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ABSTRACT 

Selection Tournaments, Sabotage, and Participation  

by Johannes Münster * 

This paper studies sabotage in tournaments with at least three contestants, 
where the contestants know each other well. Every contestant has an incentive 
to direct sabotage specifically against his most dangerous rival. In equilibrium, 
contestants who choose a higher productive effort are sabotaged more heavily. 
This might explain findings from psychology, where victims of mobbing are 
sometimes found to be overachieving. Further, sabotage equalizes promotion 
chances. The effect is most pronounced if the production function is linear in 
sabotage, and the cost function depends only on the sum of all sabotage 
activities: in an interior equilibrium, who will win is a matter of chance, even 
when contestants differ a great deal in their abilities. This, in turn, has adverse 
consequences for who might want to participate in a tournament. Since better 
contestants anticipate that they will be sabotaged more strongly, it may happen 
that the most able stay out and the tournament selects one of the less able with 
probability one. I also study the case where some contestants are easy victims, 
i. e. easier to sabotage than others. 
 
Keywords: Tournament, contest, sabotage, selection 

JEL Classification: M51, J41, J29 
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ZUSAMMENFASSUNG 

Auswahlturniere, Sabotage und Teilnahme  

Firmen setzen häufig Anreize, indem sie die Leistung der Mitarbeiter ver-
gleichen, und die erfolgreichsten befördern oder eine Prämie bezahlen. Solche 
Anreizsysteme werden in der Literatur als Turniere bezeichnet. Da es in einem 
Turnier nur darauf ankommt, besser zu sein als die Konkurrenten, hat jeder 
einen Anreiz, seine Konkurrenten zu sabotieren. Dieser Aufsatz studiert 
Sabotage in Turnieren zwischen mindestens drei Teilnehmern. Jeder hat einen 
Anreiz, seinen gefährlichsten Gegner am meisten zu sabotieren. Im Gleich-
gewicht werden diejenigen, die am produktivsten arbeiten, am stärksten 
sabotiert. Dies mag Forschungsergebnisse aus der Psychologie erklären, in 
denen sich zeigt, dass die Opfer von Mobbing besonders leistungsorientiert 
sind. Darüberhinaus führt Sabotage zu einer Angleichung der Gewinnwahr-
scheinlichkeiten. Der Effekt ist am deutlichsten wenn die Produktionsfunktion 
linear in Sabotage ist, und die Kostenfunktion nur von der Summe der 
Sabotageaktivitäten abhängt: In einem inneren Gleichgewicht ist es reiner 
Zufall, wer gewinnt, auch wenn die Teilnehmer sehr unterschiedliche Fähig-
keiten haben. Dies hat auch Rückwirkungen auf die Bereitschaft, an dem 
Turnier teilzunehmen. Da bessere Spieler voraussehen, dass sie mehr sabotiert 
werden werden, sind ihre Anreize teilzunehmen unter Umständen geringer als 
die von weniger fähigen Spielern. Deshalb ist ein Turnier nicht als Auswahl-
mechanismus geeignet ist, wenn Sabotage eine wichtige Rolle spielt. 



1 Introduction

Labor market tournaments have the double role of selecting the most able individuals

and supplying incentives. Although many economists have voiced the opinion that the

selection aspect is at least as important as the incentives aspect (e.g. Rosen 1986, Schlicht

1988, Glazer and Hassin 1988, Prendergast 1999), the focus of the bulk of research has

clearly been on the latter. This paper explicitly addresses the selection aspect. The

question is whether tournaments, and, more generally, relative comparison contests, tend

to select the most able individuals.

In most tournament models, more able contestants have a greater chance of winning.1

But the picture changes radically once we take into account that tournaments - like

other relative comparison contests - give each contestant an incentive to sabotage his

rivals (Lazear 1989, Konrad 2000, Chen 2003). Here “sabotage” is a catchall term for

different kinds of activities that are intended to hinder the productive efforts of other

contestants. These range from strategic withholding of information, less mutual help, to

outright forms of mobbing and actual physical sabotage. There is one obvious problem

in using a tournament for selection in the presence of sabotage. The result might be the

promotion of the best saboteur - a contestant who might be not very good at working

productively - and promoting the best saboteur is not necessarily in the interest of the

firm. This is a particularly striking example of the more general point that ability is a

multidimensional property, and that the abilities and personality traits needed to win a

tournament are not always the same as those needed at a higher level in a hierarchy.

This paper focusses on a more subtle point. It starts with two observations. In

many real world tournaments, there are more than two contestants who compete for a

single prize; thus I will assume throughout that the number of contestants is at least

three. And the contestants often know each other well, especially if they work closely and

regularly together. In such a case each contestant knows who his most dangerous rival

1Lazear and Rosen (1981), Nalebuff and Stiglitz (1983), Green and Stokey (1983), Rosen (1986).
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is. Intuitively, sabotaging a strong rival improves one’s own chance of winning more than

sabotaging a weaker rival does. Therefore, each contestant has an incentive to sabotage

the most dangerous rival most strongly. The paper shows that this has an equalizing

effect on the winning probabilities. The effect is most pronounced when the production

functions are linear in sabotage, and the cost functions of the contestants depends only

on the sum of the sabotage activities: in an interior equilibrium, each contestant has the

same chance of winning. In other words, who will win the tournament is a matter of pure

chance, even if some contestants are much more able than other contestants.

In fact, the selection properties of tournaments may be even much worse. Since the

most able individuals are sabotaged most, they may well have a lower expected utility from

participation in the tournament. Once we take into account the fact that participation in

a tournament is endogenous, it turns out that only the least able individuals may want to

participate. In that case, a tournament selects one of the least able with probability one.

These results are derived in a model in which all contestants are similar in their ability

to cope with sabotage. However, due to different abilities, or different positions within the

firm, some contestants may be easier to sabotage than others. Thus I also consider the

case where some contestants are ‘easy victims’. Easy victims are sabotaged more strongly

and have lower chances of winning the tournament.

The incentives to sabotage were pointed out early in the tournament literature (Nale-

buff and Stiglitz 1983, p. 40). The present paper is most closely related to Lazear (1989)

and Chen (2003). Lazear (1989) considers the optimal tournament reward structure from

the incentives aspect and shows that, in the presence of sabotage, the optimal prize struc-

ture is compressed. However, Lazear does not discuss the possibility of directing sabotage

specifically against stronger rivals and the implications of this for the selection proper-

ties. Chen (2003) studies the implication of sabotage in selection tournaments. He points

out the fact that some contestants may have a comparative advantage in sabotaging,

and shows that stronger contestants do not necessarily have better chances of winning
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in equilibrium. In contrast to Chen (2003), I assume that the output produced by a

contestant is additively separable in the sabotage activities of his rivals. This drives the

equalizing effect of sabotage, which is not found in Chen (2003). Other papers that study

sabotage include Drago and Turnbull (1991) (who study how bargaining between workers

about effort and mutual help affects optimal incentive schemes), Chan (1996) (who stud-

ies external recruitment as a means of keeping sabotage incentives low), Kräkel (2000)

(who considers the effect of relative deprivation in tournaments with sabotage), and Chen

(2005) (who studies incentive effects of external recruitment).

