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heterogeneity, exist. In the growing literate on multiple spell multiple states duration models, 
or multistate models, modeling this issue is only at its infant phase. Ignoring unobserved 
heteogeneity can, however, produce incorrect results. This paper presents how unobserved 
heterogeneity can be incorporated into multistate models, with an emphasis on semi-Markov 
multistate models with a mixed proportional hazard structure. First, the aspects of frailty 
modeling in univariate (proportional hazard, Cox) duration models are addressed and some 
important models with unobserved heterogeneity are discussed. Second, the domain is 
extended to modeling of parallel/clustered multivariate duration data with unobserved 
heterogeneity. The implications of choosing shared or correlated unobserved heterogeneity is 
highlighted. The relevant differences with recurrent events data is covered next. They include 
the choice of the time scale and risk set which both have important implications for the way 
unobserved heterogeneity influence the model. Multistate duration models can have both 
parallel and recurrent events. Incorporating unobserved heterogeneity in multistate models, 
therefore, brings all the previously addressed issues together. Although some estimation 
procedures are covered the emphasis is on conceptual issues. The importance of including 
unobserved heterogeneity in multistate duration models is illustrated with data on labour 
market and migration dynamics of recent immigrants to The Netherlands. 
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1 Introduction

Demographers are increasingly interested in understanding the life histories or the individual life course
with a focus on events, their sequence, ordering and transitions that people make from one state of
life to another. A multistate model describes the transitions people experience as life unfolds. When
people may change among a set of multiple states and/or may experience repeated changes through
time a multistate event history model (also known as multistate lifetable and increment-decrement
life tables) is a proper choice. Typical examples of such processes in demography include migration,
Rogers (1975, 1995), changes in marital status and other life course processes, Courgeau and Lelièvre
(1992) and (Willekens 1999). Many other demographic applications of the multistate models exist.
Multistate models are also common in medicine and economics. In medicine (biostatistics), the states
can describe conditions like healthy, diseased and death. For an overview of the use of multistate
models in biostatistics see a.o. Commenges (1999), Hougaard (2000), and Putter et al. (2007)).
In economics the main application of multistate models has been labour force dynamics, see Flinn
and Heckman (1983), Van den Berg (2001) and, Fougère and Kamionka (2008). Poverty dynamics
and recidivism are other important applications of multistate models. The methodology of multistate
models is discussed in several books, the most important are Andersen et al. (1993), Hougaard (2000),
and Aalen et al. (2008).

The basic parameters of a multistate model are the transition hazard rates or intensities. These
intensities may depend on the time spend in a particular state (so called semi-Markov models) and
on observed characteristics. Many multistate models assume that the intensities are homogeneous
conditional on these observed factors. Unfortunately, it is hardly ever possible to include all relevant
factors, either because the researcher does not know all the relevant factors or because it is not possible
to measure all the relevant factors. Ignoring such unobserved heterogeneity or frailty may have a huge
impact on inference in multistate models. For univariate event history data, also called survival data
or duration data, a large literature on models with frailty exits, e.g. Van den Berg (2001), Duchateau
and Janssen (2008) and Wienke (2011). In the multistate literature the issue of including frailty is
only at its infant phase.

The purpose of this article is to provide an overview of frailty modeling for multistate event history
models. We assume that the frailty, just as the effect of observed characteristics, enters the intensity
multiplicatively. Thus, we only consider the Cox model in continuous time with frailty, in econometrics
called the Mixed Proportional Hazard model, and its multivariate extensions.

The outline of the paper is as follows. In Section 2 we start with a discussion on the issues involved
with unobserved heterogeneity in univariate survival models. Multistate models extend the univariate
survival models in two dimensions: (1) People may exit to different competing states or several people
that may experience an event may be grouped in clusters. In both cases we have parallel events.
(2) People may experience multiple spells of the same type or recurrent events. In both dimensions
unobserved heterogeneity can be independent, shared or correlated. In Section 3 we discuss these
issues separately for parallel and for recurrent event data. In Section 4 unobserved heterogeneity in a
multistate setting are addressed, combining the knowledge of the preceding section on incorporating
frailties in models for parallel data and in models for recurrent data. In Section 5 we illustrate the
importance of incorporating frailty in a semi-Markov multistate model with data on labour market and
migration dynamics of recent immigrants to The Netherlands. In Section 6 some important aspects of
multistate frailty modeling not yet covered are briefly discussed. Section 7 summarizes the findings.

2 Unobserved heterogeneity in univariate duration models

The most simple multistate model is a univariate survival model, which considers the transition from
‘alive’ to ‘dead’. The observation for a given individual will in this case consist of a random variable
T , representing the time from a given origin (time 0) to the occurrence of the event ‘death’. The
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distribution of T may be characterized by the survival function S(t) = Pr(T > t). We can also
characterize the distribution of T by its hazard rate

λ(t) =
∂ ln

(

S(t)
)

∂t
= lim

∆t→0

Pr
(

t ≤ T < t+∆t|T ≥ t
)

∆t
(1)

Thus, λ(·) is the transition intensity from state ‘alive’ to state ‘dead’, i.e. the instantaneous probability
per time unit of going from ‘alive’ to ‘dead’. The hazard rate provides a full characterization of the
distribution of T , just like the distribution function, the survival function, and the density function.

A typical feature of survival analysis is the inability to observe complete durations. A common
problem is that by the end of the observation period some individuals are still alive. This kind of
incomplete observation is known as right-censoring. The hazard function is usually the focal point
of analysis. A major advantage of using the hazard function as a basic building block is that it is
invariant to (independent) censoring. The most common model for the hazard rate is the Cox or
proportional hazard (PH) model, with hazard rate

λ(t|X) = λ0(t) exp(β
′X), (2)

where λ0(t) the called the baseline hazard or duration dependence and it is a function of t alone. This
permits coefficients β to be easily interpretable. Suppose that the jth regressor xj increases by one
unit and the other regressors remain unchanged, then λ(t|xnew) = exp(βj)λ(t|x). Thus, the elasticity
of the the hazard, ∂ ln

(

λ(t|x)
)

/∂xj is equal to βj .

In a Mixed Proportional Hazard (MPH) model it is assumed that all unmeasured factors and
measurement error can be captured in a multiplicative random term V . The hazard rate becomes

λ(t|X,V ) = V λ0(t) exp(β
′X), (3)

This model was independently developed by Vaupel et al. (1979) and by Lancaster (1979). The
(random) frailty V > 0 is time-independent and independent of the observed characteristics x.

An important feature of MPH model is that the unconditional survival function has the Laplace
transform, L

S(t|X) = EV

[

e−vΛ(t,X)
]

= L
[

Λ(t,X)
]

(4)

with Λ(t,X) =
∫ t
0 λ0(s)e

β′X ds, the integrated hazard. The derivatives of the Laplace transform
can be used to obtain general results about unconditional survival distributions. For example, the
unconditional hazard function can be characterized by the Laplace transform of the frailty distribution
and their derivatives. This is helpful in clarifying that the impact of frailty in event history models
differs substantially from the impact of frailty in linear regression models. In ordinary regression
models unobserved heterogeneity leads to more variability of the response compared to the case when
the variables are included. In event history data, however, the increased variability implies a change
in hazard function. This is clear when we realize that in an MPH model the observed hazard (with
the frailty distribution integrated out using the Laplace transform) is

λ(t|X) = λ0(t) exp(β
′X)E

(

V
∣

∣T > t,X
)

(5)

with the last term both changing in t and in x. A consequence of this is that ignoring the unobserved
heterogeneity (i.e. if one adopts a PH model whereas the data are generated by an MPH model) would
make the duration dependence more negative

∂ lnλ(t|X)

∂t
=

λ
′

0(t)

λ0(t)
−

Var(V
∣

∣T > t,X
)

E
(

V
∣

∣T > t,X
) λ0(t) exp(β

′X) (6)
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and the effect of covariates biased towards zero

∂ lnλ(t|X)

∂x
= β − β

Var(V
∣

∣T > t,X
)

E
(

V
∣

∣T > t,X
)

∫ t

0
λ0(s) ds (7)

The intuition behind this is that individuals with the highest frailty value v (and thus the highest
hazard) on average leave the alive state the quickest, so that individuals who are still alive at high
durations tend to have lower values of v and thus lower hazards. This sorting phenomenon occurs in
all survival models with unobserved heterogeneity, and is not restricted to the MPH model.

We discuss briefly the most commonly used frailty distributions and its implication for the hazard,
the survival and other properties of the duration distribution. We focus on the Gamma frailty distri-
bution, the log-normal frailty distribution and, the discrete frailty distribution. For more details on
these and other frailty distributions, like the Power Variance Function family of frailty distributions
that includes the important Inverse Gaussian and Stable frailty distributions, see Hougaard (2000)
and Wienke (2011). Often the distribution of V is standardized at E(V ) = 1 (except for positive
Stable model). The variance σ2 = Var(V ) is a measure of heterogeneity.

2.1 Gamma frailty model

The Gamma distribution is the most widely applied frailty distribution. From an analytical and
computational view it is a very convenient distribution. The closed form expressions for the uncon-
ditional survival and hazard are easy to derive. The density of the Gamma distribution Γ(k, θ) is
f(v) = 1

Γ(k)θ
kvk−1e−θv with E(V ) = k

θ and Var(V ) = k
θ2
. When k = 1 it is identical to the exponential

distribution. A common normalization is k = θ, such that E(V ) = 1 and σ2
v = 1

θ . The unconditional
survival (with the frailty integrated out) is

S(t|X) =
[

1 + σ2Λ(t,X)
]

−1/σ2
v

and the unconditional hazard

λ(t|X) =
λ0(t) exp(β

′X)

1 + σ2
vΛ(t,X)

The frailty distribution among survivors is still Gamma distributed but with expectation and variance

E(V |T > t,X) =
1

1 + σ2
vΛ(t,X)

< 1 Var(V |T > t,X) =
σ2
v

[

1 + σ2
vΛ(t,X)

]2 → 0

Note that nearly all arguments in favour of the gamma distribution are based on mathematical and
computational aspects. However, Abbring and van den Berg (2007) rationalise the preference for the
gamma distribution, by showing that, in a large class of univariate frailty distributions, the distribution
of the frailty among the survivors converges to a gamma distribution as time goes to infinity under
mild regularity conditions.

