

A Service of

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre

Preißler-Jebe, Jan Hendrik; von Blanckenburg, Korbinian; Geist, Alexander

Working Paper

Comparing cartel behavior: A simulation analysis with the System of Cartel Markers (SCM)

CAWM Discussion Paper, No. 41

Provided in Cooperation with:

University of Münster, Münster Center for Economic Policy (MEP)

Suggested Citation: Preißler-Jebe, Jan Hendrik; von Blanckenburg, Korbinian; Geist, Alexander (2010): Comparing cartel behavior: A simulation analysis with the System of Cartel Markers (SCM), CAWM Discussion Paper, No. 41, Westfälische Wilhelms-Universität Münster, Centrum für Angewandte Wirtschaftsforschung (CAWM), Münster

This Version is available at: https://hdl.handle.net/10419/51373

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

CAWM Discussion Paper No. 41, Muenster 2010

Comparing Cartel Behavior: A Simulation Analysis with the System of Cartel Markers (SCM)

Jan Hendrik Preißler-Jebe*
Korbinian von Blanckenburg
Alexander Geist

Abstract

This work simulates the behavior of a price, quota and regional cartel in terms of indicators such as price, capacity and rate of return. As a first step the specific behavior patterns of each cartel are indicated in a graphical analysis before a comparison to a competitive benchmark has been implemented. In a second step simulation data has been applied to the System of Cartel Markers (SCM) invented by Blanckenburg and Geist. The SCM uses empirical correlation and stationarity of indicators to provide empirical evidence for cartel behavior. For the simulated cartel data the SCM delivered consistent results which underline its functionality for simulation purposes.

i

^{*}Corresponding Author: maditzen@hotmail.com

1. Introduction

"People of the same trade seldom meet together, even for merriment and diversion, but the conversation ends in a conspiracy against the public or in some contrivance to raise prices."

What *Adam Smith* pointed out precisely more than 150 years ago, can continuously be observed in articles on prosecuted cartels in nowadays newspapers around the globe.

This work is a contribution to the further development on detecting cartels through empirical evidence. It applies the System of Cartel Markers, SCM, on simulated cartel data to illustrate a method of detecting cartels through market process patterns which can be observed during market disequilibria.

Previous approaches on cartel detection where always based on comparative-static equilibrium models, for example see *Harrington* (2006). But static equilibrium models face a certain weakness - their assumptions. It is assumed that after a short adjustment period markets always return to equilibrium. An existing cartel however, will cause disequilibria of supply and demand on a market, which could be miss interpreted through a static model as a new equilibrium, after an adjustment period. Such problems will be avoided once one refuses the assumption, that through adjustment, markets will always lead them self to short or midterm equilibrium.²

One should rather consider a market process model, modelling disequilibria and so the deviation from cartel and competitive pricing enforced by the cartels capacity under utilization. Such a model has been founded by *Grossekettler* (1985) for industrial economic purposes. The model distinguishes five different interacting processes: market clearing, rate of return normalisation, superiority erosion, and product and operations process. Those processes can be described as control loops which are used to conclude from a negatively regenerated control variable (for example "excess demand" $x^e = x^d - x^s$) and a manipulated variable (for example "price change" Δp) to a competitive equilibrium after several adjustment rounds (within a ending time horizon t).

1

¹ Smith, A. (1840).

² Samuelson, P.A (1941).

This so called "Coordination Failure Diagnostics" concept has been further developed by *Grossekettler*(2009a) and his students in order to show the above mentioned processes in reality time series. *Blanckenburg* (2009) demonstrated how the regenerating parameters can be econometrically determined. He developed a pattern that allows measuring the dynamics of market actions and subsequently evaluating its functionality. *Geist* (2010) demonstrates this, in his results for the German chemical industry.

This work however will use the indicators determined within the market clearing and rate of return normalization process for cartel simulation. The market clearing process aims for a permanent equalized supply and demand relation on a market to prevent first, time lags in delivery and stock shortages caused by an excess demand and second, the inefficient use of resources through overproduction and so excess quantities in stock caused by excess supply.

According to *Dönnebrink* (1994) and *Lorenz* (2006) the market clearing process can be seen as a short term process since it focuses on variables (indicators) such as price, price change and capacity utilisation deviations which tend to be rather volatile over time³.

The rate of return normalization process aims for minimization of positive and negative rate of return deviations as a cause of capacity utilisation. Capacity adjustments in production should only be justified in case of efficiency improvements in production process.

In opposite to the market clearing process the rate of return normalisation process can be seen as a long term processes, since capacity adjustments and so rate of return changes tend to have a rather longer time horizon then price changes⁴.

Previous experiences with such empirical market processes have shown that the appearance of disequilibria is much more common than actual equilibriums and that market processes are a lot slower as comparative-static models implicit them to be. This causes empirical correlation which now can be used for cartel detection. In general, one can say that every cartel leaves its marks on each by *Grossekettler* introduced market processes (like the tendency for a permanent capacity underutilization). This leads to *Grossekettlers* description of a "cartel syndrome" characterized by "cartel markers" which shows the negative effects on each of the above named processes for the economy during cartel activity (For example the waste of capacity). Once a marked shows these "cartel syndromes" one can conclude by the "disease syndromes" the probability for a hidden cartel. On this base *Lorenz* (2006) developed a market screening for hidden cartels. *Blanckenburg* and *Geist* have further developed *Lorenz* idea by introducing markers which relate to the M- and R- process and so created "The System of Cartel Markers" (SCM). The SCM can be seen as a testing method, detecting

³ For further description see *Grossekettler* (2009b).

⁴ For further description see *Grossekettler* (2009c).

collusive behaviour through markers within the M and R process. It is also able to classify whether the cartel is just in its formation phase or already an established cartel. The distinction is needed since single process patterns in each phase require a different interpretation. So far, the SCM includes prices, capacity utilization, rates of return and capacity growth rates as markers. *Blanckenburg* and *Geist* (2010)

The structure of this paper will be as followed first, an approach to generalize and distinguish between different cartel types, second to simulate different cartel types during "market clearing" and "rate of return normalisation" process and third to prove the during the simulation received results through the SCM testing method.

2. Introduction and description of cartel types

2.1 General alleged cartel behaviour

"If a large number of producers wish to escape the rigors of competition, they must do so by forming an agreement to act together (called a cartel, after their German name) or by actually merging into one firm." 5

Throughout the literature one will find the oligopolistic markets as typical cartel markets where a few companies supply the whole marked. Ideally such a market is a competitive market, where the marginal costs are equal to the price paid and only short term disequilibria can be observed since the marked strives after short adjustments for equilibriums of supply and demand. However, what characterizes oligopolistic markets in general is the homogeneity level of the supplied goods. A high homogeneity level creates a lack of substitution between goods, which increases the possibility of abuse by market participants to increase prices or assert supply shortages because of the not existing substitution possibilities of the customers. Examples fur such goods are concrete or fertilizer, *Dönnebrink* (1994, p. 26).

Another market given or unconsciously governmentally promoted reason for establishing a cartel would be low price elasticity in demand for a certain good. In such case, a price increase by the cartel, would have to be accepted by demanders, since goods with a low price elasticity of demand tend to have hardly any substitution possibilities to avoid the price

.

⁵ See. *Stiegler*, (1987), page 230.

increase. Such market circumstances facilitate collusive behaviour and may lead to a cartel market.

Cartels may also be facilitated through market entry barriers such as high entry investments which are likely to be irreversible. This makes is harder for new comers to enter the market since in case of failure of the market entry the new comer's entry costs become sunk costs. *Connor* (2007) states an overview of such entry barriers.

Also to mention is the importance of a high market share in order to establish a working cartel *Dönnebrink* (1994). Through collusion gained market share regulates the power of non cartel market participants.

If the cartel achieves a rather insignificant market share, it will hardly be able to enforce prices above competition level, and so not be able to stay on the market. In general, one can say that cartels abuse certain market circumstances to pursuit a utility increase which will be revealed by higher revenues compared to a competitive benchmark.

It is also due to the market circumstances what kind of a cartel will develop on the particular market. *Dönnebrink* (1994) relates the cartel type to the parameter which makes companies merge to a cartel. As an example *Dönnebrink* states, price, terms, standards or discount cartels. However, one should also take into account that cartels originate on a broader level, which leads subsequently to production-quota and regional cartels. This work focuses on price, quota and regional cartels which will be simulated in section 3, after each type is introduced and distinguished in the following section.

2.2. Description of cartel types

2.2.1 Type 1: Price cartel with collusive investment behaviour

Following *Tirole* (1988) the members of a price cartel only aim for rate of return and price increases for their own good. Through their cartel formation, they strive to realize monopolistic rents by Cournot-prices and quantities which create a consumer excess burden. This underlines the fact that the main issue for the impact of a price cartel is the determination of a price parameter. The price parameter has to be set in a way that every cartel member is accepting it; otherwise the stability of the cartel is threatened. Among the price parameter the cartel has to maintain an investment policy within its members. This ensures that each member only supplies the amount of goods he is allowed by the cartel and does not expand his capacities since such behaviour would ultimately lead to a supply increase, followed by a decrease in price and so to an unstable situation within the cartel which could cause its end.

Also to mention is the importance of a high market share in order to establish a working cartel. The through collusion gained market share regulates the power of non cartel market participants.

Concerning both above introduced control loops, in a price cartel the **market clearing process** can be observed trough the markers, price (price changes) and capacity utilisation.

In the formation phase, the first step of a cartel would be to announce a binding **price** above the competition level to its members that each member has to accept. It is likely that the cartel continues to raise its prices until it reaches a price as close to the cournot price as possible. The further pricing behaviour of cartels would show a quiet static behaviour in terms of adjusting prices to exogenous shocks. Such behaviour follows the cartels lag of coordination, to react quickly to demand deviations, *Blanckenburg*, *Geist and Kholodilin* (2010, page 8)⁶. This becomes reflected through a "staircase-shaped" distribution of the cartels absolute prices during the cartel phase.

Observing the distribution of relative price changes one will notice that, compared to competitive pricing behaviour, there are a lot fewer price changes (more zero-changes) during the cartel phase. The reason for this is again, the static behaviour to react to exogenous shocks, once the cartel is established.

The above assumed investment restriction within the cartel determines basically fixed capacities. Since the cartel strives for monopolistic rents it will shorten the quantity supplied during "formation phase", which is simply creating a situation of **unutilized capacities** in order to reach quantities which maximize their monopolistic rents.

During "cartel phase" those unutilized capacities disable market equilibriums, since a normal rate of demand will always face a shortage of supply.

Analysing the **rate of return normalization process** the focus is on markers such as capacity growth rate changes and rate of return difference. In the short run collusive behaviour is drawn by higher prices and supply shortages. In the long run, one can observe further parameters which indicate collusive behaviour such as capacity deviations and rate of return bias. As an example can be seen a positive demand shock; in the long run on a competitive market, companies will invest in further capacities to cover the excess demand. Cartels, however, would not have to take such investments. Through their assumed behaviour of seeking for Cournot prices and quantities by capacity underutilisation, they have built up excess capacities over time, which they will use to cover the increased demand. *Benoit and*

⁶ Geroski and Jacquemin (1988) deliver empirical support for this hypothesis.

Krishna (1987) state that on a long perspective all collusive equilibria involve excess capacities.⁷

Thinking of a **capacity growth rate change** marker during formation and cartel phase, one would assume growth rate changes on a zero level. This goes back to the just above mentioned behaviour of a cartel. The existing excess capacities do not force a cartel to invest in new capacities in case of exogenous shocks. The only exception would be if the market originates a permanent higher demand level. Then it would be essential for the cartel to build up new capacities in order to obtain its power.

The third marker **rate of return difference** is probably the most common marker to detect collusive behaviour, *Bresnaham* (1991). However, it is also the one where the reasons for deviations are hardest to exactly identify.

In order to use this marker, a sufficient value has to be determined which states if the level of the rate of return difference for a certain firm is justified or not. This can be done through a comparison to the rate of return difference of the industry the firm operates in.

During the whole cartel phase excess rates of returns are expected since they are the reason for formation and continuance of the cartel. Dividing such excess rate in two phases, a conspicuous increases of rate of return difference during "formation phase" and a certainly higher level of rates of return during "cartel phase" could be expected.

But, one may also find problems identifying deviations of the rate of return difference, caused by other parameters which influence it. For instance, excess rates of return can also be the result of high market concentration of a company, which gains its high margins through economies of scale. See *Blanckenburg and Geist* (2010).

However one has to carefully evaluate the observed data in order to judge if high rates of return are caused by collusive behaviour or if there happen to be other marked given reasons.

⁷ *Osborne and Pitchick* (1987) support this assumption.

Table 1: Summary of alleged price cartel behaviour

		Formation Phase	Cartel Phase
M-Process	Price changes	Suddenly exceptional increase of prices compared to a competitive benchmark Stair case shaped	Conspicuously few positive or negative delayed price adjustments on a certainly higher level compared to the competitive benchmark
	Capacity utilization rate	Reduction of supplied quantities creates a decrease in capacity utilization	In average continuously underutilized capacities
SSa	Capacity growth rate changes	Changes on a zero level due to underutilized capacities	
R-Process	Rate of return difference	Increase of rates of return, compared to a broader industry	Continuously excess rates of return are expected.

2.2.2 Type 2: Quota cartel without collusive capacity changes

The second cartel type we distinguish is a quota cartel without collusive capacity changes.

In terms of price and supply behaviour, such a cartel type has its origin in a price cartel *Lorenz* (2006). This concludes that for this analysis the behaviour of the quota cartel during "Formation" and "Cartel phase" can be assumed equal to the above explained behaviour of a price cartel.

However the quota cartel distinguishes itself from a price cartel through the distribution of revenues. Revenues are being determined through a production quota which regulates the amount of goods supplied by the member to the market.

The quotas each member receives can be on one hand linked to current existing capacities of the member or on the other hand to the efficiency of the production cost function. Members with low costs receive a higher quota, but have to give compensation payments to members with higher costs, *Schuman, Meyer, Ströbele* (1999).

However collusive determination of production quotas will not only be found for market members. One will also find industries with federal determined production quotas⁸.

This work focuses only on illegal quotas based on existing capacities.

To illustrate the expected influence of the quota cartel on the markers within the M- and R Process the "Cartel phase" in *Table 1.1* has to be subdivided in two phases. The behaviour of the quota cartel during "Formation phase" and the former "Cartel phase" (now "Cartel Phase I") can be seen as identically to the behaviour of the price cartel. The newly added "Cartel Phase II" points out the speciality of the quota cartel. Since the amount of revenue is linked to current capacity, each member would have an incentive to increase his capacities over time to achieve higher revenues⁹. This means for the **Capacity growth rate change** marker after changes on a zero level during "Cartel phase I" one would assume increasing capacity growth rate changes during "Cartel phase II" in order to increase the current revenues.

As a result of extended capacities in "Cartel phase II" the **Capacity utilisation rate** marker is expected to show a further decrease of the capacity utilisation rate compared to the already underutilized capacities during "Cartel phase I".

Those extended capacities should also have a significant influence to the **Rate of return difference** marker. While continuously excess rates of return were expected during "Cartel phase I", the costs for the capacity extensions lead to a decrease on a zero level for the rate of return difference during "Cartel phase II". The **price changes marker** is assumed not be affected during "Cartel phase II".

_

⁸ Brown and Martin (1996) reveal the U.S." Flue-Cured Tobacco Policy "as a federal quota cartel.

⁹See Fear (2006).

Table 2: Summary of alleged quota cartel behavior

		Formation Phase	Cartel Phase I	Cartel Phase II
M-Process	Price changes	Suddenly exceptional increase of prices compared to a competitive benchmark Stair case shaped	Conspicuously few positive or negative delayed price adjustments on a certainly higher level compared to the competitive benchmark	_
	Capacity utilization rate	Reduction of supplied quantities creates a decrease in capacity utilization	In average continuously underutilized capacities	Decreasing utilisation rate through violation of the cartel restrictions through capacity extensions.
R-process	Capacity growth rate changes	Changes on a zero level due to underutilized capacities		Increasing capacity growth rate changes aiming for higher revenues through quota extension
	Rate of return difference	Increase of rates of return, compared to a broader industry	Continuously excess rates of return are expected.	Decreasing to a zero level, because of cost increases due to capacity extensions

2.2.3 Type 3: Regional cartel

The third observed cartel type is a regional cartel. It can be specified through a territorial marked separation, where each member of the cartel can act as a monopoly supplier who enforces cournot prices and quantities in his assigned territory. A regional cartel for example can be operating global¹⁰, country wide or regional¹¹. It just depends on, in what kind of region the cartel chooses to operate in. One will observe unequal prices for the supplied good on each assigned territory, which states price discrimination as the second negative outcome of a regional cartel, *Lorenz* (2006)

The formation of a regional cartel can be emerged through a new product, a new patent, or licensed contracts which create an exclusive supplier situation. *Lorenz* (2006).

For the markers within the M and R-process, the same behaviour as seen during price cartel "Formation Phase" and "Cartel Phase" is assumed for the regional cartel. The only exception is that during "Formation" and "Cartel Phase" **price changes** would now be observed without

¹⁰ For an example of a global operating cartel see: *Harrington* (2006), p. 23.

¹¹ Schiersch and Schmidt-Ehnke (2010) reveal examples for national and regional cartels.

delays in opposite to the price and quota cartel. The reason for such disappearing delays could lie within the structure of the regional cartel. It is assumed that every member is acting like a monopoly in his territory, so that each single one will not have to face any price negotiations with other cartel members. Such circumstance would abandon the further above mentioned delays in price changes.

However to point out the speciality of the regional cartel the "Cartel phase" again has to be split into "Cartel Phase I" and "Cartel phase II" simultaneous to the quota cartel. Now the speciality within the regional cartel lies within the behaviour of downsizing existing capacities for an increase of revenues once the cartel member feels that his market power is unthreatened. This would cause decreasing **Capacity growth rate changes** during "Cartel phase II" while during "Phase I" changes on a zero level are expected.

Such a downsizing of capacities would ultimately create an increase of the **capacity utilisation rate** in "Phase II" until a new targeted capacity utilisation level is reached. From there one would expect changes around this new utilization level.

Finally also the **rate of return difference** marker in "Phase II" would be influenced by downsized capacities through cost reduction and efficiency improvements. Therefore a further increase of the rate of return level compared to "Cartel phase I" is assumed until a new maximum rate of return, based on the new capacities, is reached.

Table 3: Summary of alleged quota cartel behavior

		Formation Phase	Cartel Phase I	Cartel Phase II
ssas	Price changes	Suddenly exceptional increase of prices striving for a cournot level, compared to a competitive benchmark	Conspicuously few positive or negative price adjustments on a certainly higher level compared to the competitive benchmark	Continuously few positive or negative price adjustments on a certainly higher level compared to the competitive benchmark
M-Process	Capacity utilization rate	Reduction of supplied quantities creates a decrease in capacity utilization	In average continuously underutilized capacities	Increase of capacity utilisation rate, which is due to the decreased capacity. Increase until utilization rate changes on a zero level can be observed
ess	Capacity growth rate changes	Changes on a zero level due to underutilized capacities		If the cartel feels unthreatened, a downsizing of existing capacity is expected
R-Process	Rate of return difference	Increase of rates of return, compared to a broader industry until the maximum rate of return under the existing capacities is reached.	Continuously excess rates of return are expected.	Further increase of rates of return due to the new downsized capacities until the maximum rate of return is reached

2.2.4 Competitive Market

As a benchmark to the just described cartel types, a competitive market is chosen. The market can be seen as totally contestable, with no market entry barriers. Further is assumed that after a short adjustment period, the market will always return to equilibrium of supply and demand. The market allows fully transparency, about product quality and price. The price for the supplied good is equal to the marginal costs.

For the markers within the M and R-process, the following behavior is expected during the whole study.

Throughout the time horizon many **price changes** with a high distribution are expected, since the suppliers are able and willing to react to demand changes quiet quickly in order to sell their supplied quantities.