My paper contributes to this literature in the following ways. First, I show that

if production is additively separable, sabotage has an equalizing effect on the winning

probabilities. In the classic benchmark where the production functions are linear and the

cost function depends only on the sum of all sabotage activities, in an interior equilibrium,

all contestants have equal chances of winning. Second, I show that only the weaker

contestants my want to participate. A third contribution is the result that easy victims

are sabotaged more heavily and thus have lower chances of winning in equilibrium. A

fourth contribution of my paper is that it studies conditions under which interior equilibria

exist. Due to the complexity of the problem, interior equilibria are assumed in most of the

literature. In an example with a specific cost function, I derive necessary and sufficient

conditions for existence of interior equilibria. It turns out to be crucial that the contestants

do not differ extremely in their abilities. Hence, an analysis based on first order conditions

for an interior equilibrium may be misleading. However, the effect that sabotage tends to

make promotion chances more equal is robust even for equilibria with corner solutions.

There is considerable evidence for the importance of sabotage, both from field data

(Drago and Garvey 1998)2 and from experiments (Harbring and Irlenbusch 2004). Har-

bring et al. (2004) is an interesting experimental study of sabotage in an asymmetric

contest. It gives support to the idea that more able contestants will be sabotaged more

2There are also papers that use data from sports: Becker and Huselid (1992) (auto racing) and
Garicano and Palacios-Huerta (2000) (European soccer).
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heavily. However, the model and experimental setup in Harbring et al. (2004) differ from

the model used here.3

The present paper also sheds new light on findings from psychology, where in some

studies, victims of bullying in the workplace are found to be “overachieving”: more

achievement oriented, punctual, accurate and conscientious than the control group (Zapf

and Einarsen 2003, p. 178). While this is often explained with regard to group norms,

the present paper offers another explanation. As I show below, people that choose higher

productive effort are sabotaged more strongly. The reason is that they are more danger-

ous rivals in a contest for promotion. Another finding is that victims of bullying tend to

be more vulnerable than the control groups, e.g. “low in social competencies, bad conflict

managers, unassertive and weak personalities” (Zapf and Einarsen 2003, p. 174ff). I

capture this in a stylized way by considering easy victims.

Sabotage-like activities have been studied in other contexts as well. Shubik’s (1954)

model of a “truel” (three person duel) is closely related to the present paper. Here the

“truelist” with the lowest shooting ability may have the best chances of survival. The

reason is that the contestants have an incentive to shoot at the truelist who is the best

shot. Baumol (1992) considers sabotage in the process of innovation. Skaperdas and

Grofman (1995) and Harrington and Hess (1996) model negative campaigning in election

races. Konrad (2000) studies sabotage in rent seeking contests. Auriol et al. (2002) show

that, when the principal cannot commit to long term contracts, career concerns in teams

give the agents incentives to sabotage, even if they are not involved in a tournament

scheme. The results of the present paper are also relevant to these other contests.

In addition, the paper also contributes to the small but growing literature on the

selection properties of tournaments and other kinds of contests. One important paper in

3Harbring et al. (2004) consider a two stage game: on the first stage, sabotage is chosen, on the
second stage productive effort; sabotage increases the victim’s marginal cost of working productively; and
sabotage of player i against an opponent j can take only two values. In contrast, in the present paper a
one shot simultaneous move game is studied: sabotage and productive effort are chosen simultaneously;
sabotage destroys part of the output produced by the victim; and sabotage of i against j can take any
nonnegative real number.
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this literature is Rosen (1986), who studied a sequential elimination tournament. Meyer

(1991) works out how to design a repeated contest between the same contestants in order

to get the most information about the contestants. Clark and Riis (2001) study a selection

tournament in the case where performance is deterministic. They show that, by making

the winner prize depend on which of two test standards are passed, the tournament

can be designed to select the most able contestant as a winner. Hvide and Kristiansen

(2003) consider risk taking in a selection contest. However, none of these papers considers

sabotage.

The paper proceeds as follows. Section 2 sets out the model. Section 3 shows that

sabotage tends to equalize promotion chances. Section 4 considers the decision whether

to participate in a tournament. Section 5 studies easy victims. Section 6 gives necessary

and sufficient conditions for existence of an interior equilibrium, albeit for a somewhat

simplified example. Section 7 concludes. The appendix collects some of the longer proofs.

2 The model

There are n ≥ 3 contestants. For simplicity, the contestants are assumed to be risk neutral.
Contestant i chooses productive effort xi and sabotage efforts si1, ..., si(i−1), si(i+1), ..., sin,

where sij denotes the sabotage of contestant i against contestant j. He has a personal

cost of doing so which is given by

ci
¡
xi, si1, ..., si(i−1), si(i+1), ..., sin

¢
, (1)

where ci : Rn → R is increasing in all its arguments and convex. Contestants differ in their

abilities, hence each contestant may have a different cost function. I will assume that the

cost function is symmetric in the sabotage activities: exchanging sij and sik, while holding

constant all other decision variables of i, does not change the costs of i. The cost functions

are common knowledge among the contestants. This simplifying assumption captures the
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idea that work colleagues often know each other pretty well, while their superiors know

considerably less about them.

The output produced by contestant i is denoted by qi and assumed to be additively

separable:

qi = φ (xi)−
X
j 6=i

ψ (sji) + εi. (2)

Here, φ and ψ are strictly increasing and weakly concave functions: φ is a production

function, and similarly, ψ is a ‘destruction function’ which describes how easy or difficult

it is to destroy output of a rival.4 Equation (2) assumes that there are no cross effects

between the sabotage activities. This is different from Chen (2003), where the marginal

impact of sabotage against i depends on how much sabotage is inflicted on i by all

his rivals.5 Furthermore, (2) also presupposes that there are no cross effects between

xi and the sabotage directed against i. Finally, εi is an error term. The error terms

ε1, ..., εn are identically and independently distributed with PDF f. Let F denote the

CDF corresponding to f . I assume that F has full support and is strictly log-concave.6

The contestant with the highest output gets a winner prize w, which represents the

monetary equivalent of a promotion. All the other contestants get a strictly lower loser

prize which is normalized to zero. Let pi denote contestant i’s probability of winning.

Then his payoff is

ui = piw − ci
¡
xi, si1, ..., si(i−1), si(i+1), ..., sin

¢
.

4One could also assume that these functions differ across contestants, such that qi = φi (xi) −P
j 6=i ψj (sji) + εi. This would not change Proposition 1 qualitatively.

5In the notation of the present paper, Chen (2003) assumes that qi = aixi−ψ
³P

j bjsji

´
+ εi, where

ψ is an increasing and strictly concave function, ai is the productive ability of i, and bj the ability of
j to sabotage. An additional but minor difference between the present paper and Chen (2003) is that
Chen (2003) assumes identical cost functions for all players and models different abilities with different
production functions. Finally, Chen (2003) assumes a cost function which depends only on the sum of
all the sabotage activities plus productive effort.