2.2 Log-normal frailty model

The link with random effects or mixed models makes the log-normal model very attractive. A disad-
vantage is the lack of closed form expressions. But with the increasing computer power the numerical
solution of the integrals involved is not an issue anymore. In the log-normal frailty model the frailty
V = eW with W ∼ N (m, s2), then we have

E(V ) = em+
s2

2 σ2 = Var(V ) = e2m+s2(es
2

− 1) (8)
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In the literature two types of constraints on the model are considered. Either impose that the
frailty has expectation one, which implies that m = −1

2s
2 and Var(V ) = (es

2

− 1), or impose m = 0,
which implies that the logarithm of the frailty has expectation zero. The latter implies that mixed
models software can be used.

2.3 Discrete frailty model

A simple explanation for univariate frailty models is to assume that the population consists of two
(or more) latent sub populations (latent classes), which are homogeneous within. For example we
may have (1) a high risk subpopulation that leaves fast, and (2) a low risk subpopulation that leaves
slowly, but the class identification for each individual is unknown. Let us assume that the proportion
of individuals belonging to sub-population 1 is p, then

V =

{

v1 > 1 Pr(V = v1) = p

v2 < 1 Pr(V = v2) = 1− p
(9)

Usually a transformed version is used with vj = eαj , securing that the frailty is non-negative and,
p = eγ/(1 + eγ), securing that the probability is between zero and one. The expectation and variance

of the discrete frailty are E(V ) = pv1+(1−p)v2 and Var(V ) = p(1−p)
(

v1−v2
)2

and the unconditional
survival is (using the Laplace transform)

S(t|X) = p exp
(

−v1Λ(t,X)
)

+ (1− p) exp
(

−v2Λ(t,X)
)

(10)

and the unconditional hazard

λ(t|X) = λ0(t) exp(β
′X)

pv1 exp
(

−v1Λ(t,X)
)

+ (1− p)v2 exp
(

−v2Λ(t,X)
)

p exp
(

−v1Λ(t,X)
)

+ (1− p) exp
(

−v2Λ(t,X)
) (11)

Note that the proportion of individuals in subpopulation 1 decline over time as

p(t) = Pr(type 1|T > t)

= p
exp

(

−v1Λ(t,X)
)

p exp
(

−v1Λ(t,X)
)

+ (1− p) exp
(

−v2Λ(t,X)
) < p (12)

Sometimes the restriction E(V ) = 1 is imposed then v2 = (1−pv1)/(1−p). The discrete frailty model
is a finite mixture model. In econometrics such models are the most commonly applied frailty models.
The estimation of the finite mixture model may be carried out under the assumption of either known
or unknown number of mixtures. Heckman and Singer (1984c) derive the nonparametric maximum
likelihood estimation for the latter case. The two-point mixture model was used by Vaupel and Yashin
(1985) to discuss ideas of heterogeneity and selection in more detail. Schumacher et al. (1987) use
this frailty distribution to model heterogeneity in clinical trails. A special case of a discrete frailty
distribution is when a subpopulation will never experience the event. This so-called mover-stayer,
also called cure model or split population model, includes long-term survivors who never experience
the event, see a.o. Boag (1949), Schmidt and Witte (1989) and Maller and Zhou (1996). Finally, the
discrete frailty model is also related to latent class models.

3 Unobserved heterogeneity in multivariate duration models

There are two typical ways multivariate event history data can arise. The first situation is parallel
duration data, also termed clustered duration data, in which several individuals that may experience
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an event are grouped in a cluster. Examples include twin and family studies, but also simultaneous
events of one individual. A typical clustered data example is the competing risks model of different
causes of death. The second situation is recurrent/repeated events which arises when several events of
the same type are registered for each individual, for instance child birth to a woman. In univariate
event history models frailty captures the possible heterogeneity due to unobserved covariates. In a
multivariate setting unobserved heterogeneity can also be used to model associations between event
times.

A key point for an MPH model is conditional independence, that is conditional on the frailty v the
survival times are independent. In our multivariate setting we continue to assume the MPH structure
and the conditional independence. In principle the frailty might be independent for each event time.
Then the analysis does not differ from the analysis in a univariate setting. Here we consider the more
interesting cases of (1) shared frailty and (2) correlated frailty. First we focus on parallel data.

3.1 Shared frailty

The shared frailty approach assumes that within a cluster the value of the frailty term is constant
over time and common to all individuals in the cluster. This common term, thus, creates dependence
between event times within a cluster. This dependence is always positive. The shared frailty model,
first introduced by Clayton (1978), dominates the literature on multivariate survival models, see a.o.
Hougaard (2000), Therneau and Grambsch (2000) and Duchateau and Janssen (2008).

Hence frailty measures the specific risk level for a cluster and given V the event times are indepen-
dent. Consider n event times T1, . . . , Tn related to one cluster with observed characteristics Xij and
frailty V . Note that the number of members in a cluster can vary between the clusters. We assume
an MPH structure. Then, conditional on frailty V , the joint survival in that cluster is

S(tj , . . . , tjn|X,V ) = Pr
(

T1 > t1, . . . , Tn > tn

)

= exp
(

−V

n
∑

i=1

Λ(ti,Xi)
)

(13)

The joint unconditional survival is obtained by integrating out V

S(t1, . . . , tn|X) = E
[

exp
(

−V

n
∑

i=1

Λ(ti,Xi)
)]

= L
(

n
∑

i=1

Λ(ti,Xi)
)

(14)

Thus, for a shared frailty model the multivariate survival function is also expressed as the Laplace
transform of the frailty distribution, now evaluated at the sum of the integrated hazard functions.
Similar to the univariate case many possible alternative choices for the frailty distribution in the
shared frailty model exist. Since the unconditional survival can still be expressed in the Laplace form
(compare equation (14) and equation (4)) the hazard and other properties of the (unconditional) joint
event times for the shared frailty case are related to the event time distribution in the univariate case
with the same frailty distribution.

Despite the similarity between individual frailty and shared frailty conceptually they are different.
In the univariate case the frailty variance σ2 is a measure of unobserved heterogeneity, while in a
shared frailty multivariate case the frailty variance is a measure of correlation between event times
within a cluster. Event times from different clusters are considered to be independent.

Similar to the univariate case is that the most popular choice is the Gamma frailty distribution. If V
follows Gamma distribution with mean 1 and variance σ2, then the unconditional joint survival is

S(t1, . . . , tn|X) =
(

1 + σ2
n
∑

i=1

Λ(ti,Xi)
)

−
1
σ2

=
(

n
∑

i=1

S(ti|Xi)
−σ2

− (n− 1)
)

−
1
σ2

(15)

6



The correlations between event history times of members of the same cluster are always the same,
implying a symmetric situation, and these correlations are always positive. This makes the model less
useful for modeling correlations in family studies with groups of relatives.

After the Gamma distribution the log-normal distribution is the most important frailty distribu-
tion. Normally distributed random effects allow for more flexibility, especially in modeling multivariate
correlation structures, see Section 3.2. A drawback of the log-normal frailty distribution is the lack
of analytical solutions to the hazard and survival functions, see Section 2.2. The development of
user-friendly programs that incorporate integral approximation techniques and/or Bayesian Markov
Chain Monte Carlo procedure in connection with the increasing computer power has reduced the
computational burden and the flexibility of normal distributed frailties outweighs its computational
disadvantages.

The shared discrete frailty model also allows for more flexible correlation structures. In contrast to
a log-normal distribution a discrete frailty distribution has analytical solutions to the (unconditional)
hazard, survival and density functions. For example, for a two-point discrete shared frailty that takes
the values v1 and v2 with Pr(V = v1) = p, the unconditional survival within a cluster is

S(t1, . . . , tn|X) = p exp
(

−v1

n
∑

i=1

Λ(ti,X)
)

+ (1− p) exp
(

−v2

n
∑

i=1

Λ(ti,X)
)

(16)

Many of the PVF family of frailty distributions also have an analytical solution in the shared frailty
situation. Hougaard (2000) discuss the shared PVF frailty model and its special cases in detail.

The shared frailty model has some important limitations (see Xue and Brookmeyer (1996) for an
extensive discussion). First, the assumption that the frailty is the same for all members in the cluster
is often inappropriate. For example, in a family study it hard to defend that all relatives in a family
share all their unobserved risk factors. Second, shared frailty models only induce positive association
within clusters. However, in some situations the event times for individuals within the same cluster are
negatively associated. For example, the reduction in the risk of dying from one disease may increase
the risk of dying from another disease. Third, the dependence between survival times within a cluster
is based on marginal distributions of event times. This leads to a symmetric relationship between all
possible pairs within a cluster. It also limits the interpretation of the variance of shared frailty model
as a measure of association between event times within a cluster and not as a measure of unobserved
heterogeneity. Correlated frailty models allow for more flexibility.

3.2 Correlated frailty

The correlated frailty model combines both the shared frailty approach and the univariate frailty
model. In the correlated frailty model the frailties of individuals within a cluster are correlated but
not necessarily shared. It enables the inclusion of additional correlation parameters and associations
are no longer forced to be the same for all pairs of individuals within a cluster. We consider three
different ways of generating correlated frailties: (i) additive frailty in which the frailty is the sum of
a cluster-specific and an individual-specific component; (ii) nested frailty, in which the frailty is the
multiplication of a cluster-specific and an individual-specific component; and (iii) joint modeling of
the member specific frailties within a cluster. In all three cases the conditional survival still has an
MPH structure.

