Kratzsch, Uwe; Sieg, Gernot

Working Paper
When to regulate airports: A simple rule

Economics Department Working Paper Series, No. 6

Provided in Cooperation with:
Technische Universität Braunschweig, Economics Department

Suggested Citation: Kratzsch, Uwe; Sieg, Gernot (2009) : When to regulate airports: A simple rule, Economics Department Working Paper Series, No. 6, Technische Universität Braunschweig, Institut für Volkswirtschaftslehre, Braunschweig, http://nbn-resolving.de/urn:nbn:de:gbv:084-25406

This Version is available at:
http://hdl.handle.net/10419/51321

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Uwe Kratzsch,
Gernot Sieg

„When to Regulate Airports: A Simple Rule”

Braunschweig : Institut für Volkswirtschaftslehre, 2009

Working Paper Series / Economics Department ; No. 06

Veröffentlicht: 02.06.2009

http://www.digibib.tu-bs.de/?docid=00027928
"When to Regulate Airports: A Simple Rule"

by Uwe Kratzsch and Gernot Sieg, May 2009
When to Regulate Airports: A Simple Rule

Uwe Kratzsch∗
Gernot Sieg∗
May 26, 2009

Abstract
Landing fees at airports are regulated almost all over the world since airports are assumed to abuse their market power. We find that monopolistic airports have an incentive to restrain landing fees when they generate additional non-aviation revenues and that the optimal landing fee decreases in the degree of complementarity of aviation and non-aviation. Furthermore, we show that monopolistic airports will not have an incentive to abuse their market power anymore so that a price regulation becomes inappropriate as soon as non-aviation revenues increase above 50% of all airport revenues.

Keywords: airport regulation; aviation and non-aviation revenues; complementarity of aviation and non-aviation; locational rents

JEL: L93; D42; L51

1 Introduction
Privatized airports are typically regarded to have persistent monopoly power in providing aeronautical services. Hence, increases in the charges for aeronautical activities, i.e., the provision of landing, take-off, gangway and parking capacity for aircraft and passengers, usually have to be approved by regulatory authorities in order to minimize welfare losses. In general, regulation takes place according to principles of cost relatedness or by setting price caps.

In contrast, charges for commercial services that are often provided by franchises and other commercial operators, such as retail, car parking, banking, and catering, are usually not subject to any direct form of regulation. The reason is that although airports might have some market power in the

∗TU Braunschweig, Economics Department, Spielmannstr. 9, 38106 Braunschweig, Germany
2 MODEL

non-aviation business and might earn profits from providing commercial services or from renting property, they could be disciplined by potential competition. However, non-aviation revenues can be indirectly considered if regulators opt for applying the single-till approach while approving aeronautical charges, whereas the dual-till approach confines regulation to the monopolistic bottleneck of an airport, i.e., aviation.

As many countries moved – or are moving – towards privatization of some of their public airports (Basso 2008), the non-aviation business has become increasingly important to airports within the last two decades. On average, non-aviation revenues now account for around half of all revenues (Graham 2009). With regard to this fact, one could doubt that monopolistic airports have an incentive to abuse their market power. High charges for aeronautical activities guarantee high profits in the aviation business; however, lower charges would increase the number of landings, thereby increasing the number of passengers who can make use of the commercial services offered and thus the demand for rented property.

Starkie (2001) was the first who challenged the necessity of an *ex-ante* price regulation of monopolistic airports. He argues that airports are unlikely to abuse their market power whenever complementary commercial activities exist because the profitability of those activities will be negatively affected when aeronautical charges are set too high. In contrast, Oum, Zhang and Zhang (2004) point out that although an unregulated profit-maximizing airport has an incentive to suppress aeronautical charges, it would not set them at a socially optimal level so that a price regulation may be necessary. Hence, Brueckner and Pels (2007) conclude that it is not completely clear that airports will actually abuse their market power, in which case the regulation of charges would be inappropriate.

We show that monopolistic airports have an incentive to restrain aeronautical charges (hereafter referred to as “landing fees”) when they generate additional non-aviation revenues. Landing fees are lower the higher the degree of complementarity of aviation and non-aviation at an airport. Further, our model implies that monopolistic airports will not have an incentive to abuse their market power anymore as soon as non-aviation revenues increase above 50% of airports’ total revenues. In such case, a price regulation will become inappropriate.

2 Model

Building on the analysis of Sieg (2009), we consider a non-congested, unregulated monopolistic airport that is approached by an airline. The air carrier is a monopolistic supplier of air transport to consumers. In order to be allowed to land on the airport and to use the airport facilities, the carrier has to pay a landing fee.
2 MODEL

The demand for tickets is represented by

\[x = D - \alpha p_c, \]

where \(\alpha > 0 \) is the slope of the linear demand curve and \(D > 0 \) the ordinate intercept. Ticket demand is higher the lower the ticket price \(p_c \) demanded by the carrier.

