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Abstract

This paper analyzes the interdependence between the firms’ technology choice
and innovation. Previous literature argues that product flexibility and product
innovation are complements, because flexible machines handle a large variety
of product designs with low changeover times. In a model where technology is
chosen before uncertain demand is realized, we show that long-run technology,
by imposing constraints on short-run production, does not only affect the cost of
innovating but also its payoff. The results coincide with the literature in that the
cost of product innovation is always reduced by flexibility, but we find that the
operational profits from product innovation might be decreasing in flexibility.
Consequently, flexibility does not necessarily complement product innovation.
Empirical evidence from the German mechanical engineering industry supports
the complementarity conjecture, since random shocks tend to trigger adjustments
of both decision variables in the same direction.
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product firms, demand uncertainty, capacity constraints, multivariate probit
JEL Classification: C25, D21, D92, L23

∗This paper greatly profited from discussions with Rabah Amir, Paul Heidhues, Daniel Krähmer,
Lars-Hendrik Röller and Zhentang Zhang. I am indebted to Jörg Breitung and Gerhard Arminger for
discussions on the empirical methodology. I am also grateful to Jos Jansen, Robert Nuscheler, Rainer
Schulz, seminar audience at Humboldt University Berlin, University Paris I, University Toulouse I, and
conference participants at EEA and SMYE for their useful comments. Part of this paper was completed
while I was visiting the IDEI in Toulouse. I wish to thank the IDEI for their hospitality. Funding
from the Deutsche Forschungsgesellschaft (DFG), the RTN program of the European Commission
”Product Markets, Financial Markets and the Pace of Innovation in Europe” (HPRN-CT-2000-00061)
and its GAAC project ”Impediments to Innovation: A Complementarities Approach” is greatfully
acknowledged. Remaining errors are mine.

†Wissenschaftszentrum Berlin für Sozialforschung, Reichpietschufer 50, 10785 Berlin, Germany.
Phone: +49-30-25491-404. Fax: +49-30-25491-444. E-Mail: jung@wz-berlin.de.



1 Introduction

During the past decades massive advances in information technology (IT) have rev-

olutionized the firm at a shop-floor level. Beyond increasing speed and quality of

production, IT is capable of handling a greater variety of product designs with low

changeover times thereby decreasing the cost for introducing new products. The ap-

parent cost advantage, which flexible, IT intense equipment offers in innovating, seems

to suggests that the two decision variables, flexible technology and product innovation,

complement each other.1

The presence of complementarity simplifies the prediction of mutual adjustments

considerably: Any change in the optimal level of one decision, say flexibility, will tend

to shift its complement, say product innovation, in the same direction and vice versa.

This explains why the concept of complementarity became an important tool in the

economic analysis of multidimensional choices. From a policy point of view, given

complementarity, the efficiency of measures aimed at promoting product innovation

might be substantially enhanced by decreasing impediments to the adoption of flexible

technology. Moreover, product innovation could be stimulated indirectly by giving in-

centives to invest in complementary technologies. This might be a promising approach

in practice because product innovation is not precisely defined and therefore difficult

to target.

The above argument, which infers complementarity between flexible technology and

product innovation from the observation that the former decreases the cost of the latter,

focuses entirely on the fixed costs of production. In this paper we take a well-established

property of flexible machinery into account, which has not yet been thoroughly related

to product innovation: Flexibility provides a hedge against uncertain future conditions.

That is, by investing in flexibility today, a firm increases its discretion in later periods

when additional information is available. As an example, consider a company with a
1For example, Chrysler, the US arm of the carmaker Daimler-Chrysler, announced in the beginning

of 2002 that it would move towards a more flexible manufacturing in an attempt to reduce huge
operating losses and to cut down expenses on new product development by up to 25 per cent.
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fixed number of products whose prices are announced in a catalogue. Such a catalogue

is printed without information on what quantities costumers will eventually order and

hence production has to be adjusted according to incoming requests. Since capacity is

costly and usually fixed in the short run, firms are typically not prepared to produce

all possible quantity realizations. However, by adopting flexible, multi-tasking tech-

nology, which can be used to fabricate a wide range of products instead of machines

specialized in a few designs, a firm is more likely able to meet its costumers’ demand

with a given capacity level. On account of hedging against uncertain demand, flexibil-

ity has a positive impact on profits, which goes beyond reducing the cost to innovate.

Moreover, due to imposing technology specific capacity constraints on production, the

level of flexibility affects the probability that additional orders stimulated by product

innovation can actually be complied with. This reasoning reveals an important channel

of interdependence between the decision to innovate and the technological setting of a

firm, which, to the best of our knowledge, has not yet been covered in the literature.

To formalize the above argument, we build a two-period optimization model. First

the multi-product firm decides on whether technology should be dedicated or flexible,

what capacity the machines shall accommodate, the level of product innovation and a

price. At this stage, only the distribution of demand conditional on price and innova-

tion is known and we assume that flexible technology reduces the cost of incremental

product improvement. In the second period demand is realized and actual production

is conducted subject to demand and capacity constraints. In order to separate the

insurance effect of flexibility as clearly as possible from other factors, we restrict the

analysis to product markets with identical characteristics and marginal costs that are

constant, equal across products, and independent of technology. The only character-

istic that distinguishes our multivariate setting from the notion of a single-product

firm is the fact that stochastic demand shocks are allowed to be imperfectly correlated

across products.

Our results are as follows. First, we replicate that production will on average be

higher if technology is flexible, because then the capacity constraint applies to total
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production, whereas dedicated technology imposes one capacity constraint for every

single product.

Second, we show that flexibility reinforces the positive effect of incremental prod-

uct innovation on expected operational profits (sales minus variable costs) only for a

limited range of capacity. This ambiguity is driven by the fact that the probability

of additional demand being within the firm’s production capabilities is not necessarily

greater for flexible technology. Hence, concerning the production stage, flexibility and

product innovation may be complements or substitutes. Without further and possi-

bly unrealistic assumptions about the size of the effects we cannot rule out that a

potentially negative interaction in expected operational profits might dominate bilat-

eral fixed costs savings. Only in the limiting case of the model, where the demand

distribution is degenerate (i.e., there is no uncertainty), complementarity in the fixed

costs ensures complementarity in overall profits and leads to unambiguous comparative

statics results.

As the theoretical model in this paper leads to equivocal predictions, we empirically

investigate the interdependence between flexible technology and product innovation us-

ing data from 593 plants of the German mechanical engineering industry for the years

1992 and 1994. If complementarity stemming from bilateral fixed cost savings domi-

nates, than any shift in one of the two variables would trigger an adjustment pressure

on the other in the same direction. The levels of product innovation and flexibility

would thus be expected to be associated in practice. This paper measures the associa-

tion between the two practices in three subsequent steps: unconditionally, conditioned

on observed characteristics of the firms, and, finally, conditioned on observed and un-

observed heterogeneity. Controlling for observed and unobserved heterogeneity is nec-

essary in order to wipe out the effects of other factors, which might bias the inference

about the direct relationship between technology and innovation. The data reveals

that highly flexible firms do tend to adopt significantly more product improvements

than others. This effect does not vanish after controlling for heterogeneity.

Our theoretical contribution sheds new light on the discussion of what Milgrom
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and Roberts (19902 and 1995a) labeled ”modern manufacturing”. These authors argue

that a paradigm shift in the organization and strategy of the firm replaced traditional

mass production of that type as it characterized manufacturing during the first half

of the twentieth century. They assume that many features of production, for instance

high skills, worker involvement, frequent product improvement and flexible machines,

complement each other. Consequently, monotone shifts in complementary exogenous

variables, such as the diminishing costs of flexibility and communication during the

IT revolution, have not only been favoring investments in high capability technology

but have also stimulated monotone adjustments of the entire system of complementary

choices. In their arguments Milgrom and Roberts focus on fixed costs effects and

on properties of the deterministic demand function while ignoring uncertainty beyond

additive random terms.

This applies also to an article by Athey and Schmutzler (1995) who show that

complementarity between product and process innovation in the short run induces

complementarity between long-run product and process flexibility, if each type of flexi-

bility diminishes the cost of the respective kind of innovation. They allow for a random

return to flexibility, which affects the profitability of the short-run variables, but which

does not impose restrictions on the decision about these variables. Furthermore, in

their model the distribution of the random shock is independent of the long-run de-

cision. In contrast, in our model the probability distribution of uncertain events is

affected by the firms’ decisions and, moreover, the realized random variable imposes

constraints on the set of feasible production choices.3

We model gains from flexibility as a hedge against uncertainty following Fine and

Freund (1990) who give necessary and sufficient conditions for adopting flexible ma-

chines based on imperfect correlation between the demands for different products.

VanMieghem (1998) shows that flexibility might pay even when products are perfectly
2Note the comments on this article by Bushnell/Shepard (1995), Topkis (1995), and the reply by

Milgrom/Roberts (1995b) .
3We exclude a discussion of process flexibility and process innovation, because neither randomness

of demand nor randomness of marginal costs would qualitatively change results derived from fixed
costs only.

4



correlated, since it enables the firm to exploit differences between products in profit

margins. Epstein (1980) and also He and Pindyck (1992) discuss technology decisions

in a framework where uncertainty is resolved piecewise. Jones and Ostroy (1984) for-

malize the intuition of a flexible option being more valuable as uncertainty aggravates.4

DeGroote (1994) generalizes this view by covering the notions of multidimensional flex-

ibility and diversity.5

In this paper, flexibility will be exclusively defined as the capability of a produc-

tion technology to support a variety of products and designs. Aspects resulting from

differences in variable costs are ignored, since they would not add to our main point.6

The notion of complementary variables is formalized by using the concept of super-

modular objective functions on lattices, a generalization of differentiable functions with

positive cross partial derivatives.7 Monotone changes in a parameter vector, whose el-

ements are all complementary to every decision variable, lead to monotone shifts of

the set of maximizers of a supermodular function as established by Topkis (1978) and

generalized by Milgrom and Shannon (1994) . This property suggests that given such

a nicely behaved parameter vector, complementarity between decision variables can be

detected by their empirical association. The limits of this approach are discussed by

Holmstrom and Milgrom (1994), Arora (1996), and also Athey and Stern (1998).

