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ABSTRACT

The Stability of Information Cascades: How Herd Behavior Breaks Down

by Hans Mewis*

We extend the standard model of information cascades to situations where agents have
to choose between switching to a new alternative or not. In particular, we add two new
features to the standard model. First, agents continue to receive signals after they have
chosen 'switching'; and second agents may revert their earlier decisions. The focus of the
paper is to analyze how information is passed on within an information cascade, and the
conditions under which breakdown occurs. We identify rules which describe the
learning process and run simulations to estimate the properties of the information
cascade.

ZUSAMMENFASSUNG

Zur Stabilität der Informationskaskade: Wann bricht Herdenverhalten ab?

Wir erweitern das Standardmodel der Informationskaskade. Durch die Erweiterung
lassen sich Situationen modellieren, die den Individuen die Wahl zwischen einer neuen
Alternative und dem bewährten lassen. Die Erweiterung besteht aus zwei Aspekten.
Erstens erhalten die Individuen weiterhin Signale, nachdem sie sich für die neue
Alternative entschieden haben. Zweitens können sie ihre Entscheidung später wieder
zurücknehmen. Wir untersuchen wie sich Information innerhalb der
Informationskaskade ausbreitet und unter welchen Bedingungen die
Informationskaskade abbricht. Wir beschreiben den Lernprozeß der Individuen und
führen eine Simulation des Prozesses durch.

                                                
* This paper has benefited from discussions with Ulrich Kamecke, Lars-Hendrik Röller, Martin

Strobel, Zhentang Zhang and Christine Zulehner. Remaining errors are mine. The author would
like to gratefully acknowledge the financial support through a grant from the Deutsche
Forschungsgemeinschaft (DFG) while he was a fellow of the Graduiertenkolleg „Applied
Microeconomics“ at the Humboldt-Universität Berlin.



1 Introduction
The theory of information cascades was pioneered by Banerjee (1992) and
Bikhchandani et al. (1992). Information cascades integrate the phenomenon
of herd behavior into the paradigm of rationality. The set up is very simple.
An in…nite sequence of agents have to take the same decision in an uncertain
world. Decisions are taken in some predetermined order. Just before an agent
has to make a choice he receives a private and imperfect signal on the state of
the world. Signals are not observable by others but each agent observes the
decisions of his predecessors. Agents then form assessments of the true state
of the world based on a common prior beliefs on the true state, the private
signal, and the observed behavior of other agents. This assessment forms the
basis of the decision. An information cascade occurs if agents do not follow
their own signals but rather do what their predecessors have done. The main
result in the literature is that, even if the signal quality is very high, cascades
occur with a probability of one. Moreover, even at a relatively high signal
quality, a wrong cascade cannot be excluded. A wrong cascade describes a
situation where agents make a decision which they would not have chosen if
they knew the true state. This points to an ine¢ciency in the aggregation of
information. Bikhchandani et al. (1992) demonstrate further the fragility of
information cascades to external shocks.

The concept has been applied to quite a wide range of problems. Bikhchan-
dani et al. (1992) present fashion, fads and conventions as examples. Zhang
and Zhang (1995) use information cascades to investigate the asymptotic
e¢ciency of an oligopolistic market with uncertain demand.

Caplin and Leahy (1992) look at a related problem. In their model, …rms
have the same three sources of information as in the standard information
cascade model: a prior knowledge on some state of the world, private signals,
and the observation of past actions by other …rms. Unlike the information
cascade concept there is a …xed number of …rms which start the game at the
same time. Moreover, Caplin and Leahy assume a …xed horizon at which
the game stops. Firms may suspend their participation and then decide
whether to continue or to exit from the game. They focus also on how private
information is released and how the market reacts to the new information.

However, the standard model has some troubling features. Zhang (1997)
points out that the exogenously given order of players is hard to justify. He
endogenizes the order of movers by introducing individually di¤erent preci-
sion of information and the option to delay which is associated with a cost
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of delay. The signal quality is private information. He shows in a continuous
time framework that the agent with the highest signal quality moves …rst,
thereby generating an information cascade, i.e. all players follow immedi-
ately. The superior quality of the …rst mover’s signal dominates the others’
signals. Moreover, there is always delay before the …rst move.

In addition there are at least two more shortcomings to the standard
model. First, once an information cascade has started it runs for ever unless
some exogenous event, such as an information release, occurs. Second, from
the point of view of an agent, once the decision has been taken the game is
over. In other words, agents are assumed to be at a crossroad and directions
can not be later changed. However, there are many situations where this
is not plausible. Think of the adoption of a new technology or even the
adoption of some new management fad. Once an agent has switched to the
new alternative, the game is not over. The agent struggles to implement the
new technology or gains experience applying the new management strategy.
He learns whether the new alternative is of any value. This is true for set
ups which let the agent chose between a new alternative and the old way.
The inclusion of the option to reverse leads to the possibility of breakdown.1

The richer modelling provides more insights into the di¤usion process of
information.

