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ABSTRACT 

On the Profitability of Collusion in Location Games  

by Steffen Huck, Vicki Knoblauch and Wieland Müller* 

In this note we take a first step towards the analysis of collusion in markets with spatial 
competition, focusing on the case of pure location choices. We find that collusion can 
only be profitable if a coalition contains more than half of all players. This result holds 
for location games played in k-dimensional Euclidean space as long as consumers are 
distributed via atomless density functions. For competition on the unit interval, unit 
circle, and unit square we also derive sufficient conditions for collusion to be profitable. 
 
 

ZUSAMMENFASSUNG 

Zur Profitabilität von Kollusion in Standortspielen  

Wir untersuchen Kollusion in Märkten, in denen die einzige strategische Variable der 
Akteure ihre Ortswahl ist. Für Spiele in k-dimensionalen Euklidischen Räumen mit 
massepunktfreien Verteilungen zeigen wir, dass Kollusion nur profitabel sein kann, 
wenn wenigstens die Hälfte aller Akteure kolludieren. Für Wettbewerb auf dem 
Einheitsintervall, dem Einheitskreis und dem Einheitsquadrat etablieren wir 
hinreichende Bedingungen für die Profitabilität von Kollusion. 

                                                 
*  We are indebted to Kai Konrad and an anonymous referee for many helpful comments.  



1 Introduction

While the economics literature has paid considerable attention to collusion in Bertrand and Cournot

markets, collusion with di¤erent sorts of competition has been largely neglected. In this note we

take a …rst step towards the analysis of collusion in pure location games as introduced by Hotelling

(1929). Such models capture competition in many important industries where price competition is

not feasible, for example, because of regulation (as in the case of pharmacies) or vertical restraints

(as in the case of book sellers).1

Our results are based on an approach that relies on rather weak rationality requirements.

In particular, we do not solve the non-cooperative game in which some of the players can reach

binding agreements. Instead, we simply require that players will only decide to collude if they can

guarantee themselves a payo¤ better than the payo¤ expected “behind the veil of ignorance”. The

reason for this approach is simple: it is as we will see extremely di¢cult to …nd Nash equilibria for

location games with collusion. We argue that in the absence of reliable non-cooperative solutions

players should be conservative and only collude if they know for sure that this will be pro…table.

Accordingly, our de…nition of pro…tability relies on a maxmin approach. Nevertheless, we include

one section on Nash equilibrium where we show that in some cases the non-cooperative solution

coincides with ours.

For linear and circular cities with a uniform distribution of consumers we …nd that collusion

is pro…table if and only if more than half of the players collude. Part of this result can be generalized

to location games in multi-dimensional spaces with arbitrary density functions: As long as the

distribution of consumers is atomless, collusion can only be pro…table if more than half of all …rms

cooperate. For competition on the unit interval, unit circle, and unit square we are also able to

derive su¢cient conditions for collusion to be pro…table. These results are of considerable relevance

for the topic of merger in markets with limited price competition.

The remainder of the paper is organized as follows. Section 2 introduces the general setup

and notation. Section 3 deals with the simplest one-dimensional cases, i.e., with linear and circular

cities with uniform consumer densities. Section 4 deals with the general multi–dimensional case

and establishes the main theorem of the paper. Section 5 adds su¢cient conditions for collusion

to be pro…table in games on the unit line, unit circle and unit square. Section 6 discusses Nash

equilibria for location games with collusion and Section 7 concludes.

1 They can also be applied to parliamentary elections that are not winner-take-all contests.
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2 Setup and de…nitions

Let ¡(O; P ) be a location game on O µ Rk with set of players P . Let pi 2 P be player i with

i = 1; 2; :::; n. Each player pi chooses a location xi 2 O. Consumers are distributed over O via a

Lebesgue measurable density function f with total mass 1. Let d(o; o0) be the distance between two

points o; o0 2 O. Each consumer is assumed to buy one unit of an unspeci…ed good from the player

closest to her. That is, a consumer at o 2 O buys from player pi only if d(o; xi) = minj d(o; xj).

If there are more than one closest player then the consumer is assumed to buy from each closest

player with the same probability. The price of the good is …xed at 1 and production costs are

normalized to zero.