Airport revenues consist of aviation and non-aviation revenues. Besides the income originating from aeronautical activities, \(p_a \cdot x \), where \(p_a > 0 \) is the landing fee charged from the airline, the airport generates income from commercial activities, \(s \cdot \beta x \).\(^1\) Commercial revenues may comprise direct income from shops, restaurants, car parks, etc. if these facilities are run by the airport itself or concession income if they are run by franchises and other commercial operators. For simplicity, we assume that one commercial product is offered at the airport and each passenger buys a quantity of \(0 < \beta \leq 1 \). Hence, \(\beta \) can be interpreted as the degree of complementarity of aviation and non-aviation at the airport. Further, \(s > 0 \) is the locational rent earned by the airport by offering the commercial good or by renting property to a franchise or a commercial operator (Forsyth 2004). The locational rent arises from the superior location of the commercial property.

The airport’s costs consist of fixed costs that include capital costs such as depreciation and a normal rate of return on capital, \(F > 0 \). A share \(0 < \lambda \leq 1 \) in the airport’s costs can be assigned to aeronautical activities, while the remaining share \(1 - \lambda \) is related to commercial activities. Consequently, the airport maximizes the profit for the forthcoming flight period

\[(p_a + s\beta) \cdot x - F \]

by charging an optimal landing fee \(p_a \) from the air carrier.

The air carrier maximizes its profit by demanding an optimal ticket price \(p_c \) from its passengers. For simplicity, we assume that the only cost accruing to the carrier when operating a flight is the landing fee. Thus, the airline maximizes

\[(p_c - c) \cdot x(p_c), \]

where the constant total cost per flight \(c \) corresponds to the landing fee paid to the airport, i.e., \(c = p_a \).

The timing of events is as follows. The airport has to determine the landing fee in advance for the forthcoming flight period. Within that flight period, the air carrier decides what ticket price to charge. Therefore, the game is a sequential game, the airport is assumed to be the first mover and the airline the second mover, and the prices and quantities discussed in the following are results of subgame perfect equilibria determined by backward induction.

\(^1\)The landing fee is usually a function of frequency and tickets, and non-aviation revenues are a function of passengers. We assume that tickets, non-aviation revenues and landing fees share, as a unit, a fully booked aircraft that minimizes landing fees.
3 Optimal landing fees and airport profits

The air carrier determines a ticket price that maximizes its profit. The optimal ticket price demanded from the passengers is

\[p^*_c = \frac{D + \alpha c}{2\alpha} \]

and the resulting demand for tickets adds up to

\[x^* = \frac{D - \alpha c}{2}. \]

The airport anticipates the price decision of the air carrier and the derived ticket demand. Profit maximization by the airport results in an optimal landing fee charged to the airline,

\[p^*_a = \frac{D - \alpha \beta s}{2\alpha}. \]

Hence, the airport earns a positive profit

\[\Pi^* = \frac{(D + \alpha \beta s)^2}{8\alpha} - F \]

as long as \(F < \bar{F} = \frac{(D + \alpha \beta s)^2}{8\alpha} \).

Theorem 1 A profit-maximizing monopolistic airport that generates income both from aeronautical and commercial activities, i.e., \(\beta > 0 \), has an incentive to restrain aeronautical charges. The optimal landing fee demanded from the airline, \(p^*_a \), is lower the higher the degree of complementarity of aviation and non-aviation at the monopolistic airport, \(\beta \).

Proof: See the Appendix.

It is preferable to the airport to demand a lower landing fee than if runways were a stand-alone facility, i.e., \(\beta = 0 \), since the resulting rise in the volume of traffic, \(\alpha \beta s/4 > 0 \), increases non-aviation revenues and thus raises the airport’s profit by \((\alpha \beta s)^2/8\alpha > 0 \). However, this does not imply that the airport will never take advantage of its monopoly power in the aviation business.

Theorem 2 For a profit-maximizing monopolistic airport with fixed costs \(F \leq \frac{D^2}{8\alpha \lambda} - \frac{(D - \alpha \beta s)^2}{32\alpha \lambda} < \bar{F} \), the following results hold:

1. The optimal landing fee will be higher than the landing fee that a regulator would approve, i.e., \(p^*_a > p^*_a^{reg} \), if aviation revenues exceed non-aviation revenues, i.e., \(\beta s/p^*_a < 1 \).
2. The optimal landing fee will be lower than the landing fee that a regulator would approve, i.e., $p^*_a < p^*_a^{reg}$, if non-aviation revenues exceed aviation revenues, i.e., $\beta s/p^*_a > 1$.

Proof: See the Appendix.