This paper also contributes to the empirical assessment of modern manufacturing.

Although many studies test implications and find support for several aspects of Milgrom

and Robert’s idea,8 to our knowledge, none has explored whether the adoption of
4In an oligopoly context Vives (1989) shows that more uncertainty resulting from more variable

beliefs may decrease the value of flexibility due to interaction in the market. Novshek and Thoman
(1999) find that even for a monopoly optimal flexibility might be decreasing in uncertainty. In contrast
to most of the literature however, they define uncertainty as a random support of consumers’ taste
distribution.

5Papers that investigate the impact of endogenizing flexibility on equilibria in oligopoly games
include Vives (1986) and (1989), Röller and Tombak (1990), Eaton and Schmitt (1994), Norman and
Thisse (1999).

6For technology dependent variable costs see Stigler (1939) and Vives (1989) . Carlsson (1989)
and Gerwin (1993) survey different definitions of flexibility.

7For a comprehensive overview see the book by Topkis (1998) and the citations therein.
8Examples for studies that assess human recource practices attributed to modern manufactur-

ing are Pil/MacDuffie (1996), Ichniowski/Shaw/Prennushi (1997) and Patibandla/Chandra (1998).
Bresnahan/Brynjolfsson/Hitt (2001) and Parthasarthy/Sethi (1993) devote special attention to the
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flexible technology favors product innovation.

The paper proceeds as follows. In section 2 we introduce a reference model where

price announcements are followed by the markets’ deterministic reactions, which make

subsequent quantity adjustments unnecessary. This model replicates results from pre-

vious literature stating that fixed costs savings from the joint adoption of practices

in conjunction with a supermodular demand function lead to a profit function that is

supermodular in all decision variables. We then extend this model to situations where

demand is uncertain and quantity adjustments follow earlier price announcements.

Section 3 is devoted to empirical evidence from adoption decisions in manufacturing.

Section 4 concludes.

2 A Model of the Firm

2.1 A Model with Deterministic Demand

For later comparisons we will present a non-stochastic version of our model, which

involves the decision on flexibility of machinery f ∈ {0, 1}, product innovation i ∈ R+,
capacity k ∈ R+ and price p ∈ R+. Throughout this paper f is assumed to be binary, a
value equal to 1 indicating the adoption of flexible technology. Some of the definitions

and results, which are used in the following, are listed in appendix A.

Consider a 2-product firm acting as a monopolist. For simplicity, assume that the

marginal cost of production are constant, equal across products, and independent of

technology such that it can be normalized to zero.9 Further, let the product markets be

identical in their demand characteristics. Due to these simplifications, optimal prices

as well as optimal capacities must be the same for both products.10 Consequently,

adoption decisions of high performance — and thus flexible — technology. Gal-Or (2002) studies the
relationship between aspects of the internal structure of the firm and scale flexibility. Evidence on
what are complementary competences to innovation and whether product and process innovation are
complementary can be found in Leiponen (2000) and Miravete/Pernias (2000) respectively.

9Treating marginal costs as a function of technology would complicate the analysis by making
firms’ flexibility decision more complex. This extension would however, not alter the main point of
this paper, which focuses on the effect of product innovation on the optimal technology choice.
10For a discussion of the deterministic demand model, we could (without loss) treat the two products
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the firm’s price and capacity choices can be fully described by scalars p and k. Let

innovation be an activity that keeps the number of products constant and equally

improves the quality of both products. Consumers’ demand for each product j = 1, 2

is denoted byDj = Dj(i, p). Assume thatDj is supermodular in (i, p) and differentiable

in i and p with ∂Dj/∂p ≤ 0 and ∂Dj/∂i ≥ 0.11
Supermodularity of Dj implies that a price increase will diminish the demanded

quantity weakly less if a firm innovates. Supermodularity in conjunction with the

above assumption regarding first derivatives implies that the price elasticity, (−∂Dj
∂p

p
Dj
),

is decreasing in innovation.12 Hence, the more a firm improves its products, the less

sensitive consumers will be to price changes. Total demand for the firm’s products is

denoted by D := D(i, p) = 2Dj(i, p). This leads to the operational profit function

eΠ(i, p) = pD(i, p). (1)

Total profits Π equal the operational profits minus fixed costs. Let the fixed costs

consist of three components: the cost of capacity γk with γ ≥ 0 fixed and independent
of technology, the cost of flexibility F ≥ 0, and the cost of product innovation I ≥ 0.
In this paper, a firm is said to be flexible if it is able to operate all products on a

single device. With dedicated technology, on the other hand, the firm has to install

one machine for every product. If a firm invests in flexibility, it will incur a cost

F = F (f,ω), which depends on a vector of exogenous variables ω and is zero for f = 0.

In this setting it is never optimal for firms to acquire both types of equipment.13

The assumptions about the cost of technology are motivated by the fact that IT,

as one. A distinction between two products is made only for the sake of consistency with the stochastic
version of the model.
11Although neither differentiability nor the cardinal concept of complementarity are necessary to

assess comparative statics, we use the first for its intuitive appeal and the latter because it is easier
to verify in the context of the stochastic version of our model. But even under these more restrictive
assumptions, the stochastic version of the model will be shown to fail the monotonicity property.
12A price elasticity that is decreasing in i is equivalent to the log of the demand function being

supermodular, or in other words, the demand function being log-supermodular. This property is suffi-
cient for monotone comparative statics of pDj(i, p) and less demanding than Dj being supermodular
and increasing in i but more difficult to handle once demand is stochastic.
13VanMieghem (1998) allows marginal capacity costs to vary with technology and discusses condi-

tions that lead to optimal investment in both technologies.

7



which makes machines flexible, has become relatively cheap. Thus, most of the cost

difference between flexible and dedicated equipment can be attributed to the relatively

more expensive adoption of the former (e.g. coordination costs, specific training, the

need for high skilled operators).

Let the cost of product innovation I depend on the decision variables i and f and

on a parameter vector ω. Product improvements are less costly if they do not require

extensive reconfiguration of the production process or extra machinery, i.e. if tech-

nology is flexible enough to easily accommodate changes. Based on this observation,

Milgrom and Roberts (1995a) suggest that i and f are complements with respect to

(−I) and hence, (−I) is supermodular in (i, f).
Summarizing the preceding paragraphs, the firm’s profit can be written as

Π := Π(i, f, k, p,ω) = pD(i, p)− γk − F (f,ω)− I(i, f,ω). (2)

The following proposition derives interactions among the decision variables in the over-

all profit function from their interactions in either demand or fixed costs.

Proposition 1 Consider the profit function in (2) with (i, f, k, p)T ∈ R+ × {0, 1} ×
R+×R+. Let ω be an element of the partially ordered set Ω. Suppose that Dj(i, p) for
j = 1, 2 is differentiable and supermodular in (i, p) and increasing in i; −I(i, f,ω) is
supermodular in (i, f) and has increasing differences in ((i, f),ω); and −F (f,ω) has
increasing differences in (f,ω). Then

(i) Π is supermodular in (i, f, k, p).

(ii) argmaxi,f,k,pΠ is increasing in ω.

Proof. See appendix B.

Monotonicity implies that firms adjust to changes in parameters which complement

all endogenous variables in a coherent fashion, that is, by either increasing or decreas-

ing the level of all decisions. As a consequence of proposition 1, we should observe a

clustering in the choice of i, f, k and p given the components of ω are associated (i.e.
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shifts in ω are monotone) and the fixed parameter γ as well as other individual het-

erogeneity are controlled for. This implies that innovative firms tend to adopt flexible

technology and charge high prices. Note, that supermodularity in k is only weak and

neither a strictly positive nor a strictly negative association between k and any other

decision variable is predicted.14

A complementary parameter to the decision problem above could be the skills of

potential employees, because high skill levels can be assumed to reduce the cost of

adopting flexible technology and make product innovation easier. Another example

might be the negative of the cost of IT: Low IT costs make it more attractive to switch

production to the flexible, IT controlled mode (computer aided manufacturing — CAM)

and decrease the cost of experimenting with design changes (computer aided design —

CAD).

Proposition 1 will serve as a point of reference when discussing the impact that the

introduction of demand uncertainty has on complementarity.15

2.2 A Two-period Model of the Firm with Stochastic Demand

The key feature of the elaborate version of our model16 is that, given price and inno-

vation, we allow for two demand realizations for each product j = 1, 2:

Dj := Dj(i, p) =

½
D := D(i, p)
D := D(i, p)

j = 1, 2,

where 0 ≤ D ≤ D for any i and p. The joint density function of identically distributed
random variables D1 and D2 is fully determined by four parameters: the probability

δ0 that demand, conditional on i and p, equals the lower value D; the expectation and

standard deviation of the marginal distributions µ := E[Dj] and σ := var[Dj]; and the

correlation coefficient ρ. In order to separate changes in profits due to a variation in µ
14The reason why we have included capacity choice in the model is that doing so will be natural in

the context of the stochastic model below.
15It should be pointed out that, so far, there is no reason to assume a differentiable demand function.

