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Abstract

In certain circumstances, both researchers and policy makers are faced with
the challenge of determining individual efficiency scores for each decision mak-
ing unit (DMU) under consideration. In this study, we use a Monte Carlo
experimentation to analyze the optimal approach to determining individual
efficiency scores. Our first research objective is a systematic comparison of the
two most popular estimation methods, data envelopment (DEA) and stochas-
tic frontier analysis (SFA). Accordingly we extend the existing comparisons
in several ways. We are thus able to identify the factors which influence the
performance of the methods and give additional information about the rea-
sons for performance variation. Furthermore, we indicate specific situations
in which an estimation technique proves superior. As none of the methods
is in all respects superior, in real word applications, such as energy incentive
regulation systems, it is regarded as “best-practice” to combine the estimates
obtained from DEA and SFA. Hence in a second step, we compare the ap-
proaches to transforming the estimates into efficiency scores, with the elemen-
tary estimates of the two methods. Our results demonstrate that combination
approaches can actually constitute “best-practice” for estimating precise effi-
ciency scores.
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1 Introduction

In his classic paper, Farrell (1957) stated that the problem of measuring the efficiency

of productivity is important to both economic theorists and economic policy makers.

Based on Farrell’s work, researchers have developed several methods for measuring

efficiency. Despite this progress, after more than five decades of efficiency analysis

research, there is still no single superior method.

The efficiency analysis literature can be divided into two main branches: para-

metric and non-parametric methods. The most important representative of the

non-parametric methods is, without doubt, data envelopment analysis (DEA). DEA

is a linear programming model originally introduced by Charnes et al. (1978) and

extended, amongst others, by Banker et al. (1984) to account for variable returns

to scale. DEA develops an empirical frontier function the shape of which is deter-

mined by the most efficient producers of the observed dataset. Because efficiency

is measured as the distance to this frontier, without considering statistical noise,

DEA is a deterministic model. The main advantage of the method is the flexi-

bility due to its non-parametric nature, i.e. no assumption about the production

function is required. Parametric methods are based on the econometric ordinary

least squares method (OLS). The corrected ordinary least squares method (COLS)

estimates the efficient frontier, by shifting the OLS regression towards the most

efficient producer. It subsequently measures inefficiency as the distance to this fron-

tier. However, COLS has the same disadvantage as the DEA, it is still deterministic.

Aigner et al. (1977) and Meeusen and Broeck (1977) developed a stochastic para-

metric model, namely stochastic frontier analysis (SFA). SFA is a regression-based

approach which integrates two unobserved error terms representing inefficiency and

statistical noise. Assuming a production function and specific distributions for the

error terms allows calibration via an estimation method (e.g. maximum likelihood).

The main advantage is the ability to measure efficiency, while simultaneously con-

sidering the presence of statistical noise. The flexibility of DEA and the stochastic
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nature of SFA explain why these are the two most popular economic approaches for

measuring efficiency.

Due to the fact that the methods usually yield different efficiency scores, researchers

and especially policy makers face the problem of determining the “true” efficiency

of a sector, individual firms or other decision making units (DMU) like schools,

hospitals or universities. Using empirical data, it is impossible to evaluate the per-

formance of the methods, because the “true” efficiency is not known. Monte Carlo

simulations are used to avoid this problem. This enables researchers to generate

their own artificial dataset under specific assumptions. The performance of the var-

ious methods can then be evaluated by comparing the known “true” efficiency with

the estimated values. On the basis of this procedure, it is not possible to draw defini-

tive conclusions, because the results are only valid under the specific assumptions.

However, it is possible to reveal factors influencing the performance of the methods

and to shed some light on the advantages and disadvantages. Consequently, Resti

(2000) and Mortimer (2002) conclude that the existing simulation studies neither

demonstrate that DEA nor a parametric method has an absolute advantage over

their competitors, but the simulation studies do succeed in indicating a range of

specific situations in which an estimation technique proves superior.

While there is an abundant literature comparing the two most popular methods, the

DEA and the SFA, which use empirical data, simulation studies comparing the two

methods by means of cross sectional data are relatively scarce (see Mortimer (2002)

for an overview of the existing literature). While the simulation study of Gong and

Sickles (1992) uses panel data and focuses more on the choice of functional form and

estimation method, Banker et al. (1993) is the first study to analyze the performance

of DEA and a stochastic frontier model within a wide range of different settings.

Accordingly, Banker et al. (1993) use the moment method, instead of maximum

likelihood to estimate the efficiencies, because this method is computationally less

demanding. Analogously to the concept of Banker et al. (1993), Ruggiero (1999)

and Jensen (2005) use a wide range of settings in their simulation studies, in order to
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compare the deterministic COLS and the SFA. Motivated by Ruggieros suggestion

(1999), that it would be a useful extension to analyze DEA and SFA across situations

not considered in Banker et al. (1993), our first research objective is a systematic

comparison of the two methods, using cross sectional data. We thus extend the

study of Banker et al. (1993) in three directions. First of all, we apply maximum

likelihood, instead of the moment method to estimate the SFA. As computational

limits changed over time, the maximum likelihood method is currently the preferred

SFA estimation method. Secondly, we extend the scope of values for the influence

factors (e. g. Number of DMUs) and add potential influence factors not considered

in Banker et al. (1993) (e. g. the input distribution). Thirdly, we consider more

performance criteria, and are therefore able to gain a clearer impression of the

reasons for performance variation. In a nutshell, the first research objective identifies

the most important factors influencing the performance of the different methods and

improves the accuracy of information about the reasons for variation.

Our second research objective build on these results and consider the fact that in

real-world situations, policy makers know neither the true efficiencies nor the true

settings, but often have to set a specific individual efficiency objective for each firm,

instead of gaining a degree of understanding of efficiency rankings. In such cases, the

individual efficiency score estimation needs to be as robust as possible. For example,

all incentive regulation systems for energy markets in Europe apply efficiency esti-

mation methods to determine individual efficiency objectives. Due to the fact, that

regulators have no information as to which estimates are closer to the true efficiency,

it is seen as “best-practice” to apply several efficiency estimation methods and in a

second step, to combine the estimates into firm-specific efficiency objectives (see e.g.

Haney and Pollitt (2009)). In addition to this observation of real-world application,

in the efficiency analysis literature, researchers also assume, that the use of more

than one method could help to avoid the occurrence of “methodological bias” (see,

for example, Banker et al. (1994)). Given that, to the best of our knowledge, com-

bination approaches have not yet been analyzed in simulation studies, our second
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research objective entails combining the estimated scores. Finally, we are able to

determine whether a combination approach is superior to the elementary estimates

provided by the methods.

The remainder of this paper is organized as follows. Section 2 describes the general

simulation design of the Monte Carlo experiment. In Section 3, we analyze which

factors influence the performance of DEA and SFA. Subsequently, we discuss the

results of the combination approaches. In the final section we summarise the most

important results and provide some directions for further research.
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2 Simulation Design

Our simulation design is as follows:

• Variation of sample size (DMU):

The sample size has already been identified as an important factor of influence

on the performance of the various methods. The previous literature generally

indicates that sample size influences the performance of both methods, but

especially SFA should not be applied to small sample sizes. We extend the

range of sample sizes beyond those of Banker et al. (1993): n=15, 20, 25, 30,

40, 50, 75, 100, 150, 200 and 300.