S(t1, . . . , tn|V1, . . . , Vn,X) =
n
∏

j=1

exp
(

−VjΛj(tj,Xj)
)

(17)

where V1, . . . , Vn are n correlated frailties.
The additive frailty model based on a correlated gamma distribution was introduced by Yashin

et al. (1995). The model has a very convenient representation of the survival function in closed form.
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Consider a bivariate model clustered event history model with additive gamma frailty. Each frailty is
constructed by adding two components, one common to both, W0 and one individual specific:

V1 = σ2
1(W0 +W1) (18)

V2 = σ2
2(W0 +W2) (19)

with W0 ∼ Γ(1, 1
k0
), W1 ∼ Γ(1, 1

k1
), and W2 ∼ Γ(1, 1

k2
), three gamma distributed with mean 1 and

variance 1/kj . This implies that the two frailties are also gamma distributed with V1 ∼ Γ(1, 1
k0+k1

)

and V2 ∼ Γ(1, 1
k0+k2

). Thus, both frailties have mean one and variance

Var(V1) = σ2
1 = (k0 + k1)

−1 (20)

Var(V2) = σ2
2 = (k0 + k2)

−1 (21)

The correlation between the frailties implied by this model is

ρ =
k0

√

(k0 + k1)(k0 + k2)
(22)

The unconditional joint survival function is

S(t1, t2|X1,X2) =
S1(t1|X1)

1−
σ1

σ2
ρ
S2(t2|X2)

1−
σ2

σ1
ρ

[

S1(t1|X1)−σ2

1 + S2(t2|X2)−σ2

2 − 1
]

ρ
σ1σ2

(23)

with Sj(tj|Xj) =
(

1+σ2
jΛj(tj |Xj)

)

−1/σ2

j An important limitation of the additive gamma frailty model
is that the correlation between frailties is for σ1 6= σ2 always less than one

0 ≤ ρ ≤ min

[

(k0 + k1)

(k0 + k2)
,
(k0 + k2)

(k0 + k1)

]

< 1 (24)

Hence, when the values of σ1 and σ2 differ a lot the correlation cannot be very large. Another
disadvantage of the additive correlated gamma frailty is that the model becomes very complex with
increasing cluster size.

One solution to this problem is to assume an additive discrete correlated frailty. This distribution
does not restrict the correlation between two members of a cluster. For a two-point additive discrete
frailty we have V1 = W0 +W1 and V2 = W0 +W2 where for j = 0, 1, 2 Wj = wj1 with probability pj
and Wj = wj2 with probability 1− pj. Thus,

V1 =























v11 = w01 + w11 Pr(V1 = v11) = p11 = p0p1

v12 = w01 + w12 Pr(V1 = v12) = p12 = p0(1− p1)

v13 = w02 + w11 Pr(V1 = v13) = p13 = (1− p0)p1

v14 = w02 + w12 Pr(V1 = v14) = p14 = (1− p0)(1 − p1)

(25)

and similar for V2. The unconditional joint survival for the additive discrete frailty is

S(t1, t2|X1,X2) =

4
∑

k=1

4
∑

l=1

p1kp2l exp
(

−v1kΛ1(t1,X1)
)

exp
(

−v2lΛ2(t2,X2)
)

(26)

A disadvantage of the additive discrete correlated frailty distribution is that the number of parameters
grows very fast with the number of members in a cluster and with the number of support points. If the
clusters have n members and we use k support points the additive correlated frailty adds (n+1)(2k−1)
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more parameters to estimate. For other frailty distributions the additive correlated frailty model leads
to very complex survival and hazard functions.

The nested frailty model assumes that the clustering of the event times occurs at multiple levels. In
family studies where we have a hierarchical clustering, by family and individual, this models seems
appropriate. Sastry (1997a) suggested a nested frailty model with two hierarchical levels in which the
frailty of member j in a particular cluster is Vj = W0 ·Wj with W0 and Wj are mutually independent
unit-mean gamma distributed random variables with variance η0 and η1. Thus, within each cluster the
frailty is composed of a cluster-specific component common to all cluster members times an individual-
specific component that are mutually independent. The unconditional survival for this nested gamma
frailty has a complicated form, but estimation is possible using an EM-algorithm (Sastry 1997a; Sastry
1997b), a Bayesian procedure (Manda 2001) or penalized likelihood methods (Rondeau et al. 2003).

It is also possible to base the nested frailty model on discrete frailty distributions. For a two-point
nested discrete frailty we have Vj = W0 ·Wj where for j = 0, 1, . . . , n Wj = wj1 with probability pj and
Wj = wj2 with probability 1 − pj . The unconditional survival for the bivariate nested frailty model
with two-point discrete is very similar to (26) and therefore not presented.

A very flexible way to allow for correlated frailties is by modeling the joint frailty distribution directly.
The correlated log-normal frailty model, first applied by Xue and Brookmeyer (1996), is especially
useful in modeling dependence structures. The distribution can be obtained by assuming a multivariate
normal distribution on the logarithm of the frailty vector, which is in the bivariate case,

(

lnV1

lnV2

)

∼ N

((

0
0

)

,

(

s21 rs1s2
rs1s2 s22

))

(27)

Similar to the univariate log-normal frailty model we have EVj = e0.5s
2

j and Var(Vj) = σ2
j = es

2

j

(

es
2

j−1
)

.
The correlation between the two frailties is

ρ = Corr(V1, V2) =
ers1s2 − 1

√

es
2

1 − 1
√

es
2

2 − 1
(28)

It is rather easy to generalize the correlated log-normal frailty model to more than two correlated
frailties. However, as already mentioned in Section 2.2, the log-normal distribution does not have
analytical solutions for the unconditional joint survival and hazards and the number of integrals to
evaluate for calculating them increases with the dimension of the multivariate normal distribution.

It is also possible to use a joint discrete frailty distribution. If the cluster has only two members
and we use a two-point discrete frailty the joint frailty distribution is

Pr(V1 = v11, V2 = v21) = p1

Pr(V1 = v11, V2 = v22) = p2

Pr(V1 = v12, V2 = v21) = p3

Pr(V1 = v12, V2 = v22) = p4 = 1− p1 − p2 − p3

Thus, we need to estimate seven additional parameters. When the number of support points and the
number of members in a cluster increase the number of parameters to estimate, which is (2nk − 1),
increases very fast. A one-factor loading specification has been a popular solution to reduce the
number of parameters. It assumes that there is a univariate random variable W such that

Vj = exp(αjW ) (29)

It is straightforward to generalize this specification to higher dimensions of the random variable W . If
W is two-dimensional then we obtain a two-factor loading specification, i.e. Vj = exp(αj1W1+αj2W2).
Note that if the distribution of W is (multivariate) normal we obtain the log-normal (correlated)
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frailty. Thus, the factor loading approach can also be used to reduce the computational burden of
the correlated log-normal frailty, see for example Bonnal et al. (1997). A common approach for a
discrete frailty is to assume that the distribution(s) of W are mutually independent on (−1, 1) with
pk = Pr(Wk = 1). If A is the matrix of factor loading then the variance-covariance matrix of the
log-frailty is given by Var

(

ln(V )
)

= AVar(W )A′ with Var(Wk) = 4pk(1− pk). The main disadvantage
of the discrete frailty one-factor loading specification is that it imposes a perfect positive correlation
between the frailties. The two-factor loading specification (or a factor loading specification of higher
dimension) does not impose such a strong correlation. It is also possible to use a factor loading
model based on other distributional assumptions for W . Note that the computational burden is less
a problem in the case of discrete frailties.

3.3 Unobserved heterogeneity in recurrent events models

So far we have only considered parallel events, that includes the case of multiple simultaneous events
for one individual. It is also possible that a single individual can experience the same event several
times. Reviews of models for such recurrent event data appeared in Cook and Lawless (2007). An
example of recurrent event data are the fertility histories of women. There is a state corresponding to
the number of children a woman has given birth to at any time (or age). For each birth she moves to
the next state. Recurrent data can be represented in different ways depending on the timescale that
is used; gap time or total time (see e.g. Kelly and Lim (2000)). Related to the choice of the time
scale are the risk-interval and the risk set. The risk interval corresponds to the time interval where
an individual is at risk of experiencing the event. The risk set is the collection of individuals which
are at risk at a certain point in time. In the gap-time representation, time at risk starts at 0 after
an event ends at the time of the next event. Hence, time is reset to zero after each event. In the
total-time formulation, the length of the time at risk is the same as in the gap-time representation.
The difference is that the starting time of the at-risk period is not reset to zero after an event but it
is put equal to the actual time since the beginning of the observation period.

From the risk intervals for each individual we can derive the risk sets for each occurrence. The risk
set contains all the individuals who are at risk for a particular event. In survival data, the risk set at
a particular time typically consists of all the individuals that have entered the study and that are still
observed at that time. For recurrent events we can distinguish between restricted and unrestricted risk
sets, depending on whether we view each occurrence as a separate event conditional on the previous
occurrence or as a sequence of similar events. In the latter case we use unrestricted risk sets which allow
that all individuals’ risk intervals may contribute to the risk set for any given occurrence, regardless of
the number of occurrences experienced by each individual. This is the recurrent events analog of the
risk sets for survival data. That is, at each point in time the risk set for any occurrence at that time
consists of all individuals currently observed. If the order of the events is considered to be important
a restricted risk set is used in which contributions to the jth risk set is restricted to include only the
jth occurrence risk intervals. Thus, an individual who has experienced the event 3 times after 10
months is with an unrestricted risk set in the risk set for any occurrence at month 10 of its own and
the other individuals including the first and second occurrence of any other individual, while with a
restricted risk set it is only in the risk set for the occurrences at month 10 of those individuals who
have experienced the event exactly 3 times before 10 months.

On using the risk intervals and risk sets, we can formulate a stochastic counting process that
describes the number of occurrences of the event. Despite that the counting process formulation has
increasingly become the standard framework for analyzing event history data, especially in biostatis-
tics, and it facilitates the analysis we only use the traditional approach. We refer the reader interested
in counting process theory to Andersen et al. (1993) or Aalen et al. (2008). Less technical books on
counting processes include Klein and Moeschberger (2003) and Therneau and Grambsch (2000).

