometimes called sample average causal effect in

the literature (e.g. Imbens, 2004, Imbens and Wooldridge, 2009). In cases where we

have homogeneous expected individual causal effects, i.e. where τi = τ for all i, we have

τ̄·n = τ .
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Theorem 1 justifies the following bootstrap confidence intervals. Draw B resampling

copies as described above yielding {
√
bn(D̄∗g·n − D̄·n)}Bg=1. These B draws yield an empir-

ical distribution whose quantiles q∗α are used to construct a (1 − α) confidence interval

for τ , e.g. as (τ̂ − q∗1−α/2/
√
n, τ̂ + q∗α/2/

√
n). The B draws could also be used to obtain

a variance estimator of τ̂ . However, such a variance estimator can readily be obtained

without drawing resampling copies, utilizing a subsampling estimator. We need the

following assumption.

(H.6) For all x ∈ X and Z ∈ {0, 1}, σ2(x, z) = V ar(Yi(1)Zi + Yi(0)(1 − Zi) | Xi =

x, Zi = z) <∞.

Note that (H.6) holds, for instance, when (H.1) holds and σ2(x, z) is Lipschitz on X
for z ∈ {0, 1}.

Theorem 2 Under assumptions (A.1-2) and (H.1-6) we have that

b

n

n∑
j=1

(D̄·jn − D̄·n)2 − V ar(√nτ̂ | X,Z)
P→ 0, as n→∞, (2)

where D̄·jn = D·jn/b.

This variance estimator may be used together with the asymptotic normality of τ̂

(Abadie and Imbens, 2006) to construct confidence intervals for τ .

3.2 Block difference bootstrap

We want to allow for heterogeneity in the individual expected causal effects and thus

want to relax assumption (H.4-i), allowing instead for smoothly varying τ(Xin). For

such situations we need to resample block-differences in order to achieve asymptotically

correct inference. Let D′·jn = D·jn − D·j+2b,n, j = 1, . . . , n, denote block differences

separated by distance 2b. A resampling copy {D′∗·jn}nj=1 of {D′·jn}nj=1 is constructed by

randomly drawing n items with replacement from {D′·jn}nj=1. Let D̄′∗·n = 1
2bn

∑n
j=1D

′∗
·jn.

Further, we use below the following assumptions.
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(H.7) i) E(Yi(1) | Xi = xi, Zi = 1) is Lipschitz on X ,

ii) b(n)→∞ as n→∞ and b(n) = o(n2/3).

Assumptions (H.5) and (H.7-i) imply that τ(Xin) is Lipschitz on X . This may be

called a “smoothly varying causal effect assumption” and replaces below the asymptot-

ically homogeneous causal effect assumption (H.4-i).

Theorem 3 Assume (A.1-2), (H.1-3), (H.5) and (H.7). Then, as n→∞

L{
√

2bnD̄′∗·n|X,Z,Y}
wa(P )↔ L{√n(τ̂ − τ̄·n) | X,Z}.

The resampling distribution L{
√

2bnD̄′·n|X,Z,Y} can be estimated by generating

B bootstrap copies {
√

2bnD̄′∗g·n }Bg=1 and using the resulting empirical distribution. The

latter is used to construct a confidence interval for τ . Here again a subsampling variance

estimator is available without the need to bootstrap.

Theorem 4 Under assumptions (A.1-2), (H.1-3), and (H.5-7), we have

1

2bn

n∑
j=1

D′2·jn − V ar(
√
nτ̂ | X,Z)

P→ 0, as n→∞. (3)

Note that the marginal variance is obtained by adding 1/n
∑n

i=1(Yi− Ŷi(0)− τ̂)2 (i.e.,

an estimate of the variance of τin) to 1
2bn

∑n
j=1D

′2
·jn; see Abadie and Imbens (2006, Sec.

4.2).

4 Monte Carlo study

To illustrate the finite sample properties of the methods introduced in this paper we

simulate data from a range of different data generating mechanisms (DGM) and present

results on K = 1 nearest neighbour matching estimators. For each individual i, values

for the variables are simulated using a combination of the mechanisms described below,

where the covariate is generated as Xi ∼ U(0, 1).
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Table 1: Specification of the simulated data generating mechanisms.

mechanism n/N τ(x)a τ
DGM1.a (T.1,Y0.1,Y1.1) 1 c 2
DGM1.b (T.2,Y0.1,Y1.1) 0.1 c 2
DGM2.a (T.1,Y0.1,Y1.2) 1 c 2
DGM2.b (T.2,Y0.1,Y1.2) 0.1 c 2
DGM3.a (T.1,Y0.1,Y1.3) 1 nc 1.8b

DGM3.b (T.2,Y0.1,Y1.3) 0.1 nc 1.8b
ac: constant; nc: non-constant.

bApproximate values obtained via simulation.