6The assumption of log-concavity is fulfilled by most commonly studied distribution functions, see
Bagnoli and Bergstrom (1989).
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Contestant i maximizes ui subject to the non-negativity constraints xi ≥ 0 and sij ≥ 0
for all j 6= i.

3 Sabotage equalizes promotion chances

Let

yil := φ (xi)−
X
k 6=i

ψ (ski)−
Ã
φ (xl)−

X
k 6=l

ψ (skl)

!
.

Note that yil = E (qi)− E (ql) . Using this notation, we have

pi =

Z ∞

−∞
[Πl 6=iF (yil + εi)] f (εi) dεi. (3)

The results of the paper are built on the following lemma.

Lemma 1 For all values of the decision variables,

pj > pk ⇔ 1

ψ0 (sij)
∂pi
∂sij

>
1

ψ0 (sik)
∂pi
∂sik

.

Proof. Differentiating equation (3), we get

∂pi
∂sij

= ψ0 (sij)
Z ∞

−∞
f (yij + εi) [Πl 6=i,jF (yil + εi)] f (εi) dεi,

∂pi
∂sik

= ψ0 (sik)
Z ∞

−∞
f (yik + εi) [Πl 6=i,kF (yil + εi)] f (εi) dεi.

Hence,

1

ψ0 (sij)
∂pi
∂sij
− 1

ψ0 (sik)
∂pi
∂sik

=

Z ∞

−∞
[f (yij + εi)F (yik + εi)− f (yik + εi)F (yij + εi)]

∗ [Πl 6=i,j,kF (yil + εi)] f (εi) dεi. (4)
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Suppose pj > pk. This is equivalent to E (qj) > E (qk) and to yij < yik. Since F (z) is

strictly log-concave, f (z) /F (z) decreases strictly in z. It follows that

f (yij + εi)

F (yij + εi)
>

f (yik + εi)

F (yik + εi)
,

or

f (yij + εi)F (yik + εi) > f (yik + εi)F (yij + εi) (5)

for all εi. Therefore the integrand in equation (4) is strictly positive.

This proves that

pj > pk ⇒ 1

ψ0 (sij)
∂pi
∂sij

>
1

ψ0 (sik)
∂pi
∂sik

.

The converse statement can be proven similarly.

To understand Lemma 1, note that, in order to destroy one (marginal) unit of j

’s output, i has to increase sij by 1/ψ
0 (sij) . Thus, 1

ψ0(sij)
∂pi
∂sij

measures how much i ’s

chances to win increase if i destroys one unit of j ’s output. If pj > pk, Lemma 1 says

that destroying one unit of the output of j increases the chances of i more than destroying

one unit of the output of k does.

The basic insight behind the crucial line (5) in the proof is as follows. For a given εi,

the probability that i has a higher output than j is F (yij + εi) . Destroying one unit of the

output of j increases i ’s chance to win against j by f (yij + εi) . However, winning against

j is beneficial for i only if i simultaneously wins against all other contestants, including

k. The probability to win against k is F (yik + εi) . Thus, for a given εi, the marginal

benefit of destroying one unit of the output of j is proportional to f (yij + εi)F (yik + εi).

Similarly, the marginal benefit of destroying one unit of the output of k is proportional

to f (yik + εi)F (yij + εi) . These two terms differ for two reasons. First, since pj > pk,

E (qj) > E (qk) and yij < yik; hence i is more likely to win against k than against j :

F (yik + εi) is greater than F (yij + εi). Second, f (yij + εi) may differ from f (yik + εi) .

If the density is decreasing, f (yij + εi) is greater than f (yik + εi) , and the second effect

8



goes in the same direction as the first. If the density is increasing, the effects go in opposite

directions. However, the assumption that F is log-concave ensures that the density is not

increasing too rapidly, and thus the first effect dominates.

In any pure strategy equilibrium, the following first order condition for optimal sabo-

tage must hold for all i and all j 6= i :

∂pi
∂sij

w − ∂ci
∂sij
≤ 0, sij ≥ 0, sij

µ
∂pi
∂sij

w − ∂ci
∂sij

¶
= 0.

Using Lemma 1, one can show from this first order condition that, in equilibrium, a

contestant will sabotage a rival with a higher expected output more strongly.

Proposition 1 In any equilibrium, if E (qj) > E (qk) , then sij ≥ sik (with strict inequal-

ity unless sij = sik = 0) for all i 6= j, k.

Proof. See appendix A.1.

The intuition for this result is from Lemma 1: if j has a higher expected output than

k, and hence a higher chance of winning, then for all the other contestants i 6= j, k the

incentives to sabotage j are higher.

It is interesting to compare Proposition 1 with the model of Chen (2003), where the

contestant with the highest expected output is not necessarily sabotaged most (see Chen

2003, p. 132). The difference between the findings is due to the different assumptions

on how sabotage diminishes the output of the victim: in the present paper, output is

additively separable in sabotage (see equation (2)), which is not the case in Chen (2003).

Proposition 1 has interesting implications for the question of whether the more able

contestants have greater chances of winning in equilibrium. Consider only the decisions of

contestants j and k and assume that (disregarding the decisions of the other contestants)

contestant j has a higher expected output and a hence better chance of winning. Corollary

1 below states a property of the reaction of the other contestants to such a situation: they

will destroy more of the output of j than of k.

9



Corollary 1 In any equilibrium, if

φ (xj)− ψ (skj) ≥ φ (xk)− ψ (sjk) , (6)

then X
i6=j,k

ψ (sij) ≥
X
i6=j,k

ψ (sik) , (7)

but nevertheless E (qj) ≥ E (qk) .

Proof. See appendix A.2.

Corollary 1 shows that the sabotage activities have an equalizing effect on the winning

probabilities.7 If, looking only at the decisions of j and k, player j has a higher expected

output, then the other players will destroy more of the output of j than of k. However,

Corollary 1 also shows that j still has a weakly higher expected output than k - thus,

sabotage of the other players i 6= j, k does not reverse the initial inequality.

Proposition 1 and Corollary 1 hold for all equilibria, even if they involve corner so-

lutions. Additional results can be gained by focussing on interior equilibria, where all

decision variables are strictly positive. Given the complexity of the problem, it is very

difficult to derive general conditions for the existence of interior equilibria. Therefore,

in what follows I can do no better than to simply assume the existence of an interior

equilibrium.8 However, Section 6 below I also provide, for a simplified example, necessary

and sufficient conditions for an interior equilbrium.

Assuming an interior equilibrium, one can show that if (6) holds with strict inequality,

then (7) holds with strict inequality, too. However, in case of corner solutions it may

happen that neither j nor k are sabotaged at all by the remaining contestants.

7This does not mean that promotion chances are necessarily more equal in a model with sabotage
than in a model where sabotage is exogenously fixed at zero. Consider the case where the productive
abilities of the players are equal, but their sabotage activities differ immensely.

