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Abstract

Suppose an altruistic person, A, is willing to transfer resources to a
second person, B, if B comes upon hard times. If B anticipates that A
will act in this manner, B will save too little from both agents’ point of
view. This is the Samaritan’s dilemma. The logic of the dilemma has
been employed in an extensive literature, addressing a wide range of
both normative and positive issues. This paper shows, however, that
the undersaving result is mitigated if we relax the standard assumption
of complete information. The reason for this is that if A is uncertain
about how big B ’s need for support is, B will have an incentive to
signal that he is in great need by saving more that he otherwise would
have done. //[Doc: SD-16.tex]//
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Suppose an altruistic person, hereafter called A, is willing to transfer

resources to a second person, B, if B comes upon hard times. Then, if B

today is to decide how much to save for tomorrow, and if B is well aware of

A’s altruistic concern for him, B will typically save too little as compared

to what is socially optimal. This is what Buchanan (1975) has called the

“Samaritan’s dilemma”. The dilemma arises because A is unable to commit

not to help B out. Moreover, A’s willingness to bail B out if he undersaves

serves as an implicit tax on B’s savings. For if B saves an extra dollar, then

A will transfer, say, ten cents less to B than otherwise. This implicit tax

distorts B’s saving incentives. As a result, given the equilibrium level of A’s

support, B would be better off if he consumed less today and more tomorrow.

And, since A has altruistic concerns for the welfare of B, this would make

also A better off.1

The Samaritan’s-dilemma effect has been employed in a large number of

papers, addressing a wide range of both normative and positive issues. For

instance, the inefficiency result has been used to justify and/or explain the

existence of compulsory social insurance systems (Thompson, 1980; Veall,

1986; Kotlikoff, 1987; Lindbeck and Weibull, 1988; Hansson and Stuart,

1989). The argument is that a government can force people to save and

insure more than they would do voluntarily, thereby making free riding and

the Samaritan’s-dilemma-type inefficiency impossible. As another example,

Bruce and Waldman (1991) and Coate (1995) argue that the Samaritan’s

dilemma provides an efficiency rationale for in-kind govermental transfers.2

In those models the government provides a transfer on two occasions over

time. Since a cash transfer would be used in an inefficient manner, all parties

can benefit if the government gives the first transfer in a tied fashion, such

as in the form of an illiquid investment.

Yet another example is from the macroeconomics literature. O’Connell

and Zeldes (1993) study an infinite-horizon OLG-model with altruism from

children towards their parents. If, as is assumed in the standard litera-
1Formal analyses of the Samaritan’s dilemma can be found in, e.g., Bernheim and Stark

(1988) and Lindbeck and Weibull (1988). In the latter paper it is shown that the dilemma
also arises in the case where both agents are altruistic towards each other.

2In the context of intra-family transfers, Becker and Murphy (1988, p. 7) also make
this argument. They do not, however, provide a formal model.
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ture, parental saving is non-strategic, this kind of model is characterized by

dynamic inefficiency, that is, the growth rate of the population exceeds the

(endogenous) real interest rate. O’Connell and Zeldes demonstrate, however,

that the strategic undersaving effect will make the economy dynamically effi-

cient. The reason for this is that less saving leads to a smaller capital stock,

which in turn implies a larger marginal product of capital and thus a higher

interest rate.

The Samaritan’s dilemma also has bearing on the so-called rotten-kid

theorem (Becker, 1974). This result concerns a situation where a selfish

child can take an action that affects the income of the whole family. The

theorem states that if the child’s parent is sufficiently altruistic towards the

child to transfer resources to it, then the child will choose an action that

maximizes the income of the whole family. Hence, the presence of parental

altruism induces the child to internalize the externality, and the resource

allocation in the family is efficient. One of the conditions needed for this

result to hold is that the transfer from parent to child indeed is positive.3

However, Bruce and Waldman (1990) consider a two-period setting where

the child in the first period takes an action affecting the income of the whole

family and makes a saving decision. They show that if the parent makes an

operative transfer (i.e., if the constraint that the transfer is non-negative is

not binding) in the second period, then the child indeed chooses the action

that maximizes family income. But, because of the Samaritan’s dilemma,

in this case the child also saves an amount that is too low relative to the

efficient level. As a consequence, “rotten kids actually act rotten in at least

one dimension, with the result being that the family unit does not achieve

the Pareto frontier” (Bruce and Waldman, 1990, p. 157).