The **capacity utilization rate** is also expected to react quickly to demand changes with a high distribution.

For the **capacity growth rate**, changes around zero level are expected, while most capacity changes can be explained through market entries and exits, one hast to take in to account, that in reality autonomous capacity growth rates occur which will be neglected for this study.

Also regarding the **rate of return difference**, changes on a zero level are expected, since the price equals marginal cost assumption hardly allows any revenues.

3. Simulation of Cartel Types

3.1 General

In order to proof the above made assumptions for the each marker within the M and R-process, each cartel type will become simulated through a self made data panel. (*See table II*, *III and IV appendix*). In the end a competitive benchmark will be simulated in order to create a comparison between cartel and competitive marked behaviour¹².

The created data states price indices from a fictional industry. Beginning with p=100 as base year, it pictures absolute and relative change rates of the assumed prices. The time horizon the data has been simulated goes over 12 years, while changes have been taken into account on monthly bases. This totals 144 month of observation points.

As explained in section 2, the observed time horizon will be separated into different phases to analyze and point out the behaviour and specification of each cartel type.

3.2 Type I: Price cartel

3.2.1 Simulation of price change

Regarding the price cartel the following behaviour of the price change marker was expected in the description of the cartel type above.

- A cartel increases its prices striving for the cournot level.
- Static and delayed behaviour by adjusting prices to exogenous shocks
- Few price changes during cartel phase
- "Staircase-shaped" distribution of prices

13

 $^{^{\}rm 12}$ Rudolph (2009) examined through simulation the stability of the M and R-process.

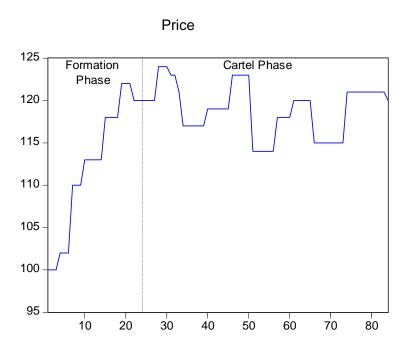


Figure 1, Price indices, Price cartel

Looking at Figure 1 which shows the absolute price data throughout the observed time horizon, beginning in period zero where (p) equals 100, one will observe a high and jumpy increase of the cartel price until a certain level is reached. It can be assumed that the point where the increase stops, the cartel has reached its aimed cournot level. Such a development is the first evidence for a price cartel in the described "Formation phase". Continuing the observation from that point, the actual "cartel phase" begins. One can clearly see that from there on, to the end of observations, prices changes occur but with a certain delay. This can be seen through a rather static behaviour of price changes compared to a more volatile behaviour of the price changes on a competitive market (3.5.1). The reason for such behaviour lies within the cartels lag to react quickly to exogenous demand changes. The plot also underlines the assumption of fewer price changes during cartel phase which is on one hand due to the lag of reaction and on the other hand to the market power the cartel has achieved through is collusion which makes it more resistant to exogenous shocks.

Along and as a cause of those mentioned characteristics, the whole plot pictures clearly a "staircase shaped" distribution of prices over the whole time horizon, as it was assumed above.

3.2.2 Simulation of capacity utilisation rate

For the capacity utilization rate marker the following assumptions have been made:

- Suddenly shortage of supply during "formation phase"
- Underutilized capacities create supply shortages to assert the higher prices
- Cartel level of capacity utilization rate disables market equilibriums during "cartel phase"

Capacity utilization rate Price cartel and Competition

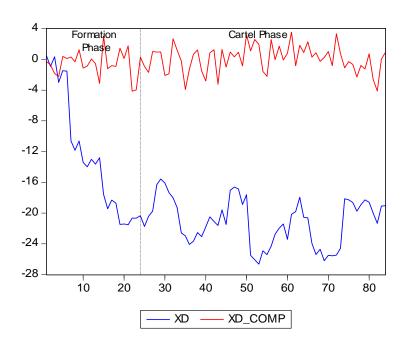


Figure 2, Capacity utilization rate, Price cartel and competition

Figure 1.1 shows the capacity utilization rate changes for a price cartel within the observed time horizon together with the capacity utilisation rate changes for a competitive bench mark. During "formation phase" a heavy decrease of capacity utilization rate can be observed which indicates a supply shortage, as assumed above. Comparing the capacity utilisation rate during "formation phase" with the price change behaviour during "formation phase" (Figure 1) one finds a clear correlation between an increase in price and a shortage in supply.

Comparing now the capacity utilization rate changes from a price cartel and competitive benchmark during "cartel phase", the plot shows a clear level deviation created by the cartel. This proofs the assumption of cartels disabling marked equilibriums, and so creating welfare losses.

3.2.3 Simulation of capacity growth rate changes

The assumptions for the capacity growth rate changes marker during a price cartel where:

• Growth rate changes on a zero level during "formation" and "cartel phase"

Capacity growth rate changes Cartel Phase Formation .4 Phase .2 .0 -.2 10 20 30 40 50 70 60 80

Figure 3, Capacity growth rate changes, Price cartel

Figure 3 shows clearly the above assumed behaviour of the capacity growth rate changes during the observed time horizon. Again, changes on a zero level occur because, already existing capacities are assumed fixed in a price cartel which prevents further investments in capacity in order to maintain cartel stabilisation.

3.2.4 Simulation of rate of return difference

For the last marker, rate of return difference, was assumed:

- Increasing rates of return during "formation phase"
- A higher level of rates of return compared to a broader industry

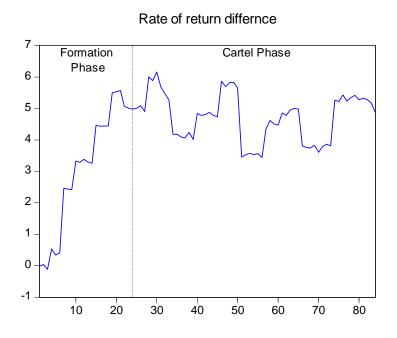


Figure 4, Rate of return difference, Price cartel

Looking at Figure 4, the assumed increase of the rate of return difference can be observed during "formation phase" through an increase of about five percent points. The rate of return difference has its origin in prices and supplied quantities which are described by the price change and capacity utilisation rate marker. This concludes that the observed increase can be explained through the simultaneous increase of price changes, and decreasing capacity growth rate changes.

The expected higher level of rate of return difference compared to a broader industry can be clearly observed from the beginning to the end of the "cartel phase". The rate of return level of a boarder industry instead would have been found fluctuating around a zero level.

3.3 Type II: Quota cartel with collusive investment behaviour

As also done in the description of the quota cartel (2.2.2), the behaviour in "cartel phase II" is the focus of the quota cartel simulation analysis. Therefore the results for "formation phase and "cartel phase I" can be neglected since they are similar to the results of the above described prise cartel results. Also the price change marker will be neglected in this analysis since it has a rather insignificant influence to the behaviour of a quota cartel. For a closer analysis of the "cartel phase II" the observation sample has been extended to a total of 144 observation points.

As assumed above, the speciality of the quota cartel lies within the extension of existing capacities. Therefore the simulation results of the capacity growth rate change marker are the first to be examined.

3.3.1 Simulation of capacity growth rate changes

For the behaviour of the capacity growth rate change marker was assumed:

• During "cartel phase II" increasing capacity growth rate changes

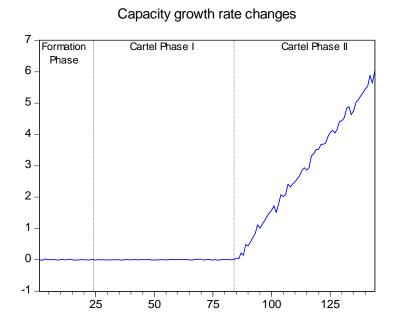


Figure 5, Capacity growth rate changes, Quota cartel

Looking at figure 5, one can observe a steady increase of the capacity growth rate change, which proofs the alleged behaviour of capacity extensions in order to achieve higher revenues within the quota cartel.

3.3.2 Simulation of capacity utilization rate changes

Since it was assumed that capacity growth rate changes directly influence capacity utilisation rate changes, it makes sense to next examine its impact on the capacity utilisation rate changes.

For the capacity utilisation rate marker was assumed above:

• Further decrease during "cartel phase II"

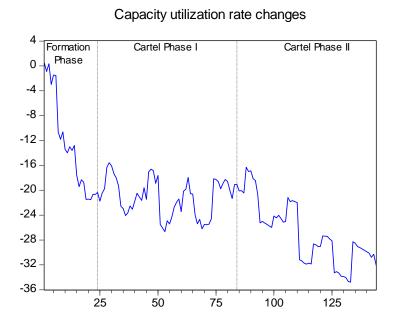


Figure 6, Capacity utilization rate changes, Quota cartel

As expected, in figure 6 the capacity utilisation rate shows even a further decrease during "cartel phase II", while already underutilized capacities where observed during "cartel phase I". Such behaviour proves clearly the assumed correlation between the two markers.

3.3.3 Simulation of rate of return difference

The third marker where an influence of capacity extensions was expected is the rate of return difference marker.

For the rate of return difference marker was assumed above:

• Decreasing rates of return to a zero level during "cartel phase II"

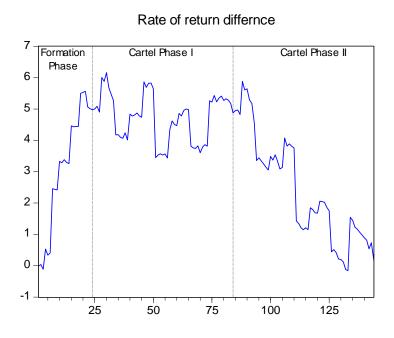


Figure 7, Rate of return difference, Quota cartel

Also figure 7 proves the above made assumptions regarding the behaviour of the rate of return difference marker in a quota cartel. One can observe a moderate decrease of the rate of return to a zero level during "cartel phase II". Comparing now figure 5 and 7 it is decisive that once the cartel begins to extend its capacity it causes a reduction of the rate of return. This correlation is due to the extra costs of the capacity extensions which cause a negative impact on the rate of return difference.

3.4 Type III: Regional Cartel

For the results of the regional cartel simulation the analysis focuses, simultaneous to the quota cartel, on "cartel phase II", while "formation" and "cartel phase I" can be seen as equal to the already described price cartel. The only to mention difference is that, due to the independence of each suppler in his alleged region price changes occur without delays, since the cartel member can assert price changes by himself. This can be seen through the more volatile behaviour of the price changes compared to the price and quota cartel. (Figure 8)

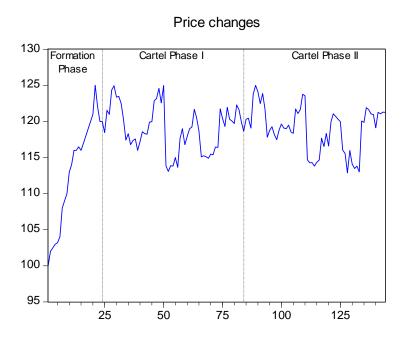


Figure 8, Price changes, Regional cartel

3.4.1 Simulation of capacity growth rate changes

The initial point for the quota cartel simulation analysis is the capacity growth rate. It was assumed above that a cartel member who feels unthreaded in his market power is downsizing his existing capacities.

Therefore the assumption for the capacity growth rate change marker was:

• Decreasing capacity growth rate changes during "Cartel phase II"

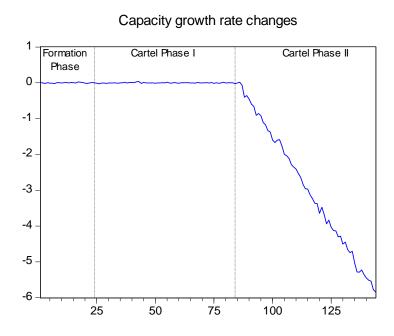


Figure 9, Capacity growth rate changes, Regional cartel

Figure 9 proves clearly the in the description made assumption, that at a certain point regional cartels begin to downsize their capacities. One can observe this through a continuous decrease of the capacity growth rate change throughout "cartel phase II".

3.4.2 Simulation of capacity utilization rate changes

As already described in the simulation of the quota cartel, changes of the capacity growth rate have a direct influence on the capacity utilisation rate.

For the capacity utilisation rate marker was assumed:

• An increase of the capacity utilisation rate in "Phase II"

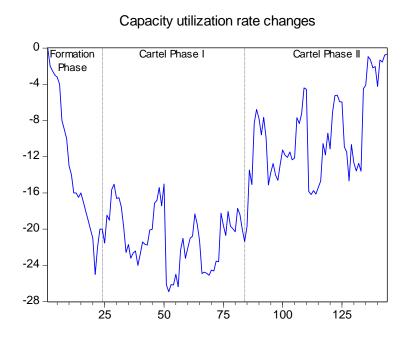


Figure 10, Capacity utilization rate changes, Regional cartel

By looking at figure 10 the assumed influence becomes clearly proven. As a cause of the capacity downsizing of the cartel, one can observe a sudden increase of the capacity utilisation rate at the beginning of "cartel phase II". After that, the utilization rate continues on a certainly higher level throughout "cartel phase II", compared to "cartel phase I".

3.4.3 Simulation of Rate of return difference

The rate of return difference marker displays the actual reason for the downsizing of capacities.

For the rate of return difference marker was assumed above:

• Further increase in "cartel phase II" compared to "phase I"

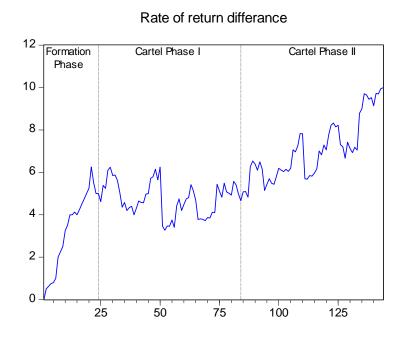


Figure 11, Rate of return difference, Regional cartel

The assumed increase of the rate of return difference during "cartel phase II" becomes verified through figure 11. One observes a steady increase of the rate of return difference as a result of downsizing capacities by the regional cartel. The increase will come to an end once the new maximum rate of return difference, based on existing capacities, is reached. As one can conclude now, the regional cartel uses the downsizing of capacities for increasing rates of return

3.5 Simulation of a competitive benchmark

3.5.1 Simulation of price changes

The results for the simulation of a competitive market have to be seen as a benchmark for the different cartel types. The behaviour of each marker displays how the marked is originally supposed to work in terms of each marker.

For the price change marker, many **price changes** with a high distribution where expected.

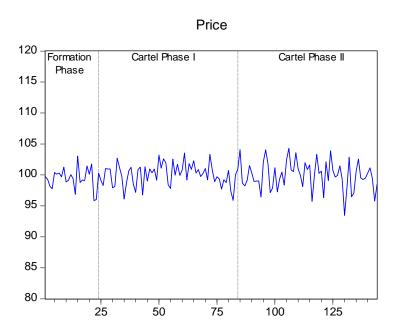


Figure 12 Price, Competition

Figure 12 displays the above assumed price changes with a high distibution. As one can see the price changes stay on the same level throughout the whole observation unlike in a cartel where it raises to a higer level during formation phase and and continues on that new level during "cartel phase I and II"

3.5.2 Simulation of the capacity growth rate

The capacity utilization rate was expected to react quickly to demand changes with a high utilization distribution.

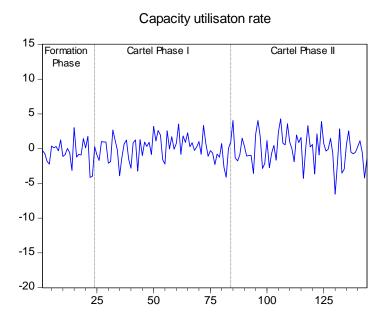


Figure 13, Capacity growth rate, Competition

Observing figure 13 the above assumed distribution of the capacity utilisation rate becomes verified through the behaviour of the marker throughout all three phases. As a comparison the capacity utilisation rate of all three described cartel types, decreases during formation phase and strives to a different then the zero utilization level depending on which cartel type is being compared.

3.5.3 Simulation of the capacity growth rate change

For the capacity growth rate, changes around zero level where expected.

Capacity growth rate change 10.0 Cartel Phase I Cartel Phase II Formation Phase 7.5 5.0 2.5 -2.5 -5.0 -7.5 -10.0 75 25 50 100 125

Figure 14, Capacity growth rate change, Competition

The simulation of the capacity growth rate verifies the assumed behaviour in figure 14 Throughout the observation, changes on a zero level can be observed for a competitive market. As a comparison one could observe continuously decreasing capacity growth rate changes for the quota cartel and continuously increasing capacity growth rates for the regional cartel.

3.5.4 Simulation of the rate of return difference

The rate of return difference was expected to fluctuate on a zero level during the whole observation.

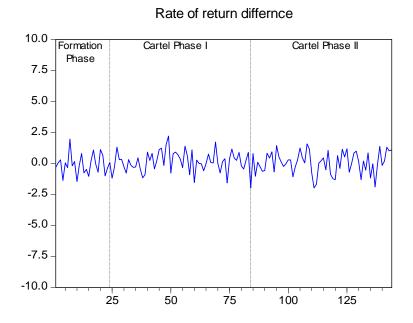


Figure 15, Rate of return differnace, Competition

For the last marker simulation also verifies the assumed behavior in figure 15. The changes for the competitive benchmark occur on a zero level, while for the price cartel increasing, the quota cartel decreasing and for the regional cartel again increasing rates of return could be observed.

4. Empirical Analysis ,, cartels vs. competition"

4.1 Testing methods

In section 3 was found proof for the assumed behaviour of each cartel type by analyzing the behaviour of the simulation outputs. Section 4 is now going to extend the visual proof to an empirical proof by testing the simulation results for their significance and correlation. *Blanckenburg and Geist* (2009) developed indicators for such a testing method in their System of Cartel Markers (SCM).

In the following, indicators, testing methods and expected results will be briefly introduced.

a) Utilization of capacities

For the utilisation rate of capacities the Augmented Dickey-Fuller-Test (ADF-Test) will be used. It tests stationary of a variable for a determined time horizon, with Ho: "Variable has a unit root". Variables have been tested for zero stationary and/or. intercept stationary.

In order to analyze the behaviour of each marker in case of denying Ho, a trend test has been made to examine in which direction the utilization rate is going to develop.

Table 4: Test results Utilisation of capacities

Phase	Expected behaviour
Cartel formation	Negative trend
Cartel	Negative trend or intercept stationary
Competitive	Stationarity

b) Correlation between utilization rate of capacities and price changes

The test is supposed to point out the influence of changes in the capacity utilization rate on price changes. It is assumed that exogenous shocks cause first capacity utilization adjustments, which then again cause price changes. For the test the following regression equation is assumed:

$$dp = a \pm \beta x d$$

Table 5: Test results Correlation rate of capacities and price changes

Phase	Expected behaviour	
Cartel formation	Independency or negative correlation	
Cartel	Positive correlation (but lower adjustment speed)	
Competitive	Positive correlation	

c) Rate of return difference

As already seen for the utilization of capacities, the rate of return difference will also be tested with the ADF-Test pattern, for intercept stationary, zero stationary and a trend.

Table 6: Test results Rate of return difference

Phase	Expected behaviour
Cartel formation	Positive trend
Cartel	Not zero stationary
Competitive	Stationarity

d) Correlation between rate of return difference and capacity growth rate changes.

Analog to the testing idea in b) the correlation of rate of return difference and capacity growth rate changes is supposed to show whether the rate of return difference has a significant influence on the capacity growth rate or not. This follows the assumption, that high rates of return on a competitive market attract newcomers, which leads in total to an increasing capacity growth rate of the market. If not, the observed market can be seen as a cartel market.