Suppose the state of the world described the quality of a new technology.
Managers have to decide whether they want to buy the new technology or
stick with their old one. They do not have complete information on the qual-
ity of the new technology. However, they share a common prior belief about
the potential of the innovation. Besides this prior belief managers may have
private information about the quality of the new technology. The experience
gained through working with the new technology leads the managers to up-
date their beliefs. Initial failures might be due to bad handling or just bad
luck, or indeed might be due to bad quality. In addition to his own experi-
ence, the manager also bases his decision on the behavior of other managers
at other …rms. Our manager cannot observe the other managers’ experience
directly but only indirectly through observed behavior. From observing that
a manager returns to the old technology he concludes that the manager in
question must have had bad experiences with the new technology. He adds

1Bikhchandani et al. (1992, p. 1007) point to a case study by Apodaca (1952). “[T]he
introduction of one variety of hybrid seed corn for 84 growers in a New Mexican village
from 1954 to 1949 in which a trend reversed before settling on an outcome. [...]”
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this conclusion to his stock of information. This implies he might now be
willing to also reverse his earlier decision. Yet, imagine our manager observes
no such reversion for some time. He then concludes that the others cannot
have had such bad results, since otherwise they would have returned to the
old technology. This leads him to a more optimistic attitude. He might
then swallow more bad news from his production plant than otherwise. The
modelling of this type of learning from observed behavior is the core of the
paper. How does an optimistic attitude among managers evolve? How much
can an optimistic atmosphere strengthen the stability of a cascade?

In this paper we adopt information cascades to situations where agents
have to decide whether they want to switch to some new alternative or rather
stay with the old one. We augment the standard model by two new features.
First, agents continue to receive signals after they have decided whether
to switch. Second, …rms may change their earlier decision to go for the
new. Firms are allowed to reverse only once. The focus of the paper is how
information is passed on within an “enter”-cascade and the conditions under
which breakdown occurs. A “non-enter” cascade is essentially the same as a
standard information cascade.

This paper is organized as follows. Section 2 presents the model and
establishes condition under which learning occurs. Furthermore it is shown
how an optimistic attitude spreads as no reversion occurs. Section 3 deals
with the simulation and section 4 concludes.

2 The Model

Suppose there is an ordered line of decision makers (call them …rms). These
…rms have to make the same binary decision one after the other. Think of it
as whether to enter or not into a new market. Each period one …rm is called
upon to announce its decision according to a predetermined order. Those
…rms which have entered are also asked to announce each period whether
they will remain by their choice, i.e. to stay in the market or change their
decision and exit2. A …rm which has decided not to enter or exit cannot enter
later or “reenter”. It leaves the game for ever.

There are two states of the world and in each state only one decision
is optimal. State space is £ = fµ1; µ2g. The state of the world does not

2We use the terms “enter”, “adopt” and “switching” interchangeably, just as “exit”
and “revert”.

4



change during the game. Think of it as if nature chooses a state of the world
before the …rst …rm makes a move. Suppose both states are equally likely.
Furthermore assume that the payo¤ ¼ for decision “enter” in a positive state
of the world is 1 with probability p and in a negative state -1 with probability
p. With probability (1 ¡ p) the payo¤ structure is reversed. Vice versa for
“not enter”. The following table then summarizes the payo¤ structure:

state µ1 = 1 µ2 = ¡1
prob.

enter
not enter

p 1¡ p
1 -1
-1 1

p 1¡ p
-1 1
1 -1

The …rms do not know in which of the two states of the world they are.
However, they all share the same prior belief Ã about the probabilities of
being in one of the two states. Assume all …rms think the two states are
equally likely3:

Ã = Pr(positive state) =
1

2

In addition to the prior belief each …rm receives a private signal before it
makes a decision. The private signal is the payo¤ of that …rm. Therefore, the
table above also represents the signal structure. Signals are binary. Signal
space is § = f¡1; 1g. p can be interpreted as the signal quality. If p is
0:5 than the signal does not contain any information. If p = 1 the signal
quality is perfect. In the interval (0:5; 1) the signal is imperfect but does
contain some information, since the indicated state is then more likely to
be the true state. Signal quality below 0.5 would mean that the signals are
systematically misleading. Therefore, we assume signal quality to be in the
interval (0:5; 1). The following table describes signal quality:

signal/state µ1 = 1 µ2 = ¡1
¾t = 1 p (1¡ p)
¾t = ¡1 (1¡ p) p

A …rm then makes its decision. The decision is based on three factors.
First, there is the common prior belief; second, there is the private signal;
and third the …rm observes with a one period delay what other …rms have

3Alternatively, it is possible to assume that Ã is from the intervall (0; 1). However, then
one has to make sure that one positive private signal is su¢cient for entry, since otherwise
no information cascade would ever develop. If Ã > (1 ¡ p) holds, one positive private
signal is su¢cient for entry. The results of this paper do not depent on this assumption.
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decided. From these decisions it may draw conclusions about the signals of
other …rms. It then uses the revealed signals to update its belief according
to Bayes’ rule. In other words, the …rm can learn something about the true
state by observing the history of actions: some …rms reverse their decisions
and others stick to their initial choice. These three sources of information
are then used to update the …rms belief according to Bayes’ rule. Once a
…rm gets to belief entry was a mistake and the true state is negative rather
than positive it reverses its earlier decision and exits. As a tie breaking rule
we assume that an indi¤erent …rm stays where it is. A potential entrant does
not enter, an incumbent stays with its initial choice.

2.1 Notation

The state of information istatet;e of each …rm e at time t is described by two
variables, the public state pstatet and the private state xstatet;e. These two
states essentially determine the action of …rm e in period t. Denote the action
by vt;e. vt;e can assume two values f¡1; 1g. These represent for an incumbent
…rm exit (no entry) and stay (entry), respectively. The corresponding action
of an entering …rm is in brackets. v6;2 = ¡1 represents the exit of the second
…rm in period 6.