Most of the existing literature on the Samaritan’s dilemma assumes a

setting with complete information: the agents know with certainty their

own payoffs and the other agents’ payoffs. This is typically an unrealistic

assumption. Indeed, in many of the real world situations that are meant to

be captured by the models in this literature, there is reason to believe that

3There are also other conditions, which are left implicit by Becker. For example,
Bergstrom (1989) shows that utility must be transferable for the result to hold.
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there is a substantial degree of incomplete information.4 Yet there is a strong

a priori reason to believe that, if one allowed for incomplete information, the

undersaving result in the standard Samaritan’s-dilemma model should be if

not eliminated so at least reduced.

To see this, consider a situation like the one described in the introductory

paragraph. Suppose, however, that B (i.e., the recipient of the transfer) has

private information about some characteristic of himself that is relevant for

his payoff. Moreover, suppose that this characteristic can be represented by

a parameter x and that x is such that the larger its magnitude, the lower

is B’s marginal utility of consumption tomorrow. For example, x could be

a measure of an exogenous income that B will receive tomorrow. Since A

cares about the welfare of B, A would be willing to make a larger transfer to

B tomorrow if A believed that x were small. The assumptions about x also

imply that the smaller is x, the more B wants to save (everything else being

equal). B thus has an incentive to make A believe that x is small, and B may

try to do so by using his savings as a signalling device (à la Spence, 1973). In

particular, B has an incentive to save more than in the standard setting with

complete information. One should thus expect this mechanism to counteract

the incentives to undersave in the traditional Samaritan’s-dilemma model.5

The purpose of this paper is to investigate whether the above intuition

holds true in a formal analysis and, if so, to see how far the counteracting

mechanism can take us. Section 1 of the paper starts out by presenting

4The reader may object that the perhaps most common application of the Samaritan’s
dilemma concerns the family, and members of a family often know each other’s preferences
fairly well. Although this may be true, the reason why they know each other’s preferences
should be that within a family there are ample opportunities to communicate with each
other or observe each other’s behaviour. It is precisely this communication (in the form
of costly signalling) that I will argue counteracts the undersaving result. In fact, in the
model that I will specify and solve, the receiver of the signal learns the sender’s preferences
perfectly.

5There is a related literature on signalling and altruism in theoretical biology; see
Grafen (1990) and Maynard Smith (1991) for seminal contributions and Godfray and
Johnstone (2000) for a survey. Of particular interest to the present paper is Maynard
Smith’s so-called Sir Philip Sydney game, in which the beneficiary of a transfer of resources,
for example a nestling, has private information about its true need. By begging, the
nestling can send costly signals about its need to the parent. To the best of my knowledge,
the Samaritan’s-dilemma effect does not appear in the papers in this literature, nor can
the arguments of the present paper be found there.
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an example which in the simplest possible way shows how the mechanism

works. In this example, B can only make the binary choice whether to “save”

or to “squander”; A then chooses one of three different transfer levels. In

Sections 2 and 3 a somewhat less stylized but still simple model is considered

where A and B can choose among a continuum of transfer and saving levels,

respectively. Section 2 formulates the analytical benchmark: a model of the

Samaritan’s dilemma characterized by complete information. It turns out

that in this model the inefficiency result is obtained if the degree of altruism

is neither too low nor too high.