Table 7: Test results Correlation of return difference and capacity growth rate changes

Phase	Expected behaviour
Cartel formation	No correlation
Cartel	No positive correlation (negative correlation in Type II and III , no correlation in Type I)
Competitive	Positive correlation

e) Distribution of nominal price changes

The price change density is expected to be significantly higher for a cartel market than for a competitive benchmark. V. Blanckenburg and Geist used the Kolmogorov-Smirnov test to examine the behavior of the price changes density. For a deeper analysis see: "The influence of collusion on price changes: New evidence from major cartel cases."

f) Variance of capacity growth rate changes

The variance of capacity growth rate changes is tested by a test of variance equality for the capacity growth rate changes of a cartel and a competitive benchmark. It is assumed that the variance for capacity growth rate changes is significantly lower for cartels than for a competitive benchmark because in general cartels are less likely to downsize or expand their capacity rather then adjusting their capacity utilization level.

Table 8: Test results Variance of capacity growth rate changes

Phase	Expected behaviour
Cartel formation	Variance competition > Variance cartel
Cartel	Variance competition > Variance cartel
Competitive	

4.2 Empirical results

4.2.1 Type I: Price cartel

Table 9: Test results on applied Price cartel simulation data

	Formation Phase Sample 1-24	Cartel Phase Sample 25-84
a) Utilization rate of capacities	Xd is not zero stationary $(p = 0.8672)$	Xd is not zero stationary $(p = 0.5219)$
capacines	Xd is not intercept stationary (p= 0.2721)	Xd is intercept stationary $(p = 0.0910)$
	Xd has a negative trend $Xd = -1.04 * t$ $(p < 0.01; R^2 = 0.89)$	Xd does not have a negative trend $Xd = -0.0244 * t$ ($p = 0.2828$; $R^2 = 0.02$)
b) Correlation between utilization rate of capacities and price changes	Δp and Xd are independent $\Delta p = 0.9 + 0.002Xd$ $(p = 0.36)$; $(p = 0.97)$	Δp and Xd are positive correlated $\Delta p = 3.81 + 0.181 Xd$ $(p = 0.03); (p = 0.028)$
c) Rate of return difference	Rd is not zero stationary $(p = 0.8762)$	Rd is not zero stationary $(p = 0.5265)$
	Rd is not intercept stationary $(p = 0.6037)$	Rd is intercept stationary $(p = 0.0107)$
	Rd has a positive trend $Rd = 0.26 * t$ $(p < 0.01; R^2 = 0.905)$	Rd does not have a trend Rd = 5.05 - 0.006 * t (p = 0.00) ; (p = 0.2626)
d) Correlation between rate of return difference and capacity growth rate changes	Rd has no influence on dW $(p = 0.9469)$	Rd has no influence on dW $(p = 0.7577)$
e) Distribution of price changes	See von Blanckenburg and Geist	
f) Variance of capacity growth rate changes	Higher variance for competitive benchmark Std.Dev.comp = 0.9968 vs. Std.Dev.cart = 0.0108	Higher variance for competitive benchmark Std.Dev.comp = 0.9473 vs. Std.Dev.cart = 0.019

Table 9 shows the empirical results for the first cartel type, the price cartel. As already seen in the simulation of the cartel types, the observation sample has been subdivided into formation and cartel phase. Each phase has been tested separately for each indicator a) - f).

a) Utilization rate of capacities

One finds clear evidence for the assumed negative trend of the capacity utilisation rate during "formation phase", which underlines the cartels behaviour of under utilizing capacities during its formation. This creates a situation of excess demand which makes it easier to assert the increased cartel prices. The during cartel phase assumed intercept stationarity of the utilization rate becomes also proven in table 9 This goes back to the achievement of the new targeted capacity utilisation level which is certainly lower compared to a competitive benchmark

b) Correlation between utilization rate of capacities and price changes

During "formation phase" the assumed independency of price changes and capacity utilisation rate is verified by the results of table 9 The independency of the two markers states the typical cartel behaviour of increasing prices and reducing quantities, during formation face, independently from any exogenous shocks. One also observes the assumed positive correlation during "cartel phase" by a positive and significant Xd. The positive correlation points out the cartels reaction to demand changes with delayed price changes.

c) Rate of return difference

The results for the rate of return difference in table 9 state a positive trend of the rate of return difference during "formation phase". The result fits the expected behaviour of increasing rates of return during cartel formation. For the "cartel phase" intercept stationarity can be observed which underlines the assumption of continuously higher rate of return level compared to a competitive bench mark, where one would observe zero stationarity. Table I: appendix

d) Correlation between rate of return difference and capacity growth rate

While throughout a competitive market a positive correlation of can be found, since higher rates of return attract new companies to the market, table 9 proofs a different behaviour for "formation" and "cartel phase" of a cartel market. Here one finds in both

phases no correlation between rate of return difference and capacity growth rate. One reason for that would be that the market contains entry barriers which scare new comers to enter the market. Another reason can be found in the alleged price cartel behaviour. It was assumed that the cartel operates with fixed capacities; therefore there cannot be any correlation between the both markers. However one should expect that the higher rates of return are due to the monopolistic pricing behaviour of the cartel.

e) Distribution of price changes

Not processed, see above.

f) Variance of capacity growth rate changes

Table 9 also proves the above made assumption for the variances of a cartel, compared to a competitive benchmark. One finds for "formation" and "cartel phase" a certainly higher variance for the competitive benchmark. Such a low variance indicates a cartel market with fixed capacities. Therefore it can be assumed that cartels only react to demand shocks with utilization adjustments but not with capacity extensions or downsizing.

4.2.2 Type 2: Quota cartel

Table 10 Test results on applied Quota cartel simulation data

	Formation Phase Sample 1-24	Cartel Phase I Sample 25-84	Cartel Phase II Sample 85-144	
a) Utilization rate of capacities	Xd is not zero stationary $(p = 0.8672)$	Xd is not zero stationary (p = 0.5219)	Xd is not zero stationary (p=0.8216)	
1	Xd is not intercept stationary (p = 0.2721)	Xd is intercept stationary $(p = 0.0910)$	Xd is not intercept stationary (p=0.3882)	
	Xd has a negative trend $Xd = -1.04 * t$ $(p < 0.01; R^2 = 0.89)$	Xd does not have a negative trend $Xd = -0.0244 * t$ $(p = 0.2828 ; R^2 = 0.02)$	Xd has a negative trend Xd = -1.28 - 0.2263 * t (p = 0.626 ; p = 0.000)	
b) Correlation between utilization rate of capacities and price changes	Δp and Xd are independent $\Delta p = 0.9 + 0.002 Xd$ $(p = 0.36)$; $(p = 0.07)$	Δp and Xd are positive correlated $\Delta p = 3.81 + 0.181Xd$ $(p = 0.03); (p = 0.028)$	Δp and Xd are independent $\Delta p = 1.89 + 0.07 * Xd$ $(p = 0.1742 ; p = 0.1672)$	
c) Rate of return difference	Rd is not zero stationary $(p = 0.8762)$	Rd is not zero stationary $(p = 0.5265)$	Rd has a unit root (p= 0.0839)	
difference	Rd is not intercept stationary (p = 0.6037)	Rd is intercept stationary $(p = 0.0107)$	Rd is not intercept stationary (p=0.6453)	
	Rd has a positive trend $Rd = 0.26 * t$ $(p < 0.01; R^2 = 0.905)$	Rd does not have a trend Rd = 5.05 - 0.006 * t (p = 0.00) ; (p = 0.2626)	Rd has a negative trend Rd = 12.153 - 0.086 * t (p = 0.000; p = 0.000)	
d) Correlation between rate of return difference and capacity growth rate changes	Rd has no influence on dW $(p = 0.9469)$	Rd has no influence on dW (p = 0.7577)	Rd has a negative influence on dW $dW = 10.25 - 1.833 * t$ (p=0.000; p=0.000)	
e) Distribution of price changes	See von Blanckenburg and Geist			
f) Variance of capacity growth rate changes	Higher variance for competitive benchmark Std.Dev.comp = 0.9968 vs. Std.Dev.cart = 0.0108	Higher variance for competitive benchmark Std.Dev.comp = 0.9473 vs. Std.Dev.cart = 0.019	Higer variance for the cartel Std.Dev.comp = 2.4127 vs. Std.Dev.cart = 3.4519	

As also proceeded during the quota cartel simulation analysis, the description of its empirical results focus on the added "cartel phase II" and neglect the results for "formation" and "cartel phase I", since they are equal to the before analyzed price cartel. Further one should have in mind, that among other things the quota cartel was characterized through increasing capacity growth rates during "cartel phase II" in order to obtain higher cartel revenues.

a) Utilization rate of capacities

Looking at table 10 one will find a highly significant negative trend of the capacity utilisation rate during "cartel phase II" which is typical for the quota cartel. It can be explained through the increasing capacity growth rate during "phase II" which consequently leads to further decrease of the already underutilized capacity utilization.

b) Correlation between utilization rate of capacities and price changes.

Table 10 states independence for utilization rate and price changes, while a positive correlation was expected. The deviation from the expected behaviour can be explained through the interdependency of capacity utilisation, capacity growth and price changes. The increase of capacities draws harder on the capacity utilisation, then exiguous demand shocks. This can be seen as a bias of the assumed testing results for the correlation between utilization rate of capacities and price changes.

c) Rate of return difference

By looking at the of return difference indicator throughout "cartel phase II" one can observe a highly significant negative trend in table 10 The increasing capacities cause additional costs leading to a significant reduction of the rate of return difference which can be concluded through the negative trend.

d) Correlation between rate of return difference and capacity growth rate

What has been already mentioned in c) and assumed above becomes now proven through the correlation indicator of rate of return difference and capacity growth rate. Table 10 displays a negative influence from the rate of return difference on capacity growth rate, which makes sense once one thinks of the behaviour of both markers in the simulation analysis. The rate of return has to have a negative impact on capacity

growth in order to create increasing capacity growth rates while the rate of return difference decreases.

This becomes obvious once one inverts the created regression equation to Rd.

$$Rd = 5.59 - 0.545dW$$

The equation shows clearly the negative impact of the capacity growth rate on the rate of return difference.

d) Distribution of price changes

Not processed, see above.

e) Variance of capacity growth rate changes

In opposite to the expected behaviour one can observe a higher variance for the cartel compared to the competitive bench mark. This can simply be explained through the typical increase of the capacities during "phase II" in a quota cartel, while on a competitive marked changes on a zero level can be observed.

4.2.3 Type 3: Regional cartel

Table 11: Test results on applied Regional cartel simulation data

	Formation Phase Sample 1-24	Cartel Phase I Sample 25-84	Cartel Phase II Sample 85-144
a) Utilization rate of capacities	Xd is not zero stationary (p = 0.9493)	Xd is not zero stationary $(p = 0.5611)$	Xd has a unit root = (zero stationary) (p= 0.0465)
	Xd is not intercept stationary $(p = 0.3911)$	Xd is intercept stationary $(p = 0.0447)$	Xd is intercept stationary (p= 0.0905)
	Xd has a negative trend $Xd = -1.0134 * t$ $(p < 0.01; R^2 = 0.923)$	Xd does not have a negative trend $Xd = -0.0338 * t$ ($p = 0.1517$; $R^2 = 0.03$)	Xd has a positive trend Xd = -26.94 + 0.153 * t $(p < 0.00; R^2 = 0.30)$
b) Correlation between utilization rate of capacities and price changes	Δp and Xd are independent $\Delta p = 1.346 + 0.03477Xd$ $(p = 0.0813)$; $(p = 0.4758)$	Δp and Xd are positive correlated $\Delta p = 5.455 + 0.2603Xd$ $(p = 0.0053); (p = 0.0047)$	Δp and Xd are positive correlated $\Delta p = 1.3478 + 0.1361Xd$ $(p = 0.0310); (p = 0.0199)$
c) Rate of return difference	Rd is not zero stationary $(p = 0.9493)$	Rd is not zero stationary $(p = 0.4835)$	Rd is not zero stationary (p= 0.9137)
	Rd is not intercept stationary (p = 0.3911)	Rd is intercept stationary $(p = 0.0447)$	Rd is not intercept stationary (p= 0.6558)
	Rd has a positive trend Rd = 0.25 * t $(p < 0.01; R^2 = 0.922)$	Rd does not have a trend Rd = -0.008 * t $(p = 0.1517) ; (R^2 = 0.03511)$	Rd has a positive trend Rd = 0.0689 * t $(p < 0.01; R^2 = 0.711)$
d) Correlation between rate of return difference and capacity growth rate changes	Rd has no influence on dW $(p = 0.7659)$	Rd has a negative influence on dW $dW = -0.0059 Rd$ (p = 0.096; $R^2 = 0.047$)	Rd has a negative influence on dW $dW = -2.0651 Rd$ $p = 0.000$; $R^2 = 0.713$)
e) Distribution of price changes	;	See von Blanckenburg and G	eist
f) Variance of capacity growth rate changes	Higher variance for competitive benchmark Std.Dev.comp = 0.9968 vs. Std.Dev.cart = 0.0129	Higher variance for competitive benchmark Std.Dev.comp = 0.947 vs. Std.Dev.cart = 0.021	Higher variance for the cartel Std.Dev.cart = 3.4917 vs. Std.Dev.comp = 0.9554

The empirical results for the regional cartel can be found in table 11the main focus for the analysis lies again on "cartel phase II" since it shows the speciality of the regional cartel. Here one should have in mind, that price changes occur more often and less delayed, and that the cartel will begin to downsize its capacities at a point where it feels unthreaded.

a) Utilization rate of capacities

By looking at the results for "cartel phase II" on will notice that two of the expected results do not fit to the expected behaviour. One finds zero and intercept stationarity instead of denying both. This can be seen as weakness of the unit root test once it comes to more volatile data with a trend. However, what can be found is a positive trend just as it was expected during "phase II"

b) Correlation between utilisation rate of capacities and price changes

As indicated for a cartel, one can observe a significant positive correlation between capacity utilization and price changes during "phase II" in table 11.

c) Rate of return difference

Table 11 displays a highly significant positive trend for the rate of return difference in "cartel phase II". This proves the expected behaviour and is a first evidence for the positive impact downsizing of capacities has on the rate of return difference.

d) Correlation between rate of return difference and capacity growth rate change One can find the expected behaviour with a highly significant negative correlation between both markers in table 11. The result follows the already in c) mentioned connection between rate of return difference and capacity growth rate. It reflects the cartels goal of achieving higher rates of return through downsized capacities and so decreased capacity costs. Such a connection would only be observed on a cartel market, since on a competitive market increasing rates of return would generally attract new comers to the marked which would lead to increasing capacity growth rates and a positive correlation testing result. (See table I appendix.)

e) Distribution of price changes

Not processed, see above.

f) Variance of capacity growth rate changes

Also for the regional cartel in "cartel phase II" one can observe a higher variance of capacity growth rate changes for the cartel market than for the competitive benchmark. The explanation for such behaviour can be seen as equal to the quota cartel just with the for the regional cartel typical decrease of capacities as reason for the higher variance.

5. Conclusion

In this work the appearance of disequilibria has been used to model empirical correlation between market process variables such as, price, capacity and rate of return in order to find evidence for cartel behaviour. Therefore in a first step different cartel types were theoretically distinguished and in a second, their behaviour in terms of market process variables simulated. Those variables were defined by the System of Cartel Markers and represented, together with the theoretical description of each cartel type, the foundation for the cartel type simulation. The simulation consisted out of fictional data deducted from previously observed cartel data samples. In the simulation analysis was found proof for the theoretical alleged behaviour of the different cartel types. The specialities of each cartel could be discovered during the different cartel phases. To picture the undesired development, a comparison to a competitive benchmark was introduced.

Finally the SCM testing pattern was applied to the generated data to detect empirical evidence like correlation or trends in the observed market processes which conclude the presence of a cartel or collusive behaviour.

The SCM provided solid empirical proof for the presences of a cartel throughout the examined markers for each cartel type. Almost all of the examined markers showed at least significance for their previously alleged behaviour. Those good results underline, that the SCM can be seen as a quiet qualified tool, to detect collusive behaviour based on empirical data.

This work can be used as a guideline for cartel simulations and as support for the detection of certain cartel types. Simulated or empirical cartels can be analysed with the methods of the

SCM. The introduced simulation can also be applied for other cartel types which have not been introduced in this work.

6 References

Benoit, J., Krishna, V. (1985): "Finitely repeated games", in: Econometrica, 53, 905-22.

Blanckenburg, K.v. (2009): "Entwicklung und Anwendung von ökonometrischen Testverfahren zur Koordinationsmängel Diagnose", Hamburg.

Blanckenburg, K.v., Geist, A., Kholodilin, K. (2010): "The influence of collusion on price changes: New evidence from major cartel cases", in: DIW Discussion papers.

Blanckenburg and Geist (2010): "Detecting Illegal Activities: The Case of Cartels", in European Journal of Law and Economics (2010), forthcoming.

Bresnahan, T. F., Reiss, P. C. (1991):." Entry and Competition in Concentrated Markets", in: Journal of Political Economy, 99 (5), 977-1009.

Brown, B., Martin, L.(1996): "Price versus Quota Reductions: U.S. Flue-Cured Tobacco Policy", in: Journal of Agricultural and Applied Economics, page 445-452.

Connor, J.M. (2007): "Global price fixing Vol. 2", Heidelberg.

Dönnebrink, E. (1994): "Legale und legitime Kartelle. Eine Untersuchung auf Basis des Koordinations-Mängel-Diagnosekonzepts", Frankfurt/M. u.a.O.

Fear, J. (2006): "Cartels and Competition: Neither Markets nor Hierarchies", Harvard Business School, Working paper, 21, 07-011, http://www.hbs.edu/research/pdf/07-011.pdf

Geist, A. (2010): "Die Chemische Industrie in Deutschland. Eine volkswirtschaftliche Funktionsfähigkeitsprüfung auf Basis des Koordinations-Mängel Diagnose Konzepts", forthcoming.

Geroski, P.A., Jacquemin, A. (1988): "The Persistence of Profits: A European Comparison", in: The Economic Journal, 98 (391), 375-89.

Grossekettler, *H*. (1985): "Wettbewerbstheorie –Funktionale Marktprozesse als ordnungspolitische Gestaltungsaufgabe", in: Grossekettler, H./Borchert, M. (Hrsg): "Preisund Wettbewerbstheorie", Stuttgart u.a.O.,S.113-335.

Grossekettler H. (2009a): "Einführung in das KMD-Konzept", KMD-WebCenter, Beitrag 1, http://www.wiwi.uni-muentser.de/kmd (Stand: 26.08.2010).

Grossekettler H. (2009b): "Nähere Beschreibung der Analyseschritte und Indikatoren zur Beurteilung des Markträumungsprozesses", KMD-WebCenter, Beitrag 4, http://www.wiwi.uni-muentser.de/kmd (Stand: 26.08.2010).

Grossekettler, *H*. (2009c): "Nähere Beschreibung der Analyseschritte und Indikatoren zur Beurteilung des Renditenormalisierungsprozesses", KMD-WebCenter, Beitrag 6, http://www.wiwi.uni-muentser.de/kmd (Stand: 26.08.2010).

Harrington, J. (2006): "How do cartels operate", Department of Economics, Johns Hopkins University Baltimore.

Lorenz, C. (2006): "Marktscreening nach Kartellstrukturen. Ein Verfahren zur Kartellaufdeckung auf Basis der Koordinationsmängel-Diagnosekonzepts (KMD-Kartellckeck)", Hamburg.

Osborne, M., Pitchik, C. (1987): "Equilibrium in Holtelling's Model of Spatial Competition", in: Econometrica, 55(4), 911-22.

Rudolph, U. (2009): "Simulation der Wechselwirkungen auf Wettbewerbsmärkten. Eine Untersuchung auf Basis des KMD-Konzepts unter Verwendung von System Dynamics", Hamburg.

Samuelson P.A.(1941) "The Sability of Equilibrium: Comparative Statics and Dynamics", in: *Econometrica*, 97-120.

Schiersch and Schmidt-Ehnke (2010): "Empiricism Meets Theory-Is Boone-Indicator Applicable?" in: DIW Discussion Papers, 8-9,1030.

Schumann, Meyer, Ströbele (1999): "Grundzüge der mikroökonomischen Theorie", Springer.