• Variation of the percentage of DMUs on the efficient frontier (PDEF):

PDEF= 5%, 10% and 30%.

• Variation of collinearity between inputs:

A further factor considered in studies comparing efficiency methods is the

collinearity between the inputs. See for example Jensen (2005), who compared

COLS and SFA. Therefore, we successively vary the collinearity between the

inputs from no to a high correlation: ρ(x1,x2)=0, 0.1, 0.25, 0.5, 0.75, 0.9.

• Variation of the moments of input distributions:

Most of the simulation studies use uniform or normal distributions to generate

the inputs. In fact, real world input distributions are usually skewed to the

right. For instance, Resti (2000) justifies his use of skewed input distributions,

by the fact that there are normally more small and medium-sized companies

than large ones and that an unrealistic assumption could influence the per-

formance of the methods. However, in contrast to Resti (2000), we vary the

input distribution and are therefore able to evaluate the influence. To the best
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of our knowledge, this factor has not been analyzed before.

• Variation of the error term

The error term is the combination of the inefficiency (σu) and the noise (σv)

terms. The influence of each on the error term is its own standard deviation

divided by the overall standard deviation λ = σv
σu+σv

. As it is an inherently

important factor for the performance of both methods, in a first step, we

analyze the noise and the inefficiency terms separately, changing the ratio λ

accordingly. Furthermore, we analyze a simultaneous variation of the absolute

values, so that the ratio of both components remains constant.

• Variation of the inefficiency term distribution

In order to generate the inefficiency term, we use a half normal and a beta

distribution. Accordingly, we are able to measure the influence of increasing

skewness of the inefficiency, as well as a model misspecification of the SFA.

• Variation of the functional form of the production function

Intuitively, the production function is the most important part of the data

generating process, as it is the instrument used to aggregate the components.

Given that its importance is mentioned in many studies, it is notable that

most of them focus on only two or three different production functions. By

contrast, we use a wide range of production functions, which vary with respect

to returns-to-scale and flexibility. Table 1 gives an overview of the twelve pro-

duction functions, their characteristics and the studies in which they were used.
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Nr PF Description Parametrization Source

I

ln(y)=ln(β0)+β1 · ln(x1) + β2 · ln(x2)

Cobb-Douglas, CRS, I.w.d. β0=2, β1=0.4, β2=0.6 a

II Cobb-Douglas, CRS, I.w.e. β0=1, β1=0.5, β2=0.5

bIII Cobb-Douglas, CRS, I.w.d. β0=1, β1=0.75, β2=0.25
IV Cobb-Douglas, IRS β0=1, β1=0.6, β2=0.6
V Cobb-Douglas, DRS β0=1, β1=0.4, β2=0.4

VI Cobb-Douglas, Piecewise

for 5 ≤ x1 ≤ 10 and 5 ≤ x2 ≤ 10
β0=0.631, β1=0.65, β2=0.55

cfor 5 ≤ x1 ≤ 10 and 10 ≤ x2 ≤ 15
β0=0.794, β1=0.65, β2=0.45
for 10 ≤ x1 ≤ 15 and 5 ≤ x2 ≤ 10
β0=1.259, β1=0.35, β2=0.55
for 10 ≤ x1 ≤ 15 and 10 ≤ x2 ≤ 15
β0=1.585, β1=0.35, β2=0.45

VII
β0 + β1 · ln(x1) + β2 · ln(x2) + 0.5 ·
β11 · [ln(x1)]2 + 0.5 · β22 · [ln(x2)]2 +
β12 · ln(x1) · ln(x2)

Translog
β0=1, β1= β2=0.3, β11 = β22 = β12
= 0.1 d

VIII
β0 + β1 · ln(x1) + β2 · ln(x2) + 0.5 ·
β11 · [ln(x1)]2 + 0.5 · β22 · [ln(x2)]2 +
β12 · ln(x1) · ln(x2)

Translog
β0=0.085, β1 = 0.5, β2 = 0.44, β11
= 0.14, β22 = 0.09, β12 = -0.22 e

IX

ln(yeθδ)= ln [
∑n
i=1 αi · x

−ρi
i ]−δ/ρ CRESH

θ=0, δ=1, α1=α2=0.5, ρ=ρi=2

fX θ=0, δ=1, α1=α2=0.5, ρ=ρi=0.1
XI θ=0, δ=1, α1=α2=0.5, ρ=ρi=-0.25
XII θ=0, δ=1, α1=α2=0.5, ρ=ρi=-0.67

Table 1: Variation of production function. CRS: Constant returns to scale; IRS: In-
creasing returns to scale; DRS: Decreasing returns to scale; I.w.e.: Inputs weighted
equally; I.w.d.: Inputs weighted differently. a Ruggiero (2007), b Adler and Yazhem-
sky (2010) in modified form, c Banker et al. (1994), d Cordero et al. (2009), e Banker
et al. (1994), f Yu (1998) in modified form.

2.1 The standard simulation set

Because the structure of the analysis becomes increasingly complex through the

integration of all possible combinations, we create a standard setting to reduce this

complexity. This standard setting is used as the point of reference for the following

sensitivity analysis. We therefore vary the different factors of influence successively,

while keeping the remaining parameters of the standard set unchanged. In order to

obtain reliable results, each setting is replicated 100 times.

For the standard setting, we follow Ruggiero (1999), Jensen (2005) and others, by

using two inputs, x1 and x2, which are generated from a uniform distribution with

the interval [5, 15]. Further, we assume that there is no collinearity between x1 and

x2. Following Aigner and Chu (1968) and Ruggiero (1999), we assume that the

data generating process for 100 DMUs is defined by the following Cobb-Douglas
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production function:

ln(yi) = ln(2) + 0.4ln(x1,i) + 0.6 ln(x2,i)︸ ︷︷ ︸
productionfunction

− ln(ui) + ln(vi)︸ ︷︷ ︸
errorterm

i=1,. . . ,n. (1)

where ui and vi represent the inefficiency and the statistical noise terms respectively.

The noise term vi is drawn from a normal distribution vi ∼ N(0, 0.05), while the

inefficiency term ui is half-normally distributed ui ∼ N+(0, 0.2). We do not set

a specific percentage of the considered DMUs on the efficient frontier (PDEF=0).

The endogenous variable yi is calculated according to (1). Finally, DEA and SFA

are applied to estimate the efficiency scores respectively using x1,i and x2,i and the

generated yi. Table 2 lists the assumptions for the standard set.