8Most of the literature does this, e.g. Chen (2003).
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Clearly, the effect described in Corollary 1 hinges on the presence of at least three

players. It is most pronounced in the following special case. Suppose that output is linear

in sabotage:

qi = φ (xi)−
X
j 6=i

sji + εi. (8)

Further, suppose that the cost function depends only on the sum of the sabotage activities

- not on the distribution of this sum over one’s rivals:

ci

Ã
xi,
X
j 6=i

sji

!
(9)

where ci : R2 → R is an increasing and convex function. For future reference, I will call

the cost function in (9) total-sabotage-dependend.9

Proposition 2 Suppose that output is linear in sabotage as in (8) and that the cost

function is total-sabotage-dependend as in (9). In an interior equilibrium, every contestant

i = 1, ..., n wins with the same probability pi = 1/n.

Proof. In an interior equilibrium i sabotages all his rivals. If pj > pk, it follows from

Lemma 1 and ψ0 (sij) = 1 that ∂pi
∂sij

> ∂pi
∂sik

. Now i can decrease sik by a small amount

and, at the same time, increase sij by the same amount. By (9), his cost is unchanged,

but his probability of winning is higher than before, so the initial situation cannot have

been an equilibrium. Therefore, we must have pj = pk for all j, k 6= i in an equilibrium

where i sabotages all his rivals. If all contestants sabotage all their rivals, it follows that

p1 = ... = pn = 1/n.

Proposition 2 says that, in an interior equilibrium, who will win the tournament is

a matter of pure chance.10 Those contestants who produce more are sabotaged more

9See Auriol et al. (2002) for a discussion about different specifications of the cost function in a related
setting.
10One can make Proposition 2 a bit stronger: we do not have to restrict attention to interior equilibria

where literally all contestants sabotage all their rivals. I show in appendix A.3 that, if at least one of
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strongly. As mentioned in the introduction, this is in line with some recent results from

psychology on mobbing. The intuition behind Proposition 2 is simple: if (say) contestant

1 had a higher probability of winning than contestant 2, then it would be better for

contestant 3 to increase s31 by a small amount and, at the same time, decrease s32 by

the same amount. By Lemma 1, this would increase his chance of getting the promotion.

And if the cost function is total-sabotage-dependend, it does not change his costs.

4 Participation

So far it was assumed that any player can have a completely different cost function. While

this shows the generality of the results, the drawback is that there is no straightforward

way to compare the abilities of different players. In order to compare the incentives to

participate in a tournament, it is helpful to have some more specific assumptions on the

cost functions. Thus, consider the following special case of a total-sabotage-dependend

cost function:

ci
¡
xi, si1, ..., si(i−1), si(i+1), ..., sin

¢
= αiC (xi) + βiS

ÃX
j 6=i

sij

!
(10)

where C and S are strictly increasing and strictly convex functions. Here, each contestant

is characterized by two parameters. A high value of αi means that i has high costs of

working productive and hence is of low productive ability. Similarly, a high value of βi

means that i has high costs of sabotaging and hence has a low ability to sabotage.

Suppose that output is linear in sabotage (8) and the cost functions are given by (10).

the following conditions holds in an equilibrium, then pi = 1/n for all i = 1, ..., n in this equilibrium:

1. There are at least two contestants who sabotage all their rivals.

2. Each contestant is sabotaged by at least two rivals.

3. The contestants can be renumbered so that si(i+1) > 0 for i = 1, .., n− 1 and sn1 > 0.
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Then, in an interior equilibrium the first order conditions reduce to

wgφ0 (xi) = αiC
0 (xi) (11)

wg

(n− 1) = βiS
0
ÃX

j 6=i
sij

!
,

where

g :=
∂pi
∂xi

¯̄
yij=0∀j 6=i = (n− 1)

Z ∞

−∞
F (ε)n−2 f (ε)2 dε.

Due to the additive separability of the cost functions and the production function, xi

does not depend on βi, and
P

j 6=i sij does not depend on αi. As the following proposition

shows, i will be sabotaged more than j if and only if i has a higher productive ability.

Proposition 3 Assume that output is linear in sabotage as in (8) and the cost functions

are total-sabotage-dependend as in (10). In an interior equilibrium, a player who has a

higher productive ability is sabotaged more.

Proof. By Proposition 2, pi = pj = 1/n in an interior equilibrium, and hence E (qi) =

E (qj) or X
k 6=i

ski −
X
k 6=j

skj = φ (xi)− φ (xj) . (12)

From (11),
dxi
dαi

=
C 0 (xi)

wgφ00 (xi)− αiC 00 (xi)
< 0. (13)

Suppose i has a higher productive ability, i. e. a lower cost parameter αi < αj. From

(13), we have xi > xj; together with (12) this implies that
P

k 6=i ski >
P

k 6=j skj.

Proposition 3 is closely related to Theorem 1 in Chen (2003). In fact, if all players

have the same ability in sabotage, the results are identical (see Corollary 1 in Chen 2003).

However, Proposition 3 says that a player will be sabotaged more heavily if he has a

higher absolute ability in production - independent of the abilities to sabotage - whereas

in Chen (2003), a player is subject to more total attack if he has a higher relative ability
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in production.

In an interior equilibrium, the probability of winning is independent of the individual

cost parameters. Thus, equilibrium utilities differ only because the contestants incur

different costs. A higher cost parameter αi has two effects. First, the direct effect that,

for any given effort, the associated costs are higher. Second, the indirect effect that a

player with a higher αi chooses a lower effort, which ceteribus paribus leads to lower

costs. Which of the effects dominates depends on the cost function and on the production

function. If the cost function C (·) is very convex, or the production function φ (·) very
concave, then a change in αi has only a small effect on the effort chosen, and thus the

first effect dominates. Proposition 4 makes this precise. Define

ρ (x) :=
C 0 (x)
φ0 (x)

.

Proposition 4 In an interior equilibrium, utility is decreasing in productive ability if

C (xi)

C 0 (xi)
<

ρ (xi)

ρ0 (xi)
; (14)

utility is decreasing in sabotage ability if the cost-of-sabotage-function S (·) is strictly log-
concave.

Proof. See appendix A.4.

To illustrate, consider the case where φ (x) = x. Then any log-concave cost function

(for example the class of functions C (x) = xη, where η is a parameter) implies that a

higher productive ability leads to lower equilibrium utility. On the other hand, if C (x) =

exp (x) , the two effects exactly offset each other and equilibrium utility is independent of

αi. Finally, if C (x) = exp (exp (x)), equilibrium utility is increasing in αi.

Propositions 3 and 4 indicate that the firm may have problems retaining the more

productive contestants, since they are victims of more sabotage and may have a lower
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equilibrium utility from participating in the tournament. Of course, the principal can

always induce participation by all types of agents by offering a fixed payment for par-

ticipation. In that case, the contestants of lower ability would have a rent, while the

participation constraint of the higher ability contestants are binding.

5 Easy victims

Some contestants may be easier to sabotage than others. This can be due to personal

differences between the contestants. People differ in their ability to cope with a hostile

environment. Or it may be due to different positions or experience within the firm.

For example, workers who are relatively new depend more strongly on the help of other

workers, if only to get information about the job and the firm. They are therefore more

vulnerable to sabotage.

To capture this is in the model, I will for simplicity return to a specification where

output is linear in the sabotage activities, with the additional twist that some contestants

are easier to sabotage than others:

qi = φ (xi)− bi
X
j 6=i

sji + εi (15)

where a high value of bi means that i is an easy victim.