Smith, A. (1840):"An inquiry into the nature and causes of the wealth of nations", Edinburgh, Book I.

Stiegler, G. (1987): "The Theory of Price", Fourth Edition. New York: Macmillan, page 230.

Tirole, J. (1988): "The Theory of Industrial Organization", 1, The MIT Press.

7. Appendix

7.1 Table I. Simulation Results Competitive bench mark

		Competition	
	Formation Phase Sample 1-24	Cartel Phase I Sample 25-84	Cartel Phase II Sample 85-144
a) Utilization rate of capacities	Xd is zero stationary $(p = 0.0001)$ Xd is intercept stationary $(p = 00005)$ Xd does not have a trend $(p = 0.734)$	Xd is zero stationary $(p = 0.0000)$ Xd is intercept stationary $(p = 0.0000)$ Xd does not have trend $(p = 0.9905)$	Xd is zero stationary $(p=0.000)$ Xd is intercept stationary $(p=0.000)$ Xd has a positive trend $(p=0.3301)$
b) Correlation between utilization rate of capacities and price changes	Xd has a no influence on Δp ($p = 0.000$)	Xd has a no influence on Δp ($p = 0.000$)	Xd has a no influence on Δp ($p = 0.000$)
c) Rate of return difference	Rd is zero stationary $(p = 0.0000)$ Rd is intercept stationary $(p = 0.0004)$ Rd does not have a trend $(p = 0.8651)$	Rd is zero stationary $(p = 0.0000)$ Rd is intercept stationary $(p = 0.0000)$ Rd does not have a trend $(p = 0.9340)$	Rd is zero stationary $(p = 0.000)$ Rd is intercept stationary $(p = 0.0000)$ Rd does not have a trend $(p = 0.7278)$
d) Correlation between rate of return difference and capacity growth rate changes	Rd has a positive influence on dW $(p = 0.0000; R^2 = 0.562)$	Rd has a positive influence on dW $(p = 0.0000; R^2 = 0.5530)$	Rd has a positive influence on dW $(p = 0.0000; R^2 = 0.4226)$
e) Distribution of price changes			
f) Variance of capacity growth rate changes	Higher variance for competitive benchmark Std.Dev.comp = 0.9968 vs. Std.Dev.cart = 0.0129	Higher variance for competitive benchmark Std.Dev.comp = 0.947 vs. Std.Dev.cart = 0.021	Higer variance for the cartel Std.Dev.cart = 3.4917 vs. Std.Dev.comp = 0.9554

7.2.1 Table II.

Data panel Price Cartel

Observation	P	XD	DW	RD
1	100	0,450626465	0,002157008	-0,009993308
2	100	-0,89146094	0,028126876	0,034352574
3	100	0,34452148	0,003650539	-0,112083664
4	102	-2,98460562	-0,004525683	0,53063801
5	102	-1,475774836	0,011036747	0,338493828
6	102	-1,525780449	0,010080759	0,406841151
7	110	-10,60974776	-0,001038199	2,460087587
8	110	-11,81848005	-0,001878415	2,434272371
9	110	-10,61687967	-0,010681084	2,420330707
10	113	-13,40634808	-0,025052269	3,329231767
11	113	-13,97657623	-0,007761157	3,286065101
12	113	-12,99574671	0,005370114	3,381913268
13	113	-13,61488934	-0,003042216	3,29779879
14	113	-12,79520654	0,020018086	3,260096436
15	118	-17,57481187	-0,025238052	4,464399318
16	118	-19,42862337	-0,012866375	4,438276076
17	118	-18,30401496	-0,019507776	4,439658446
18	118	-18,69820961	0,000675876	4,446447566
19	122	-21,47347612	0,008805435	5,500311284
20	122	-21,41765143	-0,004318976	5,533432744
21	122	-21,52326962	0,034074337	5,569837137
22	120	-20,65738385	-0,011695735	5,067629429
23	120	-20,6563397	0,012427387	5,012506685
24	120	-20,33990859	-0,000352946	4,980671862
25	120	-21,74692714	0,025844823	5,000835141
26	120	-20,42210533	0,005854346	5,091212016
27	120	-19,75301437	0,012255002	4,902812357
28	124	-16,30047799	0,032337326	6,009232232
29	124	-15,56301765	-0,003804486	5,885678126
30	124	-16,07494855	0,014880124	6,15837259
31	123	-17,33237528	0,02004383	5,684868509
32	123	-18,00739034	0,002850723	5,473886416
33	121	-19,28775794	0,003273323	5,275702301
34	117	-22,56730319	0,003273323	4,173118951
35	117	-22,95617336	-0,026609824	4,18112153
36	117	-24,07167175	-0,007642683	4,098022732
37	117	-23,65130944	0,002271251	4,065121671
38	117	-22,52076896	0,023904363	4,242152807
39	117	-23,04797534	0,016303038	4,014893307
40	117	-21,78016483	-0,017692423	4,841471936
41	119	-20,49206864	-0,001665572	4,779078312
42	119	-21,07882147	0,032519405	4,808622723
43	119	-21,61356717	0,032313403	4,877188873
44	119	-19,57908442	-0,005486614	4,775839467
45	119	-21,46689829	0,041511986	4,73698747
46	123	-17,01729116	-0,015431749	5,871778054
47	123	-16,60748109	-0,013431749	5,693604397
48	123	-16,86223812	0,008581893	5,824282991
49	123	-18,8803799	-0,005567419	5,831320584
T ク	143	10,0003199	0,000001717	2,021320304

50	123	-17,62329001	0,005108498	5,650512098
51	114	-25,49569079	0,001026791	3,451236567
52	114	-26,07877742	0,015697108	3,533779338
53	114	-26,6515342	-0,017009942	3,571993895
54	114	-24,91096081	-0,023405491	3,530625984
55	114	-25,41411023	-0,024678224	3,569241276
56	114	-24,29684872	-0,010922483	3,438563548
57	118	-22,73601451	-0,022498387	4,343329653
58	118	-21,95314379	0,027640172	4,619823105
59	118	-21,40929886	-0,033638893	4,507897543
60	118	-23,42128972	-0,015328488	4,473541292
61	120	-20,15302063	-0,023601063	4,859582975
62	120	-19,81214521	-0,02950568	4,779766684
63	120	-17,94563074	0,014066531	4,957180849
64	120	-20,5451895	-0,01639189	5,000727213
65	120	-20,6149276	-0,002195018	4,985497255
66	115	-23,934954	-0,02000956	3,813962888
67	115	-25,39275376	0,009082848	3,758680594
68	115	-24,70022671	0,003368778	3,742583562
69	115	-26,20675138	-0,011385298	3,825750634
70	115	-25,49332534	0,006434675	3,60749026
71	115	-25,5572636	-0,000961326	3,790422787
72	115	-25,46288016	0,007015435	3,867348312
73	115	-24,57850125	0,017289374	3,815649146
74	121	-18,13395267	-0,019899046	5,261771785
75	121	-18,27143454	-0,006368243	5,223206251
76	121	-18,61765336	-0,04113233	5,432617237
77	121	-19,74973038	-0,045474642	5,233239801
78	121	-18,916194	-0,006934025	5,350394125
79	121	-18,27619597	-0,012222814	5,415755379
80	121	-18,59306979	-0,007653002	5,273240777
81	121	-20,00939934	-0,01112259	5,331395108
82	121	-21,32734729	0,017534646	5,281046547
83	121	-19,09499967	0,009227618	5,176958131
84	120	-19,04631613	0,001584784	4,881215873