Limiting the variability of i and p to discrete changes would affect the proof but none of the implications
of proposition 1 (see Topkis (1998) theorem 3.3.3.).
16In order to save notation, in the current model functions are named in the same way as in section

2.
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from those caused by variance shifts, we assume that expected demand is a function of

price and innovation, µ = µ(i, p), whereas the uncertainty parameter σ is not affected

by these variables. This implies that the marginal effect of price and innovation on D

equals that on D. As a result, changes in price or the level of product innovation shift

the probability function along the horizontal axis while maintaining its shape.

Imposing random realizations instead of deterministic demand allows us to analyze

a key property of flexible technology, namely its capability to shift capacity among

products.17 In the absence of uncertainty such multifunctional equipment can hardly

be an advantage compared to dedicated technology: total capacity would then be

chosen to equal the demand for all products. In a stochastic world, however, flexibility

might payoff since it enables firms to adjust production according to the realization of

demand. This suggests splitting the firm’s decision into two periods as has been done

by VanMieghem (1998): In the first period the firm decides on the level of i, f , k, and p

only knowing the distribution ofDj. Then demand is realized and the actual production

level, y = (y1 y2)
T , is chosen. Note that, a priori, we do not restrict the correlation

between the demand shocks of the two products, thus incorporating situations where

their interdependence is mostly influenced by macro shocks (e.g. income shifts of the

whole economy) as well as settings where such macro trends are dominated by omitted

factors hitting the two markets conversely.

Given these amendments to the deterministic model of section 2.1, a risk neutral

firm now maximizes expected profits in the first period,

EΠ : = EeΠ− I(i, f,ω)− γk − F (f,ω)
= 2pEip

£
y∗j (f, k,Dj)

¤− I(i, f,ω)− γk − F (f,ω), (4)

with respect to i, f , k, and p foreseeing optimal quantity choices y∗j , j = 1, 2, in

second period. In equation (4) EeΠ denotes expected operational profits, whereby γ,

δ0, σ, and ρ are exogenous factors and ω represents a vector of omitted exogenous
17Throughout the paper we will ignore the quantitative dimension of flexibility treating the capacity

as a generally binding constraint to production. We assume that marginal cost of production are
infinite above the capacity level.
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variables. The subindices i and p emphasize the fact that the expectation of the

optimal quantity depends on innovation and price due to the effect these variables

have on the distribution of Dj.

After demand is realized the firm chooses optimal production, y∗:

max
y

p
P
yj (5)

s.t. yj ≤ 1

2
k if f = 0,P

yj ≤ k if f = 1,

yj ≤ Dj.

Apparently, the capacity constraint in (5) is less restrictive with flexible technology,

because only then is every unit of k multifunctional. Optimal production is in either

case straightforward: If technology is dedicated (f = 0), then the optimization is done

for every product independently. For each j = 1, 2 the firm produces the minimum

of demand Dj and capacity 1
2
k. When f = 1, profit maximization involves choosing

output levels simultaneously for both products. Total production will then equal the

minimum of total demand ΣDj and total capacity k. Expected operational profits

including second period maximization are thus

EeΠ∗y := Emax
y

eΠ = ½ 2pEmin(Dj,
1
2
k)

pEmin (ΣDj, k)
if

f = 0
f = 1

. (6)

In this model the optimal quantity vector is fully determined by f , k, D1, and D2.

Therefore, the expected payoff from specific combinations of i, f , k, and p will be

studied in a profit function where quantity is already maximized for.

Equation (6) can be rewritten as

EeΠ∗y = ½ p {2E [Dj|Ξ0] Pr (Ξ0) + k [1− Pr (Ξ0)]}
p {2E [Dj|Ξ1] Pr (Ξ1) + k [1− Pr (Ξ1)]} if

f = 0
f = 1

, (7)

where Ξ0 and Ξ1 denote the events of having demand as the only binding constraint,

that is, Dj < 1
2
k and ΣDj < k, respectively.

At this point it is worthwhile to note the potential implication of uncertainty as

modeled above to proposition 1. Random demand itself does not necessarily matter.
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Let, for instance, demand be a function D(i, p, r), where r is a random variable with

a distribution which is independent of i, f , k, and p. Expected demand would then

be the sum of all potential demand realizations times an exogenous probability. Using

the fact that supermodularity is preserved by multiplying factors and by summation,

proposition 1 would still hold for expected profits. In this paper we do, however, allow

the firm to adjust its production according to new information within the limits set by

prior decisions. In fact, since eΠ is strictly increasing in yj such that at either capacity,
demand, or both are binding constraints in (5), prior decisions are always effective

limits to production. As a result, the probability function of y∗j depends on i, f , k, and

p by more than an additive shift. For supermodularity to hold in EΠ, supermodularity

of Eip
£
y∗j (f, k,Dj)

¤
must be established.

Equation (7) does not yet involve any distributional assumption. The second line

includes the expectation of the two random variables contingent on their sum. Since

there are no general results concerning the distribution of the sum of correlated random

variables even if they are identically distributed, we stick to the simplest possible model

of randomness.18 Namely, we assume that the demand for each product is either low

(D) or high (D) and that the probability of the lower outcome, Pr(Dj = D), is the

same for both products and equal to δ0. Computing the joint and conditional marginal

distributions and identifying regions in which differentiability with respect to the choice

variables is ensured is then straightforward.

Table 2 in appendix D displays the probability that demand is binding (Pr (Ξ0) and

Pr (Ξ1)) and, given that it is binding, the expected demand for either technology type

(E [Dj|Ξ0] and E [Dj|Ξ1]).
18In general, it is even difficult to derive whether the marginal distribution of Dj conditional on Ξ1

behaves nicely, namely, whether it has an expectation. Furthermore, although we can give an explicit
formula for the probability of Ξ1, it is in general not differentiable in i and p even if distributions
are continuous: For two continuous random variables D1 and D2 with joint density h on support
[D(i, p),D(i, p)]2 we have

Pr[x+ y ≤ k] =
xZ
D

yZ
D

h(D1,D2)dD1dD2

with x = min(k −D,D) and y = max(D,min(k −D2,D)).
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Plugging the results from table 2 into equation (7) leads to

EeΠ∗y(f = 0) =
 pk
p [2δ0D + (1− δ0) k]
p2µ

if
k ≤ 2D
2D < k ≤ 2D
2D < k

,

EeΠ∗y(f = 1) =

pk
p [2δ00D + (1− δ00) k]
p
£
2
¡
δ00D + δ10 (D +D

¢
) + δ11k

¤
p2µ

if

k ≤ 2D
2D < k ≤ D +D
D +D < k ≤ 2D
2D < k

, (8)

where δ00 = Pr(D1, D2 = D), δ11 = Pr(D1, D2 = D), δ10 = Pr(D1 = D,D2 = D).

Although the function EeΠ∗y is not differentiable over its entire range, it is continuous
as can be seen by inserting the case boundary conditions into (8).

Note that as long as capacity and product improvements are costly, profit maxi-

mization implies that the optimal value of k lies within
£
2D, 2D

¤
, the support of ΣDj

and 2Dj. If k < 2D, then the firm could decrease its product improvement efforts or

increase the price of the products without affecting production, because capacity is a

binding constraint on production with probability one. Similarly, 2D < k cannot be

optimal, as the firm could save capacity costs without decreasing revenues. For this

reason we will focus on the intermediate cases for further discussion, although all state-

ments that will appear in the following chapter do apply – at least in a qualitative

sense – to the entire range.19

2.3 Analysis of the Extended Model

In this paragraph we analyze the linkages of the choice variables in the above 2-period

model where demand is stochastic. The key question is how the presence of technol-

ogy dependent constraints on production in the second period alters the first-period

incentives to invest in additional capacity and product innovation. From section 2.1

we maintain the assumption of (−I) being supermodular in (i, f). In contrast to

the deterministic model, supermodularity of demand now applies to its expectation,

∂2µ/∂i∂p ≥ 0.
19The case k = 2D should, of course, not be excluded. For the sake of calculating EeΠ∗y it can be

incorporated into the case 2D < k ≤ D +D because EeΠ∗y is continuous.
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To derive whether the decision variables i, f , k, and p are complements we inves-

tigate their interactions in each addend of the profit function (4) and then use the

summation property of supermodular functions. To those addends that reflect the

fixed cost the same assumptions apply as in the deterministic model. Hence, what

remains to show is whether i, f , k, and p are complements with respect to operational

profits. Because in this paper the set of feasible actions is a finite product of chains, it

suffices to prove pairwise complementarity in order to establish supermodularity: the

profit function would be supermodular if and only if it is supermodular in any subset

of decision variables.

For a comprehensive exposition of the modeling assumptions the analysis starts

by discussing the first order effects of the endogenous variables and of uncertainty on

operational profits. This procedure aims at emphasizing the modeling assumptions and

at providing the ground for understanding the main results.

Denoting ∆fEeΠ∗y = EeΠ∗y(f = 1)− EeΠ∗y(f = 0) and using that δ11 = δ00 + 1− 2δ0
and δ10 = δ01 = δ0 − δ00 the expected gain from flexible versus dedicated machines in

operational profits is the difference

∆fEeΠ∗y =

p (δ0 − δ00) (k − 2D)
−p (δ0 − δ00)

¡
k − 2D¢

0
if

2D < k ≤ D +D
D +D < k ≤ 2D
otherwise

. (9)

Retrieving that the joint probability δ00 cannot be greater than the marginal probability

δ0 and taking the case boundaries of equation (9) into account, it can easily be seen

that ∆fEeΠ∗y ≥ 0. This leads to our first lemma:
Lemma 1 Using flexible instead of dedicated technology cannot lead to lower profits in

the production period.

Proof. In text.