Proposition 5 Suppose production functions are given by (15) and the cost functions are

total-sabotage-dependent as in (9). In an interior equilibrium, contestant j has a higher

chance of winning than contestant k if and only if bj < bk.

Proof. See appendix A.5.

Proposition 5 says that contestants who are easy to sabotage will have lower chances

of winning in an interior equilibrium. The tournament will select only on the basis of the

ability to cope with sabotage. If b1 < b2 < ... < bn, then p1 > ... > pn. This may or may
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not be in the interest of the firm. In particular, there is no reason to assume that low

vulnerability to sabotage on the one hand, and ability to work productively on the other,

always go together.

By Proposition 5, if two contestants behave equally in an equilibrium, the one who is

an easier victim will be sabotaged more heavily. As mentioned in the introduction, this

fits with some results from the psychological literature on mobbing or bullying. Basically,

within the model, there are two reasons why a contestant might become a victim: being

an overachiever and therefore a dangerous rival, and being an easy victim.

6 Existence of interior equilibria: an example

Existence of interior equilibria chances is not automatically ensured. There can be two

types of corner solutions. First, there might be no sabotage at all in equilibrium. This

is especially likely when the marginal cost of the first unit of sabotage is high, and if

the number of contestants is high (see Konrad (2000)). The reason is that sabotage

involves a positive externality to all the contestants except the one who is sabotaged.

This externality is more important when there are many contestants, and sabotage is

therefore less attractive.

However, even if there is some sabotage in equilibrium, there can still be corner so-

lutions of a second type. For example, if there is one contestant (“she”) who is much

better than all her rivals, she will have a higher chance of winning in the equilibrium

even though only she is sabotaged by all the other contestants. In such a situation, it

doesn’t pay for the other contestants to sabotage anyone except her, so they direct all

sabotage against her. Intuitively, one would expect corner solutions of this type if the

contestants are very different. Given the complexity of the problem, it is very difficult to

derive general conditions for existence of interior equilibria.11 However, some important

11Thus, Chen (2003) assumes existence of interior equilibria.
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lessons can be learned by considering the following example.

Example 1 Output is linear in sabotage and productive effort

qi = xi −
X
j 6=i

sji + εi.

The cost functions are given by

ci

Ã
xi,
X
k 6=i

sik

!
=

γi
2

⎛⎝x2i +

ÃX
k 6=i

sik

!2⎞⎠ .

There are two types of contestants: l low cost contestants with γi = 1, and h = n− l high

cost contestants with γi = γ > 1.

In this example, the contestants differ only in one parameter. This parameter γ is

a natural way to measure how different the contestants are. Higher values of γ imply

greater differences between contestants. Further, there will always be some sabotage in

equilibrium, since a contestant who does not sabotage at all would have zero marginal

cost of sabotaging.

Proposition 6 Consider example 1.

a) A necessary condition for the existence of an interior equilibrium is

γ ≤

⎧⎪⎨⎪⎩ 1 + n
l(n−2) , if l ≥ 2,

1 + n(n−2)
n2−2n+2 , if l = 1.

(16)

b) If, in addition, the inequality

max
z

µ
∂2

∂z2

Z ∞

−∞
F (z + ε)n−1 f (ε) dε

¶
<

(n− 1)2
n2 − 2n+ 2

1

w
(17)

17



holds, then existence of interior equilibria is ensured.

Proof. See appendix A.6.

Inequality (17) serves to rule out problems related to possible non - concavities of the

objective function.12 To give an example, if the error terms follow a Gumbel distribution,

it can be shown that inequality (17) holds if the variance of the error terms is high enough.

While Proposition 6 confirms the intuition that there will not be an interior equilibrium

if the contestants are very different, it also shows that contestants can differ substantially

and nevertheless have the same chance of winning in equilibrium. For example, if there

are two low cost contestants and one high cost contestant, then interior equilibria exist if

γ ≤ 5/2. The high cost contestant can have a cost function which is more than twice those
of the low cost contestants, and still have the same chance of winning in the equilibrium!

Proposition 6 implies that, if the number of contestants is large, corner solutions are

more likely. This is as should be expected. With many contestants sabotage is less

attractive, and it therefore plays a less important role. So the range of the parameter γ

for which sabotage completely equalizes promotion chances gets smaller.

Proposition 6 also shows that the case of a single low cost contestant (l = 1) is different

from the other cases (l ≥ 2). The reason for this is as follows. If l ≥ 2, and the contestants
are very different, then there will be a corner solution where no one will sabotage a high

cost contestant. On the other hand, if l = 1, the single low cost contestant will always

sabotage high cost contestants, because he has no other rivals. Here, in a corner solutions

all the high cost contestants sabotage only the single low cost contestant.

The equilibrium is not unique. In fact, there is a continuum of interior equilibria, where

only the total amount of sabotage that contestant i = 1, ..., n chooses (
P

j 6=i sij), and the

12This problem is common in tournament models. See, among others, Lazear and Rosen (1981), p.
845 fn. 2; Nalebuff and Stiglitz (1983), p. 29; Lazear (1989), p. 565 fn. 3; Kräkel (2000), p. 398 fn. 17;
McLaughlin (1988), p. 236 and p. 241.
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total amount of sabotage that contestant i suffers (
P

j 6=i sji) is determined. This can be

illustrated as follows. Suppose that every contestant i = 1, ..., n− 1 sabotages contestant
i+1 one unit more, and contestant n sabotages 1 more. In addition, i = 2, ..., n sabotages

i− 1 one unit less and contestant 1 sabotages contestant n less. Then the total amount
of sabotage against any contestant is unchanged, and so are all the marginal benefits of

working and sabotaging. Further, the total amount of sabotage chosen by a contestant

is the same as before, and so are the marginal costs. Therefore, if the previous situation

was an equilibrium, then the new situation is an equilibrium, too. Basically, the game is

a coordination game where there are many ways to coordinate.

7 Conclusion

This paper studied sabotage in selection tournaments with heterogeneous contestants.

Sabotage can lead to equalization of promotion chances, even if the contestants differ a lot

in their abilities. Furthermore, it may happen that only the least productive individuals

participate. Therefore, using a tournament for selection can result in selecting (with

probability one) someone who is among the least productive.

One might think that a sequential elimination tournament as studied in Rosen (1986)

solves the problem that sabotage equalizes promotion chances. In such a tournament,

contestants are paired in each round. One winner emerges from each pair and moves on

to the next round. So in any given round, each contestant has only one rival, and it

might be thought that the equalizing effect of sabotage is not at work in such a sequential

elimination tournament. But contestants do not only care about moving on to the next

round, they are also interested in meeting weak rivals in the coming rounds. This gives

them an incentive to interfere with the other paired contests in any given round. Consider,

for example, the incentives of the semi-finalists. By helping the weaker contestant in the

semi-final contest in which one is not directly involved, and by sabotaging the stronger
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one, one increases the probability of meeting a weaker rival in the final round. Therefore,

there is some equalizing effect of sabotage at work in a sequential elimination tournament,

too.