Variations Standard Set

Sample size 100
Inputs x1, x2 x1,2 ∼ U(5, 15)
Collinearity 0
Noise term vi ∼ N(0, 0.05)
Inefficiency term ui ∼ N+(0, 0.2)
Percentage on the efficient frontier 0
Production function PF I see table (1)

Table 2: Overview of the variations in the simulation design

Regarding the methods, it is necessary to choose between the different models for

DEA and SFA. For our analysis, we use an output-orientated two-step DEA model

with variable returns to scale. Conforming to the usual assumptions for SFA, we

assume a Cobb-Douglas production function, a normal distribution for the noise

term and a half-normal distribution for the inefficiency term. In contrast to Banker

et al. (1993), we use maximum likelihood instead of the moment method as the

estimation method.
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2.2 Approaches for combining the DEA and SFA estimates

Our second research objective is to compare the results of SFA and DEA with

two approaches to combining the efficiency estimates of DEA and SFA. The two

approaches are the following:

• ’Best-of-two Method’: In a similar manner to the German incentive regulation

system for electricity and gas, we calculate the efficiency score using DEA and

SFA. The individual efficiency is thus the maximum of both values (see Andor

(2009)).

• ’Mean Method’: Once again, we calculate the efficiency score using both meth-

ods, but instead of using the better one, we now calculate the mean. This

approach is, for example, applied in the Finnish incentive regulation system

(see Haney and Pollitt (2009)).

2.3 Performance criteria

The evaluation of the methods requires a performance criterion. Ruggiero (1999)

and others focus on ranking accuracy, as they use the average rank correlation

between the “true” and estimated efficiency. However, in real world applications,

ranking accuracy is an inferior performance criterion, because policy makers often

have to set individual efficiency objectives. Hence, the ability to measure individual

efficiency is the most important factor. Accordingly, we calculate the mean of the

absolute deviation (MAD) of the “true” and the estimated efficiency values, and use

it as the deciding performance criterion. Nevertheless, we also show the results of

the ranking accuracy and discuss them if they are of interest.

In order to gain additional insight into the influence of a particular factor, we give

additional information criteria. The MAD yields information about the absolute
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deviation, but lacks information about over- and underestimation. Because such in-

formation could be useful, we additionally calculate the mean of the deviation (MD),

as difference between the “true” and the estimated value. Accordingly, a negative

sign indicates that the method on average overestimates the efficiency. However,

the MD could lead to misinterpretations when driven by outliers. When only a

small number of firms exhibits a large negative deviation, the MD will be negative,

although the remainder of the sample has a (small) positive value or vice versa. One

way of solving this problem is to calculate the median. However, instead of using the

median as a further criterion, we calculate the percentage of underestimated firms

(PU), because this percentage is easier to interpret in these circumstances. For ex-

ample, a PU value of 0.70 implies, that the used method leads to an excessively low

efficiency score for 70% of the considered DMUs. We discuss these criteria below, if

they yield additional information about the reasons for performance variation.

2.4 Comparison procedure and statistical testing

We focus on two different investigation aspects, the first being inter-comparison.

We thus compare the performance of the two methods within a certain setting

and test in order to determine, whether the performance levels are significantly

different. The second aspect - the intra-comparison - looks at the influence of specific

factor variations on the method performance. Here, we compare the performance

between the respective setting and the standard set. By doing so, we are able to

determine, whether the factor under consideration exerts a significant influence on

the performance of the method.

In order to test the differences statistically, in accordance to Banker et al. (1993), we

apply the Wilcoxon matched-pairs signed rank (WMP) test with a 95% confidence

level. Additionally, we apply the Kolmogorov-Smirnov equality-of-distributions test

(KS) with a 95% confidence level to check for differences in the shape of distribution

of the MAD. An asterisk indicates a significant difference and a minus indicates
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insignificance. Because we use two tests, the order of the symbols is also important.

An asterisk followed by a minus sign denotes that the first WMP test indicates

significance, while the second KS indicates insignificance. When both test have

the same indication, we only show one symbol. Furthermore, we use subscript

(superscript) symbols for the inter (intra) comparison. Because, for almost all of

our chosen settings, the results of DEA and SFA are significantly different (inter

comparison), we only label settings which are insignificant.
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3 Results

3.1 Standard set

We now summarize and discuss the results of the simulation study. As the basis

for our analysis, we initially consider the results for the standard set. Table 3

presents the performance and information criteria for this set. Concerning the MAD,

both methods yield similar results: MADSFA ≈ MADDEA ≈ 0.04. Despite the fact

that Banker et al. (1993) used the moment method to estimate the SFA, both our

MADDEA and MADSFA are comparable to their results. The MD is below zero

for the SFA, indicating that the method generally overestimates. Additionally, the

PU indicates that the SFA underestimates 42.1% of the DMUs. The DEA is quite

balanced, with a MD ≈0, as well as a PU ≈50%. The final performance criterion of

rank correlation is 0.8 for the DEA and 0.87 for the SFA.

MAD MD PU Rank

Set SFA DEA SFA DEA SFA DEA SFA DEA

1 0.037 0.042 -0.012 0.001 42.1% 50.2% 0.866 0.800

Table 3: Performance criteria for DEA and SFA for the standard set

Figure 1 shows the histogram of the 10,000 (100 DMU · 100 simulations) estimated

efficiency scores for the DEA and SFA separately, as well as a combined graphic. It

illustrates that the distributions of the estimated efficiency scores are quite similar up

to a level of 90%. From that level onwards, the main differences become apparent.

Because, for each simulation, DEA calculates the efficient frontier subject to the

specific input output relations, it is characteristic that a relatively high percentage

of the 10,000 DMUs is determined as fully efficient. For each simulation, an average

of about 12 of 100 DMUs are on the efficient frontier. For the SFA estimates, it is

symptomatic that the distribution is left skewed. Only 0.1% of the DMUs is fully

efficient, while a large proportion (50% of the DMUs) is relatively efficient (between

90 and 100%) and a declining fraction is relatively inefficient.
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Figure 1: Histogram for SFA and DEA estimates

3.2 Sample size

Table 4 contains the results for the variation of sample size. Regarding the intra

comparison, the sample size has a significant influence on both performances. In

general, the MAD declines with an increasing number of DMUs and vice versa.

Especially for the DEA, it is interesting to note the MD and PU, for which, an

increasing sample size leads to both criteria increasing. This can be explained by

an decreasing relative number of DMUs on the efficient frontier.

Regarding the inter comparison, one can distinguish between three different inter-

vals. For 50 or more DMUs, the SFA yields a significantly better performance than

the DEA. For less than 50, but more than 20 DMUs, the DEA achieves signifi-

cantly better results. These findings conform to Banker et al. (1993). However, for

a further decline in sample size, our results suggest that the SFA performs better

than the DEA - the MADSFA is lower than the MADDEA. Hence, our results cast

doubt on the recommendation of Banker et al. (1993) and Ruggiero (1999), that

SFA should not be applied to small sample sizes.
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MAD MD PU Rank
DMU Set SFA DEA SFA DEA SFA DEA SFA DEA

15 2 0.068∗ 0.071∗ -0.047 -0.063 27.5% 11.7% 0.757 0.641
20 3 0.066∗ 0.063∗ -0.047 -0.052 25.9% 16.9% 0.793 0.670
25 4 0.063∗ 0.059∗ -0.043 -0.045 28.8% 20.7% 0.804 0.666
30 5 0.056∗ 0.052∗ -0.029 -0.033 36.1% 26.6% 0.821 0.706
40 6 0.053∗ 0.050∗ -0.028 -0.027 35.9% 30.0% 0.835 0.737
50 7 0.040∗ 0.046∗ -0.008 -0.019 45.4% 35.4% 0.845 0.751
75 8 0.039∗− 0.042− -0.011 -0.007 43.5% 43.8% 0.863 0.797
100 1 0.037 0.042 -0.012 0.001 42.1% 50.2% 0.866 0.800
150 9 0.034∗ 0.042− -0.010 0.013 42.6% 59.6% 0.869 0.822
200 10 0.034∗ 0.044∗ -0.011 0.019 41.7% 64.3% 0.874 0.828
300 11 0.033∗ 0.046∗ -0.012 0.029 39.7 % 71.9% 0.875 0.837