Treatment assignment Z given X

(T.1) Pr(Zi = 1|Xi = xi) = (1 + exp(0.5− 2xi))
−1,

(T.2) Pr(Zi = 1|Xi = xi) = 0.25((1 + exp(0.5− 2xi)))
−1.

Outcome without treatment Outcome under treatment

(Y0.1) Yi(0)|Xi = xi ∼ N(−1 + 2xi, 1). (Y1.1) Yi(1) = Yi(0) + 2,
(Y1.2) Yi(1)|Xi = xi ∼ N(1 + 2xi, 1),
(Y1.3) Yi(1)|Xi = xi ∼ N(4xi, 1),

The DGMs used in our study are described in Table 1. Constant and different forms

of heterogeneity in the treatment effects are considered. Sample sizes considered are

n = 500 and 2000. For (T.1), data is simulated such that n = N and for (T.2) such that

N = 10n.

Due to the dependence in the EICEs and in order to achieve consistency, block size

b must increase as n increases (assumptions (H.4-ii) and (H7-ii)). The choice of b is, in

our particular case, simplified by the fact that we know the dependence structure for

a given sample. In particular, mn in assumption (H.2) is the maximum cluster size of

dependent EICEs. This information can be used to decide upon a block size b. Here we

investigate the choice b = cmn, where c is a tuning parameter. In the simulations, we

vary c within {1/4, 1/2, 3/4, 1, 3/2, 2, 5/2, 3, 4, 5, 7}.
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The results of the Monte Carlo experiments based on 10’000 replicates (with fixed

X and Z) are displayed in Tables 2-4. AI-C and AI-M stands for the conditional and

marginal variance estimators, respectively, introduced by Abadie and Imbens (2006,

Theorem 6 and 7), while BB and BDB stands for block bootstrap and block difference

bootstrap respectively. To save space, we display only the results for c = 3/2, which

yielded best empirical coverages over a wide range of situations. The complete results

may be obtained from the authors.

Both AI-M and the BB scheme fail for DGM3 which was expected. The former is

a marginal variance estimate (conditional and marginal variance differ only for DGM3)

while our Monte Carlo study is validating conditional inference (the replicates are con-

ditioned on X and Z fixed). Moreover, BB is valid under assumption (H.4-i), which

is violated under DGM3 since the average causal effect is a function of the covariate.

Abadie and Imbens (2006, Theorem 7) conditional variance estimator performs remark-

ably well in all situations considered, both in terms of variance (of
√
nτ̂) estimation and

empirical coverage of 90% and 95% confidence interval for τ . Finally, bootstrap is gener-

ally outperformed by AI-C, although the difference in results decreases with increasing

sample sizes.

For homogeneous causal effects (DGM1-2) the results are not sensitive to value of

c ≥ 3/2. This is not the case for DGM3 (results not shown). Although, c = 3/2 works

well for all considered situations, one may want to use data-driven choices of block size;

see, e.g., Hall, Horowitz, and Jing (1995), Sherman (1998) and Ekström and Sjöstedt-de

Luna (2004).

5 Conclusion

The main contribution of this paper is to present resampling schemes yielding valid in-

ference for K-nearest neighbour estimators of the average causal effect on the treated.

We distinguish two cases, “asymptotically homogeneous causal effects” and “smoothly

varying causal effects,” for which we need to introduce different resampling schemes. We

show that inference can be carried out by using a bootstrap estimator of the distribution
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Table 2: Results with design DGM1; see Table 1: Mean estimated variances are found in
column

√
ns2; estimators introduced in Abadie and Imbens (2006, Theorem 6 and 7) are

denoted AI-C (conditional variance) and AI-M (marginal variance); BB(c) and BDB(c)
denote resampling schemes using blocks of size cm, with m being the maximum cluster
size of dependent EICEs; “True” yields the variance estimated over the 10’000 replicates.
Coverages (cov) are obtained using the variance estimates and the normal approximation
(column ±1.64s and ±1.96s), as well as quantiles estimated with bootstrap (column
“quant”).