Lazear (1989, p. 557) has argued that contestants can be separated with the right

design of promotion tracks and sabotage can thus be made more difficult and hence less

important. Lazear’s point is that separating contestants is good for the firm because

sabotage decreases the valuable output of the contestants. The results of this paper show

that, in addition, separating contestants also helps to make better promotion decisions.

People who do not work with each other closely and regularly are less likely to know each

other well, and so they cannot direct sabotage against their strongest rivals. Therefore,

the effect that sabotage equalizes promotion chances does not apply.

The results are relevant for other types of contest as well. For example, in rent seeking

contests, yardstick competition between regulated firms, or political election contests,

sabotage can equalize the probabilities of winning the contest. In rent-seeking contests, the

heterogeneity between contestants often takes the form of different valuations of winning

the contest. Applied to this setting, the results of the paper imply that there is no

guarantee that the contestants with the highest valuations will win most often.

A related problem of tournaments in the presence of sabotage is that sabotage re-

duces the incentives for productivity-enhancing investments in human capital. Since the

contestants know that the better they are, the more they will be sabotaged, they have

little incentive to invest in their human capital. This adds to the potential severity of the

problems described.

Further research should investigate the case of multiple prizes. In addition, it would

be interesting to extend the analysis to dynamic tournaments and to tournaments with

multiple rounds.

20



A Appendix

A.1 Proof of Proposition 1

The proof uses the following Lemmas 2 and 3 which state properties of functions that

satisfy a symmetry property like the cost functions.

Lemma 2 Let h : R2 → R be a convex function of two variables and suppose that

h (x, y) = h (y, x) for all x and y. Then y ≥ x implies h2 (x, y) ≥ h1 (x, y) , where hi

denotes the partial derivative with respect to the i− th argument.

Proof. A convex function is underestimated by a linear approximation, hence

h (y, x) ≥ h (x, y) + h1 (x, y) (y − x) + h2 (x, y) (x− y) .

Since h (x, y) = h (y, x), we have

0 ≥ (h1 (x, y)− h2 (x, y)) (y − x)

If y > x, it follows that h2 (x, y) ≥ h1 (x, y) .

Now consider the case y = x. Since h (x, y) = h (y, x) for all x and y, we have h1 (x, x) =

h2 (x, x) . Thus y = x implies h1 (x, y) = h2 (x, y) .

Using Lemma 2, the following fact about the cost functions is established.

Lemma 3 If
1

ψ0 (sij)
∂ci
∂sij

>
1

ψ0 (sik)
∂ci
∂sik

,

then sij > sik.

Proof. Suppose that sik ≥ sij. Since the cost function is convex and symmetric in the

sabotage activities, Lemma 2 implies that ∂ci
∂sik
≥ ∂ci

∂sij
. Since ψ is concave, we also have
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ψ0 (sik) ≤ ψ0 (sij) . This shows that

sik ≥ sij =⇒ 1

ψ0 (sik)
∂ci
∂sik

≥ 1

ψ0 (sij)
∂ci
∂sij

.

Equivalently,
1

ψ0 (sij)
∂ci
∂sij

>
1

ψ0 (sik)
∂ci
∂sik

=⇒ sij > sik.

Lemma 3 says that, if i sabotages k more than i sabotages j, then i’s cost of destroying

an additional unit of k ’s output are higher than i’s cost of destroying an additional unit

of j ’s output.

Proof of Proposition 1. E (qj) > E (qk) implies pj > pk. Thus, by Lemma 1,

1

ψ0 (sij)
∂pi
∂sij

>
1

ψ0 (sik)
∂pi
∂sik

∀i 6= j, k. (18)

Next I argue that inequality (18) implies sij ≥ sik. This follows directly from the non-

negativity constraints if sik = 0. Thus, suppose sik > 0. Then the following first order

condition has to hold:

∂pi
∂sik

w =
∂ci
∂sik

, (19)

∂pi
∂sij

w ≤ ∂ci
∂sij

. (20)

Using (20), (18), and (19) (in that order),

1

ψ0 (sij)
∂ci
∂sij

≥ 1

ψ0 (sij)
∂pi
∂sij

w >
1

ψ0 (sik)
∂pi
∂sik

w =
1

ψ0 (sik)
∂ci
∂sik

.

By Lemma 3, this implies that sij > sik.
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A.2 Proof of Corollary 1

Line (7) is derived by contradiction. Suppose that (6) holds but
P

i6=j,k ψ (sij) <
P

i6=j,k ψ (sik) .

Then E (qj) > E (qk) . By Proposition 1, this implies sij ≥ sik for all i 6= j, k. Using the

fact that ψ is increasing, and summing over i, gives
P

i6=j,k ψ (sij) ≥
P

i6=j,k ψ (sik) , con-

tradiction.

It remains to show that E (qj) ≥ E (qk) . To see this, suppose to the contrary that

E (qj) < E (qk) . By Proposition 1, it follows that sij ≤ sik for all i 6= j, k, henceP
i6=j,k ψ (sij) ≤

P
i 6=j,k ψ (sik) . Together with inequality (7), this implies

P
i6=j,k ψ (sij) =P

i6=j,k ψ (sik) . By (6), we have E (qj) ≥ E (qk) , contradiction.

A.3 Proof of stronger version of Proposition 2

1) If there are two contestants i, j who sabotage all their rivals, then it follows that for

all k 6= i, j: pk = pi (since j sabotages both k and i) and pk = pj (since i sabotages both

k and j). Therefore we have pk = pi = pj = 1/n.

2) Suppose in an equilibrium every contestant is sabotaged by two rivals. That is, we

have ∀i∃ji, ki : i 6= ji 6= ki 6= i, s(ji)i > 0 and s(ki)i > 0. Then pi ≥ pl for all l 6= ji since i

is sabotaged by ji. Also, since i is sabotaged by ki, we have pi ≥ pl for all l 6= ki. Putting

things together, pi ≥ pl for all l 6= i. Since this holds for all i, we have pi = 1/n for all

i = 1, ..., n.

3) If, in an equilibrium, we have s(k−1)k > 0, then it follows that pk ≥ pk+1, since

k− 1 sabotages k. Therefore, if the contestants can be renumbered so that si(i+1) > 0 for
i = 1, .., n − 1 and sn1 > 0, we have p2 ≥ p3 ≥ ... ≥ pn ≥ p1 ≥ p2 or pi = 1/n for all

i = 1, ..., n.

A.4 Proof of Proposition 4

Clearly, ρ0 (x) > 0 and hence an inverse function ρ−1 exists and is increasing. From the

first order condition (11), xi = ρ−1 (wg/αi) . Thus, in equilibrium i ’s cost of working
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productively is αiC (ρ
−1 (wg/αi)) . Differentiating,

∂

∂αi

µ
αiC

µ
ρ−1

µ
wg

αi

¶¶¶
=

= C

µ
ρ−1

µ
wg

αi

¶¶
− αiC

0
µ
ρ−1

µ
wg

αi

¶¶
1

ρ0
³
ρ−1

³
wg
αi

´´wg
α2i
=

= C (xi)− C 0 (xi)
ρ (xi)

ρ0 (xi)
.