Table 4: Variation of sample size. MAD: mean absolute deviation, MD: mean
deviation, PU: percentage of underestimation, Rank: Rankkorrelation. Wilcoxon
matched-pairs signed rank test (WMP) and Kolmogorov-Smirnov equality-of-
distributions test (KS) with a 95% confidence level. An asterisk followed by a
minus sign denotes that the WMP test indicates significance, while the KS indi-
cates insignificance and vice versa. Subscript (superscript) symbols for the inter
(intra) comparison. Inter comparison: Only insignificant settings are labeled. See
for further details section 2.4.

3.3 Percentage of DMUs on the efficient frontier

The percentage of DMUs on the efficient frontier influences the performance of the

methods (see Table 5). With an increasing proportion, the MAD for both methods

deteriorate and the probability of underestimation rises. Hence, the SFA is affected

more strongly, because it usually predicts only a relatively small number of DMUs

as fully efficient. This relative disadvantage of SFA leads to one of the few cases

in which the performances no longer differ significantly (PDEF=30%). For higher

PDEFs, the DEA is superior to the SFA. The rank correlation also decreases with

an increasing PDEF, but in contrast to the MAD, the difference between RankSFA

and RankDEA is constant at around 0.06. This implies that the SFA still estimates

the rank better, but the efficiency scores worse. Hence, the conclusion depends on

the considered performance criterion.
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MAD MD PU Rank
PDEF Set SFA DEA SFA DEA SFA DEA SFA DEA

0% 1 0.037 0.042 -0.012 0.001 42.1% 50.2% 0.866 0.800
5% 12 0.036−∗ 0.042−∗ -0.004 0.010 49.4% 59.1% 0.873 0.811
10% 13 0.039∗ 0.043−∗ 0.003 0.017 55.8% 64.9% 0.866 0.810
30% 14 0.046∗−∗ 0.046∗−∗ 0.035 0.032 81.4% 78.6% 0.851 0.803
40% 15 0.056∗ 0.050∗ 0.053 0.041 92.0% 85.5% 0.808 0.749
50% 16 0.062∗ 0.054∗ 0.059 0.048 94.5% 90.0% 0.766 0.717

Table 5: Variation of the percentage of DMUs on the efficient frontier. MAD:
mean absolute deviation, MD: mean deviation, PU: percentage of underestima-
tion, Rank: Rankkorrelation. Wilcoxon matched-pairs signed rank test (WMP)
and Kolmogorov-Smirnov equality-of-distributions test (KS) with a 95% confidence
level. An asterisk followed by a minus sign denotes that the WMP test indicates
significance, while the KS indicates insignificance and vice versa. Subscript (super-
script) symbols for the inter (intra) comparison. Inter comparison: Only insignifi-
cant settings are labeled. See for further details section 2.4.

3.4 Collinearity

The results for the variation of collinearity between the inputs suggest that it does

not exert a significant impact on performance. Table 6 shows that none of the

considered criteria are affected. These findings concur with Jensen (2005), who

concludes that collinearity has no influence on the performance of SFA and COLS.

MAD MD PU Rank
ρ(x1,x2) Set SFA DEA SFA DEA SFA DEA SFA DEA

0% 1 0.037 0.042 -0.012 0.001 42.1% 50.2% 0.866 0.800
0.1 17 0.039∗− 0.041− -0.013 0.005 42.3% 53.0% 0.867 0.813
0.25 18 0.037− 0.042− -0.010 0.005 43.9% 52.7% 0.871 0.814
0.5 19 0.038− 0.041− -0.014 0.006 40.9% 53.8% 0.870 0.817
0.75 20 0.036∗ 0.042− -0.009 0.011 43.2% 57.6% 0.866 0.820
0.9 21 0.038− 0.043− -0.014 0.015 40.0% 60.3% 0.862 0.827

Table 6: Variation of collinearity. MAD: mean absolute deviation, MD: mean
deviation, PU: percentage of underestimation, Rank: Rankkorrelation. Wilcoxon
matched-pairs signed rank test (WMP) and Kolmogorov-Smirnov equality-of-
distributions test (KS) with a 95% confidence level. An asterisk followed by a
minus sign denotes that the WMP test indicates significance, while the KS indi-
cates insignificance and vice versa. Subscript (superscript) symbols for the inter
(intra) comparison. Inter comparison: Only insignificant settings are labeled. See
for further details section 2.4.
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3.5 Input distribution

As an initial attempt to measure the influence of the input distribution, we vary

the distribution without considering specific characteristics. Accordingly, we use

the uniform, normal, student-t and gamma distribution successively to generate the

inputs. Table 7 gives an overview of the performance of DEA and SFA, when the

shape of the input distribution is changing. It is evident that the MADSFA is not

influenced, whereas the MADDEA changes significantly. Due to these results, we

can conclude that the input distribution exerts at least some influence on the per-

formance of the DEA. Below, we determine which characteristics of the distribution

exert an influence. Therefore, we vary step-by-step the ratio of standard deviation

to mean, the kurtosis and the skewness of the distributions, while holding the other

characteristics constant.

MAD MD PU Rank
Input(x1,x1) Set SFA DEA SFA DEA SFA DEA SFA DEA

U [5,15] 1 0.037 0.042 -0.012 0.001 40.5% 41.0% 0.868 0.751
Normal (150,1) 22 0.038− 0.059∗ -0.011 0.055 42.7% 88.2% 0.863 0.873
Student-t(6) 23 0.038− 0.057∗ -0.014 0.051 40.3% 85.8% 0.874 0.869

Gamma (1,10) 24 0.039− 0.053∗ -0.012 -0.032 42.8% 29.4% 0.866 0.659

Table 7: Variation of input distribution. MAD: mean absolute deviation, MD: mean
deviation, PU: percentage of underestimation, Rank: Rankkorrelation. Wilcoxon
matched-pairs signed rank test (WMP) and Kolmogorov-Smirnov equality-of-
distributions test (KS) with a 95% confidence level. An asterisk followed by a
minus sign denotes that the WMP test indicates significance, while the KS indi-
cates insignificance and vice versa. Subscript (superscript) symbols for the inter
(intra) comparison. Inter comparison: Only insignificant settings are labeled. See
for further details section 2.4.

As already mentioned in the introduction, most simulation studies use uniform or

normal distributions to generate the inputs. The normal distribution has an advan-

tage over the uniform distribution regarding parametrization. Because this is useful

for our subsequent analysis, we use different normal, instead of uniform distributions.