Let Oi(¡) =
©

o j d(o; xi) = minj d(o; xj)
ª

. Player pi’s market share and pro…t is then given

by ¼i(¡) = 1
ri

R
Oi f(o)do where ri denotes the number of players located at xi. By assumption,P

i ¼i = 1. By virtue of this fact, we say that a player’s expected payo¤ before the game is actually

played (“behind the veil of ignorance”) is 1
n .2

Next we de…ne for integer m with 1 · m < n a set V (m) of reals with v 2 V (m) if there is

a collusion strategy for a set M µ P of m players that guarantees them a total payo¤ of at least

v. Let v(m) = sup V (m).3

De…nition 1 Collusion of a set of m players is pro…table if v(m) > m
n .

3 The one–dimensional case with uniform distributions

3.1 Linear cities

Let us …rst consider the standard textbook case of a “linear city” in which O = [0; 1] and in which

consumers are uniformly distributed. How can a set of m players guarantee itself a “high” payo¤?

Suppose m > n¡m, i.e., suppose that more than half of all …rms are in the set of colluding players.

In that case the colluding players can minimize the payo¤ obtainable to a …rm outside the coalition

by “evenly spreading out.” If f is uniform, the …rms in the set can guarantee themselves a payo¤

of 3m¡n
2m by locating themselves at (k; 3k; 5k; :::; 1 ¡ k) with k = 1

2m . To see this, note that in this

case a …rm outside the set M is indi¤erent between all possible locations as each location yields a

payo¤ of 1
2m . Furthermore, the worst thing that can happen to the players in M is that the …rms

2 For example, a player could expect that every assignment of players to equilibrium locations is equally likely.
3 In other words, v(m) is the maxmin payo¤ of the coalition.
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outside locate in di¤erent intervals, say, one between k and 3k, one between 3k and 5k and so on. If

they do, the players in M earn 1 ¡ n¡m
2m = 3m¡n

2m . And as this is larger than m
n for m > n

2 collusion

turns out to be pro…table. Thus m > n
2 is su¢cient for collusion to be pro…table in linear cities

with a uniform distribution of consumers. That it is also necessary in this case is stated in

Proposition 1 In linear cities with a uniform distribution of consumers collusion pays if and only

if m > n
2 .

Proof The argument above shows that m > n
2 ) v(m) > m

n . Next observe that, by de…nition,

v(m) + v(n ¡ m) · 1. (1)

Hence, m = n
2 ) m = n ¡ m ) v(m) · 1

2 = m
n , i.e., collusion is not pro…table if exactly half

of all …rms cooperate. The proof is completed by showing that collusion is also not pro…table

if m < n
2 : If 1 · m < n

2 , then n
2 < n ¡ m · n ¡ 1 so that by the …rst part of the proof

v(n ¡ m) > n¡m
n . Therefore, by (1) v(m) < 1 ¡ n¡m

n = m
n .¤

3.2 Circular cities

A further popular space to study location games on is a circle. In contrast to the line a set of m

colluding …rms can divide a circle into at most m arcs as opposed to m + 1 segments on the line.

Nevertheless, one obtains the identical condition for collusion to be pro…table.

Proposition 2 In circular cities with a uniform distribution of consumers collusion pays if and

only if m > n
2 .

Proof Position the colluding …rms such that there are m arcs with mass 1
m each. If m ¸ n

2 the

max i mum t ot al payo¤ t he n on –co l l u di ng …r ms ca n ob t ai n i s n¡m
2m , i.e., by using this strategy

the colluding …rms can ensure a payo¤ of 3m¡n
2m which is greater than m

n if m > n
2 . Using (1)

again completes the proof.¤

4 The multi–dimensional case

The following result is the main result of the paper. It generalizes one of the two insights gained

above, namely that collusion in location games can only be pro…table if more than half of all …rms

cooperate. This result holds for arbitrary bounded open subsets of Rk and for arbitrary bounded

atomless density functions.
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Theorem 1 Suppose consumers are distributed over a bounded open subset O µ Rk via a bounded

Lebesgue measurable density function f of total mass 1. For the n–player location game ¡(O; P ) it

is not pro…table for a set of m players to collude if m · n
2 .

Proof Suppose the m colluding players p1; p2; :::; pm locate at x1; x2; :::; xm 2 O, not necessarily

distinct.