Based on the choice of the risk set the three most common approaches to recurrent events are the
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independent increment model of Andersen and Gill (1982), the marginal model of Wei et al. (1989),
and the conditional model of Prentice et al. (1981), see Kelly and Lim (2000) for a comparison. For
the marginal and conditional models, each occurrence of the event is modeled as a separate event,
while the independent increment model assumes that all events of one individual are identical. The
independent increments model is usually defined in total time, but it can also be formulated in gap
time. This model assumes that the gap times are generated from a renewal process. In essence, the
marginal model treats the consecutive event times as if they come from an unordered competing risk
setting, with the number of occurrences at the number of competing events. The marginal model can
only be formulated in total time. The conditional model assumes that an individual cannot be at risk
for the second occurrence of an event until the event has occurred for the first time.

Nielsen et al. (1992) discuss how to include unobserved heterogeneity in the independent incre-
ments model. In Chapter 9 of his seminal book Hougaard (2000) also discusses shared (over time)
frailty models for recurrent events. Frailty models specially designed for recurrence data are consid-
ered in detail in Oakes (1992), Duchateau et al. (2003) and Bijwaard et al. (2006). For recurrent
events the conditional joint survival is

S(t1, . . . , tn|X,V1, . . . , Vk) =

n
∏

j=1

exp
(

−VkΛk(tk,Xk)
)

(30)

which is very similar to the conditional joint survival for parallel data. Therefore, we only mention the
relevant differences. For recurrent events the frailty variation is not a group variation, but a variation
between individuals, and the variation described by the hazard function is not an individual variation
but a variation within individuals. The interpretation of the frailty variance also depends on the time
scale and risk sets used. For example, in a gap time recurrent events model with restricted risk sets
the risk set decreases at each time point, just as for parallel data, whereas in a total time recurrent
events model with unrestricted risk sets, the risk set is constant over the whole observation period.
As a consequence in the former case it is crucial to observe the event times, whereas in the latter case
the frailty approach leads to variation in the number of events, even though the observation period is
the same for all individuals. If we are only interested in the number of events instead of when these
events occur count models, like the Poisson model and negative binomial model, are more appropriate.
Poisson model with random effect are then the obvious extension for including frailties. We refer to
Cook and Lawless (2007) for more details on Poisson models. Here, we assume the event timing is
important.

Thus, for recurrent events we can choose whether we have independent frailties, shared frailties or
correlated frailties. If we assume independent frailties, that is for each individual and each occurrence
the random frailty is independent, we are basically back to the univariate case in Section 2. The
shared frailty (individual specific) recurrent events is statistically equal to the shared frailty models
for parallel data, see Section 3. But the frailty variance now leads to additional variation between
individuals instead of within group correlation. All the mentioned frailty distribution in Section 2 and
Section 3 can be used. The choice of the time scale and the risk set also influence the interpretation
of the frailty variance. Duchateau et al. (2003) address this issue and conclude that the choice of the
timescale mainly depends on the question you want to answer.

The arguments for correlated frailty models also apply for recurrent events. An extension of the
correlated frailty model that is particularly relevant for recurrent events is time-dependent frailty
models. Often re-occurrence times close to each other are highly correlated, while times further apart
are less correlated. To model such kind of serial dependence Yau and McGilchrist (1998) define a
dynamic frailty model that assumes that the frailties on subsequent intervals follow an autocorrelation
process of order one.
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Figure 1: Illness-death model

4 Unobserved heterogeneity in multistate models

A multistate model is defined as a stochastic process, which at any point in time occupies one of a set
of discrete states. The class of multistate models includes both recurrent and clustered multivariate
duration data. In that respect special cases of a multistate model are the multivariate parallel and
recurrent models in the previous section. Thus, including frailty in multistate models follows the
lines of the previous sections. Multistate models can be very complex. Before introducing multistate
models with unobserved heterogeneity we explain the main concepts of multistate models.

4.1 Multistate model concepts

The most commonly applied multistate model in biostatistics is the illness-death model, see Putter
et al. (2007). This model is depicted in Figure 1. In this class of models individuals start out healthy,
the initial state 1. From healthy they may become ill (state 2) or they may die (state 3). Ill individuals
may die or recover and become healthy again. Most concepts of multistate duration analysis can be
explained using this simple model.

Multistate modeling is closely related to Markov chain theory and many of its terminology originate
from the theory of Markov chains and processes. Most multistate models have three types of states:
the initial state(s), the states an individual can enter the study; absorbing states, states that represent
an endpoint from which the individual cannot leave or one is not interested in what happens after this
state has been reached; intermediate or transient states are all other states. In an illness-death model
death is an absorbing state and illness is an intermediate state. The multistate event history model is
defined in hazard/transitions rates. We denote the hazard to make a transition from state i to state
j (i 6= j) at t by λij(t).

Just as for recurrent events the choice of the time scale in a multistate model has important
implications for the analysis. In a total time representation the event times, t, correspond to the time
since the individual entered the initial state. The time keeps moving forward, also when intermediate
events occur or when the individual returns to the initial state. In a gap time representation the
event times correspond to the time since the entry in state i. The time is reset to zero each time an
individual makes a transition. Gap time is also called sojourn time, clock reset time and backward
recurrence time. The time scale chosen has implications for the risk set, that defines who are at risk
for a particular event, for a transition within a multistate framework.
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Another important choice in relation to the risk set is whether a Markov model is assumed. In a
Markov model the transition rate only depends on the state an individual is in, not on the time an
individual has been in that state nor on any other events that occurred before entering that state.
Thus, multistate models in gap time representation cannot be Markov models as the time scale itself
depends on the history before the current state has been reached. If it is assumed the gap times
depend on the history of the process only through the present state, the resulting multistate model
is a Markov renewal model. In a semi-Markov model the transition rate from one state to another
state also depends on the time the individual has spent in that particular state. A semi-Markov
model in total time representation is also possible, but only with an additional time scale, measuring
the sojourn time. In a Markov model the transition rate may depend on the time since entry. This
is called a time-inhomogeneous Markov model. Including such time dependence in a semi-Markov
model implies an additional time scale, measuring the time since entry. We restrict to uni-time scale
multistate models with a semi-Markov model in gap time representation. Thus, we assume duration
dependence in the transition rates. The duration dependence measures the effect of the length of
stay in a particular state. It is rather straightforward to extend this model to let the transition rates
depend on the order or occurrence of the particular state, recurrent events effects, by allowing for
occurrence specific duration dependence and for occurrence specific covariate effects. We restrict to
mixed proportional hazard type transition rates that assume that, conditionally on the value of the
frailty, the semi-Markov property holds.

4.2 Unobserved heterogeneity in illness-death model

We illustrate the choices involved in including unobserved heterogeneity in multistate models by
using the illness-death model. In the illness-death model we have, assuming for the moment that
the transition rates from illness to healthy and vice versa do not depend on the number of times an
individual has been ill, four transitions rates

λ12(t|X12, v12) = v12λ012(t) exp(β12X12) from healthy to ill (31)

λ13(t|X13, v13) = v13λ013(t) exp(β13X13) from healthy to death (32)

λ21(t|X21, v21) = v21λ021(t) exp(β21X21) from ill to healthy (33)

λ23(t|X23, v23) = v23λ023(t) exp(β23X23) from ill to death (34)

When all the frailties are mutually independent the model reduces to two independent competing risks
model, and we can use one of the frailty distributions mentioned in Section 2. From the healthy state
the competing states the individual can move to are the ill state and the death state. From the illness
state the individual can either move to healthy (again) or to death. In both cases the competing risks
are uncorrelated and the frailty variance is a measure of unobserved heterogeneity within the origin
(healthy or ill) -destination (ill or death) combination.

For both a shared and a correlated frailty model we have three possible linkages. The frailties can
be linked over the origin states, over the destination states or over both origin and destination states.
An illness-death model with shared frailty model over destination states (by origin) implies equal
frailties from the healthy state v1 = v12 = v13 and equal frailties from the illness state v2 = v21 = v23.
Then the competing risk models from these two origin states have joint unconditional survivals as in
equation (15) or (16). The frailty variance is in this case a measure of correlation between events times
from either healthy to illness or to death or from illness to healthy or to death. When the frailties
are shared over the origin states (by destination) we only have that the frailties to death from either
healthy or illness are equal, v3 = v13 = v23. Because there is only one transition to illness and only
one to healthy the frailties v12 and v21 are still independent. Sharing over the origin states to death
implies that the joint unconditional survival functions to death are linked using one of the shared frailty
distributions in Section 3.1. The frailty variance reflects now the correlation between the transition
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from healthy to death and the transition from illness to death. When the frailties are linked over both
the origin and the destination states we only have one individual specific frailty shared over all the
four possible transitions. This implies that we have a four dimensional joint unconditional survival
function and that the frailty variance is a measure of correlation between these four transitions.

Concerning correlated frailty models we additionally have the choice between three different ways
(just as in Section 3.2) of generating correlation between the linked transitions, an additive frailty
model, a nested frailty model or a joint frailty model. When the correlation is based on the des-
tination states we only need to model the correlation between v13 and v23 and we are back at the
two-dimensional situation discussed in Section 3.2. With correlation based on origin states we have
two sets of mutually independent correlated frailties, the frailties of the healthy state, v12 and v13, and
the frailties of the illness state, v21 and v23. For both sets we can follow the arguments in Section 3.2.
When all four frailties are correlated we can use four-dimensional frailty models. Note that the additive
gamma frailty model become very complex for four dimensional frailties. For the discrete correlated
frailty models a two-factor loading model specification would leave the parameter space manageable
without putting too much restriction on the correlations. A model with the frailties shared over the
origin states and correlated over the destination states, or vice versa, is not possible.