7.2.2 Table III.

Data panel Quota Cartel

1 100 0,45062647 0,00071782 -0,00999331 2 100 -0,84146094 -0,04018325 0,03435257 3 100 0,34452148 0,0383135 -0,11208366 4 102 -2,98460562 0,03695884 0,53063801 5 102 -1,47577484 0,00329437 0,33849383 6 102 -1,52578045 0,00661782 0,40684115 7 110 -10,6168797 -0,00917047 2,46008759 8 110 -11,81848 0,0043021 2,43427237 9 110 -10,6168797 -0,02988697 2,42033071 10 113 -13,965362 0,02038469 3,2806651 12 113 -12,9957667 -0,01588642 3,38191327 13 113 -13,6148893 0,02326053 3,29779879 14 113 -12,9957667 -0,01588642 3,38191327 13 113 -13,6148893 0,02326053 3,29779879 14<	Observation	P	XD	DW	RD
3 100 0,34452148 0,03695884 0,53063801 4 102 -2,98460562 0,03695884 0,53063801 5 102 -1,47577484 0,00329437 0,33849383 6 102 -1,52578045 0,00661782 0,40684115 7 110 -10,6097478 0,00917047 2,46008759 8 110 -11,81848 0,0043021 2,43427237 9 110 -10,6168797 -0,02988697 2,42033071 10 113 -13,9765762 0,02038469 3,2860651 12 113 -12,9957467 -0,01588642 3,38191327 13 113 -13,6148893 0,02326039 3,2860651 12 113 -12,7952065 0,03269039 3,26009644 15 118 -17,5748119 0,0064536 4,46439932 16 118 -19,4286234 -0,02852978 4,43827608 17 118 -18,304015 -0,01380388 4,4464474757 18	1	100	0,45062647	0,00071782	-0,00999331
4 102 -2,98460562 0,03695884 0,53063801 5 102 -1,47577484 0,00329437 0,33849383 6 102 -1,47577484 0,00329437 0,33849383 6 102 -1,52578045 0,00616782 0,40684115 7 110 -10,6097478 0,00917047 2,46008759 8 110 -11,81848 0,0043021 2,43427237 9 110 -10,6168797 -0,02988697 2,42033071 10 113 -13,4063481 0,015363242 3,2860651 12 113 -12,9957467 -0,01588642 3,2860651 12 113 -12,9957467 -0,01588642 3,38191327 13 113 -13,6148893 0,02326033 3,29779879 14 113 -12,7952065 0,03269039 3,26009644 15 118 -18,804219 -0,0084536 4,446439932 16 118 -19,486234 -0,02852978 4,43827608 1	2	100	-0,89146094	-0,04018325	0,03435257
5 102 -1,47577484 0,00329437 0,33849383 6 102 -1,52578045 0,00661782 0,40684115 7 110 -10,6097478 0,00917047 2,46008759 8 110 -11,81848 0,0043021 2,43427237 9 110 -10,6168797 -0,02988697 2,42033071 10 113 -13,4063481 0,01563242 3,32923177 11 113 -13,9765762 0,02038469 3,2860651 12 113 -12,7952065 0,0326033 3,29779879 14 113 -12,7952065 0,0326033 3,29779879 14 113 -12,7572650 0,0326033 3,29779879 14 113 -12,752065 0,0326033 3,26009644 15 118 -17,5748119 0,0064536 4,46439932 16 118 -18,304015 -0,0139859 4,43965845 18 118 -18,6982096 -0,01380388 4,44644757 19	3	100	0,34452148	0,0383135	-0,11208366
6 102 -1,52578045 0,00661782 0,40684115 7 110 -10,6097478 0,00917047 2,46008759 8 110 -11,81848 0,0043021 2,43427237 9 110 -10,6168797 -0,02988697 2,42033071 10 113 -13,4063481 0,01563242 3,32923177 11 113 -13,76148893 0,02326053 3,2800651 12 113 -12,7952065 0,03269039 3,26009644 15 118 -17,5748119 0,0046536 4,46439932 16 118 -19,4286234 -0,02852978 4,43827608 17 118 -18,6982096 -0,01380859 4,43965845 18 118 -18,6982096 -0,01380859 4,44644757 19 122 -21,4734761 0,02970141 5,50031128 20 122 -21,4734761 0,0171962 5,53343274 21 122 -21,4734761 0,01771962 5,53343274 <t< td=""><td>4</td><td>102</td><td>-2,98460562</td><td>0,03695884</td><td>0,53063801</td></t<>	4	102	-2,98460562	0,03695884	0,53063801
7 110 -10,6097478 0,00917047 2,46008759 8 110 -11,81848 0,0043021 2,43427237 9 110 -10,6168797 -0,02988697 2,42033071 10 113 -13,4063481 0,01563242 3,32923177 11 113 -13,9765762 0,02038469 3,2860651 12 113 -12,9957467 -0,01588642 3,8191327 13 113 -13,6148893 0,02326053 3,29779879 14 113 -12,7952065 0,03269039 3,26009644 15 118 -17,5748119 0,0064536 4,46439932 16 118 -19,4286234 -0,02852978 4,43827608 17 118 -18,304015 -0,01398659 4,43965845 18 118 -18,6982096 -0,01830888 4,44644757 19 122 -21,4734761 0,02970141 5,50031128 20 122 -21,4734761 -0,01771962 5,56983714 <	5	102	-1,47577484	0,00329437	0,33849383
8 110 -11,81848 0,0043021 2,43427237 9 110 -10,6168797 -0,02988697 2,42033071 10 113 -13,4063481 0,01563242 3,32923177 11 113 -13,9765762 0,02038469 3,2860651 12 113 -12,9957467 -0,01588642 3,38191327 13 113 -13,6148893 0,02326053 3,29779879 14 113 -12,7952065 0,03269039 3,26009644 15 118 -17,5748119 0,0064536 4,46439932 16 118 -19,4286234 -0,02852978 4,43925845 18 118 -18,6982096 -0,01830388 4,44644757 19 122 -21,4734761 0,02970141 5,50031128 20 122 -21,4734761 0,02790141 5,50031128 21 122 -21,5232696 -0,01330388 4,44644757 22 120 -20,6573839 -0,02112109 5,66983714	6	102	-1,52578045	0,00661782	0,40684115
9 110 -10,6168797 -0,02988697 2,42033071 10 113 -13,4063481 0,01563242 3,32923177 11 113 -13,9765762 0,02038469 3,2860651 12 113 -12,9957467 -0,01588642 3,38191327 13 113 -13,6148893 0,02326053 3,29779879 14 113 -12,7952065 0,03269039 3,26009644 15 118 -17,5748119 0,0064536 4,46439932 16 118 -19,4286234 -0,02852978 4,43965845 18 118 -18,304015 -0,01398659 4,43965845 18 118 -18,6982096 -0,01330388 4,44644757 19 122 -21,4734761 0,02970141 5,5031128 20 122 -21,4176514 -0,01771962 5,53343274 21 122 -21,5232696 -0,00261802 5,56983714 22 120 -20,65573839 -0,02112109 5,06762943	7	110	-10,6097478	0,00917047	2,46008759
10 113 -13,4063481 0,01563242 3,32923177 11 113 -13,9765762 0,02038469 3,2860651 12 113 -12,9957467 -0,01588642 3,38191327 13 113 -13,6148893 0,02326053 3,29779879 14 113 -12,7952065 0,03269039 3,26009644 15 118 -17,5748119 0,0064536 4,46439932 16 118 -19,4286234 -0,02852978 4,43827608 17 118 -18,904015 -0,01398659 4,43965845 18 118 -18,6982096 -0,01398659 4,43965845 18 118 -18,6982096 -0,01398659 4,44644757 19 122 -21,4734761 -0,02970141 5,50931128 20 122 -21,47734761 -0,01771962 5,53432274 21 122 -21,5232696 -0,00261802 5,6983714 22 120 -2,65573839 -0,02112109 5,06762943	8	110	-11,81848	0,0043021	2,43427237
11 113 -13,9765762 0,02038469 3,2860651 12 113 -12,9957467 -0,01588642 3,38191327 13 113 -13,6148893 0,02326053 3,29779879 14 113 -12,7952065 0,03269039 3,26009644 15 118 -17,5748119 0,0064536 4,46439932 16 118 -19,4286234 -0,02852978 4,43827608 17 118 -18,304015 -0,01398659 4,43965845 18 118 -18,6982096 -0,01830388 4,44644757 19 122 -21,4734761 0,02970141 5,50031128 20 122 -21,4746514 -0,01771962 5,53343274 21 122 -21,5232696 -0,00261802 5,56983714 22 120 -20,6563397 0,0269679 5,01250669 24 120 -20,3399086 0,00649575 4,98067186 25 120 -21,7469271 -0,02825293 5,00083514	9	110	-10,6168797	-0,02988697	2,42033071
12 113 -12,9957467 -0,01588642 3,38191327 13 113 -13,6148893 0,02326053 3,29779879 14 113 -12,7952065 0,03269039 3,26009644 15 118 -17,5748119 0,0064536 4,46439932 16 118 -19,4286234 -0,02852978 4,43827608 17 118 -18,304015 -0,01398659 4,43965845 18 118 -18,6982096 -0,01830388 4,44644757 19 122 -21,4734761 0,02970141 5,50331128 20 122 -21,4176514 -0,01771962 5,53343274 21 122 -21,4763761 -0,0212109 5,06762943 23 120 -20,6563397 0,0269679 5,01250669 24 120 -20,33399086 0,00649575 4,98067186 25 120 -21,7469271 -0,02825293 5,0083514 26 120 -20,4221053 0,01441197 5,09121202	10	113	-13,4063481	0,01563242	3,32923177
13 113 -13,6148893 0,02326053 3,29779879 14 113 -12,7952065 0,03269039 3,26009644 15 118 -17,5748119 0,0064536 4,46439932 16 118 -19,4286234 -0,02852978 4,43827608 17 118 -18,6982096 -0,01398659 4,43827608 18 118 -18,6982096 -0,01398659 4,43965845 18 118 -18,6982096 -0,01830388 4,44644757 19 122 -21,4747611 0,02970141 5,50031128 20 122 -21,4746514 -0,01771962 5,53343274 21 122 -21,5232696 -0,00261802 5,56983714 22 120 -20,6573839 -0,0212109 5,06762943 23 120 -20,6563397 0,0269679 5,01250669 24 120 -20,3399086 0,00449575 4,98067186 25 120 -21,7469271 -0,02282593 5,00883514	11	113	-13,9765762	0,02038469	3,2860651
14 113 -12,7952065 0,03269039 3,26009644 15 118 -17,5748119 0,0064536 4,46439932 16 118 -19,4286234 -0,02852978 4,43827608 17 118 -18,304015 -0,01398659 4,43965845 18 118 -18,6982096 -0,01830388 4,44644757 19 122 -21,4734761 0,02970141 5,50031128 20 122 -21,4176514 -0,01771962 5,53343274 21 122 -21,5232696 -0,00261802 5,56983714 22 120 -20,6573839 -0,02112109 5,06762943 23 120 -20,6563397 0,0269679 5,01250669 24 120 -20,3399086 0,00649575 4,98067186 25 120 -21,7469271 -0,02825293 5,00083514 26 120 -29,4221053 0,01441197 5,09121202 27 120 -19,7530144 -0,00729619 4,90281236	12	113	-12,9957467	-0,01588642	3,38191327
15 118 -17,5748119 0,0064536 4,46439932 16 118 -19,4286234 -0,02852978 4,43827608 17 118 -18,304015 -0,01398659 4,43965845 18 118 -18,6982096 -0,01830388 4,44644757 19 122 -21,4734761 0,02970141 5,50031128 20 122 -21,4736761 -0,01771962 5,5343274 21 122 -21,5232696 -0,00261802 5,56983714 22 120 -20,6573839 -0,02112109 5,06762943 23 120 -20,6563397 0,0269679 5,01250669 24 120 -20,3399086 0,00649575 4,98067186 25 120 -21,7469271 -0,02825293 5,00083514 26 120 -20,4221053 0,01441197 5,09121202 27 120 -19,7530144 -0,00729619 4,90281236 28 124 -16,300478 -0,001585819 5,88567813	13	113	-13,6148893	0,02326053	3,29779879
16 118 -19,4286234 -0,02852978 4,43827608 17 118 -18,304015 -0,01398659 4,43965845 18 118 -18,6982096 -0,01830388 4,44644757 19 122 -21,4734761 0,02970141 5,50031128 20 122 -21,4176514 -0,01771962 5,53343274 21 122 -21,5232696 -0,00261802 5,56983714 22 120 -20,6563397 -0,0269679 5,01250669 24 120 -20,3399086 0,00649575 4,98067186 25 120 -21,7469271 -0,02825293 5,00083514 26 120 -22,4221053 0,01441197 5,09121202 27 120 -19,7530144 -0,00729619 4,90281236 28 124 -16,300478 -0,00143995 6,00923223 29 124 -15,5630177 -0,01585819 5,88567813 30 124 -16,0749486 -0,00390058 6,15837259 <t< td=""><td>14</td><td>113</td><td>-12,7952065</td><td>0,03269039</td><td>3,26009644</td></t<>	14	113	-12,7952065	0,03269039	3,26009644
17 118 -18,304015 -0,01398659 4,43965845 18 118 -18,6982096 -0,01830388 4,44644757 19 122 -21,4734761 0,02970141 5,50031128 20 122 -21,4176514 -0,01771962 5,53343274 21 122 -21,5232696 -0,00261802 5,56983714 22 120 -20,6563397 -0,0269679 5,01250669 24 120 -20,3399086 0,00649575 4,98067186 25 120 -21,7469271 -0,02825293 5,00083514 26 120 -20,4221053 0,01441197 5,09121202 27 120 -19,7530144 -0,00729619 4,90281236 28 124 -16,300478 -0,00143995 6,00923223 29 124 -15,5630177 -0,01585819 5,88567813 30 124 -16,0749486 -0,00390058 6,15837259 31 123 -17,3323753 -0,01721181 5,68486851 <t< td=""><td>15</td><td>118</td><td>-17,5748119</td><td>0,0064536</td><td>4,46439932</td></t<>	15	118	-17,5748119	0,0064536	4,46439932
18 118 -18,6982096 -0,01830388 4,44644757 19 122 -21,4734761 0,02970141 5,50031128 20 122 -21,4176514 -0,01771962 5,53343274 21 122 -21,5232696 -0,00261802 5,56983714 22 120 -20,6573839 -0,02112109 5,06762943 23 120 -20,6563397 0,0269679 5,01250669 24 120 -20,3399086 0,00649575 4,98067186 25 120 -21,7469271 -0,02825293 5,00083514 26 120 -20,4221053 0,01441197 5,09121202 27 120 -19,7530144 -0,00729619 4,90281236 28 124 -16,300478 -0,00043995 6,00923223 29 124 -15,5630177 -0,01585819 5,88567813 30 124 -16,0749486 -0,00390058 6,15837259 31 123 -17,3323753 -0,017073 5,47388642	16	118	-19,4286234	-0,02852978	4,43827608
19 122 -21,4734761 0,02970141 5,50031128 20 122 -21,4176514 -0,01771962 5,53343274 21 122 -21,5232696 -0,00261802 5,56983714 22 120 -20,6563397 -0,0269679 5,01250669 24 120 -20,3399086 0,00649575 4,98067186 25 120 -21,7469271 -0,02825293 5,00083514 26 120 -20,4221053 0,01441197 5,09121202 27 120 -19,7530144 -0,00729619 4,90281236 28 124 -16,300478 -0,00143995 6,00923223 29 124 -15,5630177 -0,01585819 5,88567813 30 124 -16,0749486 -0,00390058 6,15837259 31 123 -17,3323753 -0,01721181 5,68486851 32 123 -18,0073903 -0,0017073 5,47388642 33 121 -19,2877579 0,00254208 5,2757023	17	118	-18,304015	-0,01398659	4,43965845
20 122 -21,4176514 -0,01771962 5,53343274 21 122 -21,5232696 -0,00261802 5,56983714 22 120 -20,6573839 -0,02112109 5,06762943 23 120 -20,6563397 0,0269679 5,01250669 24 120 -20,3399086 0,00649575 4,98067186 25 120 -21,7469271 -0,02825293 5,00083514 26 120 -20,4221053 0,01441197 5,09121202 27 120 -19,7530144 -0,00729619 4,90281236 28 124 -16,300478 -0,0043995 6,00923223 29 124 -15,5630177 -0,01585819 5,88567813 30 124 -16,0749486 -0,00390058 6,15837259 31 123 -17,3323753 -0,01721181 5,68486851 32 123 -18,0073903 -0,0017073 5,47388642 33 121 -19,2875799 0,00254208 5,2757023	18	118	-18,6982096	-0,01830388	4,44644757
21 122 -21,5232696 -0,00261802 5,56983714 22 120 -20,6573839 -0,02112109 5,06762943 23 120 -20,6563397 0,0269679 5,01250669 24 120 -20,3399086 0,00649575 4,98067186 25 120 -21,7469271 -0,02825293 5,00083514 26 120 -20,4221053 0,01441197 5,09121202 27 120 -19,7530144 -0,00729619 4,90281236 28 124 -16,300478 -0,00043995 6,00923223 29 124 -15,5630177 -0,01585819 5,88567813 30 124 -16,0749486 -0,00390058 6,15837259 31 123 -17,3323753 -0,01721181 5,68486851 32 123 -18,0073903 -0,0017073 5,47388642 33 121 -19,2877579 0,00254208 5,2757023 34 117 -22,5673032 0,00259609 4,17311895 35 117 -22,9561734 0,00254775 4,18112153	19	122	-21,4734761	0,02970141	5,50031128
22 120 -20,6573839 -0,02112109 5,06762943 23 120 -20,6563397 0,0269679 5,01250669 24 120 -20,3399086 0,00649575 4,98067186 25 120 -21,7469271 -0,02825293 5,00083514 26 120 -20,4221053 0,01441197 5,09121202 27 120 -19,7530144 -0,00729619 4,90281236 28 124 -16,300478 -0,00043995 6,00923223 29 124 -15,5630177 -0,01585819 5,88567813 30 124 -16,0749486 -0,00390058 6,15837259 31 123 -17,3323753 -0,01721181 5,68468651 32 123 -18,0073903 -0,0017073 5,47388642 33 121 -19,2877579 0,00254208 5,2757023 34 117 -22,5673032 0,00259609 4,17311895 35 117 -22,9561734 0,00254775 4,18112153	20	122	-21,4176514	-0,01771962	5,53343274
23 120 -20,6563397 0,0269679 5,01250669 24 120 -20,3399086 0,00649575 4,98067186 25 120 -21,7469271 -0,02825293 5,00083514 26 120 -20,4221053 0,01441197 5,09121202 27 120 -19,7530144 -0,00729619 4,90281236 28 124 -16,300478 -0,00043995 6,00923223 29 124 -15,5630177 -0,01585819 5,88567813 30 124 -16,0749486 -0,00390058 6,15837259 31 123 -17,3323753 -0,01721181 5,68486851 32 123 -18,0073903 -0,0017073 5,47388642 33 121 -19,2877579 0,00254208 5,2757023 34 117 -22,5673032 0,00254208 5,2757023 34 117 -22,56716718 -0,0261837 4,09802273 37 117 -23,6513094 -0,0092006 4,06512167	21	122	-21,5232696	-0,00261802	5,56983714
23 120 -20,6563397 0,0269679 5,01250669 24 120 -20,3399086 0,00649575 4,98067186 25 120 -21,7469271 -0,02825293 5,00083514 26 120 -20,4221053 0,01441197 5,09121202 27 120 -19,7530144 -0,00729619 4,90281236 28 124 -16,300478 -0,00043995 6,00923223 29 124 -15,5630177 -0,01585819 5,88567813 30 124 -16,0749486 -0,00390058 6,15837259 31 123 -17,3323753 -0,01721181 5,68486851 32 123 -18,0073903 -0,0017073 5,47388642 33 121 -19,2877579 0,00254208 5,2757023 34 117 -22,5673032 0,00254208 5,2757023 34 117 -22,56716718 -0,0261837 4,09802273 37 117 -23,6513094 -0,0092006 4,06512167	22	120	-20,6573839	-0,02112109	5,06762943
25 120 -21,7469271 -0,02825293 5,00083514 26 120 -20,4221053 0,01441197 5,09121202 27 120 -19,7530144 -0,00729619 4,90281236 28 124 -16,300478 -0,00043995 6,00923223 29 124 -15,5630177 -0,01585819 5,88567813 30 124 -16,0749486 -0,00390058 6,15837259 31 123 -17,3323753 -0,01721181 5,68486851 32 123 -18,0073903 -0,0017073 5,47388642 33 121 -19,2877579 0,00254208 5,2757023 34 117 -22,5673032 0,00259609 4,17311895 35 117 -22,5673032 0,00254775 4,18112153 36 117 -24,0716718 -0,0261837 4,09802273 37 117 -23,6513094 -0,0092006 4,06512167 38 117 -22,520769 0,01573323 4,24215281	23	120	-20,6563397		5,01250669
26 120 -20,4221053 0,01441197 5,09121202 27 120 -19,7530144 -0,00729619 4,90281236 28 124 -16,300478 -0,00043995 6,00923223 29 124 -15,5630177 -0,01585819 5,88567813 30 124 -16,0749486 -0,00390058 6,15837259 31 123 -17,3323753 -0,01721181 5,68486851 32 123 -18,0073903 -0,0017073 5,47388642 33 121 -19,2877579 0,00254208 5,2757023 34 117 -22,5673032 0,00259609 4,17311895 35 117 -22,9561734 0,00254775 4,18112153 36 117 -24,0716718 -0,0261837 4,09802273 37 117 -22,520769 0,01573323 4,24215281 39 117 -22,520769 0,01573323 4,24215281 39 117 -23,0479753 0,00683681 4,84147194	24	120	-20,3399086	0,00649575	4,98067186
27 120 -19,7530144 -0,00729619 4,90281236 28 124 -16,300478 -0,00043995 6,00923223 29 124 -15,5630177 -0,01585819 5,88567813 30 124 -16,0749486 -0,00390058 6,15837259 31 123 -17,3323753 -0,01721181 5,68486851 32 123 -18,0073903 -0,0017073 5,47388642 33 121 -19,2877579 0,00254208 5,2757023 34 117 -22,5673032 0,00259609 4,17311895 35 117 -22,9561734 0,00254775 4,18112153 36 117 -24,0716718 -0,0261837 4,09802273 37 117 -23,6513094 -0,0092006 4,06512167 38 117 -22,520769 0,01573323 4,24215281 39 117 -23,0479753 0,00241269 4,01489331 40 119 -21,7801648 -0,00683681 4,84147194	25	120	-21,7469271	-0,02825293	5,00083514
28 124 -16,300478 -0,00043995 6,00923223 29 124 -15,5630177 -0,01585819 5,88567813 30 124 -16,0749486 -0,00390058 6,15837259 31 123 -17,3323753 -0,01721181 5,68486851 32 123 -18,0073903 -0,0017073 5,47388642 33 121 -19,2877579 0,00254208 5,2757023 34 117 -22,5673032 0,00259609 4,17311895 35 117 -22,9561734 0,00254775 4,18112153 36 117 -24,0716718 -0,0261837 4,09802273 37 117 -23,6513094 -0,0092006 4,06512167 38 117 -22,520769 0,01573323 4,24215281 39 117 -23,0479753 0,00241269 4,01489331 40 119 -21,7801648 -0,00683681 4,84147194 41 119 -21,0788215 0,01844674 4,80862272	26	120	-20,4221053	0,01441197	5,09121202
29 124 -15,5630177 -0,01585819 5,88567813 30 124 -16,0749486 -0,00390058 6,15837259 31 123 -17,3323753 -0,01721181 5,68486851 32 123 -18,0073903 -0,0017073 5,47388642 33 121 -19,2877579 0,00254208 5,2757023 34 117 -22,5673032 0,00259609 4,17311895 35 117 -22,9561734 0,00254775 4,18112153 36 117 -24,0716718 -0,0261837 4,09802273 37 117 -23,6513094 -0,0092006 4,06512167 38 117 -22,520769 0,01573323 4,24215281 39 117 -23,0479753 0,00241269 4,01489331 40 119 -21,7801648 -0,00683681 4,84147194 41 119 -20,4920686 0,00614607 4,77907831 42 119 -21,6135672 -0,00911372 4,8771887 44 119 -19,5790844 0,01158676 4,77583947 <tr< td=""><td>27</td><td>120</td><td>-19,7530144</td><td>-0,00729619</td><td>4,90281236</td></tr<>	27	120	-19,7530144	-0,00729619	4,90281236
30 124 -16,0749486 -0,00390058 6,15837259 31 123 -17,3323753 -0,01721181 5,68486851 32 123 -18,0073903 -0,0017073 5,47388642 33 121 -19,2877579 0,00254208 5,2757023 34 117 -22,5673032 0,00259609 4,17311895 35 117 -22,9561734 0,00254775 4,18112153 36 117 -24,0716718 -0,0261837 4,09802273 37 117 -23,6513094 -0,0092006 4,06512167 38 117 -22,520769 0,01573323 4,24215281 39 117 -23,0479753 0,00241269 4,01489331 40 119 -21,7801648 -0,00683681 4,84147194 41 119 -20,4920686 0,00614607 4,77907831 42 119 -21,6135672 -0,00911372 4,87718887 44 119 -19,5790844 0,01158676 4,77583947 45 119 -21,4668983 0,00624919 4,73698747 <tr< td=""><td>28</td><td>124</td><td>-16,300478</td><td>-0,00043995</td><td>6,00923223</td></tr<>	28	124	-16,300478	-0,00043995	6,00923223
31 123 -17,3323753 -0,01721181 5,68486851 32 123 -18,0073903 -0,0017073 5,47388642 33 121 -19,2877579 0,00254208 5,2757023 34 117 -22,5673032 0,00259609 4,17311895 35 117 -22,9561734 0,00254775 4,18112153 36 117 -24,0716718 -0,0261837 4,09802273 37 117 -23,6513094 -0,0092006 4,06512167 38 117 -22,520769 0,01573323 4,24215281 39 117 -23,0479753 0,00241269 4,01489331 40 119 -21,7801648 -0,00683681 4,84147194 41 119 -20,4920686 0,00614607 4,77907831 42 119 -21,0788215 0,01844674 4,80862272 43 119 -21,6135672 -0,00911372 4,87718887 44 119 -19,5790844 0,01158676 4,77583947 45 119 -21,4668983 0,00624919 4,73698747	29	124	-15,5630177	-0,01585819	5,88567813
32 123 -18,0073903 -0,0017073 5,47388642 33 121 -19,2877579 0,00254208 5,2757023 34 117 -22,5673032 0,00259609 4,17311895 35 117 -22,9561734 0,00254775 4,18112153 36 117 -24,0716718 -0,0261837 4,09802273 37 117 -23,6513094 -0,0092006 4,06512167 38 117 -22,520769 0,01573323 4,24215281 39 117 -23,0479753 0,00241269 4,01489331 40 119 -21,7801648 -0,00683681 4,84147194 41 119 -20,4920686 0,00614607 4,77907831 42 119 -21,0788215 0,01844674 4,80862272 43 119 -21,6135672 -0,00911372 4,87718887 44 119 -19,5790844 0,01158676 4,77583947 45 119 -21,4668983 0,00624919 4,73698747 46 123 -17,0172912 0,01034978 5,87177805	30	124	-16,0749486	-0,00390058	6,15837259
33 121 -19,2877579 0,00254208 5,2757023 34 117 -22,5673032 0,00259609 4,17311895 35 117 -22,9561734 0,00254775 4,18112153 36 117 -24,0716718 -0,0261837 4,09802273 37 117 -23,6513094 -0,0092006 4,06512167 38 117 -22,520769 0,01573323 4,24215281 39 117 -23,0479753 0,00241269 4,01489331 40 119 -21,7801648 -0,00683681 4,84147194 41 119 -20,4920686 0,00614607 4,77907831 42 119 -21,0788215 0,01844674 4,80862272 43 119 -21,6135672 -0,00911372 4,87718887 44 119 -19,5790844 0,01158676 4,77583947 45 119 -21,4668983 0,00624919 4,73698747 46 123 -17,0172912 0,01034978 5,87177805 47 123 -16,6074811 0,00771253 5,6936044	31	123	-17,3323753	-0,01721181	5,68486851
34 117 -22,5673032 0,00259609 4,17311895 35 117 -22,9561734 0,00254775 4,18112153 36 117 -24,0716718 -0,0261837 4,09802273 37 117 -23,6513094 -0,0092006 4,06512167 38 117 -22,520769 0,01573323 4,24215281 39 117 -23,0479753 0,00241269 4,01489331 40 119 -21,7801648 -0,00683681 4,84147194 41 119 -20,4920686 0,00614607 4,77907831 42 119 -21,0788215 0,01844674 4,80862272 43 119 -21,6135672 -0,00911372 4,87718887 44 119 -19,5790844 0,01158676 4,77583947 45 119 -21,4668983 0,00624919 4,73698747 46 123 -17,0172912 0,01034978 5,87177805 47 123 -16,6074811 0,00771253 5,6936044 48 123 -16,8622381 0,01420951 5,82428299 <td>32</td> <td>123</td> <td>-18,0073903</td> <td>-0,0017073</td> <td>5,47388642</td>	32	123	-18,0073903	-0,0017073	5,47388642
35 117 -22,9561734 0,00254775 4,18112153 36 117 -24,0716718 -0,0261837 4,09802273 37 117 -23,6513094 -0,0092006 4,06512167 38 117 -22,520769 0,01573323 4,24215281 39 117 -23,0479753 0,00241269 4,01489331 40 119 -21,7801648 -0,00683681 4,84147194 41 119 -20,4920686 0,00614607 4,77907831 42 119 -21,0788215 0,01844674 4,80862272 43 119 -21,6135672 -0,00911372 4,87718887 44 119 -19,5790844 0,01158676 4,77583947 45 119 -21,4668983 0,00624919 4,73698747 46 123 -17,0172912 0,01034978 5,87177805 47 123 -16,6074811 0,00771253 5,6936044 48 123 -16,8622381 0,01420951 5,82428299	33	121	-19,2877579	0,00254208	5,2757023
36 117 -24,0716718 -0,0261837 4,09802273 37 117 -23,6513094 -0,0092006 4,06512167 38 117 -22,520769 0,01573323 4,24215281 39 117 -23,0479753 0,00241269 4,01489331 40 119 -21,7801648 -0,00683681 4,84147194 41 119 -20,4920686 0,00614607 4,77907831 42 119 -21,0788215 0,01844674 4,80862272 43 119 -21,6135672 -0,00911372 4,87718887 44 119 -19,5790844 0,01158676 4,77583947 45 119 -21,4668983 0,00624919 4,73698747 46 123 -17,0172912 0,01034978 5,87177805 47 123 -16,6074811 0,00771253 5,6936044 48 123 -16,8622381 0,01420951 5,82428299	34	117	-22,5673032	0,00259609	4,17311895
37 117 -23,6513094 -0,0092006 4,06512167 38 117 -22,520769 0,01573323 4,24215281 39 117 -23,0479753 0,00241269 4,01489331 40 119 -21,7801648 -0,00683681 4,84147194 41 119 -20,4920686 0,00614607 4,77907831 42 119 -21,0788215 0,01844674 4,80862272 43 119 -21,6135672 -0,00911372 4,87718887 44 119 -19,5790844 0,01158676 4,77583947 45 119 -21,4668983 0,00624919 4,73698747 46 123 -17,0172912 0,01034978 5,87177805 47 123 -16,6074811 0,00771253 5,6936044 48 123 -16,8622381 0,01420951 5,82428299	35	117	-22,9561734	0,00254775	4,18112153
38 117 -22,520769 0,01573323 4,24215281 39 117 -23,0479753 0,00241269 4,01489331 40 119 -21,7801648 -0,00683681 4,84147194 41 119 -20,4920686 0,00614607 4,77907831 42 119 -21,0788215 0,01844674 4,80862272 43 119 -21,6135672 -0,00911372 4,87718887 44 119 -19,5790844 0,01158676 4,77583947 45 119 -21,4668983 0,00624919 4,73698747 46 123 -17,0172912 0,01034978 5,87177805 47 123 -16,6074811 0,00771253 5,6936044 48 123 -16,8622381 0,01420951 5,82428299	36	117	-24,0716718	-0,0261837	4,09802273
39 117 -23,0479753 0,00241269 4,01489331 40 119 -21,7801648 -0,00683681 4,84147194 41 119 -20,4920686 0,00614607 4,77907831 42 119 -21,0788215 0,01844674 4,80862272 43 119 -21,6135672 -0,00911372 4,87718887 44 119 -19,5790844 0,01158676 4,77583947 45 119 -21,4668983 0,00624919 4,73698747 46 123 -17,0172912 0,01034978 5,87177805 47 123 -16,6074811 0,00771253 5,6936044 48 123 -16,8622381 0,01420951 5,82428299	37	117	-23,6513094	-0,0092006	4,06512167
40 119 -21,7801648 -0,00683681 4,84147194 41 119 -20,4920686 0,00614607 4,77907831 42 119 -21,0788215 0,01844674 4,80862272 43 119 -21,6135672 -0,00911372 4,87718887 44 119 -19,5790844 0,01158676 4,77583947 45 119 -21,4668983 0,00624919 4,73698747 46 123 -17,0172912 0,01034978 5,87177805 47 123 -16,6074811 0,00771253 5,6936044 48 123 -16,8622381 0,01420951 5,82428299	38	117	-22,520769	0,01573323	4,24215281
41 119 -20,4920686 0,00614607 4,77907831 42 119 -21,0788215 0,01844674 4,80862272 43 119 -21,6135672 -0,00911372 4,87718887 44 119 -19,5790844 0,01158676 4,77583947 45 119 -21,4668983 0,00624919 4,73698747 46 123 -17,0172912 0,01034978 5,87177805 47 123 -16,6074811 0,00771253 5,6936044 48 123 -16,8622381 0,01420951 5,82428299	39	117	-23,0479753	0,00241269	4,01489331
42 119 -21,0788215 0,01844674 4,80862272 43 119 -21,6135672 -0,00911372 4,87718887 44 119 -19,5790844 0,01158676 4,77583947 45 119 -21,4668983 0,00624919 4,73698747 46 123 -17,0172912 0,01034978 5,87177805 47 123 -16,6074811 0,00771253 5,6936044 48 123 -16,8622381 0,01420951 5,82428299	40	119	-21,7801648	-0,00683681	4,84147194
43 119 -21,6135672 -0,00911372 4,87718887 44 119 -19,5790844 0,01158676 4,77583947 45 119 -21,4668983 0,00624919 4,73698747 46 123 -17,0172912 0,01034978 5,87177805 47 123 -16,6074811 0,00771253 5,6936044 48 123 -16,8622381 0,01420951 5,82428299	41	119	-20,4920686	0,00614607	4,77907831
44 119 -19,5790844 0,01158676 4,77583947 45 119 -21,4668983 0,00624919 4,73698747 46 123 -17,0172912 0,01034978 5,87177805 47 123 -16,6074811 0,00771253 5,6936044 48 123 -16,8622381 0,01420951 5,82428299	42	119	-21,0788215	0,01844674	4,80862272
45 119 -21,4668983 0,00624919 4,73698747 46 123 -17,0172912 0,01034978 5,87177805 47 123 -16,6074811 0,00771253 5,6936044 48 123 -16,8622381 0,01420951 5,82428299	43	119	-21,6135672	-0,00911372	4,87718887
46 123 -17,0172912 0,01034978 5,87177805 47 123 -16,6074811 0,00771253 5,6936044 48 123 -16,8622381 0,01420951 5,82428299	44	119	-19,5790844	0,01158676	4,77583947
47 123 -16,6074811 0,00771253 5,6936044 48 123 -16,8622381 0,01420951 5,82428299	45	119	-21,4668983	0,00624919	4,73698747
47 123 -16,6074811 0,00771253 5,6936044 48 123 -16,8622381 0,01420951 5,82428299	46	123	-17,0172912	0,01034978	5,87177805
	47	123			
49 123 -18,8803799 -0,01945756 5,83132058	48	123	-16,8622381	0,01420951	5,82428299
	49	123	-18,8803799	-0,01945756	5,83132058