A change in mean for the normal distribution - keeping the standard deviation

constant - changes the relative diffusion. For example, the relative diffusion of a
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normal distribution with a mean of 10 and a standard deviation of 1 (N (10,1)) is

larger than for a normal distribution with the same standard deviation, but a mean

of 100 (N(100,1)). We measure this relative diffusion by calculating the ratio of

standard deviation and mean (SD/mean).

Concerning the mean and standard deviation, two aspects are of particular interest.

Assuming a constant relative diffusion (SD/mean), is the level of mean and standard

deviation of relevance? In order to answer this first question, we create group

A (setting 25-28) and B (setting 29-32) with a constant ratio of 0.005 and 0.1

respectively, but the settings within the groups differ regarding the level of mean

and standard deviation(see Table 8). Accordingly, our results suggest that neither

method is influenced, as the MAD within the groups does not change significantly.

But what about the level of the relative diffusion? Instead of comparing the results

within the settings, we have to compare the performance between the settings to

answer this question. The MADSFA is not influenced by this kind of variation for

both groups, whereas the MADDEA is - on average - 0.015 worse for group A. A

low level of relative diffusion (group A) implies that the inputs are relatively close

around the mean. In these cases, the variation of inputs is much smaller, implying a

smaller variety of possible outputs of the DMUs, i.e. the range of firm sizes narrows.

As a result, the applied DEA with variable returns to scale places fewer DMUs on

the efficient frontier. As already mentioned, for the standard setting, around 12

DMUs are, on average, identified as fully efficient by DEA, whereas for group A,

only 1.5 DMUs belong to this class. This reduction of fully efficient DMUs may

explain the increasing underestimation (PU for group A (B) ≈ 88% (63%)). This

effect ultimately leads to the deterioration of the MADDEA. On the other hand, the

effect of a declining number of DMUs on the efficient frontier causes an increase in

the rank correlation (RankDEA for group A (B) ≈ 0.87 (≈ 0.83)). Consequently, the

performance criteria diverge, yielding different conclusions.

Below, we discuss the two remaining moments - kurtosis and skewness. For the

analysis of kurtosis, we use a student-t distribution with different degrees of freedom
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MAD MD PU Rank
SD/mean Input(x1,x1) Set SFA DEA SFA DEA SFA DEA SFA DEA

0.005 N (800,4) 25 0.038 0.059 -0.015 0.054 40.0% 88.3% 0.860 0.869
0.005 N (400,2) 26 0.038 0.058 -0.012 0.052 41.9% 87.3% 0.866 0.875
0.005 N (200,1) 27 0.039 0.061 -0.017 0.056 39.5% 89.1% 0.866 0.874
0.005 N (100,0.5) 28 0.036 0.058 -0.013 0.053 40.9% 87.8% 0.862 0.870
0.100 N (10,1) 29 0.044 0.044 -0.023 0.019 36.0% 63.0% 0.858 0.823
0.100 N (15,1.5) 30 0.037 0.042 -0.011 0.017 43.1% 62.5% 0.864 0.833
0.100 N (50,5) 31 0.040 0.043 -0.016 0.019 40.1% 64.5% 0.866 0.834
0.100 N (100,10) 32 0.038 0.045 -0.014 0.023 40.5% 66.0% 0.867 0.833

Table 8: Variation of input distribution - SD/mean

(5, 6, 8, and 10). This distribution is advantageous, because the other moments

are relatively constant, while the kurtosis is changing. As the benchmark, we use

a normal distribution, which is parameterized so that the level of relative diffusion

(SD/mean) is similar to the student-t distributions, so as to exclude the influence of a

changing SD/mean ratio. Because none of the performance criteria yields substantial

changes (see Table 9), we can conclude that the kurtosis does not have an impact

on the performance of the methods.

MAD MD PU Rank
Kur. SD/mean Input(x1,x1) Set SFA DEA SFA DEA SFA DEA SFA DEA

3.00 0.010 N (100,1) 33 0.039 0.056 -0.015 0.050 40.7% 86.0% 0.870 0.864
4.00 0.011 Stud.-t(10) 34 0.038 0.057 -0.014 0.052 40.1% 86.3% 0.874 0.867
4.50 0.012 Stud.-t(8) 35 0.036 0.056 -0.008 0.049 44.5% 85.7% 0.874 0.868
6.37 0.012 Stud.-t(6) 36 0.038 0.057 -0.014 0.051 40.3% 85.8% 0.868 0.862
8.02 0.013 Stud.-t(5) 37 0.041 0.054 -0.019 0.048 37.7% 84.5% 0.874 0.869

Table 9: Variation of input distribution - kurtosis

For the analysis of skewness, we use two different distributions, one with skewness

(gamma), the other one without (uniform), but both with the same level of relative

diffusion (see Table 10). As the difference in the kurtosis is negligible, because it

does not influence the performance of the methods (see above), a difference in per-

formance should represent the influence of changing skewness. For the two settings

with high skewness (settings 41 and 24), it is impossible to create the required com-

parison settings, because, for a symmetric distribution with, for instance, a level of

0.71 (SD/mean), negative values for the inputs occur.

For all variations of skewness, the SFA is unaffected. For low levels of skewness,
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the performance difference of the DEA results within the pairs (1 and 38, 39 and

40) is relatively small, but significantly different. Furthermore, it is evident that

for higher levels of skewness, the MADDEA increases, whereby the deterioration is

driven mainly by the increasing overestimation of the DEA (see, for example, set

24: MDDEA=-0.032 and PUDEA=29.4%). The reason could be the application of

a DEA VRS. With increasing skewness, the range of firm sizes expands and the

number of firms with comparable firm size decreases. Thus, the number of DMUs

on the efficient frontier increase (on average 22 (27) for setting 41 (24)) which leads

to an increasing overestimation. However, because of the limitation that for high

levels of skewness, there is no comparison setting, we can not conclude definitively,

that the skewness is the exclusive reason for the increase in MDDEA. However, the

results do at least suggest that the skewness has an impact on the performance of

DEA.

MAD MD PU Rank
Skew. SD/mean Input(x1,x1) Set SFA DEA SFA DEA SFA DEA SFA DEA

0.00 0.29 U [5,15] 1 0.037 0.042 -0.012 0.001 42.1% 50.2% 0.866 0.800
0.63 0.32 G(10,1) 38 0.036∗− 0.045∗ -0.012 -0.001 41.2% 49.7% 0.866 0.755
0.00 0.43 U [5,35] 39 0.036− 0.043− -0.012 -0.010 40.8% 42.5% 0.871 0.779
0.89 0.45 G(5,2) 40 0.038− 0.047∗ -0.014 -0.009 40.2% 45.8% 0.860 0.723
1.41 0.71 G(2,5) 41 0.037− 0.050∗ -0.013 -0.020 41.0% 37.7% 0.861 0.694
2.00 1.00 G(1,10) 24 0.039− 0.053∗ -0.012 -0.032 42.8% 29.4% 0.866 0.659

Table 10: Variation of input distribution - skewness. MAD: mean absolute devia-
tion, MD: mean deviation, PU: percentage of underestimation, Rank: Rankkorre-
lation. Wilcoxon matched-pairs signed rank test (WMP) and Kolmogorov-Smirnov
equality-of-distributions test (KS) with a 95% confidence level. An asterisk followed
by a minus sign denotes that the WMP test indicates significance, while the KS
indicates insignificance and vice versa. Subscript (superscript) symbols for the inter
(intra) comparison. Inter comparison: Only insignificant settings are labeled. See
for further details section 2.4.