The superiority of flexible technology results from modeling flexibility as a hedge

against risky demand. We would also expect that the expected gain from flexibility

increases as the uncertainty about demand (i.e., the standard deviation σ) rises. Fur-

thermore, the more positively correlated demands of the two products are, the scarcer

14



should be situations, in which flexible firms can shift capacity between the products.

From lemma 2 both conjectures can be seen to hold in the current context.

Lemma 2 The gain from flexibility is nondecreasing in demand risk and nonincreasing

in demand correlation.

Proof. See appendix B.

Lemma 3 summarizes the results on the first-order effects of i, k, and p:

Lemma 3 Expected operational profits (EeΠ∗y) are nondecreasing in product innovation
and capacity and increasing or decreasing or non-monotone in price.

Proof. See appendix B.

Intuitively, product innovation or enhanced capacity shift expected production up-

wards. This is true irrespective of the relative size of demand compared to capacity. In

a qualitative sense, a price increase acts like a downward shift of innovative activities:

it reduces expected demand. But higher prices also boost operational profits from

every item that is finally sold. Without further assumptions on the magnitude of this

demand effect or on the size of σ and ρ, the price effect is not determined in sign.

To verify whetherEeΠ∗y exhibits complementarity in f , i, k, and p we will now discuss
how each of these variables alters the operational profit of increasing the remaining

choice variables.

Lemma 4 characterizes the bilateral interdependence of i, k, and p:

Lemma 4 Product innovation and capacity as well as price and product innovation

are complements with regard to EeΠ∗y. The effect of a price increase on the expected
operational gain from additional capacity is undetermined.

Proof. See appendix B.

Complementarity between i and k stems from their marginal effects being dependent

on the excess of capacity over expected demand, (k − 2µ). The intuition for this is that
more slack capacity better accommodates additional demand and, hence, the increase
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in expected production due to innovation is greater in magnitude for high values of

(k − 2µ). Accordingly, the operational gain from additional capacity is decreasing in

(k − 2µ), because capacity is then less often needed to comply with demand.
Product innovation and price are complements in EeΠ∗y, as an increase in price

always boosts the demand gain from product improvement (µ is supermodular in i

and p) and also increases (at the case boundaries) the probability that the additional

demand is within the firm’s production capability and, eventually, the net profit from

selling an item.

The undetermined connection between capacity and price can be interpreted as

follows: a higher price lowers demand thereby decreasing the probability that additional

capacity will be used in production once the case boundaries are passed. However, there

is also a potential for p interacting positively with k, because, whenever additional

capacity is used, it pays more when prices are high. Without further assumptions the

net effect of price on marginal changes of capacity is ambiguous.

We argued earlier that, as long as product demands are not perfectly positively cor-

related, there is a potential gain from the ability to shift capacity among the products,

i.e., ∆fEeΠ∗y cannot be negative. Lemma 5 states how the expected operational gain
from flexibility is influenced by product innovation.

Lemma 5 Product innovation and flexibility are substitutes (complements) with re-

spect to expected operational profits for low (high) values of slack capacity (k − 2µ).

Proof. See appendix B.

The intuition for the result that flexibility and product innovation are not always

complements is best seen by comparing the marginal effect of innovation across tech-

nology schemes. Remember that the marginal gain in expected operational profits from

product innovation equals its expected demand shift times the probability that this ad-

ditional demand can actually be produced (that is, demand does not exceed capacity)

times the per unit profit (p). Thus, the difference between dedicated and flexible tech-

nology with regard to gains from innovation arises only because the probability that
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demand is a binding constraint on production, Pr (Ξf), depends on technology. Pr (Ξf)

is greater for dedicated technology when capacity is relatively small (2D < k ≤ D+D)
and greater for flexible technology when capacity is large (D +D < k ≤ 2D).20 This
is due to the virtual capacity shifting among the two products which is possible with

flexible technology: the relevant probability function is then that of the average de-

mand and not that of demand for the individual product. Naturally, averaging leads

to a probability function which gives less weight to extreme values than the marginal

probability function. Thus, at low values of the capacity constraint the probability that

demand is a binding constraint (i.e., the probability to the left of 1
2
k) is smaller in the

distribution of the average compared to that of the individual demand. With a large

capacity on the other hand, the probability that demand is constraining production is

higher when the average is relevant, since the average is less likely to be even larger

than capacity.

Note from the discussion above that the result from lemma 5 is not due to the

specific distributional assumption we made. Instead the argument is founded on a gen-

eral property of random variables, namely that their marginal probability (or density)

function has fatter tails then the probability (or density) function of the average of

equally distributed random variables. Lemma 6 formalizes this point.

Lemma 6 For any number of products n, whose demand, conditional on price and

innovation, is a random draw from the same discrete distribution, we have that, with

regard to EeΠ∗y, flexibility and product innovation are substitutes (complements) at suf-
ficiently low (high) values of

¡
1
n
k − µ¢.

Proof. See appendix B.

The following lemma characterizes the effect that flexibility has on gains from ca-

pacity or price shifts.

20This can be seen from table 2: Pr (Ξ1)−Pr (Ξ0) is equal to δ00− δ0, when 2D < k ≤ D+D; and
to 1− δ11 − δ0 when D+D < k ≤ 2D. By definition the first of these differences cannot exceed zero.
To evaluate the latter note that 1− δ11 ≥ 1− (1− δ0) and thus 1− δ11 − δ0 ≥ 1− (1− δ0)− δ0 = 0.
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Lemma 7 Regarding EeΠ∗y capacity and flexibility are complements (substitutes) for
low (high) values of slack capacity. Price and flexibility are complements for low values

of (k − 2µ). Otherwise their interrelation is undetermined.

Proof. See appendix B.

The linkage of capacity and flexibility merely reflects the relationship between flex-

ibility and innovation, since additional capacity is only used when capacity is the

binding constraint. This occurs with a probability equal to one minus the probability

that demand is constraining production. For this reason, whenever flexibility increases

the returns (in terms of EeΠ∗y) from higher innovation, it must decrease the gains from
extra capacity and vice versa. Analogously to lemma 6 there is a straightforward

generalization of lemma 7 to arbitrary discrete distributions and to any number of

products.

As a higher price decreases expected demand, the price effect on the flexibility gain

is opposite to that of innovation. On the other hand, the per unit value of flexible

technology is strictly increasing in price. The overall effect leads to f and p being

complements with regard to EeΠ∗y, when capacity is small compared to µ.21
Table 1 informally summarizes the results concerning the interdependence of the

choice variables in the function EeΠ∗y. The signs ”+” and ”−” denote respectively
a nonnegative and a nonpositive relationship of two decision variables with respect

to EeΠ∗y, while the question mark stands for ambiguous interactions. In cases where
one sign does not apply to the whole range of the support the upper value is valid

for D + D ≥ k and the lower for D + D ≤ k. It is evident from the table that

EeΠ∗y is not supermodular in (i, f, k, p), because irrespective of assumptions about the
undetermined bilateral linkages and about the optimal values of k, D, and D, the

interrelations have no unique direction.
21Note that the discussion about the interaction of i, k, and p with f reveals the advantage of

assuming differentiability of expected operational profits in i, p and k: Allowing for discrete changes
in these variables would lead to the possibility of switching between the cases of equation (9) and
hence, further complicate the discussion. In a qualitative sense, however, the results would remain
unchanged.
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Â i p k f

i Â + +
−
+

p Â ?
+
?

k Â +
−

Table 1: Bilateral interactions in EeΠ∗y.
In order to evaluate the relation between the different aspects of the firms’ choice in

the overall profit function (4), note that, given linear capacity costs as we have assumed

so far, there is no interaction of f and k in the fixed costs which could outweigh their

potential negative linkage in the expected operational profits, EeΠ∗y. Taking the fixed
costs into account will also not help to overcome those ambiguities from table 1 that

involve price. A potential negative interdependence between innovation and flexibility,

however, might be overcompensated by fixed cost savings of their joint adoption.

Proposition 2 summarizes the results from the discussion of the stochastic model.

Proposition 2 Consider the function of expected profits EΠ in (4) and the second

period optimization problem (5) with (i, f, k, p)T ∈ R+ × {0, 1} × R+ × R+. Suppose
that Dj(i, p) for j = 1, 2 is differentiable and supermodular in (i, p) and increasing in

i; −I(i, f,ω) is supermodular in (i, f). Then the following holds with respect to the
function EΠ:

(i) i and p are complements.

(ii) i and k are complements.

(iii) f and k are neither complements nor substitutes.

(iv) i and f , f and p as well as k and p might be complements or substitutes or

neither.

(v) i and f are complements if their complementarity with respect to −I(i, f,ω) is
sufficiently strong.
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Proof. The proof follows directly from lemmas (3)-(5), lemma (7), and the sum-

mation property.

The analysis in this paragraph illustrates that introducing demand uncertainty into

the model does have a substantial impact on complementarity, even though uncertainty

was set up in such a way that the conditions for optimality in the extended model con-

verge to those of the basic model in section 2.1 for sufficiently small uncertainty.22

Thus, the limiting case of the stochastic model indeed leads to a supermodular over-

all profit function as proposed by existing literature. However, the slightest demand

uncertainty destroys the system of complementary decision variables.23

This means for example that, even though price and innovation interact positively,

their values might move to opposite directions following monotonic parameter shifts.

To see this, consider an example where for the optimal decision of firm 1 we have

D + D > k and f = 1. Another firm faces lower product improvement costs and

might therefore opt to engage in innovation more than firm 1. This will in turn make

higher prices more profitable for the second firm than it will for firm 1, but additionally

shrinks the expected gain from flexible technology. If, as a result, f = 0, a lower price

compared to firm 1 might be optimal.