The public state pstatet summarizes the publicly known signals at time
t. Therefore, it has no …rm speci…c index. Public state in period t is the sum
of all public signals, that is the public state of the previous period plus the
sum of all those private signals, that have been revealed through last periods
actions :

pstatet = pstatet¡1 +
tX

e=1

st¡1;e ,

where t refers to the current period, e is the time of entry of a …rm, st¡1;e is
the public signal sent by …rm e in period t (through its action in t ¡ 1, see
below). (Note that pstate1 = 0)

The private state xstatet;e summarizes the private information of a …rm
e at period t. It is simply the private state of the previous period plus the
new private signal:

xstatet;e = xstatet¡1;e + ¾t;e

where ¾t;e is the private signal received in period t by …rm e.
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The variable St;e counts the signals revealed by …rm e to other …rms up
to period t. (Note the st;e is received in the next period. The index t refers to
the time when the underlying action takes place and the signal is sent. There
is a one period delay between action and receiving a signal.) This variable is
important because the same signals are included in the public state and in
the private state. To make sure we do not double count the revealed signals
of some …rm when calculating the stock of information of that …rm we need
St;e:

St;e = St¡1;e + st¡1;e

The variable St;e also provides the value of the revealed signals. Note that
st¡1;e is always positive as long as it does not result from the exit of …rm e.
Therefore, as long as …rm e has not exited this variable counts and gives the
value of the revealed signals at the same time. Once a …rm reveals signals by
its exit, these signals are of course negative and the variable is not able to
count the signals any more but just provides the value of all revealed signals
by that particular …rm. However, now that this …rm has exited we no longer
need to calculate its state of information. Hence, how many signals this …rm
has revealed is no longer of interest.

The overall state of knowledge or information of …rm e at time t is char-
acterized by istatet;e.

istatet;e = pstatet + xstatet;e ¡ St;e
Note that there is no di¤erence in weights for own signals and revealed signals.

2.2 Determination of Action

We assume …rms are risk-neutral and maximize expected discounted pro…ts.
The behavior of …rm e at time t can be characterized as follows. As soon as
a …rm has knowledge of more negative signals than positive signals the …rm
reverses. Equally, if a …rm knows of more positive than negative signals and
it is asked whether it wants to enter, it enters. If a …rm is indi¤erent, i.e.
knows of the same number of positive and negative signals, it stays where it
is: incumbents stay in the market and potential entrants stay out. Looking
at the intertemporal payo¤ function and given that the discount factor ± is
su¢ciently small4 it is easy to see that the expected payo¤ is only positive if

4The relaxation of this assumption leads to the question of an optimal stopping rule.
Simulations show that even at a discount rate of ± = 1 the optimal stopping rule is ® = ¡1,
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Á > 1
2
, it is zero if Á = 1

2
and negative if Á < 1

2
.

E(¼) =
1

1¡ ± (Á(p¡ (1¡ p)) + (1¡ Á)((1¡ p)¡ p))

=
1

1¡ ± (2Á¡ 1) (2p¡ 1),

where Á is the updated Bayesian assessment of the probability of being in a
good state and ± is the discount rate. Á depends on received private signals
and revealed signals:

Á(n;m) =
1
2
pn(1¡ p)m

1
2
pn(1¡ p)m + 1

2
(1¡ p)npm ,

where n and m are the number of positive and negative signals, respectively.
The conditional probability of a good state can also be formulated in terms of
the di¤erence between positive and negative signals ® = n¡m, and n > m.

Á(®) =
p®

p® + (1¡ p)®

Straight forward calculation yields:

Á(®) >
1

2
if ® > 0

Á(®) =
1

2
if ® = 0

Á(®) <
1

2
if ® < 0.

The following Lemma summarizes the behavior of …rms:

Lemma 1 Given a su¢ciently small discount factor ±, an incumbent …rm
stays as long as it has knowledge of at least as many positive signals as
negative signals. If this is not the case it exits:

vt;e = 1 if istatet;e ¸ 0

vt;e = ¡1 if istatet;e < 0.

where ® is the di¤erence between all negative and positive signals.In other words, if an
agent has knowledge of one more negative signal than positive signals he exits.
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A potential entrant enters if it knows of more positive than negative signals.
Otherwise it stays out:

vt;e = 1 if istatet;e > 0

vt;e = ¡1 if istatet;e · 0.

The di¤erence between positive and negative signals ® is identical to the
above de…ned istate. Remember we adopted as a tie-breaking rule that an
indi¤erent …rm stays were it is. In other words, the absolute number of signals
does not matter, but only the di¤erence of positive and negative signals.

2.3 An Example

To see the structure of the process and how observing the others’ action
improves a …rm’s stock of knowledge we look at an example of signals and
the resulting decisions:

EXAMPLE
t 1 2 3 4

pstatet 0-0 1-0 2-0 2-0
Firm ¾ I A ¾ I A ¾ I A ¾ I A

1 1 1-0 In -1 1-1 In -1 2-2 In 1 3-2 In
2 1 2-0 In -1 2-1 In -1 2-2 In
3 -1 2-1 In -1 2-2 In
4 -1 2-1 In

¾=Private Signal; I=all known signals (positive-negative); A=action ,de-
cision)

In period 2, every …rm knows that …rm 1 has received a positive signal
in period 1 since it would not have otherwise entered. Therefore, the public
information in period 2 is 1:0, pstate2 = 1. Firm 1 has sent one positive
signal in period 1 which is received in period 2: s1;1 = 1. In period 2 the
same applies to …rm 2. Therefore, the public information in period 3 is
2:0, pstate3 = 2, s2;1 = 0, s2;2 = 1. In period 4 nothing can be learned
from the observation that …rm 3 has entered and that no one exited in the
previous period. This is because whatever the unknown private signals were,
the observed action would have taken place. Therefore s3;3 = 0, and s3;1 =
s3;2 = 0.
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EXAMPLE cont’d
t 5 6 7 8
pstatet 3-0 3-0 6-0 6-0
Firm ¾ I A ¾ I A ¾ I A ¾ I A