If (14) holds, equilibrium costs are decreasing in αi. Thus, higher ability (lower αi) leads

to higher costs and thus lower utility.

Similarly, i ’s cost of sabotage is βiS (S
0−1 (wg/ (βi (n− 1)))) . Differentiating,

∂

∂βi

µ
βiS

µ
S0−1

µ
wg

βi (n− 1)
¶¶¶

=

= S

ÃX
j 6=i

sij

!
− βiS

0
ÃX

j 6=i
sij

!
1

S00
³P

j 6=i sij
´ wg

β2i (n− 1)
=

= S

ÃX
j 6=i

sij

!
−
³
S0
³P

j 6=i sij
´´2

S00
³P

j 6=i sij
´ .

This is strictly negative if S (·) is strictly log-concave:

d2

dt2
(lnS (t)) ≡ S (t)S00 (t)− (S0 (t))2

(S (t))2
< 0.

Thus, a higher ability to sabotage (lower βi) leads to higher costs and hence lower utility.

A.5 Proof of Proposition 5

In an interior equilibrium it must be true that ∂pi
∂sij

w = ∂ci
∂sij

and ∂pi
∂sik

w = ∂ci
∂sik

. By (9),

∂ci
∂sij

= ∂ci
∂sik

, hence ∂pi
∂sij

= ∂pi
∂sik

or

bj

Z ∞

−∞
f (yij + ε) [Πl 6=i,jF (yil + ε)] f (ε) dε = bk

Z ∞

−∞
f (yik + ε) [Πl 6=i,kF (yil + ε)] f (ε) dε.
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If bj < bk this implies

Z ∞

−∞
f (yij + ε) [Πl 6=i,jF (yil + ε)] f (ε) dε >

Z ∞

−∞
f (yik + ε) [Πl 6=i,kF (yil + ε)] f (ε) dε

which, by the same reasoning as in the proof of Lemma 1, implies pj > pk. Conversely, if

bj ≥ bk, we get pj ≤ pk..

A.6 Proof of Proposition 6

A.6.1 Part a)

The proof is by contradiction. Suppose there is an interior equilibrium. By Proposition

2, pi = 1/n for all i = 1, ..., n. Hence yij = 0 for all i and j 6= i. Denote the set of all low

cost contestants by L, and the set of all high cost contestants by H. The following first

order conditions have to hold in the supposed equilibrium:

xi = wg for all i ∈ L, (21)

xi =
wg

γ
for all i ∈ H, (22)X

k 6=i
sik =

wg

n− 1 for all i ∈ L, (23)

X
k 6=i

sik =
wg

(n− 1) γ for all i ∈ H. (24)

Further, from pi = pj = 1/n we get

xi −
X
k 6=i

ski = xj −
X
k 6=j

skj for all i and j. (25)

Equations (21) and (25) imply that
P

k 6=i ski =
P

k 6=j skj for all i, j ∈ L. That is, all low

cost types endure the same amount of sabotage. Call this amount Sl :

X
k 6=i

ski =
X
k 6=j

skj =: Sl for all i, j ∈ L. (26)
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In the same way it follows from equations (22) and (25) that all high cost types endure

the same amount of sabotage:

X
k 6=i

ski =
X
k 6=j

skj =: Sh for i, j ∈ H. (27)

Now let us calculate Sl and Sh. Summing over equations (23) and (24) we find that

the total amount of sabotage equals

nX
i=1

X
j 6=i

sji = l
wg

n− 1 + h
wg

γ (n− 1) = lSl + hSh, (28)

where the second equality follows from equations (26) and (27). From equations (21) to

(27) we get

wg − Sl =
wg

γ
− Sh. (29)

Combining equations (28) and (29) and using l + h = n, we finally get

Sh = wg
n− l (n− 2) (γ − 1)

γn (n− 1) , (30)

Sl = wg
n+ (γ − 1) (l + h (n− 1))

γn (n− 1) . (31)

If γ > 1 + n
l(n−2) , equation (30) implies Sh < 0, a contradiction. This completes the

proof for the case l > 1.

If there is only one low cost contestant (l = 1), this contestant directs all his sabotage

against high cost contestant. We can calculate the total amount of sabotage that high

cost contestants inflict on high cost contestants as the difference between the total amount

of sabotage suffered by high cost contestants, hSh, and the amount of sabotage chosen by

the low cost contestant, wg/ (n− 1) :
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X
i∈H

X
j∈H,j 6=i

sij = hSh − wg

n− 1 = wg
n (n− 2)− (γ − 1) (n2 − 2n+ 2)

γn (n− 1) (32)

This is non-negative if and only if γ ≤ 1 + n(n−2)
n2−2n+2 . This completes the proof.

A.6.2 Part b)

This section develops the sufficient condition for existence of interior equilibria in example

1. Existence is proved by direct construction of such equilibria. I focus on symmetric

equilibria, in which

sik =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

sll

slh

shl

shh

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
, if i ∈

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

L

L

H

H

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
and j ∈

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

L

H

L

H

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
.

Let us first derive candidates for symmetric interior equilibria, and check afterwards that

they are really equilibria. In an interior equilibrium, the effort choices xi have to be given

by equations (21) and (22). Further, a contestant i ∈ H sabotages l low cost contestants

and h − 1 high cost contestants. The total amount of sabotage that a contestant i ∈ H

chooses in a symmetric equilibrium is therefore

X
j

sij = lshl + (h− 1) shh = wg

γ (n− 1) for all i ∈ H. (33)

The second equality follows from equation (24). Similarly

X
j

sij = (l − 1) sll + hslh =
wg

(n− 1) for all i ∈ L. (34)
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The total amount of sabotage suffered by contestant i is

X
j

sji = lslh + (h− 1) shh = Sh if i ∈ H, (35)X
j

sji = (l − 1) sll + hshl = Sl if i ∈ L, (36)

where Sh and Sl are given by equations (30) and (31). Equations (33) to (36) are four

equations in the four unknowns sll, slh, shl and sll. However, if l ≥ 2 and h ≥ 2 (the

remaining cases will be considered later), equations (33) to (36) are linearly dependent.

Using slh as a free variable, equations (33) to (36) can be solved to get

sll =
wg

(n− 1) (l − 1) −
n− l

(l − 1)slh, (37)

shh = wg
n− (γ − 1) l (n− 2)
γn (n− 1) (n− l − 1) −

lslh
(n− l − 1) , (38)

shl =
(n− 2) (γ − 1)wg

(n− 1) γn + slh. (39)

If the condition (16) given in Proposition 6 a) is satisfied, and

slh ∈
∙
0,min

½
wg

(n− 1) (n− l)
, wg

n− (γ − 1) l (n− 2)
γn (n− 1) l

¾¸
, (40)

then all the variables given in equations (37) to (40) are non-negative. Moreover, note

that condition (16) implies that (γ − 1) l (n− 2) ≤ n, and thus the interval in line (40) is

not empty.

In what follows, I show that, if the conditions given in Proposition 6 are satisfied, then

there exists a continuum of interior equilibria given by (21), (22), and (37) to (40).