For an economic interpretation of the relationship between innovation and flexibil-

ity imagine extra capacity is sufficiently cheap but not without cost (i.e. γ is small but

greater than zero), such that in optimum a firm installs a high capacity compared to

expected demand. Such a firm will rarely face situations were demand cannot be met

due to capacity restrictions. Then a change in exogenous variables that promotes the

adoption of flexible technology will also unambiguously shift the optimal level of prod-
22To derive this recall that any optimally chosen capacity, price and innovation effort must ensure

k ∈ £2D, 2D¤. If the risk approaches zero (D −D → 0) we must have k → 2µ for optimality. Or, in
words, maximizing behavior under certainty allows for slack neither in capacity nor in demand.
23Although the decision variables of our model fail to be complements, they could still meet the

conditions required by the Monotonicity Theorem based on quasisupermodularity. Quasisupermod-
ularity is more demanding to check (see Milgrom and Shannon (1994) for details). However, with
differentiability we can investigate whether, as a direct consequence of the monotonicity property, all
first order conditions are nondecreasing in all other decision variables. This is done by plugging in as
many FOCs into a given cross partial of the profit function as necessary for sign determination. In
our model this procedure does not lead to any new information.
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uct innovation upwards, because at a sufficiently large k relative to µ the probability

that additionally generated demand can be complied with is larger for flexible than for

dedicated technology. On the other hand, high values of γ might induce the capacity

constraint to be frequently binding and therefore lead to the case were a negative in-

terdependence between product innovation and flexible technology at the production

stage outweighs their fixed costs complementarity. Note however: if γ converges to

zero, the incentive to invest into the more expensive flexible technology vanishes, as

the firm can then afford to buy a lot of dedicated machines – although it will almost

never fully employ them – and therefore cannot gain from the capacity shifting as

flexible technology would allow for.

3 Empirical Evidence

3.1 Methodology

The literature on testing for complementarity follows two main directions. First, a

theoretically straightforward procedure is to estimate the decision maker’s objective

function.24 If the decision variables are indeed complements, then their interaction

terms in the objective function should be positive and significant. Beyond that, the

coefficients’ size measures the strength of the complementarity among the endogenous

variables. However, this approach assumes knowledge about what decision makers

maximize and which constraints limit their choice. Plant managers, for example, might

be maximizing firms profits, plant profits, a mixture of both or neither of the two. Even

taking their behavior for granted, it might turn out to be very difficult or impossible

to get data on the objective.

Second, an alternative method applied in the literature25 builds on implications of

Topkis’ (1978) Monotonicity Theorem: Given a system of complements and a vector of

complementary exogenous variables, monotone shifts in the predetermined vector imply
24Parametric examples include Bresnahan/Brynjolfsson/Hitt (2001), Ichniowski/Shaw/Prennushi

(1997), Leiponen (2000), Parthasarthy/Sethi (1993) and Patibandla/Chandra (1998). Beresteanu
(2000) introduces nonparametric techniques for the estimation of supermodular objective functions.
25Arora/Gambardella (1990) and Miravete/Pernias (2000) are examples for this approach.
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monotone reactions of the endogenous variables. Empirically, monotone shifts imply

correlation, or, more generally, association among variables (Holmstrom and Milgrom

1994).26 Thus, complementary practices are expected to be associated (unconditional

association). Of course, in real life problems, exogenous variables might not vary

monotonically and often relevant exogenous variables are not complementary to all

endogenous variables. In these cases, the test for complementary dependence applies

to the residuals of regressions in which potentially troublesome variables have been

controlled for (conditional association).

The association approach comes along with the obvious advantage that no informa-

tion is necessary about the objective and what functional form approximates it well.

The cost for the less demanding data requirements is that the estimation will not give

indications of the decision variables’ direct effect on the objective. Further, a strong

positive association between decision variables may not be interpreted as particularly

strong complementarity, since part of it may be due to association in the driving ex-

ogenous variables that were not controlled for. We might even find positive association

between the decision variables when they are in fact not complementary. However,

Athey and Stern (1998) show that the tendency to overestimate complementarity, if

unobserved exogenous variables are associated, is also a problem when the objective

function is estimated.

One attempt to deal with unobserved heterogeneity is proposed by Miravete and

Pernias (2000) who estimate a system of decision variables with random effects using

panel data. They consider the association between the purely random components

of the reduced-form residuals (error term minus the idiosyncratic component) as the

relevant indicator of complementarity.27 Athey and Stern (1998) propose a method to
26Association is preserved by monotone transformations of the random variables whereas correlation

is not.
27The authors point out a possibly important limitation of their approach: if decisions are state

dependent (e.g. a firm that uses a given technology today is likely to continue to do so in the near
future) and this cannot be explicitely modeled because the panel is too short, the random firm effect in
the adoption equation will contain some of the state dependence. Hence, excluding the part of random
variation that is idiosyncratic to the firm causes a tendency to overestimate unobserved heterogeneity
and thereby biasing the estimated complementarity.
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overcome the unobserved-heterogeneity problem in the context of cross-sectional data.

It relies on the estimation of the objective function and requires extremely rich data.

In this paper we apply the association approach on the basis of reduced-form adop-

tion equations for flexible technology and product innovation. As suggested byMiravete

and Pernias (2000), we estimate both equations as a system in order to disentangle

association between the unobserved individual effects from pure error association.

3.2 Data

For the empirical investigation this paper analyzes a balanced panel of 593 German

mechanical engineering plants for 1992 and 1994.28 The data summarized in tables

3 and 4 in appendix D includes information on both the formal and the informal

organization of the plant.

Product innovation is measured as a binary variable INNOVATION, which equals

one whenever the plant introduced new products and zero otherwise. The variable

FLEXIBILITY equals zero if the plant adopted conventional, numerically controlled

(NC) or computer-numerically controlled (CNC) machines but no more integrated tech-

nologies and it is equal to one if machining centers, flexible manufacturing cells (FMC)

or flexible machine systems (FMS) were installed.29 The difference between the two

categories is an ordering with respect to the flexibility of a single machine as well as

with respect to the flexibility of the entire shop floor.

Table 5 in appendix D shows that in 1992 roughly 47% of the firms adopted the

more flexible technologies, whereas in 1994 this figure increased to 51%. On the other

hand, the share of firms reported to engage in product innovation decreased from 78%
28We would like to thank Ulrich Widmaier, University of Bochum, for his permission to use this

data, which is a subset of the original panel NIFA (Neue Informationstechnologien und Flexible Ar-
beitssysteme). It is available for the period 1990-1997 but various items of interest to this study were
not included in the questionnaires of all waves.
29NCs and CNCs are single-task machines with decentralized numerical control, i.e. there is no

coordination between the machines. Machining centers are also stand-alone devices but they perform
a variety of tasks. Very often they include automatic tool changing. FMC/S denote systems of a few
(FMC) or many (FMS) machines that are connected by automatic material handling and controlled
by a single, central device. See Gurisatti et al. (1997) for the definitions.
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to 66% during the same period. While the apparent raise in flexibility might reflect a

general trend towards high capability systems, the time pattern of innovation is likely

to be the result of the recession following the reunification boom in Germany shortly

after 1990. Firms, which had adopted flexible technology in 1992, were considerably

more often flexible than others in 1994, too. The same, though less accentuated, holds

for the tendency to innovate in 1994 conditional on innovation in 1992. The apparent

inertia in both practices indicates that either sunk costs are involved in the adoption

of flexible technology and in the innovative process or time-invariant characteristics of

firms influence their decisions.

As the panel covers only two years, time effects are captured by the dummyYEAR94

equal to one in 1994 and zero otherwise. The log of the total number of employees

working in a plant (LOGSIZE)30 is expected to have an effect on technology choice and

innovation due to many reasons, like economies of scale, size dependent coordination

costs, and so forth.

The dummy FIRMLEVEL equals one if technological or organizational issues were

reported to be on the firm-level agenda. Because the firm-level influence might not

always be directly perceived by plant managers but still be significant, we also include

the variable MULTIPLANT, which equals one if the plant belongs to a multi-plant

firm.31

A high share of products, which can be either modified from a basic design or

completely specified by customers (CUSTOMIZE), supposably increases gains from

flexibility, whereas there is no such clear-cut intuition for its effect on product innova-

tion. The variable HIERARCHY proxies communication costs, which might hinder all

sorts of changes and especially product innovation. It takes the value one if managers

reported the number of hierarchical levels on their plants to be average or more. Infor-

mation on hierarchy is only available for 1992. Since this organizational characteristic

is typically a long-run choice, we also control for HIERARCHY in the 1994 regressions.
30We use the logarithm because the original size variable is extremely skewed: Most firms have less

than 100 employees and only very few reach very large numbers such as several thousands.
31The correlation between FIRMLEVEL and MULTIPLANT is surprisingly low (0.32).
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Worker’s skills, which typically cannot be freely determined in the short run, might

play a crucial role in the decision whether new products are introduced into the market

and on the complexity of machines a firm wants to install. We capture this effect by

the share of skilled workers, foremen, and engineers in production (EDUCATION).

The theoretical part of this paper argued that the gain from flexibility tends to

increase with the level of demand uncertainty that the firm faces. The bivariate variable

RISK is a proxy for uncertainty indicating whether a crucial part of revenues is assured

by long term contracts or not. In the former case RISK is equal to zero (one otherwise).

3.3 Estimation and Results

This paper assesses complementarity between product innovation and flexible tech-

nology based on the association between these variables. Starting with observations

about the joint occurrence of the original variables, we investigate to what extent the

dependence is driven by the plants’ observed and unobserved characteristics.