1 -1 3-3 In 1 4-3 In -1 6-4 In -1 6-5 In
2 -1 3-3 In 1 4-3 In -1 6-4 In -1 6-5 In
3 -1 3-3 In 1 4-3 In -1 6-4 In -1 6-5 In
4 -1 3-2 In -1 3-3 In -1 6-4 In -1 6-5 In
5 -1 3-1 In -1 3:2 In -1 6-3 In -1 6-4 In
6 -1 3:1 In -1 6-2 In -1 6-3 In
7 -1 6-1 In -1 6-2 In
8 -1 6-1 In

In period 5, the …rms observe that …rm 1 has not exited. This means
that …rm 1 has received at least 1 positive signal after its initial one. If all its
signals from period 2 onwards had been negative, …rm 1 would have exited in
period 4. Therefore, the public information in 5 is 3:0, pstate5 = 3, s4;1 = 1,
S5;1 = 2, that is …rm 1 has sent 2 signals so far. In period 6, nothing can be
learned from the observed behavior in period 5. In period 7, …rms observe
again that no one has left. However, three …rms could have left: 1, 2 and
3. This is because they had enough time to accumulate su¢cient negative
signals to outweigh the publicly known positive signals. Yet, none of these
…rms has left. Hence, each of these …rms must have received at least one
positive signal since they have entered in addition to their already revealed
signals. All …rms now know that …rm 1 has received at least 3 positive signals,
…rm 2 has received at least 2 positive signals, and …rm 3 at least 1 positive
signal. Therefore, s6;1 = 1, S7;1 = 3, and s6;2 = 1, S7;2 = 2, and s6;3 = 1,
S7;3 = 1. Hence, public information is 6:0, pstate7 = 6. In period 8, nothing
can be learned from the observations.5 Note that this example contains the
maximum number of negative signals such that no exit occurs.

2.4 How much and when can …rms learn?

In this section we investigate how optimistic and pessimistic attitudes in a
market evolve. In other words, how much and when can …rms learn from

5Note that the observation of a new entry does not contain any information, since given
the publicly known information, …rms will enter no matter what their own private signals
look like.
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observing the action of other …rms? The answer to that question determines
the value of st;e. To this end, we introduce a new variable:

ft;e = (t¡ e+ 1)¡ St¡1;e

ft;e is the number of publicly unknown private signals of …rm e at period
t. A …rm that tries to infer from the action of some other …rm the value
of its unknown signals has to know as much as possible about that …rm.
One important piece of information that is available is the number of its
unrevealed private signals.

It makes a di¤erence whether the action of a potential entrant or incum-
bent …rm is observed. Therefore, we look …rst at the entrant’s case and than
at the incumbent’s case.

2.4.1 Entrant’s Case

The following proposition shows the condition under which the action of a
potential entrant is informative and the exact information it conveys.

Proposition 2 The action of an entrant conveys only information if its pri-
vate signal in‡uences its decision. This is the case if pstatet is either 1 or 0.
Entry reveals one positive signal and non entry reveals one negative signal.

If vt;e = 1 ^ pstatet 2 f0; 1g than st;e = 1 and 0 otherwise.

If vt;e = ¡1 ^ pstatet 2 f0; 1g than st;e = ¡1 and 0 otherwise.

Proof : Note …rst that the action of any …rm only contains information
if the number of unrevealed private signals of that …rm is su¢ciently large
to outweigh available public information. A necessary but not su¢cient con-
dition for an action to be informative is therefore:

jpstatetj · ft;e (1)

If the opposite were true then the unrevealed private signals had no in-
‡uence on the action of the particular …rm and therefore the action would
not convey any information.

In the entrant’s case ft;e = 1 since the information cascade is running
and entry is uninformative. Consequently, only if pstatet is either 0 or 1,
the action of an entrant will carry information. Note that if pstatet = ¡1,
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which satis…es (1), entry never occurs and hence non entry is uninformative.
Since ft;e = 1, the number of revealed signals is at most 1. As vt;e = 1 and
pstatet 2 f0; 1g, it follows st;e = 1; and from vt;e = ¡1 and pstatet 2 f0; 1g,
it follows st;e = ¡1.¥

2.4.2 Incumbent’s Case

De…ne the ordered set ¡t;e of pairs (x; y): ¡t;e = f(x; y) jx+ y = ft;eg.The
ordered set starts with the smallest x, where x equals the number of positive
signals and y represents the number of negative signals that might make up
the unknown signals ft;e.

Proposition 3 :The action of an incumbent conveys only information if its
private signals have an in‡uences on its decision. This is the case whenever
the number of private unknown signals is su¢ciently large to outweigh the
public available information. Stay (exit) then reveals the minimum number
of positive (negative) signals such that the particular decision comes about.

(1) An incumbent does not exit:
(1.1) If vt;e = 1 ^ jpstatetj < ft;e ^ pstatet ¸ 0 then st;e = x of the

pair (x; y), where x is the smallest x such that pstatet + x ¡ y ¸ 0. If
jpstatetj ¸ ft;e then nothing can be learned.

(1.2) If vt;e = 1 ^ jpstatetj · ft;e ^ pstatet < 0 then st;e = x of the
pair (x; y), where x is the smallest x such that pstatet + x ¡ y ¸ 0. If
jpstatetj > ft;e then nothing can be learned.