variance cov 90% cov 95%√
ns2 s.e. ±1.64s quant ±1.96s quant

n = N = 500
“True” 4.25
AI-C 4.25 0.04 0.898 0.946
AI-M 4.26 0.04 0.896 0.946
BB(3/2) 3.82 0.04 0.872 0.874 0.926 0.928
BDB(3/2) 3.96 0.04 0.876 0.879 0.927 0.929

n = N = 2000
“True” 4.03
AI-C 4.04 0.04 0.899 0.952
AI-M 4.04 0.04 0.900 0.951
BB(3/2) 3.76 0.04 0.886 0.886 0.939 0.940
BDB(3/2) 3.79 0.04 0.884 0.885 0.938 0.941

n = 500
N = 5000

“True” 2.25
AI-C 2.21 0.02 0.898 0.948
AI-M 2.22 0.02 0.899 0.948
BB(3/2) 2.15 0.02 0.891 0.892 0.941 0.944
BDB(3/2) 2.17 0.02 0.890 0.894 0.943 0.944

n = 2000
N = 20000
“True” 2.25
AI-C 2.23 0.02 0.896 0.947
AI-M 2.23 0.02 0.897 0.947
BB(3/2) 2.19 0.02 0.888 0.893 0.942 0.944
BDB(3/2) 2.20 0.02 0.892 0.893 0.942 0.943
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Table 3: Results with design DGM2 from Table 1: See also caption from Table 2.

variance cov 90% cov 95%√
n1s

2 s.e. ±1.64s quant ±1.96s quant
n = N = 500
“True” 4.31
AI-C 4.25 0.04 0.895 0.946 ,
AI-M 4.26 0.04 0.895 0.946
BB(3/2) 3.81 0.04 0.869 0.870 0.925 0.928
BDB(3/2) 3.96 0.04 0.872 0.875 0.926 0.930
n = N = 2000
“True” 4.02
AI-C 4.04 0.04 0.899 0.951
AI-M 4.04 0.04 0.899 0.952
BB(3/2) 3.75 0.04 0.881 0.883 0.939 0.940
BDB(3/2) 3.79 0.04 0.881 0.884 0.938 0.941
n = 500
N = 5000
“True” 2.26
AI-C 2.21 0.02 0.901 0.948
AI-M 2.22 0.02 0.901 0.948
BB(3/2) 2.14 0.02 0.892 0.895 0.941 0.942
BDB(3/2) 2.17 0.02 0.895 0.896 0.942 0.943
n = 2000
N = 20000
“True” 2.21
AI-C 2.23 0.02 0.897 0.953
AI-M 2.23 0.02 0.898 0.951
BB(3/2) 2.19 0.02 0.894 0.894 0.947 0.950
BDB(3/2) 2.20 0.02 0.892 0.894 0.948 0.950
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Table 4: Results with design DGM3 from Table 1: See also caption from Table 2.

variance cov 90% cov 95%√
n1s

2 s.e. ±1.64s quant ±1.96s quant
n = N = 500
“True” 4.31
AI-C 4.26 0.04 0.883 0.936
AI-M 4.57 0.05 0.895 0.947
BB(3/2) 8.85 0.09 0.970 0.971 0.986 0.988
BDB(3/2) 5.74 0.06 0.918 0.921 0.959 0.961
n = N = 2000
“True” 4.02
AI-C 4.04 0.04 0.889 0.944
AI-M 4.35 0.04 0.904 0.953
BB(3/2) 9.23 0.09 0.980 0.980 0.993 0.994
BDB(3/2) 4.31 0.04 0.897 0.897 0.945 0.950
n = 500
N = 5000
“True” 2.26
AI-C 2.22 0.02 0.871 0.931
AI-M 2.53 0.03 0.896 0.949
BB(3/2) 3.70 0.04 0.947 0.951 0.977 0.979
BDB(3/2) 2.33 0.02 0.875 0.877 0.933 0.937
n = 2000
N = 20000
“True” 2.21
AI-C 2.23 0.02 0.879 0.935
AI-M 2.54 0.03 0.901 0.952
BB(3/2) 4.64 0.05 0.974 0.9876 0.990 0.992
BDB(3/2) 2.30 0.02 0.880 0.885 0.938 0.939
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of the matching estimator. Alternatively, we also show how to obtain a subsampling esti-

mator for the variance of the matching estimator. While bootstrap provides conditional

inference (given X and Z), the subsampling variance (together with the normal approx-

imation) can be used to perform conditional or (with a correction) marginal inference.