50	123	-17,62329	-0,00401125	5,6505121
51	114	-25,4956908	-0,00401123	3,45123657
52		-25,4930908	-0,00715868	3,53377934
53	114	· ·		
	114	-26,6515342	0,01082684	3,5719939
54	114	-24,9109608	0,00081884	3,53062598
55	114	-25,4141102	-0,00866576	3,56924128
56	114	-24,2968487	-0,00217773	3,43856355
57	118	-22,7360145	0,02724459	4,34332965
58	118	-21,9531438	0,01697715	4,6198231
59	118	-21,4092989	0,00271601	4,50789754
60	118	-23,4212897	0,00619491	4,47354129
61	120	-20,1530206	0,02222515	4,85958297
62	120	-19,8121452	0,00662173	4,77976668
63	120	-17,9456307	0,02554472	4,95718085
64	120	-20,5451895	0,02323942	5,00072721
65	120	-20,6149276	-0,01484706	4,98549726
66	115	-23,934954	-0,01568495	3,81396289
67	115	-25,3927538	0,00673402	3,75868059
68	115	-24,7002267	0,02647683	3,74258356
69	115	-26,2067514	0,03851273	3,82575063
70	115	-25,4933253	0,03677056	3,60749026
71	115	-25,5572636	-0,02500791	3,79042279
72	115	-25,4628802	0,00757989	3,86734831
73	115	-24,5785013	0,02263971	3,81564915
74	121	-18,1339527	0,00604041	5,26177179
75	121	-18,2714345	-0,02564336	5,22320625
76	121	-18,6176534	0,01333457	5,43261724
77	121	-19,7497304	-0,0188169	5,2332398
78	121	-18,916194	-0,01024908	5,35039412
79	121	-18,276196	0,02313249	5,41575538
80	121	-18,5930698	0,00434133	5,27324078
81	121	-20,0093993	0,0274309	5,33139511
82	121	-21,3273473	0,00034286	5,28104655
83	121	-19,0949997	-0,00272645	5,17695813
84	120	-19,0463161	0,00525836	4,88121587
85	120	-20,1141988	0,11419882	4,95432047
86	120	-20,1141988	0,073488	4,9706048
87	120	-20,43922	0,43922	4,824312
88	124	-16,2843947		5,88624211
89			0,28439472	
	124	-16,9731787 -16,8862916	0,97317874 0,8862916	5,61072851 5,64548336
90	124	-18,1415954		
91	123		1,14159541	5,29336183
92	123	-18,4188107	1,41881067	5,18247573
93	121	-20,6871801	1,68718008	4,57512797
94	117	-25,232914	2,23291401	3,35683439
95	117	-25,0108169	2,01081689	3,44567324
96	117	-25,2622101	2,26221007	3,34511597
97	117	-25,486831	2,486831	3,2552676
98	117	-25,7551878	2,7551878	3,14792488
99	117	-25,9845647	2,98456471	3,05617411
100	119	-24,1534821	3,15348205	3,48860718
101	119	-24,4462814	3,44628137	3,37148745
102	119	-24,022663	3,02266297	3,54093481
103	119	-24,5477879	3,54778792	3,33088483
104	119	-25,1506424	4,1506424	3,08974304
105	119	-25,0355432	4,03554318	3,13578273

106	123	-21,1781518	4,17815183	4,07873927
107	123	-21,8304117	4,83041171	3,81783532
108	123	-21,6562272	4,6562272	3,88750912
109	123	-21,8378427	4,83784265	3,81486294
110	123	-21,9804395	4,98043955	3,75782418
111	114	-31,1742883	5,17428832	1,43028467
112	114	-31,3772743	5,37727435	1,34909026
113	114	-31,72662	5,72662003	1,20935199
114	114	-31,8777139	5,87771394	1,14891442
115	114	-31,7228447	5,7228447	1,21086212
116	114	-31,8672343	5,86723427	1,15310629
117	118	-28,6282518	6,62825178	1,84869929
118	118	-28,7792037	6,77920365	1,78831854
119	118	-29,044107	7,04410699	1,68235721
120	118	-29,0449413	7,04494125	1,6820235
121	120	-27,3516107	7,3516107	2,05935572
122	120	-27,3792149	7,37921492	2,04831403
123	120	-27,442722	7,44272199	2,0229112
124	120	-27,8499227	7,84992268	1,86003093
125	120	-28,1239448	8,12394479	1,75042208
126	115	-33,2646224	8,26462235	0,44415106
127	115	-33,0871559	8,08715594	0,51513762
128	115	-33,3321287	8,33212874	0,4171485
129	115	-33,8440653	8,84406534	0,21237386
130	115	-33,8723623	8,87236229	0,20105509
131	115	-34,0806617	9,08066167	0,11773533
132	115	-34,6764254	9,6764254	-0,12057016
133	115	-34,7778179	9,77781785	-0,16112714
134	121	-28,2711689	9,27116887	1,54153245
135	121	-28,5177403	9,5177403	1,44290388
136	121	-29,0604814	10,0604814	1,22580744
137	121	-29,2179133	10,2179133	1,16283468
138	121	-29,4524543	10,4524543	1,06901826
139	121	-29,6680283	10,6680283	0,98278866
140	121	-29,8959591	10,8959591	0,89161638
141	121	-30,0898236	11,0898236	0,81407057
142	121	-30,7858072	11,7858072	0,53567714
143	121	-30,290302	11,290302	0,73387918
144	120	-32,0725195	12,0725195	0,17099221

7.2.3 Table IV.

Data panel Regional Cartel

OBS	P	DW	XD	RD
1	100		0	0
2	102	-0,01682607	-2	0,5
3	102,5	-0,00930684	-2,5	0,625
4	103	0,02009625	-3	0,75
5	103,2	-0,01253862	-3,2	0,8
6	104	-0,00283246	-4	1
7	108	-0,01038944	-8	2
8	109	0,02577056	-9	2,25
9	110	-0,00085503	-10	2,5
10	113	-0,00844539	-13	3,25
11	114	0,00992539	-14	3,5
12	116	0,0019424	-16	4
13	116	-0,01022337	-16	4
14	116,5	0,00973264	-16,5	4,125
15	116	-0,0009332	-16	4
16	117	-0,01053428	-17	4,25
17	118	0,02800533	-18	4,5
18	119	-0,00628335	-19	4,75
19	120	-0,0102015	-20	5
20	121	-0,01734816	-21	5,25
21	125	-0,00469341	-25	6,25
22	122	0,01139554	-22	5,5
23	120	0,01027972	-20	5
24	120	-0,00579054	-20	5
25	118,459326	-0,02092406	-21,5406744	4,6148314
26	121,541002	-0,0501014	-18,4589983	5,38525042
27	120,97794	-0,0152489	-19,0220602	5,24448494
28	124,369654	-0,00325767	-15,6303464	6,0924134
29	124,953926	-0,03498603	-15,0460737	6,23848157
30	123,385012	-0,00846926	-16,6149884	5,84625291
31	123,473099	-0,01059164	-16,526901	5,86827475
32	122,449878	-0,00507106	-17,5501218	5,61246954
33	120,220953	-0,00609581	-19,7790472	5,0552382
34	117,422795	-0,02337778	-22,5772054	4,35569865
35	118,304122	-0,00454592	-21,6958783	4,57603043
36	116,786215	0,00164466	-23,2137846	4,19655385
37	117,352061	0,02755781	-22,6479388	4,33801529
38	117,584861	-0,01078441	-22,4151391	4,39621522
39	115,99645	0,01665995	-24,0035501	3,99911247
40	117,219173	0,02246241	-22,7808266	4,30479336
41	118,589896	0,01237914	-21,4101044	4,64747389
42	118,31506	0,06113758	-21,6849401	4,57876498
43	118,241007	0,06828408	-21,7589926	4,56025184
44	119,911417	-0,0315848	-20,0885831	4,97785421
45	119,964714	0,02488329	-20,0352862	4,99117845
46	122,865027	-0,0061469	-17,1349729	5,71625678
47	123,18301	-0,00565627	-16,8169902	5,79575245
48	124,594928	-0,00909314	-15,4050722	6,14873195
49	122,568501	-0,00627407	-17,4314995	5,64212513
	,			*

```
50
              124,992526
                           -0,02577856
                                         -15,0074737
                                                       6,24813158
51
              113,841782
                           -0,00659045
                                                       3,46044549
                                         -26,158218
52
              113,085405
                           -0,00508252
                                         -26,9145945
                                                       3,27135137
53
              113,869837
                           0,00794121
                                         -26,1301634
                                                       3,46745916
54
              113,823004
                           -0,00331258
                                         -26,1769962
                                                       3,45575094
55
              115,004573
                           0,03482281
                                         -24,9954271
                                                       3,75114323
56
                           -0,01457214
                                         -26,3567901
              113,64321
                                                       3,41080247
57
                                         -22,3420421
              117,657958
                            -0,0202781
                                                       4,41448949
58
              118,988553
                           0,01327016
                                         -21,0114469
                                                       4,74713826
59
                           -0,00135514
                                         -23,2221507
                                                       4,19446234
              116,777849
60
              117,94609
                           -0,02560066
                                         -22,0539101
                                                       4,48652249
                           0,00043969
61
              118,987542
                                         -21,0124577
                                                       4,74688557
62
              119,227018
                           -0,00023083
                                         -20,7729824
                                                       4,80675441
63
              121,677929
                            0,0102655
                                         -18,3220711
                                                       5,41948221
              120,515946
                                         -19,4840543
64
                           0,00822058
                                                       5,12898642
65
              118,690479
                           -0,01144008
                                         -21,3095211
                                                       4,67261973
              115,096366
                           -0,00197283
                                         -24,9036344
                                                       3,77409139
66
67
              115,245588
                           -0,01592631
                                         -24,7544119
                                                       3,81139703
                            0,0232382
                                         -24,8756518
68
              115,124348
                                                       3,78108705
69
                           -0,00407425
                                         -25,1071103
              114,89289
                                                       3,72322243
70
              115,477989
                           -0,00735614
                                         -24,5220108
                                                       3,86949729
71
              115,377131
                           -0,00075371
                                         -24,6228694
                                                       3,84428265
72
                           0,01133061
                                         -23,5391711
              116,460829
                                                       4,11520724
73
              116,411954
                           -0,01236393
                                         -23,5880457
                                                       4,10298857
74
              121,752642
                           0,01505783
                                         -18,2473577
                                                       5,43816058
75
              120,423282
                           -0,03147075
                                         -19,5767183
                                                       5,10582043
76
              119,303251
                            0,0007691
                                         -20,696749
                                                       4,82581275
77
              121,961378
                           -0,02323088
                                         -18,0386222
                                                       5,49034444
78
              120,313619
                           -0,01287671
                                         -19,6863809
                                                       5,07840477
79
                           0,03727381
                                         -19,9531455
              120,046854
                                                       5,01171362
80
              119,705764
                           -0,00904039
                                         -20,2942363
                                                       4,92644092
81
              122,292443
                           0,00153886
                                         -17,7075574
                                                       5,57311065
82
              121,621456
                           0,00164858
                                         -18,3785441
                                                       5,40536399
83
              119,940067
                           0,00073591
                                         -20,0599326
                                                       4,98501684
84
              118,642992
                            -0,0486076
                                         -21,3570085
                                                       4,66074788
85
              120,315763
                           -0,00923503
                                         -19,6842375
                                                       5,07894063
86
              120,444357
                           0,03762549
                                         -13,4599614
                                                       5,09603905
87
              119,078528
                           -0,13429963
                                         -15,0636134
                                                       4,82335196
88
              123,774143
                           -0,80941573
                                         -8,28419839
                                                       6,26730204
89
              125,008168
                           -0,70768782
                                         -6,78169321
                                                       6,53511724
90
                                         -7,7629155
              124,101835
                           -0,90469916
                                                       6,38733838
91
              122,483652
                           -1,19072391
                                         -9,58052821
                                                       6,09720262
92
                                         -7,65336804
              123,867158
                           -1,31932702
                                                       6,49452022
93
                           -1,81289204
                                         -9,93346292
              121,733573
                                                       6,15855009
94
              117,827601
                           -1,71279327
                                         -15,1113251
                                                       5,14201761
95
              118,786927
                           -1,83235214
                                         -13,7446431
                                                       5,42967253
96
                                         -12,7474212
              119,258815
                           -2,21611958
                                                       5,70115153
97
              118,185757
                           -2,34596281
                                         -14,012553
                                                       5,4848244
98
              117,484224
                           -2,66844364
                                         -14,6020651
                                                       5,43843347
99
                           -2,74345331
                                         -12,8021254
              118,811093
                                                       5,80015465
100
              119,64586
                           -3,19756756
                                         -11,2628139
                                                       6,19049213
101
              119,087007
                           -3,3350277
                                         -11,8518639
                                                       6,1057627
102
              119,016443
                           -3,20800837
                                         -12,070616
                                                       6,03731406
103
              119,495184
                                         -11,4827023
                           -3,17355854
                                                       6,14321941
104
                           -3,51637266
                                         -12,3430078
                                                       6,04897591
              118,569707
105
              118,351841
                           -3,99424396
                                        -12,1483631
                                                       6,18565776
```

```
106
              121,72832
                           -4,07196795
                                         -7,68121647
                                                       7,0608671
107
              121,102088
                           -4,22600506
                                         -8,34128102
                                                       6,96592393
108
              121,687264
                           -4,56572675
                                         -7,24083001
                                                       7,24810671
109
              123,777604
                           -4,70309622
                                         -4,38601838
                                                       7,82563953
110
              123,571721
                           -4,81832115
                                         -4,53844182
                                                       7,82025866
111
              114,692784
                            -5,0587242
                                         -15,8406567
                                                       5,69668567
112
              114,266632
                           -5,27496333
                                         -16,1784144
                                                       5,67664346
113
              114,297675
                           -5,67555625
                                         -15,737466
                                                       5,84464129
114
              113,818911
                           -5,91523561
                                         -16,1201797
                                                       5,82082207
115
              114,33855
                           -5,93524785
                                         -15,4246367
                                                       5,95873673
116
              114,664652
                           -6,25290364
                                         -14,6830482
                                                       6,16732456
                                         -10,541854
117
              117,689992
                           -6,46115656
                                                       7,00696059
118
              116,521597
                           -6,72534113
                                         -11,7965828
                                                       6,82053569
119
              118,338411
                           -6,74861364
                                         -9,41145267
                                                       7,28404809
120
                           -7,2892216
                                         -11,1309915
              116,599836
                                                       7,06564767
121
              119,963471
                           -6,94282245
                                         -7,10466556
                                                       7,76799667
              121,070897
                           -7,36190593
122
                                         -5,24592842
                                                       8,21248654
123
              120,707173
                           -7,87738469
                                         -5,20329018
                                                       8,32774717
124
              120,30658
                           -7,67090988
                                         -5,93053658
                                                       8,14500886
125
              119,97504
                           -8,07129159
                                         -5,96115701
                                                       8,22227652
                           -8,25059099
126
              116,024548
                                         -10,9174961
                                                       7,30637349
                            -8,2739052
127
              115,568834
                                         -11,4866101
                                                       7,20177068
128
               112,879
                            -8,605758
                                         -14,6515414
                                                       6,66205331
129
              115,984264
                           -8,5655553
                                         -10,654901
                                                       7,42228826
130
              114,072309
                           -9,0107502
                                         -12,6952487
                                                       7,12237722
131
              113,479436
                           -8,89628777
                                         -13,5804457
                                                       6,92837406
132
              113,804954
                           -9,31758564
                                         -12,7359743
                                                       7,17827273
133
              113,005726
                           -9,48711936
                                         -13,605437
                                                       7,0462792
134
              120,073838
                           -9,41595417
                                         -4,48805646
                                                       8,78484116
135
              119,872589
                           -10,0763207
                                         -4,08931406
                                                       8,99867544
136
              121,924119
                           -10,5630167
                                         -0,93562809
                                                       9,70623653
137
              121,63805
                           -10,5770779
                                         -1,2934567
                                                       9,64034373
                                                       9,44232343
138
              121,045031
                           -10,452664
                                         -2,18879525
139
              120,968252
                           -10,7113496
                                         -2,02992321
                                                       9,52660276
140
              119,131428
                           -10,8974197
                                         -4,23172387
                                                       9,14182489
                           -11,0230625
141
              121,269058
                                         -1,32716161
                                                       9,7264896
142
              121,064906
                           -11,0752456
                                         -1,54037646
                                                       9,69632476
143
              121,282412
                           -11,5556699
                                         -0,77719492
                                                       9,94287089
144
              121,264802
                           -11,6914565
                                         -0,66430108
                                                       9,99278306
```