Finally, we can conclude that the input distribution has an influence on the perfor-

mance of the DEA, but not on the SFA. Our attempts to shed further light on the

causes of performance variation, suggest that the kurtosis has no influence, while

the skewness and the relationship between standard deviation and mean do exert

an influence.
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3.6 Standard deviation of the error term

In the following section, we vary the standard deviation of the error term. As the

error term consists of both the noise and the inefficiency terms, there are three

ways to vary the standard deviation of the noise term: the isolated variation of the

standard deviation of the noise and the inefficiency term respectively, which vary

according to the ratio λ = σv
σu+σv

, and the simultaneous variation of both standard

deviations, whereupon we leave λ constant. Below, we analyze the three options in

turn.

The isolated variation of the standard deviation of the noise term (σv) yields an

unambiguous result. An increasing standard deviation σv is combined with an in-

creasing λ and leads to a deteriorating performance of both methods, see Table 11.

DEA is affected more by this variation, because it does not account for random

noise. While MADSFA increases from 0.014 to 0.126, MADDEA rises from 0.028 to

0.195. However, the performance of SFA also diminishes strongly, showing that the

separation of noise and inefficiency is less successfull, when the proportion of random

noise is high. Accordingly, the percentage of underestimated DMUs increases, so

that for σv=0.2 and λ=0.5, around PUSFA=72% and PUDEA= 82% of the DMUs are

underestimated respectively. The rank correlation also declines for both methods.

The results are in line with the findings of Banker et al. (1993).

Table 12 shows the variation of the standard deviation of the inefficiency term. An

increasing standard deviation of the inefficiency term decreases λ and the expected

efficiency value. In contrast to the variation of the noise term, the methods are

affected differently by a variation of the inefficiency. With increasing inefficiency, the

DEA improves, while the SFA deterioates. DEA does not account for statistical noise

and thus, the results improve with an decreasing ratio of λ, because the proportion

of noise reduces. On the other hand, the MADSFA deteriorates with increasing

inefficiency. For cases with a high λ, the skewness of the composed error term is

relatively low. As a result of the skewness condition of the SFA, this means that the
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MAD MD PU Rank
σv λ Set SFA DEA SFA DEA SFA DEA SFA DEA

0.01 4.76% 42 0.014∗ 0.028∗ -0.009 -0.027 31.9% 8.6% 0.985 0.921
0.02 9.09% 43 0.019∗ 0.028∗ -0.007 -0.022 39.9% 23.7% 0.966 0.901
0.05 20% 1 0.037 0.042 -0.012 0.001 42.1% 50.2% 0.866 0.800
0.1 33.33% 44 0.060∗ 0.084∗ -0.011 0.054 46.7% 70.0% 0.675 0.630

0.125 38.46% 45 0.065∗ 0.105∗ 0.006 0.077 53.2% 74.2% 0.583 0.544
0.15 42.86% 46 0.078∗ 0.132∗ 0.016 0.106 57.2% 77.8% 0.516 0.490
0.175 46.66% 47 0.090∗ 0.155∗ 0.042 0.132 64.8% 80.4% 0.467 0.440
0.2 50.00% 48 0.105∗ 0.178∗ 0.070 0.156 71.5% 82.1% 0.418 0.401

Table 11: Variation of the standard deviation of the noise term (σv). MAD:
mean absolute deviation, MD: mean deviation, PU: percentage of underestima-
tion, Rank: Rankkorrelation. Wilcoxon matched-pairs signed rank test (WMP)
and Kolmogorov-Smirnov equality-of-distributions test (KS) with a 95% confidence
level. An asterisk followed by a minus sign denotes that the WMP test indicates
significance, while the KS indicates insignificance and vice versa. Subscript (super-
script) symbols for the inter (intra) comparison. Inter comparison: Only insignifi-
cant settings are labeled. See for further details section 2.4.

SFA recognizes that there is only a small proportion of inefficiency in the data. In

these cases, SFA estimates the average inefficiency in the data relatively precisely,

but gives every DMU almost the same efficiency score. Hence, the rank correlation

is lower, despite a very low MAD. In general, the rank correlation for both methods

improves with increasing inefficiency, because, in cases with low inefficiency, the

DMUs do not differ much and the estimation of the rank is more difficult. While,

for the DEA, both performance criteria lead to the same conclusion, the variation

in inefficiency has opposing effects on the MAD and on the rank correlation of the

SFA.

After varying the individual standard deviations, in the next step, we change the

standard deviation of the noise and inefficiency term simultaneously, so that the

relationship between noise and inefficiency remains constant at 20%, as in the stan-

dard set. Table 13 shows that the absolute level exerts a diverse influence on the

performance criteria. The higher the standard deviation of the error term, the higher

the MAD for both methods, while the rank correlation is almost unaffected by this

variation. Furthermore, the impact on MD and PU is interesting. On the one hand,

the MDSFA and PUSFA decreases with an increasing standard deviation of the error
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MAD MD PU Rank
σu λ Exp. Eff. Set SFA DEA SFA DEA SFA DEA SFA DEA

0.02 71.4% 0.984 49 0.023∗ 0.056∗ 0.014 0.052 64.8% 79.9% 0.215 0.171
0.05 50.0% 0.962 50 0.027∗ 0.050∗ -0.004 0.038 45.4% 73.0% 0.441 0.381
0.1 33.3% 0.929 51 0.033∗ 0.044∗ -0.008 0.020 46.2% 62.7% 0.692 0.613
0.2 20.0% 0.871 1 0.037 0.042 -0.012 0.001 42.1% 50.2% 0.866 0.800
0.3 14.3% 0.823 52 0.045∗ 0.043− -0.023 -0.010 36.0% 42.8% 0.918 0.873

Table 12: Variation of the standard deviation of the inefficiency term (σu). MAD:
mean absolute deviation, MD: mean deviation, PU: percentage of underestima-
tion, Rank: Rankkorrelation. Wilcoxon matched-pairs signed rank test (WMP)
and Kolmogorov-Smirnov equality-of-distributions test (KS) with a 95% confidence
level. An asterisk followed by a minus sign denotes that the WMP test indicates
significance, while the KS indicates insignificance and vice versa. Subscript (super-
script) symbols for the inter (intra) comparison. Inter comparison: Only insignifi-
cant settings are labeled. See for further details section 2.4.

term, while on the other hand, the MDDEA and PUDEA increases. Hence, it can

be concluded that the reason for the performance deterioration of both methods

are contrary to one another: SFA overestimates and DEA underestimates, with an

increasing standard deviation of the composed error term.