Finally, we conjecture that a cluster resampling scheme similar to the one introduced

in Belyaev (2005) for a nearest neighbour classifier could also be used in our context

to obtain valid inference, because the EICEs can be organized into clusters which are

independent of each others. Such a resampling scheme is, however, difficult to study

theoretically since the number of clusters and their size are sample dependent. We plan

to pursue this line of research elsewhere.

A Appendix: Proofs

We first define the concept of weakly approaching sequences (introduced by Belyaev and

Sjöstedt-de Luna, 2000), which is a generalization of the well known concept of weak

convergence, but without the need to have a limiting distribution. Let Cb(R) denote all

continuous real-valued bounded functions on R. For two sequences of random variables

{Xn ∈ R}, {Yn ∈ R} we say that L(Xn) weakly approaches L(Yn) if, for each function

h ∈ Cb(R), E[h(Xn)] − E[h(Yn)] → 0 as n → ∞. We denote this type of convergence

by L(Xn)
wa↔ L(Yn). A similar definition exists for random distribution laws: Consider

the two sequences {Xn,Zn} and {Yn}, where the random elements Zn belong to some

space Zn, and Xn,Zn are defined on the same probability space. Then the sequence of

regular conditional distribution laws {L(Xn|Zn)}, given Zn, weakly approaches {L(Yn)}
in probability along {Zn} if E[h(Xn)|Zn] − E[h(Yn)]

P→ 0 asn → ∞. This type of

convergence is denoted by L(Xn|Zn)
wa(P )←→ L(Yn). For more general definitions and a

collection of properties, see Belyaev and Sjöstedt-de Luna (2000) and Sjöstedt-de Luna

(2005). The proofs of Theorems 1-4 rely to a large extent on results by Sjöstedt (2000)

for m-dependent sequences. We assume s = 1 in (A.1), which is a worst case scenario.

Proof of Theorem 1. Let Tin = E[Din|X,Z], δin = Tin − τin, and furthermore let
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T̄·jn =
∑j+b−1

i=j Tin/b, T̄·n =
∑n

i=1 Tin/n, δ̄·jn =
∑j+b−1

i=j δin/b, and δ̄·n =
∑n

i=1 δin/n. Then

b

n

n∑
j=1

(T̄·jn − T̄·n)2 =
b

n

n∑
j=1

(δ̄·jn − δ̄·n)2 +
b

n

n∑
j=1

(τ̄·jn − τ̄·n)2

+
2b

n

n∑
j=1

(δ̄·jn − δ̄·n)(τ̄·jn − τ̄·n).

Note that
1

n

n∑
j=1

(δ̄·jn − δ̄·n)2 =
1

n

n∑
j=1

δ̄2
·jn − δ̄2

·n.

Let µ0(X) = E[Y (0)|X,Z = 0]. Then

δin =
1

K

K∑
k=1

(µ0(Xin)− µ0(Xjk(i))).

It follows from Jensens inequality that∣∣∣∣∣
b∑

j=1

cj

∣∣∣∣∣
a

≤ ba−1

b∑
j=1

|cj|a. (4)

Therefore, by (4), (H.1) and (H.5) and from Lemma 2 in Abadie and Imbens (2006) we

have, for some positive constant c <∞, that

E[δ2
in] ≤ 1

K

K∑
k=1

E[|µ0(Xin)− µ0(Xjk(i))|2] ≤
c

K

K∑
k=1

E[|Xin −Xjk(i)|2] = O(N−2). (5)

Note that (A.1) implies that O(N−2) = O(n−2). Hence it follows, due to independence,

(4) and (5) that

E[δ̄2
·jn] ≤ O(n−2) and E[δ̄2

·n] ≤ O(n−2). (6)

Combining the above results and using Chebyshevs inequality and (H.4-ii) we thus have

that

P

(
b

n

n∑
j=1

(δ̄·jn − δ̄·n)2 > ε

)
≤ E

[
b

n

n∑
j=1

(δ̄·jn − δ̄·n)2

]
/ε ≤ O(bn−2) = O(

1

n1+r
).