Section 3 extends the model in Section 2 by assuming that B has private

information about a parameter in his payoff function. This parameter can

take one of two distinct values; that is, B can be one of two types (“low”

or “high”). The analysis is restricted to values of the degree of altruism

such that, for both types of B, the undersaving result would obtain if B’s

type were common knowledge. It is shown that if we impose a commonly

used equilibrium refinement (namely, the intuitive criterion), this model has

a unique equilibrium outcome. The question is then asked whether this

equilibrium outcome is efficient. It turns out that while the behaviour of the

low type of B is unaffected by the presence of incomplete information, the

high type’s saving choice is indeed distorted upwards. In particular, if the

degree of A’s altruism is (roughly speaking) sufficiently low, then the high

type will save exactly the amount that is efficient for him.6 For intermediate

values of the altruism parameter the high type will undersave, although here,

too, he will save more than he would have done under complete information.

Finally, if the altruism parameter is large enough, the signalling incentive

may actually make the high type save more than the efficient amount.

Section 4 concludes with a discussion of the results and their robustness.

Most of the proofs are found in the Appendix.7

6Crucial for this result is the assumption that A’s transfer cannot be negative: she
cannot take resources from B.

7Because of space constraints, several proofs have also been relegated to Lagerlöf (2002),
which is available from the author on request. In particular, Lagerlöf (2002) contains all
proofs that are omitted from Section 2. It also proves the claims about pooling equilibria
made in Section 3 as well as a result stated in footnote 20. All other proofs that are not
in the main body of the text can be found in the Appendix.
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1 A First Example: “Rich Man, Poor Man”

Consider the following simple game played between two individuals, A and

B (see also Fig. 1). B can be of two types: either he is “rich” or “poor”.

While B knows his type from the outset of the game, A does not know B’s

type. A and B make one decision each. First B chooses whether to “save”

or to “squander”. Second, A observes whether B has saved or squandered

and then chooses whether to give B a “big support” (abbreviated “bs” in

the figure), a “small support” (ss), or “no support” (ns). The payoffs are

such that if B has chosen to save, A wants to give B no support regardless of

whether B is poor or rich. If B has squandered, then A wants to give B a big

support if he is poor and a small support if he is rich. B, on the other hand,

prefers a big support to a small support and a small support to no support,

regardless of his type and regardless of whether he has saved or squandered.

Before analyzing the game with incomplete information depicted in Fig.

1, let us make the observation that if A knew with certainty whether B is

poor or rich (and if A’s knowing this were common knowledge), then we

would have an example of the Samaritan’s dilemma: B would squander and

then get a support from A, an outcome which is not (Pareto) efficient. To

see this, start with the case where it is common knowledge that B is poor.

It is straightforward to verify that then there is a unique (subgame perfect)

equilibrium outcome, namely the one where B squanders and A gives him a

big support. This outcome is dominated, however, by the outcomes where

B saves and then gets either a small or a big support. Similarly with the

case where it is common knowledge that B is rich. Then there is again a

unique equilibrium outcome, namely the one where B squanders and gets a

small support. This outcome is also inefficient, since it is dominated by the

outcomes where B saves and then gets either a small or a big support.

Let us now solve for the equilibria of the game where A does not know

whether B is poor or rich. As indicated in Fig. 1, A puts the prior probability

µ ∈ (0, 1) on the event that B is poor and the complementary probability

1−µ on the event that B is rich. The solution concept that I employ is that
of perfect Bayesian equilibrium.8 First notice that in any such equilibrium,

8This solution concept requires that, after having observed that B has either saved or
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if B has saved, then A will choose “no support”. This is because doing so is

A’s best action regardless of B’s type. Similarly, if B has squandered, A will

never choose “no support” in an equilibrium. This means that, if being rich,

B will squander in any equilibrium. Having established this, let us first look

for an equilibrium in which the poor type saves and the rich type squanders;

this is the only possible separating equilibrium.9 In this kind of equilibrium,

A will be able to infer B’s true type perfectly. Thus, A’s best response is to

give B a small support if B has squandered and no support if B has saved.