7.2.4 Table V.

Data panel Competetive benchmark

OBS	P	RD	DW	XD
1	99,7090699	-0,29662295	-0,23729836	-0,29093012
2	99,2967765	0,06098265	0,04878612	-0,70322352
3	98,1685045	0,29656153	0,23724922	-1,83149552
4	97,777261	-1,37434505	-1,09947604	-2,22273903
5	100,382873	0,04464351	0,03571481	0,38287334
6	100,126016	-0,32970266	-0,26376213	0,1260155
7	100,315456	1,96347149	1,57077719	0,31545575
8	99,6904137	-0,19101724	-0,15281379	-0,30958634
9	101,252452	0,15999514	0,12799611	1,2524523
10	98,8642171	-1,45712891	-1,16570313	-1,13578287
11	99,1376354	-0,15869339	-0,12695471	-0,86236459
12	100,043127	0,80240563	0,64192451	0,04312677
13	99,4430241	-0,75891789	-0,60713432	-0,55697592
14	96,8726665	-0,47880189	-0,38304151	-3,12733348
15	103,027543	-1,03758342	-0,83006674	3,02754331
16	98,7906763	0,21313742	0,17050993	-1,20932369
17	99,1759911	1,08494595	0,86795676	-0,82400892
18	99,0921893	-0,06712423	-0,05369938	-0,90781066
19	101,457533	-0,70551777	-0,56441421	1,45753337
20	100,122868	1,12137423	0,89709939	0,12286775
21	101,761656	0,66821412	0,5345713	1,76165608
22	95,8533077	-0,99711307	-0,79769046	-4,14669228
23	96,0331129	-0,38377298	-0,30701838	-3,96688708
24	100,278097	0,0739968	0,05919744	0,27809658
25	99,1020465	-1,18641265	-0,94913012	-0,89795348
26	98,3020655	-0,26190017	-0,20952014	-1,69793453
27	101,026909	1,31417316	1,05133853	1,02690881
28	100,9553	0,29909106	0,23927285	0,95530002
29	100,961176	0,32499995	0,25999996	0,96117577
30	97,9173422	-0,26215394	-0,20972315	-2,0826578
31	98,1311486	-0,7716878	-0,61735024	-1,86885139
32	102,696975	0,31499862	0,25199889	2,69697464
33	101,202789	-0,15757049	-0,1260564	1,20278901
34	99,7854029	-0,31509362	-0,25207489	-0,21459706
35	96,099769	-0,28382832	-0,22706265	-3,90023101
36	98,7311536	0,46014477	0,36811581	-1,26884643
37	100,673848	-0,4392679	-0,35141432	0,673848
38	101,22715	-1,16510434	-0,93208347	1,22715047
39	98,4997713	-0,9096893	-0,72775144	-1,50022871
40	97,1869468	0,92306483	0,73845186	-2,81305318
41	100,855957	0,24434914	0,19547931	0,85595691
42	101,251506	0,81111736	0,64889389	1,25150591

43	96,7605814	-0,44108274	-0,35286619	-3,23941862
44	101,304176	0,2107027	0,16856216	1,30417572
45	99,0082451	1,1172976	0,89383808	-0,99175489
46	100,951613	1,23012207	0,98409766	0,95161317
47	100,326516			· ·
		-0,15734985	-0,12587988	0,32651632
48	100,932493	1,53038665	1,22430932	0,93249306
49	99,1534035	2,21133253	1,76906602	-0,84659652
50	103,202358	-0,7697201	-0,61577608	3,20235787
51	101,105623	0,79622668	0,63698134	1,10562342
52	102,604857	0,9212638	0,73701104	2,6048574
53	101,945973	0,70241444	0,56193155	1,9459734
54	98,4265253	0,35260063	0,28208051	-1,57347471
55	97,7991618	-0,33450149	-0,26760119	-2,20083823
56	102,572744	1,39584282	1,11667426	2,57274406
57	99,9695105	0,61398264	0,49118611	-0,03048953
			•	
58	101,717495	-0,90902241	-0,72721793	1,71749512
59	99,9195787	1,09775449	0,87820359	-0,08042127
60	100,788681	-1,52282331	-1,21825865	0,78868094
61	103,544363	0,27554413	0,2204353	3,5443627
62	99,1748565	0,0107663	0,00861304	-0,82514351
63	101,827366	-0,02457669	-0,01966135	1,82736633
64	100,905154	-0,59111453	-0,47289162	0,90515383
65	102,279467	-0,02523433	-0,02018746	2,27946698
66	100,298786	0,75864187	0,60691349	0,298786
67	100,860099	0,09229134	0,07383307	0,86009914
68	99,7424697	0,03679605	0,02943684	-0,25753026
69	100,243575	1,73465519	1,38772415	0,24357501
70	101,036802	0,0130759	0,01046072	1,03680185
71	99,1977929	-0,76820244	-0,61456195	-0,8022071
72	103,335193	0,15196021	0,12156817	3,3351933
73	100,75111	0,38125398	0,30500319	0,75111013
74	98,8974371	-1,56497508	-1,25198006	-1,10256289
75	99,7062285	0,37361911	0,29889529	-0,29377153
76	99,3574553	1,16282107	0,93025686	-0,64254467
77	97,7074279	0,44421728	0,35537383	-2,29257213
78	99,2090076	0,25485378	0,20388303	-0,79099244
79	98,7593182	0,89516574	0,71613259	-1,24068184
80	100,725611	-0,19489618	-0,15591694	0,72561127
81	97,3640218	-0,4488311	-0,35906488	-2,63597817
82	95,8866734	0,25128565	0,20102852	-4,11332659
83	100,027778	0,89114269	0,71291415	0,0277776
84	100,940793	-1,96906729	-1,57525383	0,94079322
85	104,062867	0,79059903	0,63247923	4,06286747
86	98,6897988	-1,02878426	-0,82302741	-1,31020115
87	98,2280655	0,09649689	0,07719751	-1,77193449
88	99,1314908	-0,25409519	-0,20327615	-0,86850919
89	101,500548	-0,63729977	-0,50983982	1,50054768
09	101,500540	-0,03149911	-0,50905902	1,50054700

00	100 25 (202	0.55507773	0.44470310	0.25(20202
90	100,356293	-0,55587773	-0,44470218	0,35629283
91	98,9348533	0,82246896	0,65797517	-1,06514672
92	99,0051295	0,42917708	0,34334166	-0,99487045
93	99,0162992	0,94221766	0,75377413	-0,98370083
94	96,4204616	-0,68976171	-0,55180937	-3,57953837
95	102,113191	1,44196101	1,15356881	2,11319106
96	104,058829	0,52949838	0,4235987	4,05882857
97	101,803028	0,11515586	0,09212469	1,8030284
98	97,1472223	-0,24943359	-0,19954687	-2,8527777
99	97,8595292	-0,03079236	-0,02463389	-2,1404708
100	101,160902	0,29770849	0,23816679	1,16090209
101	97,2593534	0,28750764	0,23000611	-2,74064656
102	99,3403558	-1,08397853	-0,86718282	-0,65964424
103	100,4579	-0,28064196	-0,22451357	0,45789976
104	98,3463973	0,29299303	0,23439442	-1,65360274
105	102,437395	1,2560245	1,0048196	2,43739492
106	104,285853	0,46216873	0,36973499	4,28585336
107	100,783443	0,04404181	0,03523345	0,78344296
108	100,555191	1,58243556	1,26594845	0,55519118
109	103,589467	1,15998648	0,92798919	3,58946662
110	100,966549	-0,75889291	-0,60711433	0,96654942
111	99,9441741	-1,97989936	-1,58391949	-0,05582587
112	98,1164301	-1,67561288	-1,3404903	-1,88356993
113	101,974703	0,02184275	0,0174742	1,97470328
113	100,875097	0,02184273	0,17088727	0,87509692
115	101,614387	0,44949678	0,35959743	1,61438731
116	95,7207369	-0,50640107	-0,40512085	-4,27926312
117	99,9267076	1,05784113	0,8462729	-0,07329244
118	103,309529	-0,88516944	-0,70813555	3,30952939
119	100,260302	-1,22667862	-0,98134289	0,26030217
120	100,602146	-1,3164868	-1,05318944	0,60214573
121	96,3449044	0,63420807	0,50736646	-3,65509561
122	102,124135	-0,3915502	-0,31324016	2,12413494
123	99,0895848	1,14881118	0,91904894	-0,91041515
124	103,902593	0,52967702	0,42374162	3,90259273
125	100,742711	1,1816057	0,94528456	0,74271085
126	99,6528035	-0,70066558	-0,56053246	-0,34719646
127	99,9219928	-0,00507558	-0,00406047	-0,07800718
128	101,468992	0,85359038	0,68287231	1,46899209
129	99,3400682	0,98667797	0,78934238	-0,65993176
130	93,4597257	0,1586728	0,12693824	-6,54027433
131	97,8299421	-1,3009979	-1,04079832	-2,17005786
132	102,840459	0,20023854	0,16019083	2,84045867
133	96,4671501	-0,53563293	-0,42850634	-3,53284987
134	97,0537939	0,85301219	0,68240975	-2,94620615
135	100,636675	-1,17814505	-0,94251604	0,63667453
136	102,559444	-0,03114518	-0,02491614	2,55944369

137	99,5102371	-1,88783302	-1,51026642	-0,48976286
138	99,257388	-0,12063736	-0,09650989	-0,74261197
139	99,4825243	1,37057585	1,09646068	-0,51747568
140	100,290865	-0,15474869	-0,12379895	0,29086507
141	101,133586	0,19597334	0,15677867	1,13358635
142	99,4714523	1,31500063	1,05200051	-0,52854769
143	95,7816776	1,02605686	0,82084549	-4,21832238
144	98,4715218	1,07294206	0,85835365	-1,52847819

7.3 Outputs empirical Analysis

Table VI. Price Cartel

Table VI. Price Cartel			
	Price Cartel		
	Formation Phase Sample 1-24	Cartel Phase Sample 25-84	
a) Utilization rate of capacities	a)	d)	
	b)	e)	
	c)	f)	
b) Correlation between utilization rate of capacities and	g)	h)	
price changes			
c) Rate of return	i)	1)	
difference	j)	m)	
	k)	n)	
d) Correlation between rate of return difference and capacity growth rate changes	0)	p)	
e) Distribution of price changes	See von Blanck	kenburg and Geist	
f) Variance of capacity growth rate changes	q)	r)	

7.3.1 Type 1: Price Cartel

Formation Phase

a) Utilisation rate of capacities

a) Zero Stationarity

Null Hypothesis: XD has a unit root

Exogenous: None

Lag Length: 0 (Automatic based on SIC, MAXLAG=5)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		0.739052	0.8672
Test critical values:	1% level	-2.669359	
	5% level	-1.956406	
	10% level	-1.608495	

^{*}MacKinnon (1996) one-sided p-values.

b) Intercept Stationarity

Null Hypothesis: XD has a unit root

Exogenous: Constant

Lag Length: 2 (Automatic based on SIC, MAXLAG=5)

		t-Statistic	Prob.*
Augmented Dickey-Fulle	er test statistic	-2.031697	0.2721
Test critical values:	1% level	-3.788030	
	5% level	-3.012363	
	10% level	-2.646119	

^{*}MacKinnon (1996) one-sided p-values.

c) Trend Test

Dependent Variable: XD Method: Least Squares Date: 06/16/10 Time: 15:51

Sample: 1 24

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND	-0.785440 -1.040360	1.025910 0.076431	-0.765604 -13.61169	0.4520 0.0000
R-squared Adjusted R-squared	0.893862 0.889038	Mean dependent var S.D. dependent var		-12.74958 7.780965
E. of regression Sum squared resid	2.591915 147.7965	Akaike info criterion Schwarz criterion		4.822326 4.920498
Log likelihood	-55.86792	Hannan-Quinn criter.		4.848371
F-statistic Prob(F-statistic)	185.2780 0.000000	Durbin-Watson s	tat	0.880537

Cartel Phase

d) Zero Stationarity

Null Hypothesis: XD has a unit root

Exogenous: None

Lag Length: 0 (Automatic based on SIC, MAXLAG=10)

		t-Statistic	Prob.*
Augmented Dickey-Fulle	er test statistic	-0.434660	0.5219
Test critical values:	1% level	-2.604073	
	5% level	-1.946348	
	10% level	-1.613293	

^{*}MacKinnon (1996) one-sided p-values.

e) Intercept stationarity

Null Hypothesis: XD has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic based on SIC, MAXLAG=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-2.638817	0.0910
Test critical values:	1% level	-3.544063	
	5% level	-2.910860	
	10% level	-2.593090	

^{*}MacKinnon (1996) one-sided p-values.

f) Trend Test

Dependent Variable: XD Method: Least Squares Date: 06/28/10 Time: 11:58

Sample: 25 84

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND	-19.84566 -0.024413	1.266271 0.022518	-15.67253 -1.084152	0.0000 0.2828
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.019863 0.002964 3.020717 529.2345 -150.4489 1.175385 0.282784	Mean dependent von Akaike info criterion Hannan-Quinn criterion Durbin-Watson st	ar rion iter.	-21.15177 3.025204 5.081631 5.151442 5.108938 0.445244

b) Correlation between utilization rate of capacities and price changes

Formation Phase

g)

Dependent Variable: DP Method: Least Squares Date: 06/25/10 Time: 16:53 Sample (adjusted): 2 24

Included observations: 23 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C XD	0.902038 0.002437	0.973093 0.064142	0.926980 0.037997	0.3645 0.9700
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000069 -0.047547 2.231821 104.6015 -50.05422 0.001444 0.970049	Mean dependent va S.D. dependent va Akaike info criter Schwarz criterion Hannan-Quinn cri Durbin-Watson st	ar ion iter.	0.869565 2.180583 4.526454 4.625192 4.551286 2.337658

Cartel Phase

h)

Dependent Variable: DP Method: Least Squares Date: 06/28/10 Time: 12:11

Sample: 25 84

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C XD	3.818344 0.180521	1.717457 0.080392	2.223254 2.245503	0.0301 0.0286
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.079983 0.064120 1.868080 202.4038 -121.6139 5.042284 0.028562	Mean dependent var S.D. dependent var Akaike info criterio Schwarz criterion Hannan-Quinn crite Durbin-Watson stat	on er.	0.000000 1.931014 4.120464 4.190276 4.147771 1.845153

c) Rate of return difference

Formation phase

i) Zero Stationarity

Null Hypothesis: RD has a unit root

Exogenous: None

Lag Length: 0 (Automatic based on SIC, MAXLAG=5)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		0.787431	0.8762
Test critical values:	1% level	-2.669359	
	5% level	-1.956406	
	10% level	-1.608495	

^{*}MacKinnon (1996) one-sided p-values.

j) Intercept Stationarity

Null Hypothesis: RD has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic based on SIC, MAXLAG=5)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-1.317014	0.6037
Test critical values:	1% level	-3.752946	
	5% level	-2.998064	
	10% level	-2.638752	

^{*}MacKinnon (1996) one-sided p-values.

k) Trend Test

Dependent Variable: RD Method: Least Squares Date: 06/25/10 Time: 18:09

Sample: 1 24

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND	0.069211 0.263950	0.244629 0.018225	0.282924 14.48276	0.7799 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.905070 0.900755 0.618043 8.403503 -21.46166 209.7504 0.000000	Mean dependent va S.D. dependent va Akaike info criteri Schwarz criterion Hannan-Quinn cri Durbin-Watson sta	r on ter.	3.104634 1.961847 1.955139 2.053310 1.981183 0.872094

Cartel Phase

1) Zero Stationarity

Null Hypothesis: RD has a unit root

Exogenous: None

Lag Length: 0 (Automatic based on SIC, MAXLAG=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-0.425261	0.5256
Test critical values:	1% level	-2.604073	_
	5% level	-1.946348	
	10% level	-1.613293	

^{*}MacKinnon (1996) one-sided p-values.

m) Intercept stationary

Null Hypothesis: RD has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic based on SIC, MAXLAG=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-2.637367	0.0913
Test critical values:	1% level	-3.544063	
	5% level	-2.910860	
	10% level	-2.593090	

^{*}MacKinnon (1996) one-sided p-values.

n) Trend test

Dependent Variable: RD Method: Least Squares Date: 06/28/10 Time: 12:23

Sample: 25 84

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND	5.052069 -0.006066	0.321142 0.005711	15.73159 -1.062128	0.0000 0.2926
R-squared	0.019079	Mean dependent	var	4.727554
Adjusted R-squared S.E. of regression Sum squared resid	0.002167 0.766090 34.03989	S.D. dependent v Akaike info criterior Schwarz criterior	rion	0.766922 2.337732 2.407544
Log likelihood F-statistic	-68.13197 1.128115	Hannan-Quinn cr Durbin-Watson s	riter.	2.365039 0.434817
Prob(F-statistic)	0.292580			

d) Correlation between rate of return difference and capacity growth rate changes

Formation Phase

o)

Dependent Variable: DW Method: Least Squares Date: 06/25/10 Time: 18:49 Sample (adjusted): 2 24

Included observations: 23 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RD	0.000218 -8.42E-05	0.004657 0.001249	0.046835 -0.067392	0.9631 0.9469
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000216 -0.047393 0.011056 0.002567 72.01973 0.004542 0.946907	Mean dependent va S.D. dependent va Akaike info criter Schwarz criterion Hannan-Quinn cri Durbin-Watson st	ir ion ter.	-5.46E-05 0.010803 -6.088672 -5.989933 -6.063839 3.121374

Cartel Phase

p)

Dependent Variable: DW Method: Least Squares Date: 06/28/10 Time: 13:12

Sample: 25 84

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RD	-0.006550 0.001016	0.015696 0.003278	-0.417292 0.309995	0.6780 0.7577
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.001654 -0.015559 0.019310 0.021628 152.7074 0.096097 0.757676	Mean dependent v S.D. dependent v Akaike info criter Schwarz criterior Hannan-Quinn cr Durbin-Watson s	ar rion ı iter.	-0.001746 0.019162 -5.023581 -4.953769 -4.996274 1.655053

f) Variance of capacity growth rate changes Formation Phase

q)

Test for Equality of Variances Between Series

Date: 06/16/10 Time: 16:48

Sample: 1 24

Included observations: 24

Method	df	Value	Probability
F-test	(22, 22)	8514.686	0.0000
Siegel-Tukey	, , ,	5.690018	0.0000
Bartlett	1	164.8501	0.0000
Levene	(1, 44)	59.43456	0.0000
Brown-Forsythe	(1, 44)	41.91517	0.0000

Category Statistics

Variable	Count	Std. Dev.	Mean Abs. Mean Diff.	Mean Abs. Median Diff.	Mean Tukey- Siegel Rank
DW_COMP	23	0.996882	0.835274	0.810824	12.21739
$\overline{\mathrm{DW}}$	23	0.010803	0.008666	0.008615	34.78261
All	46	0.697097	0.421970	0.409720	23.50000

Bartlett weighted standard deviation: 0.704943

Cartel Phase

r)

Test for Equality of Variances Between Series

Date: 06/28/10 Time: 13:15

Sample: 25 84

Included observations: 60

Method	df	Value	Probability
F-test	(59, 59)	2444.019	0.0000
Siegel-Tukey		9.245477	0.0000
Bartlett	1	375.3584	0.0000
Levene	(1, 118)	100.9756	0.0000
Brown-Forsythe	(1, 118)	100.9239	0.0000