MAD MD PU Rank
σv σu λ Set SFA DEA SFA DEA SFA DEA SFA DEA

0.025 0.10 20% 53 0.019∗ 0.024∗ -0.004 -0.004 45.5% 43.6% 0.879 0.779
0.0375 0.15 20% 54 0.028∗ 0.033∗ -0.008 -0.002 42.8% 47.1% 0.873 0.793
0.05 0.20 20% 1 0.037 0.042 -0.012 0.001 42.1% 50.2% 0.866 0.800

0.0625 0.25 20% 55 0.049∗ 0.050∗ -0.024 0.004 36.7% 51.5% 0.854 0.800
0.075 0.30 20% 56 0.056∗ 0.057∗ -0.027 0.010 37.2% 54.5% 0.855 0.808

Table 13: Variation of the absolute level of the error term. MAD: mean absolute de-
viation, MD: mean deviation, PU: percentage of underestimation, Rank: Rankkorre-
lation. Wilcoxon matched-pairs signed rank test (WMP) and Kolmogorov-Smirnov
equality-of-distributions test (KS) with a 95% confidence level. An asterisk followed
by a minus sign denotes that the WMP test indicates significance, while the KS
indicates insignificance and vice versa. Subscript (superscript) symbols for the inter
(intra) comparison. Inter comparison: Only insignificant settings are labeled. See
for further details section 2.4.

3.7 Distribution of the inefficiency term

We now vary the distribution of the inefficiency term in the data generating process,

so as to measure its influence on the methods. We thus analyze the influence of the
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inefficiency distribution, by comparing the results of a half-normally distributed and

a beta distributed inefficiency term. This is particularly interesting, with regard to

the SFA. Because we consistently assume a half-normally distributed inefficiency

term for the SFA, we are able to analyze the effect of this model specification error.

The subsequent comparison is always between a pair of results, containing one set-

ting using the half normal and one using the beta distribution. The parametrization

of both settings is chosen in such a manner that they have the same expected value

for the efficiency. Regarding the differences in skewness (and kurtosis), we calculate

the over-skewness (-kurtosis), representing the skewness (kurtosis) of the beta mi-

nus the skewness (kurtosis) of the half normal distribution. Accordingly, a positive

over-skewness (-kurtosis) implies that the beta distribution is more skewed (has a

higher kurtosis).

The results in Table 14 show a definite tendency. The skewness of the inefficiency

distribution has a negative influence on the performance of both methods (regarding

the MAD). Furthermore, the results confirm that the SFA is affected primarily,

because of the misspecification of the inefficiency distribution. The MD and the

PU explain the performance variation: the skewer the distribution, the higher the

percentage of underestimated DMUs. In contrast to the MAD, the rank correlation

is positively affected (or not affected) by the inefficiency distribution variation.

3.8 Production function

The second possible misspecification error from applying the SFA could arise from

assuming an inaccurate production function. The influence of the production func-

tion is frequently referred to be important in the literature, but is rarely analyzed.

Furthermore, the range of production functions under consideration has been lim-

ited so far. For example, Gong and Sickles (1992) use three different production

functions, while Banker et al. (1993) use two very similar ones in their simulation

studies. We generate the data with a total of twelve different production functions,
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MAD MD PU Rank
σu Ex.Ef. O.sk. O.kur. Set SFA DEA SFA DEA SFA DEA SFA DEA

N+ (0,0.02) 0.984
4.74 40.62

57 0.023+ 0.056+ 0.014 0.052 64.8% 79.9% 0.215 0.171
B (0.065,4) 0.987 58 0.057+ 0.062+ 0.056 0.060 97.0% 89.4% 0.219 0.195
N+ (0,0.05) 0.962

2.56 14.61
59 0.027+ 0.050+ -0.004 0.038 45.4% 73.0% 0.441 0.381

B (0.16,4) 0.968 60 0.062+ 0.058+ 0.060 0.054 96.2% 82.4% 0.484 0.439
N+ (0,0.1) 0.929

1.25 4.84
61 0.033+ 0.044+ -0.008 0.020 46.2% 62.7% 0.692 0.613

B (0.35,4) 0.935 62 0.057+ 0.052+ 0.054 0.042 91.2% 75.8% 0.721 0.670
N+ (0,0.2) 0.871

0.34 0.70
1 0.037 0.042 -0.012 0.001 42.1% 50.2% 0.866 0.800

B (0.75,4) 0.876 63 0.037+ 0.042− 0.022 0.015 70.6% 59.6% 0.876 0.824

N+ (0,0.3) 0.822
-0.15 -0.66

64 0.045+− 0.043−− -0.023 -0.010 36.0% 42.8% 0.918 0.873

B (1.25,4) 0.822 65 0.045+∗− 0.045+∗− -0.029 -0.015 29.4% 39.1% 0.916 0.864

Table 14: Variation of the inefficiency term distribution. MAD: mean absolute devi-
ation, MD: mean deviation, PU: percentage of underestimation, Rank: Rankkorre-
lation. Wilcoxon matched-pairs signed rank test (WMP) and Kolmogorov-Smirnov
equality-of-distributions test (KS) with a 95% confidence level. An asterisk followed
by a minus sign denotes that the WMP test indicates significance, while the KS
indicates insignificance and vice versa. Subscript (superscript) symbols for the inter
(intra) comparison. Inter comparison: Only insignificant settings are labeled. See
for further details section 2.4.

which vary with respect to returns-to-scale and flexibility.

MAD MD PU Rank
PF Set SFA DEA SFA DEA SFA DEA SFA DEA

I 1 0.037 0.042 -0.012 0.001 42.1% 50.2% 0.866 0.800
II 66 0.039∗ 0.042− -0.015 0.002 40.5% 50.4% 0.863 0.804
III 67 0.039∗ 0.042− -0.014 0.006 40.5% 53.1% 0.859 0.801
IV 68 0.041∗ 0.043∗ -0.015 0.004 41.0% 52.4% 0.863 0.799
V 69 0.039− 0.041∗− -0.015 0.000 41.6% 48.7% 0.867 0.806
VI 70 0.041∗ 0.040∗ -0.014 -0.003 42.5% 46.0% 0.851 0.821
VII 71 0.040∗ 0.057∗ -0.015 0.026 41.1% 62.2% 0.861 0.758
VIII 72 0.043∗ 0.044∗ -0.017 0.010 40.6% 57.2% 0.840 0.799
IX 73 0.047∗ 0.041∗ -0.008 -0.001 46.2% 46.9% 0.788 0.812
X 74 0.036− 0.042− -0.011 0.002 41.3% 50.8% 0.867 0.811
XI 75 0.038− 0.043− -0.012 0.004 42.9% 52.7% 0.863 0.800
XII 76 0.040∗ 0.043− -0.016 0.006 39.8% 54.8% 0.853 0.800

Table 15: Variation of production function. MAD: mean absolute deviation,
MD: mean deviation, PU: percentage of underestimation, Rank: Rankkorrela-
tion. Wilcoxon matched-pairs signed rank test (WMP) and Kolmogorov-Smirnov
equality-of-distributions test (KS) with a 95% confidence level. An asterisk followed
by a minus sign denotes that the WMP test indicates significance, while the KS
indicates insignificance and vice versa. Subscript (superscript) symbols for the inter
(intra) comparison. Inter comparison: Only insignificant settings are labeled. See
for further details section 2.4.

In Table 15, the results for the variation of the production function are presented.