Given this behaviour of A, it is indeed optimal for B to save if he is poor

and squander if he is rich. Hence, this is an equilibrium.

Although the outcome for the rich type in this equilibrium is the same

as in the equilibrium of the corresponding complete-information game, this

is not true for the poor type. For the poor type we can in the incomplete-

information game sustain the outcome where B saves and A does not give B

any support. This outcome is efficient among the outcomes that are relevant

for the poor type. Interestingly, it is thus the less able type who behaves

prudently and saves an amount that is efficient for him, whereas the more

able type squanders his income. The reason why the poor type chooses to

save is that if he squandered, then he would be perceived as the rich type and

get only a small support, an outcome in which he would get a lower payoff

than he gets in the equilibrium. In other words, the possibility that B is rich

exerts an externality on the poor type. This externality is bad for B, since

the poor type now gets only a payoff of 2 instead of a payoff of 3 as in the

complete-information model. The externality is good for A, however, since

she gets a payoff of 4 instead of 2 when B is poor.

For µ ∈ [.5, 1) there also exists a pooling equilibrium where both types of
B squander, and A gives B a big support if B has squandered and no support

in the out-of-equilibrium event that B has saved. Finally, for µ ∈ (.5, 1) there
is a semi-pooling equilibrium where the poor type squanders with probability

squandered, A forms some beliefs about B ’s type. These beliefs must be consistent with
Bayes’ rule and B ’s equilibrium strategy, whenever Bayes’ rule is defined. Whether B has
saved or squandered, A makes a decision that, given her beliefs, maximizes her payoff. B
is also required to make a decision that maximizes his payoff given A’s behaviour.

9A separating equilibrium is an equilibrium in which one type saves and the other
squanders.
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(1− µ) /µ and saves otherwise, and the rich type always squanders. If B has
squandered, A gives B a big or a small support with equal probability; if B

has saved, then A gives no support.10

For those µ’s that give rise to multiple equilibria, it is not clear which one

of the three equilibrium outcomes is the most reasonable prediction of the

game. Yet, if we believe in the assumption that A does not know B’s type

perfectly and if we are not certain that the players will behave according to

the pooling equilibrium, then it is tempting to conclude that the theoret-

ical case for undersaving is weaker than what one might think if one only

looked at the traditional formulation of the Samaritan’s dilemma. One might

object, however, that the example we have analyzed is rather special. For

instance, it is not clear how restrictive the specification of the players’ pay-

offs is. Moreover, standard equilbrium refinements that put restrictions on

the players’ beliefs about out-of-equilbrium events do not have any bite in

this simple example, whereas one should expect this to be the case in many

alternative settings. I will, therefore, in the following two sections further

explore the signalling effect, but in a model that is somewhat less stylized

than the above example.

2 The Benchmark: Complete Information

2.1 The Model

There are two individuals, A and B, and two time periods, 1 and 2. A lives

only in period 2 while B lives in both periods. At the beginning of the first

10Notice that two of the three kinds of equilibria (namely, the separating and the semi-
pooling) have the following property: if the probability that B is rich is very small, then,
from an ex ante perspective, the outcome will be very close to efficiency. In a working
paper version of the present paper (Lagerlöf, 2000), this point was explored both within the
context of the example studied here and the model described and analyzed in the following
two sections. The observation is interesting, as it suggests that adding only a small amount
of uncertainty to a Samaritan’s-dilemma game with complete information can substantially
change the prediction of the game, and in particular it can restore efficiency almost fully.
Still, for this to be true it is important exactly how the small amount of uncertainty is
introduced: the argument does not work for the case where there is a small probability
that B is poor rather than rich. Moreover, as was argued in the Introduction, in many of
the real-world situations that are meant to be captured by the Samaritan’s dilemma there
is reason to believe that there is a substantial degree of incomplete information.
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period, B is endowed with exogenous income ω > 0. B’s decision concerns

howmuch of this income to save for period 2, s ∈ [0,ω]. The residual amount,
c1B = ω − s, constitutes B’s first-period consumption. A’s endowment also
equals ω. In the second period, after having observed s, A chooses how much

of her endowment to transfer to B, t ∈ [0,ω].11 A consumes the residual

amount, cA = ω − t, herself. B’s second-period consumption consists of his
savings plus the transfer from A: c2B = s+ t.