(2) An incumbent exits:
(2.1) If vt;e = ¡1 ^ jpstatetj < ft;e ^ pstatet ¸ 0 then st;e = y of the

pair (x; y),where y is the smallest y such that pstatet + x ¡ y < 0. If
jpstatetj ¸ ft;e then nothing can be learned.

(2.2) If vt;e = ¡1 ^ jpstatetj · ft;e ^ pstatet < 0 then st;e = y of the
pair (x; y), where y is the smallest y such that pstatet + x ¡ y < 0. If
jpstatetj > ft;e then nothing can be learned.

Proof: The proof is carried out in two steps. First we show the condition
under which an action is informative (Step A). The second step then shows
what an action by some …rm can tell the observer about its signals.

Step A: Look at the case (1.1). We have pstatet ¸ 0 and some incumbent
…rm e stays in the market (vt;e = 1), that is istatet;e ¸ 0. Suppose the number
of unrevealed private signals of that …rm were smaller than the balance of
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positive and negative signals in the stock of public signals (jpstatetj ¸ ft;e).
Obviously, the private information of …rm e cannot be strong enough to
overcome public information. Therefore, in this case vt;e = 1 reveals nothing.
Now suppose jpstatetj < ft;e. There are enough unrevealed private signals in
…rm e’s stock of information to turn the balance either way. We observe that
…rm e has stayed in the market, i.e. istatet;e ¸ 0. Since istatet;e < 0 was
possible …rm e’s action is informative. It cannot be the case that all of …rm
e’s unrevealed private signals are negative. This completes step A for (1.1).

Step B: Look at case (1.1) again. We know that istatet;e < 0 is not
true, since vt;e = 1. Consequently it must be the case that istatet;e ¸ 0.
From that we infer that at least as many positive signals are in e’s stock
of unrevealed private signals such that istatet;e ¸ 0. That is we know that
there are x = arg min(

x

x ¡ y + pstatet;e) ¸ 0 positive signals. Therefore,

st;e = x. This completes the proof of (1.1). The argument for the rest of the
proposition is analogous to this one.¥

The following table summarizes the condition under which an action is
informative:

A …rm observes the action of an incumbent …rm:
observation public knowledge

vt;e pstatet case Something to learn?
(1.1) 1 positiv or zero jpstatetj < ft;e yes

jpstatetj = ft;e no
jpstatetj > ft;e no

(1.2) 1 negativ jpstatetj < ft;e yes
jpstatetj = ft;e yes
jpstatetj > ft;e no (not possible)

(2.1) -1 positiv or zero jpstatetj < ft;e yes
jpstatetj = ft;e no (not possible)
jpstatetj > ft;e no (not possible)

(2.2) -1 negativ jpstatetj < ft;e yes
jpstatetj = ft;e yes
jpstatetj > ft;e no

The reader might wonder why …rms do not try to estimate unknown sig-
nals. However, this is a useless exercise. On what basis is such an estimation
possible? Firms have to use their assessment Á of the probability of a good
state. Thereby the estimation just reinforces their assessment. There is no
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more information to be extracted.
The action of a …rm is informative if it has had a choice, i.e. if the value

of its unrevealed signals makes a di¤erence. In particular, the number of
unrevealed signals must be large enough so that the overall state of infor-
mation of the …rm can lead to either “exit” or “continue”. Otherwise, the
action depends only on the already known public state and it is therefore
uninformative. The value of the revealed signals is the minimum number of
positive or negative signals in the private stock of signals such that the …rm’s
action comes about.

In this section we have identi…ed rules according to which an action of a
…rm reveals information. Furthermore, we have shown that the amount of
information depends on the public state pstatet and the number of unrevealed
private signals ft;e of a particular …rm. The larger in absolute terms is the
public state and the more unrevealed signals are left, the more information
is conveyed.

2.5 Stability of an “entry”-cascade

Before we move on to the simulation we will take a look at a special case of
how an information cascade might evolve. In particular we investigate the
conditions under which an “entry”-cascade continues. We call this case the
“business as usual” scenario (BUS), where …rms continue to enter but none
leaves. The BUS is de…ned by the minimum number of positive signals to
keep an “enter”-cascade going. In other words, we look at the case where no
reversions occur and the spread of negative information is suppressed. Note
that the example above was the BUS. This exercise will lead to the conclusion
that all information cascades, which do not experience any reversion gain in
stability.

As we have seen …rms learn from observing that no one has reversed.
Firms learn whenever a reversion is possible. Call any period at which such
a reversion might occur reversion date (RD).

De…nition 4 A period at which a …rm might want to reverse is called rever-
sion date.

The …rst RD is at period 4 (See Example). Firm 1 could have left leave. In
the following we state …ve lemmas to establish the properties of information
cascades under the BUS. The analysis of this case sheds some light on the
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conditions under which the cascade keeps going and on how an optimistic
attitude gradually builds up. The cascade becomes more stable the longer it
lasts.

We partition the population of …rms in to those which might exit at a RD
and those which do not reverse in any case. As we will see later the former
group of …rms is always older than the latter. Therefore, call the former
group mature …rms and the latter young …rms.

De…nition 5 A …rm that might reverse at a RD, i.e. pstatet;e < ft;e, is
called mature. Other …rms are labeled young …rms.

The following lemma shows how the behavior of mature …rms adds to the
stock of public information.

Lemma 6 “No reversion” by a mature …rm at a RD reveals exactly one
positive signal given the BUS.

Proof. As we have seen in the previous section no reversion reveals the
minimum number of positive signals the …rm must have received so that it
does not want to exit. Given the BUS the public state is always positive.
By de…nition in the period before a RD, a …rm knows of as many positive
as negative signals. Hence, it takes exactly 1 positive signal to survive the
upcoming RD. In other words the minimal number of positive signals needed
is one. Therefore, “no reversion” reveals one positive signal.