Case 1. n ¡ m ¸ 2m. Then for each i, 1 · i · m, let pm+2i¡1 and pm+2i locate at xm+2i¡1

and xm+2i, two points " units apart on a line through xi, with xi between xm+2i¡1 and

xm+2i and " chosen as follows: Let B be a k–dimensional ball containing O and let A be

the k ¡ 1–dimensional volume of the k ¡ 1–dimensional disk formed by intersecting B with

a hyperplane through its center. Choose " such that " < 1
nA sup f and such that " is small

enough to guarantee x2m+i¡1; x2m+i 2 O for 1 · i · m. Let the rest of the non–colluding

players, p3m+1; p3m+2; :::; pn locate anywhere in O. Since the consumers won by pi, 1 · i · m,

lie between two hyperplanes " units apart, ¼i is at most "A sup f < 1
n . Hence, v(m) < m

n .

Case 2. m < n ¡ m < 2m. For 1 · i · m, de…ne the provisional market set Oi
prov = Oi(¡0)

with ¡0 = ¡(O; M), i.e., Oi
prov contains the points in O that are nearer to xi than to any other

xj 6= xi with both i; j · m. Accordingly, de…ne the provisional payo¤ ¼i
prov = ¼i(¡0). W.l.o.g.

assume that the sequence ¼1
prov; ¼2

prov; :::; ¼m
prov is non–decreasing. Now locate 3m ¡ n of the

non–colluding players at x1; x2; :::; x3m¡n and use the remaining 2n ¡ 4m players to bracket

x3m¡n+1; x3m¡n+2; :::; xm as in case 1, but do net yet choose ". Notice that (i) 3m ¡ n > 0;

(ii) 2n¡ 4m > 0; (iii) (3m ¡ n) + (2n¡ 4m) = n¡ m; and (iv) (3m ¡n) + (2n ¡4m)=2 = m.

Since the sequence ¼1
prov; ¼2

prov; :::; ¼m
prov is non–decreasing, the sum of the provisional payo¤s

¼1
prov + ¼2

prov + ::: + ¼3m¡n
prov is at most 3m¡n

m . Therefore, the …nal total payo¤s to the colluding

players
Pm

i=1 ¼i is at most 3m¡n
2m + "(n ¡ 2m)A sup f . Now notice that 3m¡n

2m < m
n . Hence, it

is possible to choose " such that m
n ¡

Pm
i=1 ¼i > 0. Collusion is not pro…table.

Case 3. m = n ¡ m. Nonpro…tability follows from (1) as in the proof of Proposition 1.¤

Thus, we know that collusion in location games (on bounded open subsets of Rk in which

consumers are distributed via atomless density functions) can only be pro…table if more than half

of all …rms join the set M.

Remark 1 Note that neither the closed interval [0; 1] nor a circle is an open subset of an Euclidean

space. However, the conclusion of the theorem holds for location games on these sets, since
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the techniques of the proof apply. More particularly, it is possible to bracket colluding players

as in the proofs. In fact, a colluding player at 0 or 1 in [0; 1] can be bracketed by a single

non–colluding player.

Remark 2 The theorem concerns location games de…ned using Euclidean distances, i.e., straight

line distances. Implicitly, this means that consumers may travel along routes that do not

belong to O. However, the theorem applies, for example, to a circle (or rather the conclusion

of the theorem holds—see Remark 1) even when the distance between two points is the length

of the arc joining them, since for a circle in R2 a consumer’s nearest player is the same whether

distance is de…ned as Euclidean distance or as arc length.

The theorem disallows atoms of consumers. The following example demonstrates the ne-

cessity of this assumption.