B has preferences over his own consumption in period 1 and 2, described

by the following utility function:

UB (s, t) = log (c1B) + β log (c2B)

= log (ω − s) + β log (s+ t) ,

where β ∈ (0, 1) is a fixed parameter. A is altruistic in the sense that she has
preferences over both her own consumption and B’s utility level UB. These

preferences are described by the following utility function:

UA (s, t) = log (cA) + αUB (s, t)

= log (ω − t) + α log (ω − s) + αβ log (s+ t) . (1)

Here α > 0 is a fixed parameter that represents the altruistic concern of

A for the welfare of B.12 The structure of the model and in particular the

individuals’ preferences are common knowledge.

2.2 Analysis

The model described in the preceding subsection constitutes an extensive

form game. I will solve for the subgame perfect equilibria of this game

through backward induction. Let us thus begin by considering A’s problem

in period 2. A then maximizes UA (s, t) as given in equation (1) with respect

11Hence a non-negativity constraint is imposed on the transfer, t ≥ 0: A cannot take
income from B. This assumption seems natural and it is common in the literature. In
Section 3 we will see that the non-negativity constraint is crucial for some of the results
concerning efficiency in the model with incomplete information.
12The important sense in which α represents A’s altruistic concern for B is that, for

α > 0, A puts a positive weight on B ’s marginal utility of consumption, and this weight
is increasing in α.

9



to t subject to the constraint t ∈ [0,ω]. Denote the solution to this problem
by bt. It is easy to verify that

bt = ½ αβω−s
1+αβ

for s ≤ αβω

0 otherwise.
(2)

Note that for any s < αβω, bt is decreasing in s. That is, if B increases

his savings, A will make a smaller transfer to him. One may think of this

effect as an implicit tax on savings. In the analysis that follows we shall see

that the implicit tax distorts B’s saving incentives and typically makes him

consume too much in period 1, as compared to what is socially optimal.

Now consider period 1. Anticipating bt, B chooses s. B’s indirect utility

is given by

UB
¡
s,bt¢ = log (ω − s) +( β log (ω + s) + β log

³
αβ
1+αβ

´
for s ≤ αβω

β log (s) otherwise.
(3)

There are two cases to investigate: (i) αβ ≥ 1 and (ii) αβ < 1. The anal-
ysis of case (ii) is rather cumbersome and is therefore deferred to Lagerlöf

(2002). Case (i)–the one where A’s concern for B is relatively great–is very

straightforward. Since in this case the non-negativity constraint on t is not

binding for any s ∈ [0,ω], B solves

max
s∈[0,ω]

log (ω − s) + β log (ω + s) + β log

µ
αβ

1 + αβ

¶
.

By assumption β < 1; hence this problem has the solution s∗ = 0. In other

words, B saves nothing and relies fully on the anticipated transfer from A.

Substituting s∗ = 0 into equation (2) yields the equilibrium outcome of t,

t∗ = αβω/ (1 + αβ).

Proposition 1 summarizes the results of the analysis above as well as

the results for the case αβ < 1 derived in Lagerlöf (2002). Before stating

the proposition, however, we must introduce some more notation. Let the

function ϕ (β) be defined by

ϕ (β) =
h
(1 + β)

1+β
β − β

i−1
. (4)
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The expression in (4) is a critical value of α that will be used when describing

what the equilibrium outcomes are in different subsets of the parameter space.

It can be shown (see Lagerlöf, 2002) that the function ϕ is decreasing, ϕ
0
< 0.

One may also verify that limβ→0 ϕ (β) = 1/e (where e−1 ≈ 0.37), and that
limβ→1 ϕ (β) = 1/3. Thus, for any β ∈ (0, 1), ϕ (β) approximately equals one
third.