In the illness-death model only the healthy and illness state can be recurrent. Still, it might be
plausible that the transition rate to death from each of these states also changes with re-occurence.
In the first case, only the transition rates from healthy to ill, λ12(t) and from ill to healthy, λ21(t)
depend on how many times the individual has been ill (healthy), while in the latter case all transition
rates are recurrent dependent. We focus on the latter case. The transition rates then also depend on
the number of times, k, the individual has been ill

λ12k(t|X12k, v12k) = v12kλ012k(t) exp(β12kX12k) (35)

λ13k(t|X13k, v13k) = v13kλ013k(t) exp(β13kX13k) (36)

λ21k(t|X21k, v21k) = v21kλ021k(t) exp(β21kX21k) (37)

λ23k(t|X23k, v23k) = v23kλ023k(t) exp(β23kX23k) (38)

The number of possible frailty structures now becomes rather large. We try to capture them all
in a very brief manner and focus on the differences with the models mentioned above. When the
frailties are shared over the occurrences, i.e. v12k = v12 and v21k = v21 etc., the possible mod-
els are basically the same as mentioned above, with the only difference that the baseline duration
and the regression function is stratified by occurrence. With K the maximum number of illness re-
currences we have for an illness-death model with recurrent illness 4K possible correlated frailties:
{v121, . . . , v12K , v131, . . . , v13K , v211, . . . , v21K , v231, . . . , v23K}. Thus, assuming mutually independent
frailties implies that the model reduces to 2K independent competing risks models, one for each origin
state that are the first time in the healthy state, the first time in the ill state, the second time in the
healthy state etc. When the frailties are only independent over the recurrences we have for each re-
currence a separate shared or correlated model, with the three possible linkages over the origin states,
the destination states or both the origin and destination states.

In principle a very complicated illness-death model with frailties correlated over recurrences, over
origin states and over destination states is possible. The analysis of such a model is, however, very
complex as it involves the integration of a 4K–dimensional frailty distribution that contains many ad-
ditional parameters to be estimated. The computational burden and the dimension of the parameter
space can be reduced by assuming a factor loading model for the frailties. Assuming a one-factor load-
ing model for all the (correlated) frailties would lead to (at least) 4K+1 additional frailty parameters.
However, the one-factor loading model implies a perfect correlation between the frailties. Assuming
a two-factor loading model, which is more flexible, implies (at least) 8K + 2 additional parameters.
Of course, models with frailties that are correlated over recurrences but independent or shared over
origin states and/or over destination states are also possible.
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4.3 General multistate models with unobserved heterogeneity

For general, beyond the simple illness-death model, multistate models many alternative correlation
structures for the frailties are possible. In principle a multistate model has three dimensions; the
origin states, the destination states and the recurrent events of a particular state. For each of these
dimensions the frailties can either be independent, shared or correlated. Table 1 to Table 3 describe
the possible frailty structures. When the frailties are correlated on at least one of the three dimension
the tables provide the implies correlation structure. Otherwise just the dimension, i,m for origin,
j, r for destination and k, g for recurrent events, are given. The three tables are split according to
the three possible correlation for the recurrent events; shared recurrent events, Table 1; independent
recurrent events, Table 2; correlated recurrent events, Table 3. In the general multistate model the
hazard from state i to state j (i 6= j) for the kth time is

λijk(t|Xi, Vijk) = Vijkλijr0(t) exp(β
′

ijkXijk),

Of course, it is allowed to put some restrictions on the duration dependence, on the observed char-
acteristics (that are allowed be time-dependent) or on the effect of the observed characteristics on
the hazard. For example, the duration dependence might be shared for all exits of one origin state,
λijr0(t) = λir0(t), the observed characteristics might be shared over all recurrent events, Xijk = Xij,
and the effect of these factors might only depend on the destination state βijk = βj . Here we only
focus on the structure of the frailties. The

Table 1: Possible structures of frailty in a multistate model
Shared over recurrent events; k = g and k 6= g

Origin Destination state; j 6= r
i and m 6= i Independent Shared Correlated

Independent vijk = vij vijk = virg = vi ρ
(

vijk, virg
)

= ρijr
ρ
(

vijk, vmjg

)

= 0
ρ
(

vijk, vmrg

)

= 0
ρ
(

vijk, vijg
)

= 1

Shared vijk = vmjg = vj vijk = v ρ
(

vijk, virg
)

= ρjr
ρ
(

vijk, vmjg

)

= 1
ρ
(

vijk, vmrg

)

= ρjr
ρ
(

vijk, vijg
)

= 1

Correlated ρ
(

vijk, virg
)

= 0 ρ
(

vijk, virg
)

= 1 ρ
(

vijk, virg
)

= ρijr
ρ
(

vijk, vmjg

)

= ρjim ρ
(

vijk, vmjg

)

= ρim ρ
(

vijk, vmjg

)

= ρjim
ρ
(

vijk, vmrg

)

= 0 ρ
(

vijk, vmrg

)

= ρim ρ
(

vijk, vmrg

)

= ρijmr

ρ
(

vijk, vijg
)

= 1 ρ
(

vijk, vijg
)

= 1 ρ
(

vijk, vijg
)

= 1

Shared frailties over recurrent events is the most common choice in multistate modelling and is
therefore discussed first. The alternative frailty structures for a multistate model with shared recurrent
events frailties are given in Table 1. With both independent frailty by origin and by destination
state, we have for each origin-destination pair an independent frailty, vij . When the frailty is shared
over destination states, i.e. all destinations from one origin share the same frailty, then the frailty
distribution only depends on the origin the individual is vi and similarly when the frailty frailty is
shared over origin states. When the frailty is shared over origin and destination states we have only
one frailty value for each individual. In all three cases the choice of the shared frailty distribution
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and its implication for the unconditional survival and hazard functions can be derived by arguments
similar to those in Section 3.1. Of course, for a shared frailty model the frailties are correlated in the
dimension we shared.

When the frailties are correlated in either dimension Table 1 provides the correlation structure.
When the frailties are independent over one dimension and correlated over the other (still assuming
shared frailties over recurrent events), the correlation structure is very simple. For example, when
the frailties are correlated over origin states the frailties from two different origins, i and m, to the
same destination j are correlated and depend on the destination state, i.e. ρ

(

vijk, vmjg

)

= ρjim. When
the frailties are shared over one dimension and correlated over the other, the number of possible non-
zero correlations decreases. For example, when the frailties are correlated over destination states the
frailties to two different destination, j and r, from any origin are correlated and independent of the
origin state i or m, i.e. ρ

(

vijk, vmrg

)

= ρjr. Then the correlation of frailties from two different origins,
i and m, to the same destination j are perfectly correlated, ρ

(

vijk, vmjg

)

= 1. In the case that the
frailties are correlated over both origin states and destination states the correlation is defined in all
possible origin-destination combinations, e.g. ρ

(

vijk, vmrg

)

= ρijmr. In all the correlated cases we
can follow the arguments in Section 3.2 to define the correlation structure. Note that for all cases in
Table 1 the frailties in recurrent events are all correlated.

Table 2: Possible structures of frailty in a multistate model
Independent over recurrent events; k 6= g

Origin Destination state; j 6= r
i 6= m Independent Shared Correlated

Independent vijk vijk = virg = vik ρ
(

vijk, virk
)

= ρikjr
ρ
(

vijk, vmjk

)

= 0
ρ
(

vijk, vmrk

)

= 0
ρ
(

vijk, vmrg

)

= 0

Shared vijk = vmjk = vjk vijk = vk ρ
(

vijk, virk
)

= ρkjr
ρ
(

vijk, vmjk

)

= 1
ρ
(

vijk, vmrk

)

= ρkjr
ρ
(

vijk, vmrg

)

= 0

Correlated ρ
(

vijk, virk
)

= 0 ρ
(

vijk, virk
)

= 1 ρ
(

vijk, virk
)

= ρikjr
ρ
(

vijk, vmjk

)

= ρjkim ρ
(

vijk, vmjk

)

= ρkim ρ
(

vijk, vmjk

)

= ρjkim
ρ
(

vijk, vmrk

)

= 0 ρ
(

vijk, vmrk

)

= ρkim ρ
(

vijk, vmrk

)

= ρkijmr

ρ
(

vijk, vmrg

)

= 0 ρ
(

vijk, vmrg

)

= 0 ρ
(

vijk, vmrg

)

= 0

The alternative frailty structures for a multistate model with independent recurrent events frailties
are presented next, in Table 2. Now the correlation depends on the reoccurrence, with indicator k. For
example, with both independent frailty over origin and over destination states, each origin-destination-
reoccurrence pair has a independent frailty vijk and, with independent frailty over destination and
correlated frailty over origin, the correlation between the frailties of two origins leading to the same
destination (and the same reoccurrence)now also depends on the reoccurrence, ρ

(

vijk, vmjk

)

= ρjkim.
Finally, the alternative frailty structures for a multistate model with correlated over recurrent

events frailties are presented in Table 3. It shows that the correlation structure can be rather complex.
However, when the frailties are independent over origin and over destination states, the correlation
structure is only non-zero among recurrent events for the same origin-destination pair. When the
frailties are shared over either origin or destination states, the correlation between the frailties. In the
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Table 3: Possible structures of frailty in a multistate model, Correlated over recurrent events; k 6= g

Origin Destination state; j 6= r
i 6= m Independent Shared Correlated

Independent ρ
(

vijk, virk
)

= 0 ρ
(

vijk, virk
)

= 1 ρ
(

vijk, virk
)

= ρikjr
ρ
(

vijk, vmjk

)

= 0 ρ
(

vijk, vmjk

)

= 0 ρ
(

vijk, vmjk

)

= 0
ρ
(

vijk, vmrk

)

= 0 ρ
(

vijk, vmrk

)

= 0 ρ
(

vijk, vmrk

)

= 0

ρ
(

vijk, vijg
)

= ρijkg ρ
(

vijk, vijg
)

= ρikg ρ
(

vijk, vijg
)

= ρijkg
ρ
(

vijk, virg
)

= 0 ρ
(

vijk, virg
)

= ρikg ρ
(

vijk, virg
)