In contrast to the statements made in the literature, the results suggest that the
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production function has - in relation to other influence factors - a relatively weak

influence on the performance of the methods. For the majority of variations, the

production function seems to have no relevant influence, even though there is a

significant performance difference. The differences between the MAD of the standard

set and the MAD of these settings are between 0.002 for the DEA and 0.006 for

the SFA. Yet, in some cases, this can have a crucial effect. The performance of

the SFA is relatively worse (MADSFA=0.047), when the data is generated from a

CRESH production function with ρ=2.0 (PF IX). The reason could be that this

production function is characterized by a relatively low elasticity of substitution

(0.333), in contrast to the assumed Cobb-Douglas function, which has an elasticity

of substitution of 1. The DEA performance is also relevantly influenced in one case.

If the data is generated from PF VII, which is a specific translog production function

(see Table 1), the MADDEA rises to 0.057. In summary, our results suggest that

the influence of the production function should not be overrated, but can in certain

cases, effect the performance of the methods.
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4 Comparison of approaches for determining in-

dividual efficiency scores

Our second research objective considers the fact that, in real world applications, it

is regarded as “best-practice” to apply several efficiency estimation methods and

to combine the achieved estimates into firm-specific efficiency objectives (see e.g.

Haney and Pollitt (2009)). In addition to this observation of real-world application,

also in the efficiency analysis literature, researchers assume that the use of more than

one method could help to avoid the possible occurrence of “methodological bias” (see

for example Banker et al. (1994)). Below, we compare two combination approaches,

the ’Best of two’ (BOT) and the Mean Method (MM), with the elementary estimates

of DEA and SFA. For the analysis, we use the same settings as for the isolated

analysis of DEA and SFA, but do not analyze the influence of parameter variations

on the performance in the same detail as in the previous section. Rather, we present

the results at an aggregated level, so as to concentrate on the comparison of the

different approaches to setting individual efficiency objectives.

Table 16 presents the average performance criteria for all 76 settings. The results

confirm that a transformation approach can be superior to the elementary estimates.

As shown in Table 16, MM has the lowest MAD, even though the SFA is very close

to this value (MADSFA=0.043, MADMM=0.042). Regarding the rank correlation,

the SFA has the highest value, followed by the MM. Hence, a definite conclusion

is not possible. Comparing all settings, the DEA is clearly the poorest method.

Bearing in mind that the standard setting favors the SFA (e.g. with respect to

the inefficiency distribution assumption), it can be assumed that under different

assumptions, the relative performance of the DEA improves. In such cases, we

expect a further relative performance enhancement of the MM. Further research

could investigate this expectation.

Focusing on the combination approaches, it is evident that the MM is superior to

26



BOT, as both performance criteria (MADMM=0.042 vs. MADBOT=0.046, RankMM=0.776

vs. RankBOT=0.755) are better. However, for the acceptance of a regulating system,

not only the absolute deviation is important, but also the deviation itself. Accord-

ingly, a negative sign indicates, that the considered method, on average, overesti-

mates the true efficiencies. As expected, the BOT is the method that overestimates

the most, followed by the SFA. MM and DEA both underestimate.

MAD MD Rank
Method Mean SD Min Max Mean SD Min Max Mean SD Min Max

SFA 0.043 0.015 0.014 0.105 -0.006 0.024 -0.047 0.070 0.792 0.168 0.215 0.985
DEA 0.053 0.024 0.024 0.178 0.019 0.037 -0.063 0.156 0.739 0.169 0.171 0.921
BOT 0.046 0.015 0.022 0.105 -0.017 0.025 -0.080 0.058 0.755 0.166 0.194 0.924
MM 0.042 0.017 0.019 0.133 0.007 0.028 -0.055 0.113 0.776 0.171 0.186 0.974

Table 16: Performance criteria for SFA, DEA, BOT and MM. BOT: best of two
method, MM: mean method.

As the averaged performance differences between the four methods (measured by

MAD) are relatively small, one might expect that, for each setting, the order of

advantageousness would change. In a final step, we therefore determine the “best”

(“worst”) method for each setting, by choosing the method with the smallest (high-

est) MAD (see Table 17). Thus, the MM is the best method in 54 of the 76 settings,

followed by SFA (12 settings), BOT (10 settings) and DEA (0 settings). As stated

above, the settings generally favor the SFA, so that the performance of the MM

should improve further if this mismatch is reduced. It is also noteworthy that MM

is not the poorest method for any of the settings.

SFA DEA BOT MM Sum
Best Method 12 0 10 54 76
Percentage 15.79% 0.00% 13.16% 71.05% 100.00%

Worst Method 5 42 29 0 76
Percentage 6.58% 55.26% 38.16% 0% 100.00%

Table 17: Comparison of approaches for determining individual efficiency scores.
BOT: best of two method, MM: mean method.
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5 Conclusions

In this simulation study, we have analyzed approaches for determining individual ef-

ficiency scores, by using the two most popular estimation methods, the DEA and the

SFA. Our first research objective was a systematic comparison of the two methods,

using cross sectional data. Accordingly, we identified the influence factors on the

performance of the particular method. We now briefly highlight the most important

contributions to the literature:

1. In contrast to the literature, our results suggest that SFA can be applied to

small sample sizes.

2. The percentage of DMUs on the efficient frontier influence the performance of

both methods, but especially the SFA is affected.

3. We demonstrate that collinearity between the inputs has no impact on DEA.

4. The distribution of the inputs has an influence on the performance of DEA.

Our attempts to shed further light on the causes of the performance variation,

suggest that skewness and the relation of standard deviation and mean are the

factors of influence.

5. The standard deviation of the composed error term has diverse influences on

both methods.

6. The misspecification of the distribution of the inefficiency term has a crucial

impact on the performance of the SFA.

7. Our results suggest that, in the majority of cases, the misspecification of the

production function does not substantially affect either the SFA or the DEA.

Furthermore, we show that the different performance criteria lead in certain circum-

stances to diverging conclusions and that some factors have contradictory influences

on the different criteria (see, for example, the variation of the standard deviation
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of the composed error term). Therefore, it is particularly important to consider the

appropriate criterion for both research and policy purposes. If researchers or policy

makers are faced with the challenge of determining individual efficiency objectives,

the mean absolute deviation (MAD) should be prioritized. Further research could

confirm and extend the present results. In particular, the analysis of the influence

of the input distribution on the DEA should be extended.

Due to the fact that none of the methods is absolutely superior, the combination of

estimates of both methods is considered as best-practice in real-world application.

Despite the fact that this procedure is also suggested in the efficiency analysis litera-

ture, it has not been analyzed in simulation studies before. Hence, we used the esti-

mates of the first investigation step to compare two simple combination approaches

with the original DEA and SFA estimates. We thereby demonstrate that the simple

mean of the two methods is a compromise, which outperforms the estimates of both

methods. Further research should consider how this simple approach performs in

comparison to other approaches, which combine the advantages of parametric and

non-parametric methods. For instance, Behr (2010) shows that the quantile regres-

sion approach can be regarded as a simple alternative for obtaining robust efficiency

scores. Furthermore, a comparison with the sophisticated semiparametric frontier

model, the stochastic non-smooth envelopment of data (StoNED) introduced by

Kuosmanen and Kortelainen (2010), could be of interest.
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