Proposition 1. For any α 6= ϕ (β) there exists a unique subgame perfect

equilibrium, the outcome of which is

(s∗, t∗) =


³

β
1+β

ω, 0
´

for α < ϕ (β)³
0, αβ

1+αβ
ω
´
for α > ϕ (β) .

For α = ϕ (β) there exists a continuum of subgame perfect equilibria.

The outcome of any such equilibrium, however, is either (s∗, t∗) =

(βω/ (1 + β) , 0) or (s∗, t∗) = (0,αβω/ (1 + αβ)).

Fig. 2 illustrates the results stated in the proposition. The critical value

of α defined in equation (4), ϕ, is depicted in the diagram as a function of

β. For values of α below this critical value, B saves the fraction β/ (1 + β)

of his income and A does not make a transfer. For values of α above the

critical value, however, the behaviour of A and B is quite different: B saves

nothing and A transfers the fraction αβ/ (1 + αβ) of her income to B. For

values of α exactly at the critical value, α = ϕ (β), B is indifferent between

saving nothing and saving the fraction β/ (1 + β) of his income, and any

randomization between these two choices may be sustained as part of an

equilibrium. For any outcome of such a randomization, Awill make a transfer

to B according to equation (2), i.e., either not make any transfer or transfer

the fraction αβ/ (1 + αβ) of her income.

2.3 Efficiency

Resources can be allocated in two dimensions in this model. First, given a

value of t, one may reallocate resources intertemporally by varying s. Second,

given a value of s, one may reallocate resources inter-individually by varying

11



t. In this subsection I will ask the question whether the resource allocation

induced by a subgame perfect equilibrium is Pareto efficient. The following

result is proven in Lagerlöf (2002).

Proposition 2. Suppose that α 6= ϕ (β). Then the allocation induced by

the unique subgame perfect equilibrium is Pareto efficient if and only

if either α < ϕ (β) or α ≥ (1− β)−1. The allocation (s∗, t∗) induced

by a subgame perfect equilibrium when α = ϕ (β) is Pareto efficient if

and only if (s∗, t∗) = (βω/ (1 + β) , 0).

That is, ifA’s degree of altruism takes on any value α ∈ ¡ϕ (β) , (1− β)−1
¢
,

then the equilibrium outcome is not Pareto efficient (cf. Fig. 2). Re-

call that for these values of α, B saves nothing but receives a transfer

t∗ = αβω/ (1 + αβ) from A. If B made a ceteris paribus increase in his

savings, however, he would be better off. Moreover, since A has altruistic

concerns for the welfare of B, this would make also A better off. The reason

why B saves too little is the implicit tax on his savings: if B saved more, A

would have an incentive to make the transfer smaller. Hence, crucial for the

inefficiency result is that A can observe how much B has saved and that she

cannot precommit to a transfer level.

If the degree of altruism is either sufficiently low (α < ϕ (β)) or sufficiently

high (α ≥ (1− β)−1), then the equilibrium outcome is Pareto efficient. The

intuition for this is straightforward. For α < ϕ (β), B does not receive any

transfer and must rely only on his own savings. Since A’s degree of altruism

is relatively small it is, given the level of B’s savings, indeed optimal for A

not to transfer any income to B. This is anticipated by B, so his saving choice

is not distorted. Similarly for the case α > (1− β)−1. Here, since A cares so

much about the welfare of B, it is in both A’s and B’s interest that B does

not save anything himself.

12



3 Efficiency-Enhancing Signalling

3.1 The Model

Let us now add asymmetric information to the model studied in the previous

section. In particular, let us assume that B has private information about

the exact magnitude of the parameter β and that he learns about this in

the beginning of the game.13 The parameter β may be either “low” (βL) or

“high” (βH), where 0 < βL < βH < 1. If β = βL, then B will be referred

to as the “low type”; and if β = βH , then B will be referred to as the “high

type”.14 A places the prior probability µ ∈ (0, 1) on the event that B is the
high type and the prior probability 1−µ on the event that B is the low type.
The magnitude of the parameter µ is common knowledge.