The action of young …rms conveys no information since they do not reverse
no matter what signals they have received. Only actions of experienced
players are of interest to the public. No attention is paid to the decision of
newcomers.

The next two lemmas establish that after a RD mature …rms are identical
with respect to their information.

Lemma 7 After a RD all …rms have knowledge of the same number of pos-
itive signals.

Proof. Since the number of positive signals is the smallest number which
guarantees no reversion, all these positive signals are public.

Lemma 8 Given the BUS at every RD mature …rms have the same infor-
mation ratio (a+ 1) =a, where a is the number of negative signals.
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Proof. After a RD all …rms have knowledge of the same number of positive
signals (Lemma 7). Therefore at the following RD, all …rms have the same
information ratio, because under the BUS a …rm receives only negative signals
until the …rm has the same number of positive and negative signals, i.e. until
the next RD is just one period ahead.

From Lemma 8 it follows that any RD is uniquely de…ned by the number
of negative signals a. Furthermore it follows that any …rm that might have
left at the previous RD might leave at the current RD. Moreover, accord-
ing to lemma 8 after a RD all mature …rms are information-wise identical.
Therefore, it does not matter which mature …rm reverses …rst. The revealed
information is the same. This leads to the following proposition.

Proposition 9 The information revealed by a …rst reversion does not depend
on the age of the …rm but only on the date of the …rst reversion.

Proof. Follows from lemma 8 and the following observation. Since all
positive signals are public and under the BUS all mature …rms have the
same information ratio (a+ 1) =a, in every information cascade which has
not experienced any reversions yet, all mature …rms have the same number
of unknown signals ft;e. Therefore, the revealed signals are independent of
the …rm’s age.

The population of …rms is subdivided into two groups: mature and young
…rms. By de…nition only mature …rms reveal information through their ac-
tion. The …rm’s age, that is its identity is not important. An action’s in-
formation content does not so much depend on who acts but rather at what
point in time the action takes place.

Lemma 10 shows how the group of mature …rms grows in the course of
the cascade.

Lemma 10 Each RD is for exactly one …rm, which entered within the in-
formation cascade, its …rst RD.

Proof. Suppose there were two …rms which have their …rst RD at some RD
(a+ 1) =a. This means that they both have received only negative signals
and one positive signal in the current period. Hence, both have received a+1
private signals and a revealed signals, therefore, both entered a+1 period
ago. However, that is not possible since only one …rm may enter per period.
Therefore, at most one …rm can have its …rst RD at RD (a+ 1) =a. By the
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same argument and given that the information cascade is running, it is not
possible that no …rm has its …rst RD at RD (a+ 1) =a. Therefore, at any
RD exactly one …rm has its …rst RD.

The …rst RD is at period 4, than follows 6, 10, 15, 21, 28, 36 and so on.
The distance grows by one period. At period 6 two …rms have their …rst
RD, which are …rms 2 and 3. Yet only …rm 3 entered within the information
cascade. Firm 3 has not revealed its initial signal, while …rm 2’s initial signal
is public. Hence, the two …rms have the same number of unrevealed signals.
That is the reason for the irregularity at the beginning of the series of RDs.

From Lemmas 8 and 10 it follows that at each RD the number of mature
…rms grows by exactly 1 …rm.

Lemma 11 The time span between two RDs equals n + 1 where n is the
number of mature …rms at the previous RD.

Proof. At any RD the ratio of positive to negative signals is given by
(a+ 1) =a. There are, say, nmature …rms, then n positive signals are revealed
at the end of the RD. The information ratio is than (a+ 1 + n¡ 1) =a =
(a+ n) =a for any of the n mature …rms. Note that …rms do not double
count their own public signals. It takes at least a + n + 1 to outweigh the
a+ n positive signals. Hence, the next RD is n+ 1 periods ahead.

Now we can state the main result of this section.

Proposition 12 The longer the information cascade lasts and no reversion
occurs the less likely a reversion is.

Proof. From Lemmas 8, 10, and 11 follows that the time span between RD
grows as the information cascade continues. Under the BUS during this time
all …rm receive negative signals until the next RD is reached. However, for
any information cascade, which has not seen any reversions yet, it is true
that a …rm that exits at a RD has received only negative signals since the
last RD. Since the distance between RD grows it becomes ever less likely
that such a sequence of negative signals will occur.

Note, that this proposition generalizes to all information cascade processes
where no reversion occurs or up to the period of the …rst reversion.

The proposition shows that information cascades gain in stability as they
grow older. Note that the proposition looks at the necessary condition for
breakdown. Yet, reversion by one …rm is not su¢cient for the breakdown of
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a cascade. In other words the proposition states that the necessary condition
for breakdown becomes ever less likely, therefore the breakdown itself, too.

However, the later the …rst reversion occurs the more information it con-
veys. The intuition is that an unexpected incident reveals more information
than the expected.

3 Simulation

The main focus of this paper is the question of whether or under what cir-
cumstances an information cascade breaks down. Therefore, we assume that
an “enter”- information cascade goes o¤. That means we assume that the
…rst …rm gets a positive signal (+1) in the …rst period and that the second
…rm gets a positive signal in the second period. Those two signals are …xed.
Firm three then enters for sure. It does not follow his own signal anymore.
Decision makers ignore their private information and follow the crowd. The
cascade breaks down if all …rms have exited6.

The process consists of the decision rules and the signal generating sto-
chastic process. The signals are binary (-1,1) and independent across time
and …rms, and are identically distributed.