= ρijrkg
ρ
(

vijk, vmjg

)

= 0 ρ
(

vijk, vmjg

)

= 0 ρ
(

vijk, vmjg

)

= 0
ρ
(

vijk, vmrg

)

= 0 ρ
(

vijk, vmrg

)

= 0 ρ
(

vijk, vmrg

)

= 0

Shared ρ
(

vijk, virk
)

= 0 ρ
(

vijk, virk
)

= 1 ρ
(

vijk, virk
)

= ρkjr
ρ
(

vijk, vmjk

)

= 1 ρ
(

vijk, vmjk

)

= 1 ρ
(

vijk, vmjk

)

= 1
ρ
(

vijk, vmrk

)

= 0 ρ
(

vijk, vmrk

)

= 1 ρ
(

vijk, vmrk

)

= ρkjr
ρ
(

vijk, vijg
)

= ρjkg ρ
(

vijk, vijg
)

= ρkg ρ
(

vijk, vijg
)

= ρjkg
ρ
(

vijk, virg
)

= 0 ρ
(

vijk, virg
)

= ρkg ρ
(

vijk, virg
)

= ρjrkg
ρ
(

vijk, vmjg

)

= ρjkg ρ
(

vijk, vmjg

)

= ρkg ρ
(

vijk, vmjg

)

= ρjkg
ρ
(

vijk, vmrg

)

= 0 ρ
(

vijk, vmrg

)

= ρkg ρ
(

vijk, vmrg

)

= ρjrkg

Correlated ρ
(

vijk, virk
)

= ρkjr ρ
(

vijk, virk
)

= 1 ρ
(

vijk, virk
)

= ρikjr
ρ
(

vijk, vmjk

)

= ρjkim ρ
(

vijk, vmjk

)

= ρkim ρ
(

vijk, vmjk

)

= ρjkim
ρ
(

vijk, vmrk

)

= 0 ρ
(

vijk, vmrk

)

= ρkim ρ
(

vijk, vmrk

)

= ρkijmr

ρ
(

vijk, vijg
)

= ρjkg ρ
(

vijk, vijg
)

= ρikg ρ
(

vijk, vijg
)

= ρijkg
ρ
(

vijk, virg
)

= 0 ρ
(

vijk, virg
)

= ρikg ρ
(

vijk, virg
)

= ρijrkg
ρ
(

vijk, vmjg

)

= ρjimkg ρ
(

vijk, vmjg

)

= ρimkg ρ
(

vijk, vmjg

)

= ρjimkg

ρ
(

vijk, vmrg

)

= 0 ρ
(

vijk, vmrg

)

= ρimkg ρ
(

vijk, vmrg

)

= ρijmrkg

case that the frailties are correlated over both origin states and destination states the correlation is
defined in all possible origin-destination-reoccurrence combinations, e.g. ρ

(

vijk, vmrg

)

= ρijmrkg. In
all the correlated cases we can follow the arguments in Section 3.2 to define the correlation structure.

Multistate models with correlated frailty can become very complex. Of course, the choice of the
correlation structure in a multistate model depends on data availability and on the questions one
wants to answer. For high dimensional multistate models, including correlated frailties would extend
the parameters space too. Dimensionality problems are common to multistate model, not only to
multistate models with frailty. One might consider reducing the origin, destination or reoccurrence
state space. However, by using factor loading models it is possible to reduce the dimension of correlated
frailty distribution a lot, without loosing much flexibility.
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5 Empirical illustration

Labour market transitions and return migration of immigrants are intertwined (especially for labour
migrants) and should, therefore, be analysed in conjunction. We use a multistate duration model to
analyse the labour market dynamics together with the migration dynamics of recent labour migrants
to The Netherlands.

All legal immigration by non-Dutch citizens to the Netherlands is registered in the Central Register
Foreigners (Centraal Register Vreemdelingen, CRV), using information from the Immigration Police
(Vreemdelingen Politie) and the Immigration and Naturalization Service (Immigratie en Naturalisatie
Dienst, IND). It is mandatory for every immigrant to notify the local population register immediately
after the arrival in the Netherlands if he intends to stay in for at least two thirds of the forthcoming six
months. Our data comprise the entire population of immigrants who entered during our observation
window of 1999-2005, and after merging in other administrative registers we obtain a panel.

In addition to the date of entry and exit, the administration also records the migration motive
of the individual. Either the motive is coded according to the visa status of the immigrant, or the
immigrant reports the motive upon registration in the population register. See Bijwaard (2010) for an
extensive descriptive analysis of the various migration motives. Here we focus exclusively on labour
migrants, which comprise about 23% of all non-Dutch immigrants in the age group 18-64 years.

This immigration register is linked by Statistics Netherlands to the Municipal Register of Popu-
lation (Gemeentelijke Basisadministratie, GBA) and to their Social Statistical Database (SSD). The
GBA contains basic demographic characteristics of the migrants, such as age, gender, marital status
and country of origin. From the SSD we have information (on a monthly basis) on the labour market
position, income, industry sector, housing and household situation. Based on the main source of in-
come we distinguish three labour market states: employed (including self-employment), unemployed
receiving benefits, and non-participation (no income).

Table 4: Spell dynamics of the labour migrants (# 45,987)

Percentage ending in
# of spells employed UI NP Abroad

Employed 73375 6% 39% 12%
Unemployed (UI) 8735 46% 28% 4%
Non-participation (NP) 31873 44% 12% 25%
Abroad 22153 10% 1% 4%

Source: Statistics Netherlands, based on own calculations.

The migrants in our sample show substantial dynamic behavior. Of all the migrants that enter in
1999-2003, including those that arrive in December 2003, 48% leaves the country at least once, 24%
has more than one employment spell, 11% has at least one unemployment spell and 40% has at least
one non-participation (no-income in host) spell. Table 4 report the observed transitions among the
four different states. The majority of employment spells end in non-participation, while the majority
of non-participation spells end abroad. The majority of the spells abroad are censored, the migrants
are still abroad at the end of the observation period. About half of the, relatively small, number of
unemployment spells end in employment. But a third of the unemployed receiving benefits leave the
labour market. Very few migrants leave the country from unemployment.

By definition all labour migrants start in the employed state at entry. Soon after arrival some
migrants move to the other states. Some may return and some may move on to another state. But
the migrant is always in one of the four states. In Figure 2 we depict the development of the distribution
over the four states for the 1999-entry cohort. After six years less than 40% of these labour migrants
is still employed. The proportion of migrants abroad continuously increases. Six years after arrival
more than 50% of the labour migrants have left the country. The remaining migrants who are not
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Figure 2: Development of SES of labour immigrants arriving in 1999

employed are mainly in the country without income. Only a few migrants get unemployment benefits,
possibly because they do not have gained any benefit rights in the Netherlands. However, this number
slowly increasing. For more information on these data see Bijwaard (2009).

5.1 Multistate model

We view the migrant behavior as a semi-Markov process with individuals moving between the four
states: (1) Employed in the Netherlands; (2) Unemployed and receiving benefits in the Netherlands; (3)
Out of the labour market (and not receiving benefits= non-participating) in the Netherlands (NP); (4)
Living abroad. These states are mutually exclusive and exhaust all possible destinations.1 A migrant
may leave a state j = {e, u, n, a} for any of the other destination states. The 4-state multistate model
is depicted in Figure 3.

We use a competing risks model hazard model for each origin-destination pair. Define the random
variables Tjk that describe the time since entry in j for a transition from j to k. We assume a (mixed)
proportional hazard model for which the intensity for the transition from j to k is:

λjk(t|Xjk(t), vjk) = vjkλ0jk(t) exp
(

β′

jkXjk(t)
)

(39)

where Xjk(t) = {Xjk(s)|0 ≤ s ≤ t} is the sample path of the observed characteristics up to time
t, which is, without loss of generality, assumed to be left continuous. We assume that the frailty is
shared over possible recurrent events. For the baseline duration λ0jk(t) we assume that it is piecewise
constant on eleven intervals (every six months and beyond five years).

We use three different frailty models: (1) a PH model, thus a model without unobserved het-
erogeneity (PH); (2) uncorrelated MPH model with a two-point discrete unobserved heterogeneity
(MPH); and (3) a two-factor loading frailty correlated over the origin state (correlated). We estimate

1The death rate for the age range 18-64 is small enough to ignore deaths.
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Figure 3: Multistate model for labour-migration dynamics

all models using a maximum likelihood procedure. The covariates included in the model refer to
demographic (gender, age, martial status and age of children), country of origin, individual labour
market characteristics (monthly income, industry sector), labour market history and migration his-
tory. We control for business cycle conditions by including the national unemployment rate, both
at the moment of first entry to the country and the time-varying monthly rate. The unemployment
rate at entry captures the ‘scarring effect’ of migrants, while the running unemployment rate captures
the impact of the business cycle on the transition intensities. With the abundant information on the
migrants the model contains many parameters. Here we only discuss the parameter estimates for the
transition from employed to abroad, λea(t) and, focus on the differences induced by the alternative
frailty assumptions.2

The estimated duration dependence and covariate effects of λea(t) are reported in Table 5. As
expected ignoring unobserved heterogeneity leads to large negative duration dependence in the hazard
of leaving the country, although departure still exhibits a peak after 2 to 3 years in the Netherlands.
Allowing for correlation among all the three competing frailties starting in the employed state; em-
ployed to abroad, vea, employed to unemployed, veu, and employed to non-participation, ven, reduces
the positive duration dependence implied by the uncorrelated frailty model. Although we do not
encounter changes in sign including unobserved heterogeneity can have rather large effect on the size
of the effect on the departure hazard. Most effects get more pronounced after allowing for unobserved
heterogeneity, with the notable exception that the effect of repeated entry declines after allowing for
unobserved heterogeneity. In general allowing for correlation between the competing frailties affects
the parameter estimates less than the introducing unobserved heterogeneity. However, the effect of
repeated employment on departure changes from increasing the hazard by a factor 2.9 in an uncorre-
lated frailty model (and from 2.2 in the model without unobserved heterogeneity) to a factor 4 in the
correlated frailty model.