Example Consider the 5–player location game on [0; 1] with two consumers, one at 1
4 and one at

2
3 . Suppose p1 and p2 collude by locating at 1

4 and 2
3 respectively. Their worst total payo¤

occurs when p3 and p4 locate at 1
4 and p5 locates at 2

3 . The total payo¤ of p1 and p2 is then

1
3 + 1

2 = 5
6 which is greater than the veil of ignorance expected payo¤ of 2(2

5) = 4
5 . Collusion

is pro…table with m = 2 even though m < n
2 . As in the proof of Proposition 1, where it is

shown that the complement of a pro…table set of colluding players is unpro…table, collusion

is unpro…table for m = 3, even though in that case m > n
2 .¤

5 Su¢cient conditions for unit interval, unit circle, and unit square

The main theorem above showed that m > n
2 is necessary for collusion to be successful. In the

following we will establish su¢cient conditions for collusion to be pro…table in a location game

played on the unit interval, the unit circle, and the unit square. Notice that in each case the

solution prescribes that the colluding players behave according to the above identi…ed strategies,

i.e., they will evenly spread out making other players indi¤erent between locations.

Proposition 3 In linear cities, collusion pays if sup f
inf f < 2m

n .

Remark 3 Note that sup f= inf f ¸ 1. Thus, the condition in Proposition 3 ensures that m > n=2.
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Proof of Proposition 3 W.l.o.g. let x1 · x2 · ::: · xm be the set of locations occupied by the

colluding players chosen so thatZ x1

0
f(o)do =

1

2

Z x2

x1

f(o)do =
1

2

Z x3

x2

f(o)do = ::: =

Z 1

xm

f(o)do =
1

2m
:

If a non–colluding player locates to the left of x1 or to the right of xm, his payo¤ is at most

1
2m < 1

n . If a non–colluding player locates between xi and xi+1, his payo¤ is
R d

c f(o)do where

xi < c < d < xi+1 and d ¡ c = 1
2(xi+1 ¡ xi). ThenZ d

c
f(o)do · (d ¡ c) sup f

=
xi+1 ¡ xi

2
inf f

µ
sup f

inf f

¶
· 1

2

Z xi+1

xi

f(o)do

µ
sup f

inf f

¶
<

1

2m

µ
2m

n

¶
=

1

n
.

If a non–colluding player locates at xi, 1 · i · m, then he shares the market set Oi with pi.

By the argument above, the portion of Oi to the left of xi has consumer mass less than 1
n , as

does the portion of Oi to the right of xi. Therefore, the payo¤ to each non–colluding player

is less then ( 1
n + 1

n)=2 = 1
n . Since in all these cases the payo¤ to a non–colluding player is

less than 1
n ; the total payo¤ to the colluding players is more than 1 ¡ n¡m

n = m
n . Collusion is

pro…table.¤

The su¢cient condition in Proposition 3 is stronger than necessary. For instance, we used

as an assumption on f only that
supff(x):xi<x<xi+1g
infff(x):xi<x<xi+1g < 2m

n . This allows any amount of variation to

the left of x1 and to the right of xm and, if m is large, between x1 and xm.4

Proposition 4 In circular cities, collusion pays if m > n
2 and sup f

inf f < 2m
n .

Proof Analogous to the proofs of Propositions 2 and 3.¤
4 Moreover, the …rms located at x1 and xm could move further into the interior as the mass on the fringes has

only to be smaller than 1
n . Using this, one can increase the allowed variation between x1 and xm from 2m

n toh
2(m¡1)

n¡2

im¡1

> 2m
n . To see this, simply observe that the colluding players can position themselves so that the

remaining mass between x1 and xm, 1 ¡ 2
n , is equally distributed over m ¡ 1 intervals. The proof then goes through

with
supff(x):xi<x<xi+1g
infff(x):xi<x<xi+1g < 2(m¡1)

n¡2 . Therefore,
supff(x):x1<x<xmg
infff(x):x1<x<xmg can be as large as

h
2(m¡1)

n¡2

im¡1

.
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Finally, we look at location games played on the unit square with uniform consumer density.

Proposition 5 For the n–player location game on the square [0; 1] £ [0; 1] with consumers dis-

tributed uniformly, collusion is pro…table if there is a positive integer h with (2h + 1)2 ¡ h2 · m <

n < (2h + 1)2.

Proof Suppose m; n and h satisfy the hypotheses of the theorem. Consider the set C of points in

[0; 1]£ [0; 1] of the form
³

i¡1=2
2h+1 ; j¡1=2

2h+1

´
where i and j are integers, 1 · i; j · 2h+1, and i and

j are not both even. There are exactly (2h + 1)2 ¡ h2 points in C. Locate the m colluding

players so that there is at least one of them at each point of C (recall that m ¸ (2h+1)2¡h2).