Category Statistics

			Mean Abs.	Mean Abs.	Mean Tukey-
Variable	Count	Std. Dev.	Mean Diff.	Median Diff.	Siegel Rank
DW	60	0.019162	0.015547	0.015545	89.86667
DW_COMP	60	0.947308	0.752063	0.752028	31.13333
All	120	0.667287	0.383805	0.383786	60.50000

Bartlett weighted standard deviation: 0.669985

7.3.2 Table VII: Quota Cartel

Quota Cartel

	Cartel Phase II Sample 85-144
a) Utilization rate of capacities	a)
	b)
	c)
b) Correlation between utilization rate of capacities and	d)
price changes	
c) Rate of return difference	e)
d) Correlation between rate of return	f)
difference and capacity growth rate changes	
e) Distribution of price changes	
f) Variance of capacity growth rate changes	g)

Type 2 Quota cartel

Cartel phase II

a) Utilization rate of capacities a) Zero Stationarity

Null Hypothesis: XD has a unit root

Exogenous: None

Lag Length: 0 (Automatic based on SIC, MAXLAG=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		0.504396	0.8216
Test critical values:	1% level	-2.604073	
	5% level	-1.946348	
	10% level	-1.613293	

^{*}MacKinnon (1996) one-sided p-values.

b) Intercept stationarity

Null Hypothesis: XD has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic based on SIC, MAXLAG=10)

		t-Statistic	Prob.*
Augmented Dickey-Fulle	er test statistic	-1.777090	0.3882
Test critical values:	1% level	-3.544063	
	5% level	-2.910860	
	10% level	-2.593090	

^{*}MacKinnon (1996) one-sided p-values.

c) Trend Test

Dependent Variable: XD Method: Least Squares Date: 06/28/10 Time: 16:27

Sample: 85 144

Included observations: 60

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND	-1.278506 -0.226362	2.609386 0.022727	-0.489964 -9.959995	0.6260 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.631047 0.624685 3.048744 539.1006 -151.0030 99.20149 0.000000	Mean dependent v S.D. dependent v Akaike info criter Schwarz criterior Hannan-Quinn cr Durbin-Watson s	ar rion i iter.	-26.97063 4.976491 5.100101 5.169913 5.127409 0.436572

b) Correlation between utilization rate of capacities and price changes d)

Dependent Variable: DP Method: Least Squares Date: 06/28/10 Time: 18:13

Sample: 85 144

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C XD	1.890345 0.070089	1.374000 0.050112	1.375796 1.398637	0.1742 0.1672
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.032627 0.015948 1.915554 212.8221 -123.1197 1.956184 0.167247	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn crit Durbin-Watson sta	on er.	0.000000 1.931014 4.170656 4.240467 4.197963 1.845545

c) Rate of return differnace

e) Zero Stationarity

Null Hypothesis: RD has a unit root

Exogenous: None

Lag Length: 0 (Automatic based on SIC, MAXLAG=10)

		t-Statistic	Prob.*
Augmented Dickey-Fulle	er test statistic	-1.701832	0.0839
Test critical values:	1% level	-2.604073	
	5% level	-1.946348	
	10% level	-1.613293	

^{*}MacKinnon (1996) one-sided p-values.

f) Intercept Stationarity

Null Hypothesis: RD has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic based on SIC, MAXLAG=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-1.253924	0.6453
Test critical values:	1% level	-3.544063	
	5% level	-2.910860	
	10% level	-2.593090	

^{*}MacKinnon (1996) one-sided p-values.

g) Trend Test

Dependent Variable: RD Method: Least Squares Date: 06/28/10 Time: 17:53

Sample: 85 144

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND	12.15379 -0.086185	0.656914 0.005722	18.50134 -15.06324	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.796421 0.792911 0.767523 34.16727 -68.24402 226.9012 0.000000	Mean dependent v S.D. dependent v Akaike info criter Schwarz criterion Hannan-Quinn cr Durbin-Watson s	ar rion i iter.	2.371749 1.686601 2.341467 2.411279 2.368774 0.455622

d) Correlation between rate of return differnace and capacity growth rate changes

h)

Dependent Variable: DW Method: Least Squares Date: 06/28/10 Time: 17:45

Sample: 85 144

Included observations: 60

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RD	10.25311 -1.833732	0.346388 0.119356	29.60005 -15.36352	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.802746 0.799345 1.546264 138.6740 -110.2698 236.0376 0.000000	Mean dependent von S.D. dependent von Akaike info criter Schwarz criterion Hannan-Quinn cr Durbin-Watson st	ar rion iter.	5.903961 3.451906 3.742325 3.812136 3.769632 0.327736

f) Variance of capacity growth rate changes

i)

Test for Equality of Variances Between Series

Date: 06/28/10 Time: 18:27

Sample: 85 144

Included observations: 60

Method	df	Value	Probability
F-test	(59, 59)	2.046913	0.0067
Siegel-Tukey		0.543234	0.5870
Bartlett	1	7.349922	0.0067
Levene	(1, 118)	13.01507	0.0005
Brown-Forsythe	(1, 118)	12.92880	0.0005

Category Statistics

			Mean Abs.	Mean Abs.	Mean Tukey-
Variable	Count	Std. Dev.	Mean Diff.	Median Diff.	Siegel Rank
DW_COMP	60	2.412733	1.885511	1.882839	62.23333
DW	60	3.451906	2.953015	2.950915	58.76667
All	120	4.063695	2.419263	2.416877	60.50000

Bartlett weighted standard deviation: 2.977998

7.3.3 Table VIII Regional Cartel

		Regional cartel	
	Formation Phase Sample 1-24	Cartel Phase I Sample 25-84	Cartel Phase II Sample 85-144
a) Utilization rate of capacities	a)	d)	g)
	b)	e)	h)
	c)	f)	i)
b) Correlation between utilization rate of capacities and price changes	j)	k)	1)
c) Rate of return difference	m)	p)	s)
	n)	q)	t)
	0)	r)	u)
d) Correlation between rate of return difference and capacity growth rate	v)	w)	x)
changes			
e) Distribution of price changes			
f) Variance of capacity growth rate changes	y)	z)	ä)

Type 3 Regional cartel

a) Utilization rate of capacities

Formation phase

a) Zero Stationarity

Null Hypothesis: XD has a unit root

Exogenous: None

Lag Length: 0 (Automatic based on SIC, MAXLAG=5)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		1.334577	0.9493
Test critical values:	1% level	-2.669359	
	5% level	-1.956406	
	10% level	-1.608495	

^{*}MacKinnon (1996) one-sided p-values.

b) Intercept Stationarity

Null Hypothesis: XD has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic based on SIC, MAXLAG=5)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic Test critical values: 1% level		-1.756819	0.3911
Test critical values:	1% level	-3.752946	
	5% level	-2.998064	
	10% level	-2.638752	

^{*}MacKinnon (1996) one-sided p-values.

c) Trend Test

Dependent Variable: XD Method: Least Squares Date: 06/28/10 Time: 19:43

Sample: 1 24

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND	-1.478333 -1.013478	0.839237 0.062524	-1.761520 -16.20940	0.0920 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.922738 0.919226 2.120296 98.90442 -51.04773 262.7445 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn crit Durbin-Watson sta	on er.	-13.13333 7.460369 4.420644 4.518815 4.446689 0.553717

Cartel Phase I

d) Zero Stationarity

Null Hypothesis: XD has a unit root

Exogenous: None

Lag Length: 0 (Automatic based on SIC, MAXLAG=10)

		t-Statistic	Prob.*
Augmented Dickey-Fulle	er test statistic	-0.333236	0.5611
Test critical values:	1% level	-2.604073	
	5% level	-1.946348	
	10% level	-1.613293	

^{*}MacKinnon (1996) one-sided p-values.

e) Intercept Stationarity

Null Hypothesis: XD has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic based on SIC, MAXLAG=10)

		t-Statistic	Prob.*
Augmented Dickey-Fulle	er test statistic	-2.959287	0.0447
Test critical values:	1% level	-3.544063	
	5% level	-2.910860	
	10% level	-2.593090	

^{*}MacKinnon (1996) one-sided p-values.

f) Trend Test

Dependent Variable: XD Method: Least Squares Date: 06/29/10 Time: 11:32

Sample: 25 84

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND	-19.23350 -0.033782	1.307570 0.023253	-14.70934 -1.452808	0.0000 0.1517
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.035113 0.018477 3.119239 564.3198 -152.3746 2.110652 0.151666	Mean dependent von S.D. dependent von Akaike info criterion Schwarz criterion Hannan-Quinn crit Durbin-Watson sta	r on eer.	-21.04082 3.148461 5.145820 5.215632 5.173127 0.537318

Cartel Phase II

g) Zero Stationarity

Null Hypothesis: XD has a unit root

Exogenous: None

Lag Length: 0 (Automatic based on SIC, MAXLAG=10)

		t-Statistic	Prob.*
Augmented Dickey-Fulle Test critical values:	1% level	-1.978853 -2.604073	0.0465
	5% level 10% level	-1.946348 -1.613293	

^{*}MacKinnon (1996) one-sided p-values.

h) Intercept Stationarity

Null Hypothesis: XD has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic based on SIC, MAXLAG=10)

		t-Statistic	Prob.*
Augmented Dickey-Fulle	er test statistic	-2.641460 -3.544063	0.0905
rest critical values.	5% level 10% level	-2.910860 -2.593090	

^{*}MacKinnon (1996) one-sided p-values.

i) Trend Test

Dependent Variable: XD Method: Least Squares Date: 06/28/10 Time: 18:40

Sample: 85 144

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND	-26.94476 0.152997	3.494567 0.030437	-7.710471 5.026701	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.303452 0.291442 4.082967 966.8960 -168.5287 25.26772 0.000005	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn crite Durbin-Watson sta	on er.	-9.579595 4.850519 5.684290 5.754102 5.711597 0.526424

b) Correlation between utilization rate of capacities and price changes

Formation Phase

j)

Dependent Variable: DP Method: Least Squares Date: 07/02/10 Time: 15:06 Sample (adjusted): 2 24

Included observations: 23 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C XD	1.346009 0.034766	0.734960 0.047878	1.831404 0.726131	0.0813 0.4758
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.024493 -0.021960 1.588036 52.95901 -42.22686 0.527266 0.475775	Mean dependent von Akaike info criter Schwarz criterion Hannan-Quinn cr Durbin-Watson st	ar ion iter.	0.869565 1.570881 3.845814 3.944553 3.870647 1.980955

Cartel Phase I

k)

Dependent Variable: DP Method: Least Squares Date: 07/02/10 Time: 15:14

Sample: 25 84

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C XD	5.455274 0.260346	1.883061 0.088526	2.897025 2.940887	0.0053 0.0047
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.129767 0.114763 2.140902 265.8407 -129.7929 8.648815 0.004695	Mean dependent va S.D. dependent va Akaike info criterio Schwarz criterion Hannan-Quinn crit Durbin-Watson sta	r on er.	-0.022617 2.275448 4.393096 4.462908 4.420403 2.002605

Cartel Phase II

<u>l)</u>

Dependent Variable: DP Method: Least Squares Date: 06/29/10 Time: 11:55

Sample: 85 144

Included observations: 60

Coefficient	Std. Error	t-Statistic	Prob.
246.1945 0.859584	1.371643 0.127960	179.4887 6.717615	0.0000 0.0000
0.437583 0.427886 4.767467 1318.267 -177.8282 45.12635	S.D. dependent va Akaike info criteri Schwarz criterion Hannan-Quinn crit	r on ter.	237.9600 6.302988 5.994272 6.064084 6.021580 0.194141
	0.859584 0.437583 0.427886 4.767467 1318.267 -177.8282	0.859584 0.127960 0.437583 Mean dependent v 0.427886 S.D. dependent va 4.767467 Akaike info criteri 1318.267 Schwarz criterion -177.8282 Hannan-Quinn crit 45.12635 Durbin-Watson sta	0.859584 0.127960 6.717615 0.437583 Mean dependent var 0.427886 S.D. dependent var 4.767467 Akaike info criterion 1318.267 Schwarz criterion -177.8282 Hannan-Quinn criter. 45.12635 Durbin-Watson stat

c) Rate of return difference

Formation Phase

j) Zero Stationarity

Null Hypothesis: RD has a unit root

Exogenous: None

Lag Length: 0 (Automatic based on SIC, MAXLAG=5)

		t-Statistic	Prob.*
Augmented Dickey-Fulle	er test statistic	1.334577	0.9493
Test critical values:	1% level	-2.669359	
	5% level	-1.956406	
	10% level	-1.608495	

^{*}MacKinnon (1996) one-sided p-values.

k) Intercept Stationarity

Null Hypothesis: RD has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic based on SIC, MAXLAG=5)

		t-Statistic	Prob.*
Augmented Dickey-Fulle	er test statistic	-1.756819	0.3911
Test critical values:	1% level	-3.752946	
	5% level	-2.998064	
	10% level	-2.638752	

^{*}MacKinnon (1996) one-sided p-values.

Cartel Phase I

l) Zero Stationarity

Null Hypothesis: RD has a unit root

Exogenous: None

Lag Length: 0 (Automatic based on SIC, MAXLAG=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-0.529072	0.4835
Test critical values:	1% level	-2.604073	
	5% level	-1.946348	
	10% level	-1.613293	

^{*}MacKinnon (1996) one-sided p-values.

m) Intercept Stationary

Null Hypothesis: RD has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic based on SIC, MAXLAG=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-2.959287	0.0447
Test critical values:	1% level	-3.544063	
	5% level	-2.910860	
	10% level	-2.593090	

^{*}MacKinnon (1996) one-sided p-values.

n) Trend Test

Dependent Variable: RD Method: Least Squares Date: 06/29/10 Time: 11:36

Sample: 25 84

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND	5.191624 -0.008445	0.326893 0.005813	15.88174 -1.452808	0.0000 0.1517
W I KEND	-0.008443	0.003813	-1.432808	0.1317
R-squared	0.035113	Mean dependent	var	4.739794
Adjusted R-squared	0.018477	S.D. dependent v	ar	0.787115
S.E. of regression	0.779810	Akaike info criter	rion	2.373232
Sum squared resid	35.26999	Schwarz criterion	1	2.443043
Log likelihood	-69.19695	Hannan-Quinn criter.		2.400539
F-statistic	2.110652	Durbin-Watson stat		0.537318
Prob(F-statistic)	0.151666			

Cartel Phase I

I

o) Zero Stationarity

Null Hypothesis: RD has a unit root

Exogenous: None

Lag Length: 0 (Automatic based on SIC, MAXLAG=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		0.993715	0.9137
Test critical values:	1% level	-2.604073	
	5% level	-1.946348	
	10% level	-1.613293	

^{*}MacKinnon (1996) one-sided p-values.

p) Intercept Stationarity

Null Hypothesis: RD has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic based on SIC, MAXLAG=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-1.230323	0.6558
Test critical values:	1% level	-3.544063	
	5% level	-2.910860	
	10% level	-2.593090	

^{*}MacKinnon (1996) one-sided p-values.

q) Trend Test

Dependent Variable: RD Method: Least Squares Date: 06/29/10 Time: 11:59

Sample: 85 144

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND	-0.745427 0.068983	0.661986 0.005766	-1.126045 11.96435	0.2648 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.711652 0.706680 0.773449 34.69692 -68.70551 143.1457 0.000000	Mean dependent va S.D. dependent va Akaike info criter Schwarz criterion Hannan-Quinn cri Durbin-Watson st	ir ion ter.	7.084192 1.428107 2.356850 2.426662 2.384157 0.502034

d) Correlation between rate of return difference and capacity growth rate changes $% \left(1\right) =\left(1\right) \left(1\right)$

Formation Phase

u)

Dependent Variable: DW Method: Least Squares Date: 06/28/10 Time: 19:55 Sample (adjusted): 2 24

Included observations: 23 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RD	-0.002091 0.000483	0.006140 0.001600	-0.340500 0.301654	0.7369 0.7659
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.004314 -0.043099 0.013266 0.003696 67.82899 0.090995 0.765883	Mean dependent v S.D. dependent v Akaike info criter Schwarz criterior Hannan-Quinn cr Durbin-Watson s	ar rion i iter.	-0.000437 0.012989 -5.724260 -5.625521 -5.699427 2.374623

Cartel Phase I

 \mathbf{v}

Dependent Variable: DW Method: Least Squares Date: 06/29/10 Time: 11:46

Sample: 25 84

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RD	0.026064 -0.005965	0.016936 0.003526	1.538975 -1.691915	0.1292 0.0960
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.047033 0.030603 0.021316 0.026353 146.7796 2.862578 0.096029	Mean dependent va S.D. dependent va Akaike info criter Schwarz criterion Hannan-Quinn cri Durbin-Watson st	nr ion iter.	-0.002209 0.021649 -4.825988 -4.756176 -4.798681 1.798967

Cartel Phase II

x)

Dependent Variable: DW Method: Least Squares Date: 06/29/10 Time: 12:04

Sample: 85 144

Included observations: 60

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	8.782085	1.241578	7.073328	0.0000
RD	-2.065192	0.171860	-12.01671	
R-squared	0.713440	Mean dependent		-5.848129
Adjusted R-squared	0.708500	S.D. dependent v		3.491744
S.E. of regression	1.885219	Akaike info criterion Schwarz criterion		4.138730
Sum squared resid	206.1349			4.208542
Log likelihood F-statistic Prob(F-statistic)	-122.1619 144.4012 0.000000	Hannan-Quinn criter. Durbin-Watson stat		4.166037 0.370372

f) Variance of capacity growth rate changes

Formation Phase

y)

Test for Equality of Variances Between Series

Date: 06/28/10 Time: 19:57

Sample: 1 24

Included observations: 24

Method	df	Value	Probability
F-test	(22, 22)	5890.100	0.0000
Siegel-Tukey		5.690018	0.0000
Bartlett	1	156.9251	0.0000
Levene	(1, 44)	59.16891	0.0000
Brown-Forsythe	(1, 44)	41.76358	0.0000

Category Statistics

			Mean Abs.	Mean Abs.	Mean Tukey-
Variable	Count	Std. Dev.	Mean Diff.	Median Diff.	Siegel Rank
DW	23	0.012989	0.010491	0.010018	34.78261
DW_COMP	23	0.996882	0.835274	0.810824	12.21739
All	46	0.697117	0.422882	0.410421	23.50000

Bartlett weighted standard deviation: 0.704962

Cartel Phase I

z)

Test for Equality of Variances Between Series

Date: 06/29/10 Time: 11:51

Sample: 25 84

Included observations: 60

Method	df	Value	Probability
F-test	(59, 59)	1914.643	0.0000
Siegel-Tukey		9.213985	0.0000
Bartlett	1	361.0901	0.0000
Levene	(1, 118)	101.0471	0.0000
Brown-Forsythe	(1, 118)	101.0487	0.0000

Category Statistics

Variable	Count	Std. Dev.	Mean Abs. Mean Diff.	Mean Abs. Median Diff.	Mean Tukey- Siegel Rank
DW	60	0.021649	0.015156	0.014945	89.76667
DW_COMP	60	0.947308	0.752063	0.752028	31.23333
All	120	0.667320	0.383610	0.383486	60.50000

Bartlett weighted standard deviation: 0.670023

Cartel Phase II

ä)

Test for Equality of Variances Between Series

Date: 08/26/10 Time: 20:39

Sample: 85 144

Included observations: 60

Method	df	Value	Probability
F-test	(59, 59)	13.35708	0.0000
Siegel-Tukey		0.784672	0.4326
Bartlett	1	78.98917	0.0000
Levene	(1, 118)	91.84374	0.0000
Brown-Forsythe	(1, 118)	91.10082	0.0000

Category Statistics

			Mean Abs.	Mean Abs.	Mean Tukey-
Variable	Count	Std. Dev.	Mean Diff.	Median Diff.	Siegel Rank
DW_COMP	60	0.955403	0.786214	0.786214	63.00000
DW	60	3.491744	3.013561	3.011324	58.00000
All	120	3.903779	1.899887	1.898769	60.50000

Bartlett weighted standard deviation: 2.559792