Table 6 reports the implied frailty variance and frailty correlation. For both the uncorrelated and
the correlated frailty model we find that the frailty variance is significant. For the correlated frailty
model the frailty variance is much larger. In the correlated model we also find significant correla-

2All estimation results are available from the author. In Bijwaard (2009) the marginal effects of the MPH with
uncorrelated frailties is discussed.
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Table 5: Parameter estimates transition from employed to abroad, λea(t)

Independent Correlated
PH MPH MPH

female −0.137∗∗ −0.155∗∗ −0.146∗∗

(0.028) (0.032) (0.032)
self-employed −1.251∗∗ −1.412∗∗ −1.396∗∗

(0.165) (0.173) (0.171)
income < 1000 −0.442∗∗ −0.317∗∗ −0.328∗∗

(0.064) (0.052) (0.052)
income 1000-2000 −0.097∗ −0.095∗ −0.133∗∗

(0.039) (0.041) (0.041)
income 3000-4000 0.462∗∗ 0.492∗∗ 0.495∗∗

(0.043) (0.046) (0.046)
income 4000-5000 0.733∗∗ 0.820∗∗ 0.816∗∗

(0.053) (0.057) (0.057)
income > 5000 1.197∗∗ 1.348∗∗ 1.313∗∗

(0.040) (0.044) (0.043)
married −0.506∗∗ −0.645∗∗ −0.600∗∗

(0.030) (0.038) (0.037)
divorced −0.817∗∗ −0.956∗∗ −0.925∗∗

(0.103) (0.114) (0.111)
repeated entry 0.968∗∗ 0.684∗∗ 0.663∗∗

(0.051) (0.049) (0.052)
repeated employment 0.773∗∗ 1.060∗∗ 1.392∗∗

(0.026) (0.041) (0.054)
Unemployment rate at entry 0.073∗∗ 0.121∗∗ 0.144∗∗

(0.020) (0.023) (0.023)
Unemployment rate 0.280∗∗ 0.270∗∗ 0.254∗∗

(0.016) (0.016) (0.016)
α2 (7-12 months) 0.128∗∗ 0.293∗∗ 0.205∗∗

(0.038) (0.039) (0.039)
α3 (12-18 months) 0.146∗∗ 0.421∗∗ 0.289∗∗

(0.040) (0.044) (0.044)
α4 (18-24 months) 0.353∗∗ 0.705∗∗ 0.531∗∗

(0.040) (0.046) (0.046)
α5 (24-30 months) 0.210∗∗ 0.640∗∗ 0.430∗∗

(0.045) (0.053) (0.052)
α6 (30-36 months) 0.265∗∗ 0.749∗∗ 0.513∗∗

(0.047) (0.057) (0.056)
α7 (36-42 months) 0.186∗∗ 0.729∗∗ 0.467∗∗

(0.054) (0.064) (0.063)
α8 (42-48 months) 0.134∗ 0.719∗∗ 0.436∗∗

(0.058) (0.070) (0.070)
α9 (48-54 months) −0.038 0.584∗∗ 0.286∗∗

(0.069) (0.080) (0.080)
α10 (54-60 months) −0.106 0.543∗∗ 0.228∗

(0.078) (0.090) (0.090)
α11 (> 60 months) −0.157∗ 0.533∗∗ 0.204∗

(0.070) (0.084) (0.086)

Country of birth dummies, sector dummies and age at entry dummies
are also included. ∗

p < 0.05 and ∗∗
p < 0.01
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Table 6: Estimated frailty variance and correlation transition from employed to abroad

Uncorrelated Correlated

Frailty variance 1.036∗∗ 6.554∗∗

(0.097) (1.974)

Correlation
ρ(veu, ven) - −0.141∗

(0.067)
ρ(veu, vea) - −0.199∗∗

(0.025)
ρ(ven, vea) - −0.926∗∗

(0.021)
∗
p < 0.05 and ∗∗

p < 0.01

tion between the three competing frailties from the employed state. The large negative correlation
between the frailty of the transition from employment to non-participation and the frailty of the tran-
sition from employment to abroad implies that employed migrants who are more prone to stay in
the country without income are less prone to leave. The frailty for the transition from employment
to unemployment and the frailty for the transition from employment to abroad are also negatively
correlated.

These results show that in this multistate model for the labour–migration dynamics of recent
labour migrants to the Netherlands it is important to include frailties and to allow these frailties to
be correlated within each origin state of the multistate model.

6 Other issues related to multistate models with unobserved het-

erogeneity

In this article we have addressed how to incorporate frailty in multistate duration models of the mixed
proportional hazard type in which, conditionally on the value of the frailty, the semi-Markov property
holds. Many relevant aspects of multistate frailty modelling we did not cover. In this section we
briefly mention some other important issues. Additional references are given for further reading. To
limit the size of the article many other issues related to multistate frailty models are not covered.

6.1 Estimation procedures

The are four main estimation methods for duration models with unobserved heterogeneity: maximum
likelihood methods, the Expectation-Maximization (EM) algorithm, penalized partial likelihood, and
Bayesian Markov Chain Monte Carlo methods. When the conditional survival and conditional hazard
functions have an analytical solution it is possible to use maximum likelihood methods. Even without
analytical solutions the the maximum likelihood estimation can be used when good numerical approx-
imation procedures for the integrals involved are used. For instance, for the integrals implied by the
(multivariate) log-normal frailty distribution good approximation methods exist. Just as for event
history models without frailty the likelihood is adjusted for (right)censoring and truncation. Details
on how to handle censoring and truncation in the likelihood are presented in most books on event
history analysis, e.g. Andersen et al. (1993), Klein and Moeschberger (2003) or Aalen et al. (2008).

The second important estimation approach to frailty models is the EM-algorithm. The EM-
algorithm allows parameter estimation in semi-parametric multistate gamma and discrete frailty mod-
els. In semi-parametric multistate models the baseline duration is treated as a nuisance parameter.
This algorithm was suggested by Dempster et al. (1977) and is often used in the presence of unob-
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served data. It was adopted for parameter estimation in frailty models by Nielsen et al. (1992) and
Klein (1992). The EM algorithm iterates between two steps. In the first step the expectation of the
unobserved frailties based on observed data is estimated. These estimates are then used in the second,
maximization, step to to obtain new parameter estimates given the estimated frailties. See Klein and
Moeschberger (2003) and Bijwaard et al. (2006) for a detailed description of using the EM-algorithm
to estimate the parameters of a multivariate shared gamma-frailty model.

The third important estimation approach to frailty models is the penalized partial likelihood
method, introduced by McGilchrist and Aisbett (1991). It has been applied to the log-normal frailty,
Therneau et al. (2003), and the gamma-frailty, Rondeau et al. (2003). It leads to the same estimates
as the EM algorithm in the gamma frailty model (Therneau and Grambsch (2000), Duchateau and
Janssen (2008)), but not for other frailty distributions. The penalized likelihood penalizes large
deviations of the random frailties from its expectation. An advantage of the penalized partial likelihood
method is that it can be used to fit log-normal frailty models. This method is also much faster than
the EM algorithm. A major disadvantage is that it is very complicated to obtain a valid estimate of
the standard error of the frailty variance.

The Markov Chain Monte Carlo (MCMC) method is particularly useful for fitting (correlated) log-
normal frailty distributions. For log-normal frailty distributions it is impossible to derive an analytical
solution of the conditional survival and conditional hazard functions. Bayesian MCMC methods have
been developed by Clayton (1991) and further extended to shared frailty models by Sinha and Dey
(1997) and to correlated frailty models by Xue and Ding (1999). In the Bayesian context the frailty
distribution represents a prior of the model and its parameters (hyperparameters) are considered as
random variables. The MCMC method consists of generating a set of Markov chains whose stationary
distribution corresponds to the joint posterior of the model.

6.2 Copula models

The idea behind copulas is to study the dependence, when the influence of the marginal distributions
is removed. Often more information about marginal distributions of related variables is available than
their joint distribution. The copula approach is a useful method for deriving joint distributions given
the marginal distributions, especially when the variables are nonnormal. Another reason to use copulas
is that, in a bivariate context, copulas can be used to define nonparametric measures of dependence for
pairs of random variables. When fairly general and/or asymmetric modes of dependence are relevant,
such as those that go beyond correlation or linear association, then copulas play a special role in
developing additional concepts and measures. Finally, copulas are useful extensions and generalizations
of approaches for modeling joint distributions and dependence that have appeared in the literature.

Copula models are closely related to shared frailty models, see Goethals et al. (2008). In fact many
popular duration models are special cases of the copula model. As there are many different families of
copulas, Nelsen (2006), the model allows for flexible specification of the dependence structure between
event history times. The significance of copulas lies in the fact that by way of transformation, any
joint distribution function can be expressed as a copula applied to the marginal distributions, see Sklar
(1959).

A copula is a multivariate joint distribution function defined on the n-dimensional unit cube [0, 1]
such that every marginal distribution is uniform on the interval [0, 1]. For example the Clayton (1978)
copula is

S(t1, . . . , tn) = C
(

S1(t1), . . . , Sn(tn)
)

=
(

n
∑

j=1

Sj(tj)
−θ − (n− 1)

)

−1/θ
(40)

This looks very similar to the unconditional joint survival function of the gamma-shared frailty model
in equation (15). There is, however, a substantial difference that the marginal unconditional survival
functions from the copula and the frailty model are not the same. Copula models also covers the
extension of the gamma frailty model with negative dependence.
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6.3 Dependence measures

It is not straightforward how to assess or quantify dependence in a multivariate duration model, see
Hougaard (2000). In traditional multivariate analysis, when a multivariate normal distribution is
assumed, the ordinary product moment correlation (Pearson correlation) is used for measuring the
dependence between outcomes. However, Pearson correlation only measures the linear dependence.
For duration data the marginal distributions are not normal and the dependence structure is often
nonlinear. There are at least six dependence measures.