In the course of proving that an in…nite square lattice is a Nash equilibrium for the location

game in the plane with consumers distributed uniformly, Knoblauch (2002) proved that in

the location game on [0; 1] £ [0; 1], any player with at least one opponent at each point of C

earns a payo¤ of at most 1
(2h+1)2 so that the non–colluding players’ total payo¤ is at most

n¡m
(2h+1)2 < n¡m

n . Hence, v(m) > m
n .¤

For large n, the proposition says, roughly, that collusion is pro…table if m > 3n
4 . This

interpretation follows from the fact that for large n there is an integer h such that n < (2h + 1)2,
(2h+1)2

n ¼ 1, and (2h+1)2¡h2

n ¼ 3
4 . For example, if n = 1; 000; 000 choose h = 500. Then (2h +

1)2 = 1; 002; 001 and (2h + 1)2 ¡ h2 = 752; 001. The proposition says collusion is pro…table if

m
1;000;000 ¸ :752001.

6 Nash equilibria

It is natural to ask about the relationship between pro…tability as discussed above and Nash equilib-

rium. Consider, for instance, a location game on the unit interval [0; 1] with consumers distributed

uniformly, played by several independent …rms and one player who controls a set of …rms. Can

we …nd location strategies for the independent …rms so that these strategies together with the

pro…table collusion strategy identi…ed above comprise a Nash equilibrium?

It is possible to answer this question in some special cases and we shall do this below.

However, in general the problem is very di¢cult, perhaps intractable.

The di¢culty arises from two sources. The …rst thing one discovers when working on the

problem is that a Nash equilibrium requires mixed strategies for the independent …rms. Unfortu-

nately, due to the computational complexities, little is known about mixed strategy equilibria for
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location games on the unit interval. Shaked (1982) constructed a mixed strategy Nash equilibrium

for three …rms locating on [0; 1], and there are nonconstructive existence theorems by Dasgupta

and Maskin (1986) and Simon (1987). Second, the di¢culty in …nding mixed strategy equilibria is

compounded when one player controls m locations, due to the added computational complexity.

Prospects are even bleaker for location games with collusion in dimensions 2 and higher.

Up to now, nothing has been published on location games in dimension 3 or above, and little on

solutions for location games in dimension 2. Shaked (1975) showed that there are no pure-strategy

Nash equilibria for a wide variety of 3-player location games in the plane; Okabe and Aoyagi (1993)

proved that an in…nite square array of …rms in the plane is a Nash equilibrium for a uniform

distribution of consumers, and Knoblauch (1997) catalogued all 3-player equilibria on the 2-sphere

when consumers are distributed uniformly.

In summary, the di¢culty of …nding mixed strategy equilibria for location games translates

into di¢culty for our problem–…nding equilibria for location games with collusion. It seems reason-

able that …rms that engage in games that game theorists are unable to solve should choose rather

conservatively when it comes to making big decisions such as decisions about colluding or merging

with others. We have therefore proposed pro…tability as a conservative criterion to be used by …rms

faced with collusion decisions or merger proposals.

Nevertheless, the following proposition answers the question posed at the beginning of this

section in the a¢rmative in the special case that the number of locations controlled by the “big”

player is an integral multiple of the number of independent …rms.

Proposition 6 Let G be a location game in which consumers are distributed uniformly on [0; 1]

with density 1, players 1; 2; : : : ; n¡m; are independent …rms, player n¡m+1 controls m locations

and m = a(n ¡ m) where a is a positive integer greater than 1. Let sn¡m+1 be player n ¡ m + 1’s

strategy from Section 3.1, which picks locations at each element of the set fk; 3k; 5k; : : : ; 1¡kg, where

k = 1=2m. For i = 1; 2; : : : ; n ¡ m, let si be player i’s strategy that assigns probability 1
a to each of

the a points (2ai¡2a+1)=2m, (2ai¡2a+3)=2m; : : : ; (2ai¡1)=2m.5 Then (s1; s2; : : : ; sn¡m; sn¡m+1)

5 To illustrate, consider the case in which there is only one independent player (i.e., m = a = n-1). In this case

the independent player chooses each of the m equidistant locations chosen by the …rm controlling the coalition with

probabilty 1/m. Alternatively, consider the special case of n = 6 and m = 4 (a=2), i.e. there are two independent

players and one player controlling a 4-…rm coalition. In this case the coalition …rms will occupy locations 1/8, 3/8, 5/8,

and 7/8 whereas the …rst (second) independent player chooses locations 1/8 and 3/8 (5/8 and 7/8) with probability

1/2 each.
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is a Nash equilibrium of G.