Now
∞∑
n=1

P

(
b

n

n∑
j=1

(δ̄·jn − δ̄·n)2 > ε

)
=
∞∑
n=1

O(
1

n1+r
) <∞,
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which implies that
b

n

n∑
j=1

(δ̄·jn − δ̄·n)2 → 0 a.s., (7)

see, e.g., Shiryaev (1984, p. 252-253). From Cauchy-Schwartz inequality together with

(H.4) and (7) we have that

b

n

n∑
j=1

(δ̄·jn − δ̄·n)(τ̄·jn − τ̄·n) ≤

√√√√ b

n

n∑
j=1

(δ̄·jn − δ̄·n)2

√√√√ b

n

n∑
j=1

(τ̄·jn − τ̄·n)2 → 0 a.s.,

and thus
b

n

n∑
j=1

(T̄·jn − T̄·n)2 → 0 a.s. (8)

By (H.2), (H.3) and (8) we have from Theorem 2 in Sjöstedt (2000) that, for every ε > 0

and for all h(·) ∈ Cb(R),

P
(∣∣∣E[h(

√
bn(D̄∗·n − D̄·n))|Y,X,Z]− E[h(

√
n(D̄·n − T̄·n)|X,Z]

∣∣∣ > ε |X = x,Z = z
)

= o(1) a.s.

By dominated convergence it follows that

lim
n→∞

P
(∣∣∣E[h(

√
bn(D̄∗·n − D̄·n))|Y,X,Z]− E[h(

√
n(D̄·n − T̄·n)|X,Z]

∣∣∣ > ε
)

= 0,

for every ε > 0 and for all h(·) ∈ Cb(R). Hence,

L(
√
bn(D̄∗·n − D̄·n))|Y,X,Z)

wa(p)←→ L(
√
n(D̄·n − T̄·n)|X,Z) as n→∞.

We have that

L(
√
n(D̄·n − T̄·n)|X,Z) = L(

√
n(D̄·n − τ̄·n)|X,Z) + L(

√
nδ̄·n|X,Z).

By (6) and Chebyshevs inequality
√
nδ̄·n

P→ 0 as n→∞, and thus the result follows.

Proof of Theorem 2. Let Uin = Din − Tin. Then

b

n

n∑
j=1

(D̄·jn − D̄·n)2 =
b

n

n∑
j=1

(Ū·jn − Ū·n)2 +
b

n

n∑
j=1

(T̄·jn − T̄·n)2

+
2b

n

n∑
j=1

(Ū·jn − Ū·n)(T̄·jn − T̄·n),
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where Ū·jn =
∑j+b−1

i=j Uin/b, and Ū·n =
∑n

j=1 Ujn/n. From (H.2)-(H.4) and by the same

arguments as in the proof of Theorem 2 in Sjöstedt (2000) we have that for all ε > 0

P

(∣∣∣∣∣ bn
n∑
j=1

(Ū·jn − Ū·n)2 − V ar[√nτ̂ |X,Z]

∣∣∣∣∣ > ε |X = x,Z = z

)
= o(1) a.s.

Dominated convergence then implies that

b

n

n∑
j=1

(Ū·jn − Ū·n)2 − V ar[√nτ̂ |X,Z]
p→ 0 as n→∞. (9)

From equation (13) in Abadie and Imbens (2006) we have that

V ar[
√
nτ̂ |X,Z] =

1

n

n∑
i=1

σ2(Xin, Zin) +
1

n

N∑
i=n+1

Q2
K(i)

K2
σ2(Xin, Zin), (10)

where Q2
K(i) denotes the number of times individual i (in the reference group) is used

as a match given that K matches per individual (in the group of interest) are used. The

first term on the right hand side of (10) is O(1) by (H.6). From Lemma 3 in Abadie and

Imbens (2006) we have that (N/n)E[Q2
K(i)|Zin = 0] is bounded, which thus makes the

last term in (10) of magnitude OP (1), and therefore

V ar[
√
nτ̂ |X,Z] = Op(1). (11)

Hence,
b

n

n∑
j=1

(Ū·jn − Ū·n)2 = Op(1). (12)

By Cauchy-Schwartz inequality, (12) and (8)we have that

b

n

n∑
j=1

(Ū·jn − Ū·n)(T̄·jn − T̄·n) ≤

√√√√ b

n

n∑
j=1

(Ū·jn − Ū·n)2

√√√√ b

n

n∑
j=1

(T̄·jn − T̄·n)2 = op(1). (13)

Hence, combining (9), (H.4) and (13) yields the desired result.