Unconditional association between FLEXIBILITY and INNOVATION is measured

by Kendall’s tau (τ) as defined in appendix C, which, unlike the standard Pearson

correlation coefficient, captures nonlinear interdependence. Ignoring any effect of ex-

ogenous variables, we find a small positive but significant dependence (τ =0.144). Table

6 shows that this number is effectively equivalent for both years. As discussed above,

interpreting the positive unconditional association as evidence for complementarity be-

tween flexible machines and product innovation requires very restrictive assumptions

on the exogenous variables. To avoid such restraints we estimate the reduced form

adoption equations for FLEXIBILITY and INNOVATION:

y∗git = xitβg + egit

with egit = ugi + εgit

and ugi ∼ N(0,σ2ug), εgit ∼ N(0,σ2εg),

where y∗git denotes the latent endogenous variable g = 1, 2 of individual i = 1, ..., 593 at

time t = 1, 2, xit is a vector of exogenous variables used to control for observed hetero-
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geneity in both equations, βg is a parameter vector, and egit is a normally distributed

random shock. In order to take unobserved heterogeneity between the plants into ac-

count, the equation error is additively separated into a time independent individual

component (ugi) and a pure random term (εgit). We assume that the variance of the

disturbances has the simple form σ2eg = σ2ug + σ2εg , i.e., ugi and εgit are uncorrelated.

Since the tendency to innovate or to be flexible, y∗git, is not observed, a probit model

of the actual choices subject to the usual variance restriction σ2eg = 1 is estimated.
32

It is then possible to test for complementarity based on the empirical association be-

tween ε1it and ε2it. Yet, given that only the distributional parameters σ2gu and not

the individual effects itself are estimated, the dependence between e1it and e2it can-

not be decomposed into the correlation stemming from the individual effects and the

pure error correlation. As a consequence, the inference about complementarity would

be biased by unobserved heterogeneity. Everything else being equal, the presence of a

strictly positively affiliated33 vector of unobserved characteristics tends to overestimate

complementarity from residual dependence. If, on the other hand, unobserved char-

acteristics are strictly negatively affiliated, the residuals of effectively complementary

decision variables might actually be negatively associated. Athey and Stern (1998) give

examples for such misbehavior and demonstrate that even if unobservable factors are

independent, omission reduces the testing power.

Correlation of the pure errors can be separated from linkages of the individual

effects when both adoption equations are estimated as a system. Because our panel is

too short, we abstract from time series effects in the pure error terms. Furthermore,

we let all individual effects be independent from all pure errors (cov(ugit, εkit) = 0) and

assume that all plants are independent from each other. Then, the nonzero system
32The equally popular logit model is less suited to multivariate settings and for the incorporation

of random effects due to the less flexible correlation pattern of the multivariate logistic distribution.
33Affiliation is defined as association conditional on any feasible choice of endogenous variables,

assuming the latter are sublattices. See Milgrom and Weber (1982) for details.
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covariances are:

cov(e1it, e2it) = cov(u1i, u2i) + cov(ε1it, ε2it), (10)

cov(e1it, e2is) = cov(u1i, u2i), ∀s 6= t. (11)

Equations (10) and (11) allow us to decompose the contemporaneous dependence

between FLEXIBILITY and INNOVATION in (10) according to its sources: the covari-

ance between the firm effects, cov(u1i, u2i), and the pure error covariance, cov(ε1it, ε2it).

Because we exclude time series effects, the noncontemporary covariance between the

unexplained parts of FLEXIBILITY and INNOVATION, cov(e1it, e2is), in equation (11)

stems entirely from the covariation of the individual effects, cov(u1i, u2i).

Table 7 presents the single equation and the system estimates for the random-effects

probit model. While both procedures are consistent, the latter is more efficient. The

results differ only slightly in significance between the two specifications.

The year 1994 (YEAR94) has a significant impact on the decision to innovate and

also on the adoption of flexible technology. As discussed above, the sign of this coeffi-

cient may be interpreted as a business cycle effect on innovation and as a positive time

trend for the adoption of flexible technology. Plant size (LOGSIZE) is significantly

positively related to both product innovation and flexibility. The single equation re-

sults suggest that being part of a company with multiple plants (MULTIPLANT=1)

increases the tendency to innovate and to be flexible, whereas no such effect is found

in the system estimation. Decision making at the firm level instead of the plant level

(FIRMLEVEL=1) is not found to have any significant impact.

Plants offering to customize a large part of their product line (CUSTOMIZE=1)

are less likely to introduce new products into the market. Presumably, the term ”new”

will be interpreted in different ways by the firms: With perfectly standardized products

small changes in design might be interpreted as a new product. A customizing supplier,

on the other hand, will probably define product innovation by abstracting from minor

changes in design, if these are within the usual variety and even if a given combination

of features had never been created before. Surprisingly, customization has no significant
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effect on flexibility.

Risky business perspectives (RISK=1) and highly skilled employees (EDUCATION=1)

seem to favor product innovation but these results where found only in one of the two

specifications. Very hierarchical structures (HIERARCHY=1) prove to be obstacles to

innovation.

Conditional on observed characteristics, both endogenous variables are strongly re-

lated over time as indicated by the size of cov(egit, egis). This suggests that unobserved

heterogeneity is indeed a serious issue in this study. One potential source for the high

magnitude of correlation is, of course, the inertia to switch technology and innovation

modes, which we could not estimate separately due to the two-period limitation of our

data. If this inertia plays the role that intuition suggests, then the extent of individual

heterogeneity in our model may be substantially overestimated.

To assess how controlling for observed heterogeneity changed the empirical interde-

pendence between product innovation and flexible technology, we compute Kendall’s

tau based on the generalized residuals (as defined in appendix C) from the single equa-

tion estimation. Compared to the unconditional dependence, the association decreased

substantially to only 0.043 (see table 6) implying that part of the joint occurrence of

flexibility and innovation is driven by the observed exogenous variables.

From the system of INNOVATION and FLEXIBILITY the total error correlation

is estimated as 0.1052 (see table 8).34 The estimated covariance of the individual

effects is equal to 0.0395, suggesting that around 38% of the total error covariance

can be attributed to unobserved heterogeneity between the plants in our sample. The

remaining 62% are attributed to pure error interrelation. However, the estimate of

cov(u1i, u2i) does not significantly differ from zero. Hence, the decomposition of the

total error covariance is not significant either.

As an alternative test of the variance composition we reestimate the model under the

restriction that the total error covariance is only due to covariation of the unobserved
34Because of the variance standardization σ2eg = 1, ccov(e1it, e2it) = dcorr(e1it, e2it)̇.This correlation

is not directly comparable to Kendall’s tau calculated from generalized residuals.
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individual effects, cov(e1it, e2it) = cov(u1i, u2i). Based on a likelihood-ratio test this

restriction is not rejected in favor of the more flexible model. Hence, in our sample the

effect of unobservable individual approaches towards innovation and flexibility on the

apparent association of these variables could neither be clearly isolated nor shown to

be different from zero.

4 Conclusion

This paper reconsiders the firm’s decision on technology and innovative activities. An

optimization model with stochastic demand is introduced, which takes into account

gains from flexibility due to a wider set of future production possibilities. Because

product innovation affects demand while the degree of flexibility sets constraints on

production, the interaction between both variables is shown to be more than just a

fixed cost issue. Our results point out that the gain from incremental innovation might

be lowered by flexibility even though the fixed costs of introducing a new product to

the market are decreased by flexible machines.

Since the theoretical predictions are ambiguous, we empirically investigate whether

complementarity in the fixed costs is strong enough to compensate potentially adverse

effects in operational profits using data from the German mechanical engineering sector.

We find that firms which adopt a highly flexible production technology tend to have

a higher rate of product innovation and vice versa. This association is also observed

after controlling for exogenous variation which might overlap with the direct relation

between flexibility and innovation. Unobserved heterogeneity is estimated to have

inflated but did not entirely cause this association. The latter finding was, however,

not statistically precise enough for a clear inference. In sum, the empirical evidence

provided in this paper supports the view that flexible technology and innovation are

complements, although the general methodological constraints for the measurement of

complementarity suggest that this should not be interpreted as an ultimate proof.

The theoretical finding does, however, raise general concerns about applications of
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the theory of technological complementarity, which derive their results exclusively from

fixed cost considerations ignoring uncertainty and optimization over time. Their find-

ings are robust to the introduction of randomness only if uncertainty enters the model

in a purely additive way, such that indeed the summation property of supermodular

functions holds. Additive uncertainty is, as this paper argues, not always realistic,

especially when decision makers adapt to the realization of stochastic variables. Inves-

tigating the implications of information revelation over time in conjunction with the

possibility that decision makers adapt to it, is not only important for assessing the

interdependence of product innovation and flexible technology. It might, in general,

lead to new insights about whether the complementarity and monotonicity predictions

based on fixed costs considerations really hold for overall profits.
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A Complementarity and Supermodular Functions

This appendix provides the definition of a supermodular function and points out some

of its properties, which are used in the main part of the paper. For details see Topkis

(1998).

Definition 1 Suppose that f(x) is a real-valued function on a lattice X. If f(x0) +

f(x00) ≤ f(x0 ∨ x00) + f(x0 ∧ x00) for all x0 and x00 in X, then f(x) is supermodular in
x on X. Supermodularity is strict if the inequality holds strictly. For the definition of

(strict) submodularity reverse the inequality symbol.

If, as in this paper, X is a sublattice of some n-dimensional product of chains,

then supermodularity is equivalent to complementarity. Supermodularity on any finite

product of chains is equivalent to supermodularity on the product of each pair of chains

and thus can be checked pairwise in these cases.