If aviation revenues account for the main share in total revenues, the airport will have an incentive to abuse its market power in the aviation business. The optimal landing fee lies above the cost-covering level for the aviation business, traffic is lower than it was in the presence of regulation, $x(p^*_a) - x(p^*_a^{reg}) = (\alpha \beta s - \sqrt{D^2 - 8\alpha \lambda F})/4 < 0$, and the airport earns a positive profit by providing aeronautical services, $\Pi^*_Av = (D^2 - (\alpha \beta s)^2)/8\alpha - \lambda F > 0$. In this case, a regulation of aeronautical charges is appropriate in order to reduce welfare-losses. In contrast, a regulation will be inappropriate if non-aviation revenues amount to more than 50% of all airport revenues. In such case, the airport will charge a landing fee that lies below the cost-covering level for the aviation business. The lower landing fee attracts additional traffic, $x(p^*_a) - x(p^*_a^{reg}) > 0$, which in turn increases non-aviation revenues. As a result, non-aviation profits $2(D\alpha \beta s + (\alpha \beta s)^2)/8\alpha - (1 - \lambda)F > 0$ overcompensate aviation losses, $\Pi^*_Av < 0$, and the airport earns a positive profit $\Pi^* > 0$.

4 Conclusion

Monopolistic airports have an incentive to restrain aeronautical charges when they generate additional non-aviation revenues. Landing fees are lower the higher the degree of complementarity of aviation and non-aviation at an airport. Furthermore, our model shows that as soon as non-aviation revenues increase above 50% of all airport revenues, monopolistic airports will not take advantage of their market power anymore; therefore, price regulation becomes inappropriate.

Appendix

Proof of Theorem 1:

The optimal landing fee in the presence of non-aviation activities, p^*_a, is lower than the fee $p^*_a^{s*}$ that maximizes the airport’s profit in the absence of non-aviation activities, i.e., $\beta = 0$:

$$p^*_a = \frac{D - \alpha \beta s}{2\alpha} < \frac{D}{2\alpha} = p^*_a^{s*},$$

since $\alpha > 0$, $\beta > 0$ and $s > 0$.
Furthermore, the optimal landing fee falls in the quantity of the commercial product purchased at the airport:

\[
\frac{\partial p_a^*}{\partial \beta} = -\frac{s}{2} < 0,
\]

because \(s > 0 \).

Proof of Theorem 2:

A regulatory authority that confines regulation to the monopolistic bottleneck of the airport will approve a landing fee that covers the average costs which can be assigned to aeronautical activities:

\[
p_{\text{reg}}^a = \frac{\beta F}{x(p_{\text{reg}}^a)},
\]

where \(x(p_{\text{reg}}^a) = (D - \alpha p_{\text{reg}}^a)/2 \). Hence, the regulator will approve a landing fee of

\[
p_{\text{reg}}^a = \frac{D - \sqrt{D^2 - 8\alpha \lambda F}}{2\alpha},
\]

if \(F \leq D^2/8\alpha \lambda \). The optimal landing fee demanded by the profit-maximizing monopolistic airport will be higher than the regulated landing fee if

\[p_a^* - p_{\text{reg}}^a > 0,\]

\[\iff \frac{D - \alpha \beta s}{2\alpha} - \frac{D - \sqrt{D^2 - 8\alpha \lambda F}}{2\alpha} > 0,\]

\[\iff \frac{\beta s}{p_a^*} < \frac{2\sqrt{D^2 - 8\alpha \lambda F}}{D - \alpha \beta s},\]

\[\iff \frac{\beta s}{p_a^*} < 1,\]

as long as \(F \leq D^2/8\alpha \lambda - (D - \alpha \beta s)^2 / 32\alpha \lambda \). In contrast, the optimal landing fee demanded by the airport will be lower than the regulated landing fee, if

\[p_a^* - p_{\text{reg}}^a < 0 \iff \frac{\beta s}{p_a^*} > 1.\]
4 CONCLUSION

References

Graham, A., 2009, How important are commercial revenues to today’s airports?, Journal of Air Transport Management 15, 106-111.

TU Braunschweig, Economics Department, Working Paper Series

For a complete list of Working Papers published by TU Braunschweig, Economics Department, please visit the Department's website (http://www.tu-braunschweig.de/vwl)

01 „Crunch Time: A Policy to avoid the "Announcement Effect" when Terminating a Subsidy”
by Marc Gürtler and Gernot Sieg, May 2008

02 „Eine ökonomische Analyse einer Ausweitung des Arbeitnehmer-Entsendegesetzes”
by Uwe Kratzsch, June 2008

03 „Bread, peace and the attrition of power: Economic events and German election results”
by Irem Batool and Gernot Sieg, October 2008

04 „Grandfather rights in the market for airport slots”
by Gernot Sieg, November 2008

05 „Strategic Debt Management within the Stability and Growth Pact”
by Gernot Sieg and Ulrike Stegemann, April 2009

06 „When to Regulate Airports: A Simple Rule”
by Uwe Kratzsch and Gernot Sieg, May 2009