A first dependence measure is the standard Pearson correlation coefficient, which is in the bi-
variate case Cov(T1, T2)/

√

Var(T1)Var(T1). Although it is a commonly used measure that is readily
understood it is only useful for linear dependence and multivariate normal distribution. Van den Berg
(1997) shows that for a bivariate MPH model without duration dependence the Pearson correlation
coefficient is bounded by −1

3 from below and 1
2 from above, regardless of the shape of the joint frailty

distribution. In general the correlation coefficient can be low, in absolute value, if the dependence is
nonlinear, even with a high degree of dependence.

A second measure of dependence is Kendall’s τ = E
[

sign
{

(T11 − T21)(T11 − T21)}
]

(or Kendall’s
coefficient of concordance). This is the most popular global ordinal measure of association in the
literature on multivariate durations, see e.g. Oakes (1989). This measure of dependence is designed
as a rank-based correlation type measure. It seeks to compare the orders of event times in the same
group. An advantage of this measure of dependence is that it is invariant with both linear and nonlinear
monotone transformations. As a result for the MPH multistate duration model it does not depend on
the duration dependence or on value of x. Thus, it only depends on the joint frailty distribution. Van
den Berg (1997) shows that for a bivariate MPH model with a joint discrete frailty distribution with
n point of support that Kendall’s τ is bounded by −1 + 1

n from below and by 1− 1
n from above. For

the shared gamma frailty Kendall’s τ is equal to σ2/(σ2 + 2).
A third measure of dependence is Spearman’s correlation coefficient. This measure is based on

the marginal ranks of survival times and is, therefore, independent of marginal transformations. A
disadvantage of this measure is that its value, which is 12

∫ 1
0

∫ 1
0 S(u, v) du dv− 3, is in general difficult

to calculate.
A fourth measure of dependence is the median concordance that avoids the conceptual difficulties

with the Kendall’s τ , which requires two pairs to interpret. Instead of comparing with a second pair,
one evaluates the concordance of a single observation in relation to a fixed bivariate point, the median
duration. Although this measure of dependence might be difficult to interpret it satisfies the same
simple properties of the previous two measures. It ranges from −1 to 1 and is zero under independence.
However, similar to those measures, a zero value does not imply independence.

In many applications it may also be of interest to examine the dependence of the residual event
times if one conditions on survival up to a certain duration. The next two dependence measure
are both such local dependence measures. The fifth dependence measure is the cross-ratio function,
Clayton (1978),

Θcr(t1, t2) =
λ1(t1|T2 = t2)

λ1(t1|T2 > t2)
=

S(t1, t2)St1t2(t1, t2)

St1(t1, t2)St2(t1, t2)
(41)

which is also called the odd-ratio function, captures to what extend the hazard rate of T1 at t1 depends
on knowledge that T2 is realized at a certain point of time t2, relative to when T2 is realized after t2.
The sixth dependence measure is the current-versus-alive function, Oakes (1989),

Θcva(t1, t2) =
λ1(t1|T2 = t2)

λ1(t1|T2 > t1)
(42)

captures to what extend the hazard rate of T1 at t1 depends on knowledge that T2 is realized at a
certain point of time t2, relative to when T2 is not yet realized. These functions are informative about
the way in which the dependence changes over time. More details on both local dependence measures
can be found in Anderson et al. (1992) and Van den Berg (1997).
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6.4 Identification issues

Associated with frailty models is a general identification problem. This issue concerns the logical
possibility of decomposing the individual contributions to the average survival probability of the base-
line duration dependence, the unobserved frailty and the observed characteristics, given the observed
data. More specifically, if the Proportional hazard model were not identified, then it would be logically
impossible to separate the individual contributions of duration dependence and frailty. In the econo-
metric literature the case of the univariate MPH model has been investigated in detail. Elbers and
Ridder (1982) and Heckman and Singer (1984b) have established the identification of the MPH model
under certain conditions. For an overview, see Van den Berg (2001). The most important assumption
here is that the frailty has finite mean and some exogenous variation in the observed characteristics.
Ridder and Woutersen (2003) show that bounding the duration dependence hazard away from 0 and
∞ at the start is also sufficient for nonparametric identification of the MPH model and with it the
finite mean assumption can be discarded.

Honoré (1993) shows that both the frailty distribution and the duration dependence are identified
with multivariate event history data under much weaker assumptions. All shared frailty models are
identified without additional information such as observed covariates or parametric assumptions about
the duration dependence. Furthermore, the duration dependence may depend on observed covariates
in a unspecified way, and the frailty and the observed covariates may be dependent. This identifiability
property holds for a broader class of frailty models, including correlated frailty models.

A caveat of multistate data is that such data is more sensitive to censoring. With univariate event
history data, many types of censoring can be captured by standard adjustments to the likelihood
function, see Andersen et al. (1993) and Klein and Moeschberger (2003). With sequential events,
either recurrent or from different types, one has to be more careful. Consider two consecutive events
with time t1 and t2, and where the data are subject to right-censoring at a fixed time after the starting
point or the first event. Then the moment at which t2 is right-censored is not independent from t2
itself. For example, individuals with a small value of the frailty will, on average, have a short time till
the first event. As a result the time till the second event will start relatively early. This implies that
the time till the second event will often be censored after a relatively longer period (or not censored
at all). Thus, t2 and its censoring probability are both affected by the frailty. It may also happen that
the process or some of the processes are not observed from the origin. With left-censoring, not to be
confused with left-truncation, the analysis is more complicated, see Heckman and Singer (1984a) and
Commenges (2002).

7 Summary and concluding remarks

This article has provided an overview of multiple spell multiple states duration (multistate) duration
models with unobserved heterogeneity, with an emphasis on semi-Markov multistate models with a
mixed proportional hazard structure. The literature on this subject is continuing and growing and
with the increased computer power the complexity of the models will not refrain researchers from using
them. We have seen that ignoring frailty can have a large impact on the parameters of interest of the
transition hazards, the duration dependence and the effect of observed covariates on the hazard. We
have shown how different correlation structures of the frailties in a multistate model can be achieved.

Obviously, I did not intend to cover exhaustively all aspects of multistate frailty models. Many
issues we did not address receive ample attention in the literature. An important observation is that
the literature is highly segmented into mathematical research, biostatistical research, econometric
research and demographic research. Although different terms are used, the problems addressed are
similar, and the solutions are often very similar too. I advocate to look beyond the borders of your
own research discipline to grasp the knowledge of the other fields.
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Honoré, B. E. (1993). Identification results for duration models with multiple spells. Review of
Economic Studies 61, 241–246.

Hougaard, P. (2000). Analysis of Multivariate Survival Data. New York: Springer–Verlag.

Kelly, P. J. and L. Y. Lim (2000). Survival analysis for recurrent event data: An application to
childhood infectious diseases. Statistics in Medicine 19, 13–33.

Klein, J. P. (1992). Semiparametric estimation of random effects using the Cox model based on the
EM algorithm. Biometrics 48, 795–806.

Klein, J. P. and M. L. Moeschberger (2003). Survival Analysis: Techniques for Censored and Trun-
cated Data (2nd edition). New York: Springer–Verlag.

Lancaster, T. (1979). Econometric methods for the duration of unemployment. Econometrica 47,
939–956.

Maller, R. A. and X. Zhou (1996). Survival Analysis with Long-term Survivors. Chichester: John
Wiley.

Manda, S. O. M. (2001). A comparison of methods for analysing a nested frailty model to child
survival in Malawi. Australian & New Zealand Journal of Statistics 43, 7–16.

McGilchrist, C. A. and C. W. Aisbett (1991). Regression with frailty in survival analysis. Biomet-
rics 47, 461–466.

Nelsen, R. B. (2006). An Introduction to Copulas (2nd edition). New York: Springer-Verlag.

Nielsen, G. G., R. D. Gill, P. K. Andersen, and T. A. I. Sørensen (1992). A counting process approach
to maximum likelihood estimation in frailty models. Scandinavian Journal of Statistics 19, 25–
43.

Oakes, D. (1989). Bivariate survival models induced by frailties. Journal of the American Statistical
Association 84, 487–493.

Oakes, D. A. (1992). Frailty models for multiple event times. In J. P. Klein and P. K. Goel (Eds.),
Survival Analysis: State of the Art, pp. 371–379. Dordrecht: Kluwer.

Prentice, R. L., B. J. Williams, and A. V. Peterson (1981). On the regression analysis of multivariate
failure time data. Biometrika 68, 373–379.

Putter, H., M. Fiocco, and R. B. Geskus (2007). Tutorial in biostatistics: Competing risks and
multi-state models. Statistics in Medicine 26, 2389–2430.

Ridder, G. and T. Woutersen (2003). The singularity of the efficiency bound of the mixed propor-
tional hazard model. Econometrica 71, 1579–1589.

Rogers, A. (1975). Introduction to Multiregional Mathematical Demography. New York: Wiley.

27



Rogers, A. (1995). Multiregional Demography: Principles, Methods and Extensions. New York:
Wiley.

Rondeau, V., D. Commenges, and P. Jolly (2003). Maximum penalized likelihood estimation in a
gamma–frailty model. Lifetime Data Analysis 9, 139–153.

Sastry, N. (1997a). Family-level clustering of childhood mortality rist in northeast Brazil. Population
Studies 51, 245–261.

Sastry, N. (1997b). A nested frailty model for survival data, with an application to the study of
child survival in northeast Brazil. Journal of the American Statistical Association 92, 426–435.

Schmidt, P. and A. D. Witte (1989). Predicting criminal recidivism using ‘split population’ survival
time models. Journal of Econometrics 40, 141–159.

Schumacher, M., M. Olschewiski, and C. Schmoor (1987). The impact of heterogeneity on the
comparison of survival times. Statistics in Medicine 6, 773–784.

Sinha, D. and K. Dey (1997). Semiparamteric Bayesian analysis of survival data. Journal of the
American Statistical Association 92, 1195–1212.
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