Supermodularity is preserved by summation, multiplication with a factor and par-

tial maximization. The latter property ensures that qualitative results gained from

the inspection of a subsystem of complementary decision variables will still hold once

the whole system is considered. As supermodularity is a cardinal property, it is not

preserved by arbitrary increasing transformations.

Exogenous variables are parameters of the decision making process and may be

included in the vector x of the definition above. However, to address effects of monotone

changes in exogenous variables it is sufficient to assume that they are complementary

to the endogenous variables but not necessarily complements among themselves. This

property is formalized by the notion of increasing differences:

Definition 2 Let X and Ω be partially ordered sets and f(x,ω) be a real-valued func-

tion on a subset S of X × Ω For ω ∈ Ω. Let Sω denote the section of S at ω. If

f(x,ω00)− f(x,ω0) is (strictly) increasing in x on Sω00
T
Sω0 for all ω0 ≺ ω00 in Ω, then

f(x,ω) has (strictly) increasing differences in (x,ω) on S. Analogously, if the differ-
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ence f(x,ω00) − f(x,ω0) is (strictly) decreasing, then f(x,ω) has (strictly) decreasing
differences.

Increasing differences in (x,ω) is equivalent to stating that all parameters are com-

plements to all decision variables. Twice differentiable functions exhibit increasing

differences, if and only if all cross-partial derivatives of the objective with respect to

any combination of decision variables and parameters are nonnegative.

Supermodularity and increasing differences in conjunction with a feasible set, which

is increasing in the parameter are sufficient conditions for monotone comparative sta-

tics:

Theorem 1 (Topkis 1978) If X is a lattice, Ω is a partially ordered set, the sec-

tion Sω is a subset of X for each ω in Ω, Sω is increasing in ω on Ω, the func-

tion f(x,ω) is supermodular in x on X for each ω in Ω, and f(x,ω) has increas-

ing differences in (x,ω) on X × Ω, then argmaxx∈Sω f(x,ω) is increasing in ω on

{ω : ω ∈ Ω, argmaxx∈Sω f(x,ω) is nonempty}.

Milgrom and Shannon (1994) generalized theorem 1 by showing that it also holds

for the ordinal concepts of quasisupermodularity and single crossing (ordinal comple-

mentarity). Thus, the conditions of the theorem hold whenever all decision variables

are ordinal complements and all components of the parameter vector ω are ordinal

complements to the vector x. The components of ω need not be ordinal complements.

36



B Proofs

This appendix proofs the propositions and lemmas stated in the main text.

Proof of proposition 1. −F (f,ω) and −γk are trivially supermodular in f
and k respectively. As supermodularity is preserved under summation, we have that

−I(i, f,ω)− γk − F (f,ω) is supermodular in (i, f, k).
The cross partial derivative of [pDj(i, p)] with respect to i and p exists and is positive,

because differentiability and supermodularity of Dj(i, p) imply ∂2Dj/∂i∂p ≥ 0 and

∂Dj/∂i ≥ 0. Thus [pDj(i, p)] and 2[pDj(i, p)] are supermodular in (i, p). Applying
the summation property again gives the first statement of the proposition.

To proof part (ii) of the proposition, note that according to the assumptions −I(i, f,ω)
has increasing differences in ((i, f),ω) and −F (f,ω) has increasing differences in (f,ω).
Because k and p have no effect on I and i, k, and p do not influence F , both −I and
−F have increasing differences in ((i, f, k, p),ω). All remaining addends of the profit
function have nondecreasing differences in ((i, f, k, p),ω) since none of them depend

on ω. As increasing differences are preserved by summation, Π exhibits increasing

differences in ((i, f, k, p),ω). Together with the first part of the proposition and the fact

that the set of feasible actions does not depend on ω the conditions of the Monotonicity

Theorem (see appendix A) are met and the result is established.

Proof of lemma 2. Solving the definitions of µ and σ for the upper and lower

demand realization and using D ≤ D yields

D = µ− σ

r
1− δ0
δ0

and D = µ+ σ

r
δ0

1− δ0
. (12)

Inserting (12) into (9) it is straightforward to see that ∆fEeΠ∗y is increasing in σ.

For a given marginal probability δ0 the joint probability δ00 is increasing in ρ. Hence,

as (9) is decreasing in δ00, it is also decreasing in ρ.

Because neither σ nor ρ affects the fixed costs, their influence on the profitability of

flexible technology at the production stage,∆fEeΠ∗y, directly translates to overall profits
as stated in the lemma.
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Proof of lemma 3. The derivative of EeΠ∗y with respect to innovation is
∂EeΠ∗y
∂i

=


0

2p∂µ
∂i
[δ00f + δ0(1− f)]

2p∂µ
∂i
[(δ00 + 2δ10) f + δ0(1− f)]

2p∂µ
∂i

if

k ≤ 2D
2D < k ≤ D +D
D +D < k ≤ 2D
2D < k

. (13)

Because ∂µ/∂i is assumed to be nonnegative, equation (13) is nonnegative irrespective

of the relative magnitude of k, D, and D. Since EeΠ∗y is continuous, equation (13)
captures all first order effects of i. Hence, EeΠ∗y is nondecreasing in i.
The derivative of EeΠ∗y with respect to capacity is

∂EeΠ∗y
∂k

=


p
p [(1− δ00)f + (1− δ0)(1− f)]
p [δ11f + (1− δ0)(1− f)]
0

if

k ≤ 2D
2D < k ≤ D +D
D +D < k ≤ 2D
2D < k

, (14)

which is easily seen to be nonnegative in all cases. With continuity of EeΠ∗y this estab-
lishes that EeΠ∗y is nondecreasing in k.
Dropping the term ∂µ/∂i in equation (13) yields ∂EeΠ∗y/∂µ which was shown to be
nonnegative. Since, by assumption, ∂µ/∂p ≤ 0, EeΠ∗y/p must be nonincreasing in p. On
the other hand, the per unit payoff from every item sold increases in price. Without

further assumptions it is not possible to compare these two effects. This accomplishes

the proof of lemma 3.

Proof of lemma 4. First, we will show how ∂EeΠ∗y/∂k and ∂EeΠ∗y/∂i depend on
k − 2µ. The analysis of the cross partials within the case boundaries completes the
proof.

Since D and D are functions of µ and δ0, ∂EeΠ∗y/∂k being nonincreasing in (k − 2µ)
would imply a descending order of the lines in (14). This order is easily seen to hold

because 1 ≥ δ0 ≥ 0 and 1 ≥ 1− δ00 = 2δ10 + δ11 ≥ δ11 ≥ 0. Note that, within each of
the four cases, ∂EeΠ∗y/∂k does not depend on either k or µ.
Accordingly, ∂EeΠ∗y/∂i being nondecreasing in (k − 2µ), implies an ascending order of
the derivatives in (13). For the case of f = 0 this is obviously true as 0 ≤ δ0 ≤ 1.
With flexible technology (f = 1) an ascending order requires 0 ≤ δ00 ≤ δ00+ 2δ10 ≤ 1,
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which is true since all probabilities are positive and sum up to one. Thus, ∂EeΠ∗y/∂i is
nondecreasing in k. Again, within each of the four cases ∂EeΠ∗y/∂i neither depends on
k nor on µ.

Because ∂EeΠ∗y/∂k is nonincreasing in (k − 2µ) and ∂µ/∂i ≥ 0, ∂EeΠ∗y/∂k is nonde-
creasing in i. Together with ∂EeΠ∗y/∂i being nondecreasing in k as shown above, this
establishes complementarity between i and k with respect to the function EeΠ∗y.
Since ∂2µ/∂i∂p ≥ 0 and ∂µ/∂i ≥ 0, ∂EeΠ∗y/∂i in equation (13) is increasing in p within
the case boundaries. Furthermore, ∂µ/∂p ≤ 0 implies that a higher price increases

k − 2µ and might thus trigger an upward jump of ∂EeΠ∗y/∂i. Therefore, the incremen-
tal payoff from innovating increases in price. Analogously, within the case boundaries

∂2EeΠ∗y/∂i∂p = ∂2EeΠ∗y/∂p∂i and, with the same arguments used above to show that
∂EeΠ∗y/∂µ ∂µ/∂i is increasing in (k − 2µ), ∂EeΠ∗y/∂p = EeΠ∗y/p + ∂EeΠ∗y/∂µ ∂µ/∂p is
increasing in i when case boundaries are passed. Thus, i and p are complements with

regard to EeΠ∗y.
The derivative of equation (14) with respect to p is clearly positive. As argued above,

at the case boundaries ∂EeΠ∗y/∂k is nondecreasing in µ. Because ∂µ/∂p ≤ 0, without
further assumptions the effect of price changes on the gain from increasing capacity is

undetermined.

Proof of lemma 5. Differentiating equation (9) with respect to i leads to

∂∆fEeΠ∗y
∂i

=

 −2p (δ0 − δ00)
∂µ
∂i

2p (δ0 − δ00)
∂µ
∂i

0
if

2D < k ≤ D +D
D +D < k ≤ 2D
otherwise

. (15)

Since δ0 ≥ δ00, the first line of equation (15) is nonpositive and the second must

thus be nonnegative. Because (9) is continuous (as can be seen by plugging in the

case boundaries), equation (15) captures all effects of i on the gain from flexibility.