Consider the maximization problem of contestant i, given that the other contestants

behave according to one of these candidate equilibria. Contestant i chooses

¡
xi, si1, ..., si(i−1), si(i+1), ..., sin

¢
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to maximize ui, subject to the non-negativity constraints xi ≥ 0 and sij ≥ 0 for all j 6= i.

As a first step, I will ignore for the moment the constraints and solve the unconstrained

problem. We will check afterwards that the constraints are satisfied.

The unconstrained problem certainly has a solution. This can be seen as follows. It

is never optimal to choose very high values of the decision variables. Therefore we can

consider the problem

maximize ui s.t. − k ≤ xi ≤ k and − k ≤ sij ≤ k for all j 6= i (41)

for some sufficiently high k ∈ R. By the Weierstrass theorem, a solution to problem (41)

exists. If k is high enough, the solution to problem (41) also solves the unconstrained

problem.

The following lemma allows the n-dimensional optimization problem to be reduced to

a one-dimensional one:

Lemma 4 Let l ≥ 2 and h ≥ 2. Suppose all contestants except i behave symmetrically
according to equations (21), (22), and (37) to (40). In the optimum of the unconstrained

optimization problem of contestant i, the following conditions have to hold.

a) Contestant i sabotages all his low cost rivals equally:

sij = sik =: sil for all j, k ∈ L, j, k 6= i,

and i also sabotages all his high cost rivals equally:

sij = sik =: sih for all j, k ∈ H, j, k 6= i.

b) Contestant i sabotages his high cost and his low cost rivals so that they have the same

chance of winning:
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wg − (l − 2) sll − hshl − sil =
wg
γ
− (l − 1) slh − (h− 1) shh − sih, if i ∈ L, and

wg − (l − 1) sll − (h− 1) shl − sil =
wg
γ
− lslh − (h− 2) shh − sih, if i ∈ H.

c) All rivals of i have the same chance of winning: yij = yik for all j, k.

d)

xi =

⎧⎪⎨⎪⎩ (n− 1) ((l − 1) sil + hsih) , if i ∈ L,

(n− 1) (lsil + (h− 1) sih) , if i ∈ H.

Proof. a) Suppose there are j, k ∈ L (j, k 6= i) such that sij > sik. Since j and k are

treated in the same way by all other contestants, and choose the same xj = xk = wg, this

implies yij > yik. Now contestant i could decrease sij a little and increase sik by the same

amount. By Lemma 1, this increases pi, while the costs of contestant i are unchanged.

Therefore, it cannot be optimal to choose sij > sik.

The case j, k ∈ H and part b) are proved in the same way as a). Part c) is obvious

from a) and b).

d) It follows from equation (3) that, in Example 1,
P

j 6=i
∂pi
∂sij

= ∂pi
∂xi

. Using c) we have

∂pi
∂sij

= ∂pi
∂sik

for all j, k 6= i and hence

(n− 1) ∂pi
∂sij

=
∂pi
∂xi

.

In the optimum of the unconstrained problem, the first order conditions w ∂pi
∂xi

= γixi

and w ∂pi
∂sij

= γi
P

j 6=i sij have to hold with equality. Putting things together, xi =

(n− 1)Pj 6=i sij. Finally, using a) completes the proof.

Lemma 4 establishes that, in the optimum of the unconstrained problem, certain

relations between si1, ..., sin and xi must hold. It allows us to express the unconstrained

problem as a one-dimensional problem, where the contestant i maximizes only over xi.

Denote the objective function in this reduced problem by ûi (xi) .

Take the case i ∈ L. Straightforward but tedious omitted calculations show that

ûi (xi) =

Z ∞

−∞
F (κ (xi − wg) + ε)n−1 f (ε) dεw − 1

2
κx2i , (42)
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where κ := 1 + 1
(n−1)2 .

Lemma 5 If inequality (17) holds, ûi (xi) given in (42) is strictly concave.

Proof. The objective function ûi (xi) is strictly concave for all xi if

max
xi

µ
∂2

∂x2i

Z ∞

−∞
F (κ (xi − wg) + ε)n−1 f (ε) dεw

¶
< κ. (43)

Note that

∂2

∂x2i

Z ∞

−∞
F (κ (xi − wg) + ε)n−1 f (ε) dε =

= κ2
µ

∂2

∂z2

Z ∞

−∞
F (z + ε)n−1 f (ε) dε

¶¯̄̄̄
z=κ(xi−wg)

.

Therefore, inequality (43) is equivalent to

max
z

µ
∂2

∂z2

Z ∞

−∞
F (z + ε)n−1 f (ε) dε

¶
<

w

κ
=

(n− 1)2
n2 − 2n+ 2w

which is inequality (17).

By Lemma 5, the solution to maxxi ûi (xi) can be found simply as the solution of the

first order condition dûi(xi)
dxi

= 0, which is, of course, unique and as given by equation (21):

xi = wg.

By using Lemma 4, we can verify that sij = sll for all j ∈ L (where sll is given in (37)),

and sij = slh for all j ∈ H, solve the unconstrained maximization problem of contestant

i. Again, these calculations are straightforward but tedious and hence omitted.

Finally, we have to check whether all decision variables satisfy the non-negativity

constraints. This is guaranteed by the condition γ ≤ 1+ n
l(n−2) . Therefore, we have shown

that no i ∈ L has an incentive to deviate from any of the symmetric candidate equilibria.

In the same way, it can be shown that no i ∈ H has an incentive to deviate. For an
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i ∈ H, the objective function of the reduced problem turns out to be

ûi (xi) =

Z ∞

−∞
F

µ
κ

µ
xi − wg

γ

¶
+ ε

¶n−1
f (ε) dεw − 1

2
γκx2i .

The condition ensuring concavity is

max
z

µ
∂2

∂z2

Z ∞

−∞
F (z + ε)n−1 f (ε) dε

¶
<

γ

κw
. (44)

The only difference from inequality (17) is the γ on the right hand side. Since γ > 1, if

(17) holds, so does (44). This completes the proof of Proposition 6 b) for the case that

l ≥ 2 and h ≥ 2.

The two remaining cases where there is only one low cost contestant, or only one high

cost contestant, can be dealt with similarly. In these cases there is a unique symmetric

equilibrium. If l = 1,

slh =
wg

(n− 1)2 ,

shl = wg
(2 + n (n− 2)) (γ − 1) + n

γn (n− 1)2 ,

shh = wg
n (n− 2)− (γ − 1) (n2 − 2n+ 2)

γn (n− 1)
1

h (h− 1) .

Of course, shh is non-negative if, and only if, the inequality given in Proposition 6a for the

case l = 1 holds. Also note that, as it must be the case, h (h− 1) shh =
P

i∈H
P

j∈H,j 6=i sij

where the right hand side is given in equation (32) above.
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Finally, if h = 1,

shl =
wg

γ (n− 1)2 ,

sll = wg
(2γ − 1) (n− 1)2 − 1
γn (n− 1)2 (n− 2) ,

slh = wg
n− (γ − 1) (n− 1) (n− 2)

γn (n− 1) (n− 1) .
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