Proof Fix i 2 f1; 2; : : : ; n ¡ mg. Let H be a game like G but with only two players, so that 1 is

an independent …rm and 2 controls m locations. For x 2 [0; 1],

¼G
i (s1; : : : ; si¡1; x; si+1; : : : ; sn¡m+1) · ¼H

1 (x; sn¡m+1) · 1=2m = ¼G
i (s1; s2; : : : ; sn¡m+1):

It remains to show that player n ¡ m + 1 can’t improve his payo¤ by a unilateral strategy

change.

Let tn¡m+1 be any pure strategy of player n ¡ m + 1. Let K be a game like G but with two

players each of whom controls m locations. Then by the de…nitions of si,

n¡mX
i=1

¼G
i (s1; s2; : : : ; sn¡m; tn¡m+1)

= (
1

a
)

n¡mX
i=1

aX
j=1

¼G
i (s1; : : : ; si¡1; (2ai ¡ 2a + 2j ¡ 1)=2m; si+1; : : : ; sn¡m; tn¡m+1)

¸ ¼K
1 (sn¡m+1; tn¡m+1)=a:

The inequality follows from the fact that any consumer (or fraction of a consumer) awarded

to the …rst player in game K will contribute to one of the summands on the left side of the

inequality. For example, suppose tn¡m+1 assigns three locations to k, two locations to 5k + 1
2

and no location to any point between. How does the consumer interval (2k; 3k) contribute to

the two sides of the inequality? Player 1 in game K wins all of (2k; 3k). Player 1 in game G

wins all of (2k; 3k) in the summand ¼G
i (3k; s2; : : : ; sn¡m; tn¡m+1) and one quarter of (2k; 3k)

in the summand ¼G
i (k; s2; : : : ; sn¡m; tn¡m+1).

Next ¼K
1 (sn¡m+1; tn¡m+1) ¸ (3m ¡ n)=2m = 1=2 by the pro…tability argument in Section

3.1. Combining the above inequalities,

n¡mX
i=1

¼G
i (s1; s2; : : : ; sn¡m; tn¡m+1) ¸ 1=2a = (n ¡ m)=2m

Therefore ¼G
n¡m+1(s1; s2; : : : ; sn¡m; tn¡m+1) · 1 ¡ (n ¡ m)=2m = (3m ¡ n)=2m ·

¼G
n¡m+1(s1; s2; : : : ; sn¡m; sn¡m+1) with the last inequality following again from the pro…tabil-

ity argument of Section 3.1. ¤
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7 Discussion

We …nd that collusion in location games only pays if the set of colluders is larger than the set

of non–colluding competitors. Bilateral collusion, for example, can only pay if there are no more

than three competitors. This result is based on an approach which relies on rather weak rationality

requirements. It assumes that players discussing some binding agreements to collude will only go

ahead if they can guarantee themselves a payo¤ better than the payo¤ expected “behind the veil

of ignorance”.

This maxmin approach prescribes that colluding players should spread themselves out,

making players outside the colluding set indi¤erent between locations. This seems to be rather

intuitive: One would expect that two colluding supermarkets (or supermarkets belonging to the

same chain) locate in di¤erent parts of one city to avoid cannibalization. For a special case of

competition on the unit interval, we show that the maxmin strategy is also used in a non-cooperative

equilibrium.

Our results may have implications for the topic of mergers in markets with (pure) spatial

competition as an example of which competition among big book retailers (where price competition

is extremely limited) may serve. As merger in the traditional sense (see Salant, Switzer, and

Reynolds 1983) where …rms simply “disappear” never pays in such location games, merger can

only be pro…table if the merging units are kept as separate units which are governed by central

headquarters. This is identical to the case of collusion analysed above. However, the analysis

reveals that with this kind of competition only “mega mergers” are likely to occur.6
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