Equivalently, from equation (13) it is clear that the difference in ∂EeΠ∗y/∂i for f = 1
and f = 0 is nonpositive for 2D < k ≤ D +D and nonnegative for D +D < k ≤ 2D
(remember that δ10 = δ0 − δ00). As 2D < k ≤ D + D corresponds to relatively low

values of (k − 2µ) while D + D < k ≤ 2D coincides with relatively high values of
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(k − 2µ), i and f are with respect to EeΠ∗y (weakly) complementary for high values of
the capacity slack (k − 2µ) but (weak) substitutes for low values of (k − 2µ).
Proof of lemma 6. In the general case

∂EeΠ∗y
∂i

= np
∂µ

∂i
[Pr(Ξ1)f +Pr(Ξ0)(1− f)] , (16)

where Pr(Ξ0) = Pr(Dj < 1
n
k) and Pr(Ξ1) = Pr(ΣDj < k) = Pr( 1nΣDj <

1
n
k). Irrespec-

tive of the distribution of Dj the random variables Dj and 1
n
ΣDj are defined on the

interval [D,D], have the same mean, but var(Dj) ≥ var
¡
1
n
ΣDj

¢
. Let the distributions

of Dj and 1
n
ΣDj be G and H respectively. For some small value ε we have

G(D + ε) ≥ H(D + ε) and

G(D − ε) ≤ H(D − ε),

because, for the average to be in the interval [D,D + ε], it takes all random variables

Dj, j = 1, . . . , n, to be realized very close to the lower bound, which cannot happen

with greater probability than the event that a single Dj is near D. Equivalently, 1nΣDj

will be less frequently close to the upper bound of the support than Dj. Therefore,

for sufficiently small values of
¡
1
n
k − µ¢ we have Pr (Ξ0) ≥ Pr (Ξ1) , whereas Pr (Ξ0) ≤

Pr (Ξ1) for sufficiently large values of
¡
1
n
k − µ¢. As a consequence, for small values of¡

1
n
k − µ¢ the decision variables i and f are substitutes with respect to EeΠ∗y, while for

large values of
¡
1
n
k − µ¢ both variables are complements.

Proof of lemma 7. Differentiating equation (9) with respect to k leads to

∂∆fEeΠ∗y
∂k

=

 p (δ0 − δ00)
−p (δ0 − δ00)
0

if
2D < k ≤ D +D
D +D < k ≤ 2D
otherwise

. (17)

The first line of equation (17) is nonnegative while the second line is nonpositive. All

remaining arguments are the same as in the discussion of the interrelation between f

and i, except for their reversed signs (see the proof of lemma 5 above). Hence, k and f

are (weakly) complementary with respect to EeΠ∗y for low values of (k−2µ) but (weak)
substitutes otherwise.
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Differentiating equation (9) with respect to p leads to

∂∆fEeΠ∗y
∂p

=


∆fEeΠ∗y

p
− 2 (δ0 − δ00)

∂µ
∂p

∆fEeΠ∗y
p

+ 2 (δ0 − δ00)
∂µ
∂p

0

if
2D < k ≤ D +D
D +D < k ≤ 2D
otherwise

. (18)

As ∆fEeΠ∗y ≥ 0 and ∂µ/∂p ≤ 0 the equation (18) is nonnegative when 2D < k ≤ D+D
and undetermined when D +D < k ≤ 2D. Therefore f and p are complements with
regard to EeΠ∗y for low values of (k−2µ), but they might be complements or substitutes
elsewhere.
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C Definitions

Kendall’s tau

To calculate Kendall’s tau (τ) of two vectors x and y we use the following definition:

τ =
c− dp

(c+ d+ tx) (c+ d+ ty)
,

where c and d are the number of concordant and discordant pairs respectively and tx

(ty) denotes the number of pairs tied on x (y) but not on y (x). Values of τ lie in the

interval [−1, 1], positive (negative) values indicate positive (negative) dependence.

Generalized Residuals

The Pearson residual for a binary response model is defined as

ri =
yi − bπipbπi(1− bπi) ,

where y denotes the endogenous variable that can take values equal to zero or one, i

indexes the observation and bπi is the estimated probability that y = 1. Because in such
a model var(yi−bπi) 6= bπi(1−bπi) we have that var(ri) 6= 1. Pregibon (1981) developed
the standardized Pearson residual for this case

rsti =
rip

(1− hi)
,

where hi = bπi(1− bπi)xidvar(bβ)x0i and xi denotes the row vector of exogenous variables
and bβ is the estimated parameter vector. In our estimation there is practically no
difference between ri and rsti but only the latter are used for computation of Kendall’s

tau.
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Dedicated Flexible
Technology (f=0) Technology (f=1)

Condition Pr (Ξ0) E [Dj|Ξ0] Pr (Ξ1) E [Dj|Ξ1]
k ≤ 2D 0 / 0 /

2D < k ≤ D +D
D +D < k ≤ 2D δ0 D

δ00
1− δ11

D
D δ00
1−δ11 +

¡
D +D

¢
δ10
1−δ11

2D < k 1 µ 1 µ

Table 2: Probability that demand is a binding constraint to production and expected
demand given demand is the binding constraint for dedicated and flexible technology.
δ00 = Pr(D1, D2 = D), δ11 = Pr(D1, D2 = D), δ10 = Pr(D1 = D,D2 = D).

D Tables

Variable Description
INNOVATION = 1 if new products were introduced, 0 otherwise
FLEXIBILITY =1 if the plant adopted machining centers,

FMC or FMS, 0 otherwise
YEAR94 =1 for 1994, =0 otherwise
HIERARCHY =0 if organizational structure is reported to be less

hierarchical than average, 1 otherwise (only available for 1992)
RISK =0 if an essential (for continuation of the business)

share of revenues is from long term contracts
with costumers, 1 otherwise

FIRMLEVEL =1 if technological or organizational issues were decided
at the firm instead of the plant level, 0 otherwise

MULTIPLANT =1 if plant belongs to some multi-plant firm, 0 otherwise
CUSTOMIZE share of products that where not standardized,

but the custumer could add to a basic design
or completely specify the design

LOGSIZE log of total number of employees (except administrative)
EDUCATION number of skilled workers, foremen and engineers

relative to total number of employees in production

Table 3: Definition of Variables.
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Variable Mean Std.Dev.
INNOVATION 0.7226 0.4479
FLEXIBILITY 0.4899 0.5001
HIERARCHY 0.7049 0.4563
RISK 0.8137 0.3895
FIRMLEVEL 0.2074 0.4056
MULTIPLANT 0.2985 0.4578
CUSTOMIZE 0.8264 0.2674
LOGSIZE 4.0817 1.0665
EDUCATION 0.7523 0.2348

Observations 1186

Table 4: Descriptive Statistics.

Mean Std.Dev.
INNOVATION

all 0.7226 0.4479
1992 0.7808 0.4141
1994 0.6644 0.4726
1994 | (0 in 1992) 0.3462 0.4776
1994 | (1 in 1992) 0.7538 0.4313

FLEXIBILITY
all 0.4899 0.5001
1992 0.4688 0.4994
1994 0.5110 0.5003
1994 | (0 in 1992) 0.1873 0.3908
1994 | (1 in 1992) 0.8777 0.3282

Table 5: Yearwise means and conditional means of INNOVATION and FLEXIBILITY.
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Unconditional Conditional
Kendall’s tau P-value Kendall’s tau P-value

1992 0.122*** 0.003 – –
1994 0.119*** 0.004 – –
all 0.114*** 0.000 0.043** 0.027

Table 6: Association between INNOVATION and FLEXIBILITY. Conditional associ-
ation is based on generalized residuals from single-equation probit estimations. ***,
** represent significance at the 1% and 5% level respectively.

Single Equations
Innovation Flexibility

Variable Coeff. Std.E. Coeff. Std.E.
Constant 0.5610 0.3778 -4.1913*** 0.6996
YEAR94 -0.5069*** 0.0994 0.3400*** 0.1226
HIERARCHY -0.2444* 0.1425 -0.1617 0.2618
RISK 0.1433 0.1491 -0.2065 0.2199
FIRMLEVEL 0.1759 0.1663 -0.0317 0.1989
MULTIPLANT 0.2820* 0.1592 0.3892* 0.2250
CUSTOMIZE -1.5693*** 0.2523 -0.0653 0.3648
LOGSIZE 0.3409*** 0.0644 0.9960*** 0.1099
EDUCATION 0.5929** 0.2660 0.1705 0.4698ccov(egit, egis), s 6= t 0.4772*** 0.0665 0.8343*** 0.0289ccov(egit, ekit), k 6= g –ccov(egit, ekis), k 6= g, s 6= t –

Table 7: Estimation results of random effects model . ***, **, * represent significance
at the 1%, 5%, 10% level respectively. ML single equation estimates using the Broyden-
Fletcher-Goldfarb-Shanno algorithm (BFGS).
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System of Equations
Innovation Flexibility

Variable Coeff. Std.E. Coeff. Std.E.
Constant 0.4172 0.2913 -2.2794*** 0.3569
YEAR94 -0.3803*** 0.0700 0.1251*** 0.0476
HIERARCHY -0.2018* 0.1037 -0.0649 0.1096
RISK 0.2023* 0.1196 0.0145 0.1283
FIRMLEVEL 0.1036 0.1338 -0.0368 0.1313
MULTIPLANT 0.2110 0.1303 0.0038 0.1219
CUSTOMIZE -1.0101*** 0.2117 -0.0103 0.1937
LOGSIZE 0.2270*** 0.0486 0.5006*** 0.0546
EDUCATION 0.2910 0.2049 0.2793 0.2359ccov(egit, egis), s 6= t 0.4906*** 0.0655 0.8501*** 0.0280ccov(egit, ekit), k 6= g 0.1052* (0.0593)ccov(egit, ekis), k 6= g, s 6= t 0.0395 (0.0581)

Table 8: Estimation results of random effects model . ***, **, * represent significance at
the 1%, 5%, 10% level respectively. ML system estimates using the Broyden-Fletcher-
Goldfarb-Shanno algorithm (BFGS).
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