We have run simulations assuming either a good or a bad state of the
world for several signal qualities. For each scenario we have run 5000 simula-
tions. We have limited each simulation to 200 periods. First results suggested
that almost all breakdowns occur during the …rst 50 periods. This is in line
with the results from section 2.5. The probability of a breakdown after 50
periods, given no reversion has occurred so far, should be rather small7. The

6Actually the information cascade breaks down if some manager follows his own signal
again. That is if the publicly known positive and negative signals cancel out. Call this
the strict de…nition of a break down. Yet, to make sure that the process comes to an end
and the cascade does not restart we look at the case where all …rms have left the market
and pstate is negative. pstate<0 rules a restart out.

7The next RD is at 55. Public state has reached +45 by then, given no exit has occurred
so far. Mature …rms have 46 unknown signals. It takes a sequence of 46 negative signals
to make the youngest mature …rm leave. Even at a probability to get a negative signal
of 0.8, that is almost zero. For the older …rms the probability will not be much higher.
Certainly not all unknown private signals have to be negative but the few positive signals
have all to be in the right place such that the …rm did not want to leave at some earlier
RD. This reduces the admissable permutations. Note that at 0.9 no cascade has made it
to period 55.
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probability of a breakdown is even smaller. In fact in all 40.000 simula-
tion rounds, only once a breakdown occurred after the 50th period. Table I
summarizes the results.

The simulation leads to the following conclusions. In the case of a correct
“enter”-cascade and a signal quality of p = 0:9 all cascades were fully reveal-
ing and for p = 0:8 only 2 out of 5000 were non-fully revealing. At signal
quality p = 0:7 still only 18 out of 5000 were non-fully revealing. That is
still well below 0:5%. Therefore, in these cases the probability to have a fully
revealing cascade is almost 1. At a very poor signal quality of p = 0:6 the
probability to have a fully revealing cascade is still just below 95%. Hence,
in the case of a good cascade the information gathering process is rather e¢-
cient. The probability to have a fully revealing cascade is simply the counter
probability of a breakdown after 200 periods. These are listed in the last
column of Table I.

Table I
Relative Frequency of Breakdown

µ = 1
p
0.9
0.8
0.7
0.6

after 5 after 7 after 10 after 20 after 50 after 200
0.6716 0.9612 0.9888 1 1 1
0.3920 0.7240 0.9044 0.9894 0.9962 0.9964
0.1834 0.4380 0.7186 0.8788 0.8952 0.8952
0.0756 0.2218 0.4436 0.5672 0.5754 0.5754

µ = ¡1
p
0.9
0.8
0.7
0.6

after 5 after 7 after 10 after 20 after 50 after 200
0 0 0 0 0 0
0 0.0002 0.0004 0.0004 0.0004 0.0004
0.0004 0.0030 0.0038 0.0038 0.0038 0.0038
0.0046 0.0304 0.0506 0.0530 0.0530 0.0530

Number of Simulation per Case: 5000

In the case of a wrong “enter”-cascade the estimated probabilities of hav-
ing a fully revealing cascade are the relative frequencies of a breakdown after
200 periods in table I. The information gathering process is again rather
e¢cient for signal qualities above p = 0:7. For poorer signal qualities the
e¢ciency rapidly deteriorates. At p = 0:6 the probability of a fully revealing
cascade is down to 0:58. Note that these are not asymptotic results. The
values do not change already after 20 periods.

Observation 1: The information cascade process is better at detecting
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true cascades than wrong cascades.
We also calculated an empirical hazard rate »t for each sample.

De…nition 13 The empirical hazard rate »t is the relative frequency that an
information cascade breaks down in t, given that it has reached period t¡ 1:

»t :=
BDt
Nt¡1

,

where BDt is the number of breakdowns in period t, and Nt¡1 is the number
of running information cascades in the previous period.

Table II shows the results (see below). Breakdowns occur only after one or
more …rms have reversed their decisions. As we have seen in section 2.5 exit
is only possible at RDs given that no exit has occurred so far. Therefore, one
would expect to see the highest empirical hazard rates one and two periods
after such a RD. After that »t should decrease to almost zero until the next
RD. Especially in later periods, as the population is larger, the e¤ect of exit
should take at least two periods to come through. This is exactly what we
found. Moreover, as the cascade goes on, without any reversions, optimism
should pick up and hazard rates should be much lower even after RDs. This
can be seen in Table II as well. In fact »t is zero from period 40 onwards.
»t is largest in wrong cascade with high signal quality at early stages. Note
that in the case of signal quality p = 0:9 and a bad state the last cascades
breaks down after 16 periods. That is why the empirical hazard rate is 1
here.

Observation 2: Empirical hazard rates are big after an RD. Moreover,
the later the RD the smaller the empirical hazard rate.

Clearly, the process is better at “detecting” a true cascade than a wrong
cascade. Why is that the case? As long as no reversion occurs only pos-
itive signals are revealed and thereby their e¤ect is multiplied. This leads
to the described spread of optimism among the population. An “enter”-
cascade tends to reinforce itself simply by surviving. There is no equivalent
for the development of an pessimistic attitude. In fact, negative news mul-
tiply rapidly. Therefore, the breakdown of a cascade is always a matter of
a few periods. The breakdown itself is also a kind of cascade. The revealed
negative signals outweigh the private signals. Yet, the speed of that cascade
renders the term information avalanche more adequate8. Table III presents

8The term information avalanche was …rst proposed by Lee (1993).
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the average time an “exit” information avalanche lasts. The duration of an
information avalanche is de…ned as the time between the …rst exit and the
breakdown of the information cascade. If the information cascade does not
break down there is no exit information avalanche. The mean duration of
an “exit” information avalanche is between 1 and 2.5 periods. Hence, break-
downs occur at a considerable speed. Given a bad state as the signal quality
decreases the duration of an information avalanche increases. This is due to
the fact that positive signals are more likely and therefore, there is a larger
amount of positive signals that work in the opposite direction. Since the
limited sample size of breakdowns in the case of a good state and high signal
quality an interpretation of these results is not possible.