Proof of Theorem 3. Let Rin = Din − δin such that Din = Rin + δin, and note

that E[Rin|X,Z] = τin. It then follows that

L(
√

2bnD′∗·n|X,Z,Y) = L(
√

2bnR′∗·n|X,Z,Y) + L(
√

2bnδ′∗·n|X,Z,Y),

20



where R′∗·n and δ′∗·n are constructed as D′∗·n, while replacing Din by Rin and δin, respectively.

Assumptions (H.2-3), (H.5) and (H.7-ii) imply that (7) holds and thus by Remark 3 in

Sjöstedt (2000) we have that

L(
√

2bnδ′∗·n|X,Z,Y)
wa(p)←→ L(

√
n(δ̄·n − E[δ̄·n|X,Z])|X,Z) = 0.

That

L(
√

2bnR′∗·n|X,Z,Y)
wa(p)←→ L(

√
n(τ̂ − τ̄·n)|X,Z) as n→∞,

follows by similar arguments as in the proof of Theorem 1, using Theorem 1 in Sjöstedt

(2000), and noting that by (H.5) and (H.7) τin is Lipschitz. Hence,

L(
√

2bnD′∗·n|X,Z,Y)
wa(p)←→ L(

√
n(τ̂ − τ̄·n)|X,Z) as n→∞.

Proof of Theorem 4. We have that

1

2bn

n∑
j=1

(D′·jn)2 =
1

2bn

n∑
j=1

(U ′·jn+T ′·jn)2 =
1

2bn

n∑
j=1

(U ′·jn)2+
1

2bn

n∑
j=1

(T ′·jn)2+
1

bn

n∑
j=1

U ′·jnT
′
·jn,

where U ′·jn = b(Ū·jn − Ū·j+2b,n) and T ′·jn = b(T̄·jn − T̄·j+2b,n). Since Tin = τin + δin, by

repeated use of (4) we have that

1

bn

n∑
j=1

(T ′·jn)2 ≤ 2b

n

n∑
j=1

(τ̄·jn − τ̄·i+2b,n)2 +
2b

n

n∑
j=1

(δ̄·jn − δ̄·i+2b,n)2

≤ 2

n

n∑
j=1

j+b−1∑
i=j

(τin − τi+2b,n)2 +
8b

n

n∑
j=1

δ̄2
·jn.

From (6) we have that E[b
∑n

j=1 δ̄
2
·jn/n] = O(b/n2) which tends to zero as n→∞, and

hence, b
∑n

j=1 δ̄
2
·jn/n

p→ 0 as n → ∞. Furthermore, (H.5) and (H.7) implies that τin is

Lipschitz, and thus, for some positive constant cL <∞,

1

n

n∑
j=1

j+b−1∑
i=j

E[(τin − τi+2b,n)2] ≤ c2L
n

n∑
j=1

j+b−1∑
i=j

E[(Xin −Xi+2b,n)2]
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≤ 2bc2L
n

n∑
j=1

j+b−1∑
i=j

2b−1∑
k=0

E[(Xi+k,n −Xi+k+1,n)2] = O(b3/n2),

by (4) and Lemma 2 of Abadie and Imbens (2006). But O(b3/n2) → 0 as n → ∞, by

(H.7-ii). Hence,

1

2bn

n∑
j=1

(T ′·jn)2 p→ 0 as n→∞. (14)

(H.2-3), (H.5) and (H.7) together with Lemma 3 in Sjöstedt (2000) ensures that, for

any ε > 0

P

(∣∣∣∣∣ 1

2bn

n∑
j=1

(U ′·jn)2 − V ar[√nτ̂ |X,Z]

∣∣∣∣∣ > ε | X = x,Z = z

)
= o(1) a.s.

By dominated convergence we thus have that

1

2bn

n∑
j=1

(U ′·jn)2 − V ar[√nτ̂ |X,Z]
p→ 0 as n→∞. (15)

From similar arguments as for (11) and (12) it follows that
∑n

j=1(U
′
·jn)2/(2bn) = Op(1).

Now, by the Cauchy-Schwartz inequality, (14) and (15)

1

bn

n∑
j=1

U ′·jnT
′
·jn ≤

√√√√ 1

2bn

n∑
j=1

(U ′·jn)2

√√√√ 1

2bn

n∑
j=1

(T ′·jn)2 = op(1).

Hence, the desired result follows.
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