Table III
True
State

Signal
Qual.

Number of
Breakdowns

Mean Duration
of Avalanche*

bad

0.9
0.8
0.7
0.6

5,000
4,982
4,476
2,877

1.084
1.378
1.862
2.452

(0.294)
(0.715)
(1.448)
(2.149)

good

0.9
0.8
0.7
0.6

0
2
19
265

-
2
2.095
2.479

(-)
(0)
(0.625)
(1.491)

Number of Simulation: 5000
* in periods, Standard Diviation in Brackets

Observation 3: If an “entry” cascade breaks down, the breakdown is
very quick.

4 Conclusion
In this paper we have adapted the standard information cascade model to
situations where agents have the choice between switching to some new al-
ternative or sticking to the old one. The opportunity of a new market or the
availability of some promising new technology are good examples. We have
enriched the model by two new features. First if agents opt for “switching”
they continue to receive private signals each period. Thereby we take into
account that from the point of view of the agent after switching to the new
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alternative the game is not over. The agent gains experience handling the
new alternative and might …nally learn whether it has any value. Here the
second new feature comes into play. If the agent is convinced that switching
was a mistake he may change his decision. We focused on how “enter”- in-
formation cascades evolve and how information is passed on within such an
information cascade.

The inclusion of these two new features changes the learning process
completely. We have identi…ed rules which describe the learning process
within an “enter”-cascade. Moreover, we have shown that an “enter”-cascade
gains in stability as it goes on. To investigate the properties of this modi…ed
information cascade model we ran simulations for 8 scenarios. These di¤er
in the underlying state of the world and the signal quality. For each of the
scenarios we ran 5000 simulations.

The simulations reproduced what we have found analytically: Empirical
hazard rates for an information cascade approached zero as time increased.
Already after 50 periods all but 1 out of 17,621 breakdowns had occurred. We
found that good “enter”-cascades with a relatively high signal quality were
fully revealing. Even with a very poor signal quality 95% of the cascades
were fully revealing. The information gathering process was less e¢cient in
the case of a bad “enter”-cascade. Nevertheless, with a poor signal quality,
still 58% of the cascade were fully revealing. This improved rather quickly
to over 99% as the signal quality increased.

The results of this more realistic set up contradicts the results of the
existing literature in two important points. First, the information gathering
process seems to be more e¢cient than the standard information cascade
suggested by earlier work (see e.g. Bikhchandani et al. (1992)). And second,
the information cascades we analyzed are not as fragile. Information cascades
gain in stability the longer they last.

Therefore, the attempt to correct a wrong “enter”-cascade by some public
information release has to be timed quite carefully. On the one hand the
problem might go away without any interference. On the other hand as the
information cascade lasts it gains stability and therefore, a late information
release must be quite powerful to overcome the optimistic attitude in the
cascade. Hence, to much hesitation might be expensive.
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Tabel II: Empirical Hazard Rate

Empirical Hazard Rate

State
signal 
quality at 4 at 5 at 6 at 7 at 8 at 9at 10 at 11 at 12 at 13 at 14at 15 at 16 at 17 at 18 at 19

bad 0.9 0,00 0,67 0,16 0,86 0,71 0,02 0,00 0,01 0,89 0,00 0,00 0,00 1,00 - - -
0.8 0,00 0,39 0,17 0,45 0,63 0,06 0,01 0,35 0,60 0,02 0,00 0,00 0,25 0,42 0,00 0,00
0.7 0,00 0,18 0,14 0,20 0,44 0,08 0,02 0,09 0,34 0,03 0,02 0,01 0,03 0,20 0,01 0,00
0.6 0,00 0,08 0,10 0,06 0,21 0,08 0,02 0,03 0,11 0,03 0,01 0,01 0,01 0,03 0,01 0,00

good 0.9 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0.8 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0.7 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0.6 0,00 0,00 0,02 0,01 0,01 0,01 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

Empirical Hazard Rate

State
signal 
quality at 20 at 21 at 22 at 23 at 24 at 25 at 26 at 27at 28 at 29 at 30 at 31 at 32 at 33 at 34 at 35

bad 0.9 - - - - - - - - - - - - - - - -
0.8 0,00 0,00 0,08 0,37 0,00 0,00 0,00 0,03 0,00 0,00 0,33 0,00 0,00 0,00 0,00 0,00
0.7 0,00 0,00 0,00 0,07 0,00 0,00 0,00 0,00 0,00 0,00 0,04 0,00 0,00 0,00 0,00 0,00
0.6 0,00 0,00 0,00 0,01 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

good 0.9 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0.8 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0.7 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0.6 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

Empirical Hazard Rate

State
signal 
quality at 36 at 37 at 38 at 39 at 40 at 41 at 42 at 43 at 44at 45 at 46 at 47 at 48 at 49 at 50

bad 0.9 - - - - - - - - - - - - - - -
0.8 0,00 0,00 0,05 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0.7 0,00 0,00 0,01 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0.6 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

good 0.9 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0.8 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0.7 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0.6 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

Colunmheads in italics indicate reversion dates (RD). Periods at which breakdowns should be most likely are shaded.
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