All other model features are identical to the model described in Section

2.1. In particular there are two time periods. B lives in both of them while

A lives only in period 2. A and B are each endowed with exogenous income

ω > 0. In period 1, B first learns his type and then chooses how much of

his income to save for period 2, si ∈ [0,ω] for i = L,H; sL is the amount of
savings chosen by the low type and sH is the amount of savings chosen by

the high type. A does not know B’s type but observes his actual savings,

denoted s. In period 2, A chooses how much of her income to transfer to B,

t (s) ∈ [0,ω]. Denote A’s posterior beliefs that B is the high type, on having
observed s, by eµ (s). Moreover, A’s and B’s utility functions, given B’s type
i, are given by

UA (s, t | βi) = log (ω − t) + α log (ω − s) + αβi log (s+ t) ,

13Hence, the private information does not concern B ’s second-period income, as was
suggested in the Introduction (indeed, in the models described in this section and in
Section 2, B does not have a second-period income). This assumption is made for the
sake of tractability: it simplifies the analysis considerably if there is uncertainty about a
parameter multiplied with–instead of in the argument of–the utility function. Yet one
should expect the qualitative results of the analysis to be similar if one instead assumed
that B has private information about an exogenous second-period income. Section 4
contains a discussion of what results one should expect if one assumed private information
about other parameters than β.
14The high type here corresponds to the poor type in the example in Section 1. Recall

that there it was in B ’s interest to be perceived as being poor; here it will be in B ’s interest
to be perceived as having a high β.
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UB (s, t | βi) = log (ω − s) + βi log (s+ t) . (5)

Again, α > 0 is a fixed parameter that represents A’s altruistic concern for

B.

The equilibrium concept that I will employ is that of perfect Bayesian

equilibrium, where this is defined in the usual way: both players must make

optimal choices at all information sets given their beliefs, and the beliefs are

formed using Bayes’ rule when that is defined. Henceforth I will simply write

“equilibrium” when I mean perfect Bayesian equilibrium. As my notation

indicates I will only consider pure-strategy equilibria. For notational conve-

nience, let us write t (si) = ti, and let us denote an outcome of a pure-strategy

equilibrium by (s∗L, t
∗
L, s

∗
H , t

∗
H).

3.2 Analysis

I shall restrict the analysis to the subset of the parameter space satisfying

the following assumption.

Assumption 1. α ∈ ¡ϕ (βL) , (1− βL)
−1¢.

Imposing Assumption 1 means that we only consider the subset of the

parameter space where, for both types, the equilibrium outcome is not Pareto

efficient in the corresponding complete-information model (cf. Proposition 2

and Fig. 2). Throughout the remainder of the paper, all the results that are

reported presuppose that Assumption 1 holds, even when this is not explicitly

stated.15

To start with, let us characterize the separating equilibria. The following

lemma states that when α > ϕ (βL) the low type chooses not to save.

Lemma 1. Suppose that α > ϕ (βL). Then in any separating equilibrium

s∗L = 0.

15This assumption is natural to make given that we want to explore the possibly
efficiency-enhancing effect of the counteracting signalling. We should keep in mind, how-
ever, that making this assumption actually gives rise to a bias in favour of smaller ineffi-
ciencies since, if we have a first-best outcome without signalling, incomplete information
can only make things worse. Hence, if we were to investigate also the subset of the pa-
rameter space not satisfying Assumption 1, we would find more of oversaving.
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The intuition for this result is straightforward. If possible, and regardless

of his true type, B would like to be perceived as the high type in the eyes of

A. In any separating equilbrium, however, B’s type will, by definition, be re-

vealed. Hence, the best thing the low type can do in such an equilibrium is to

behave optimally taking into account that A will know B’s type when making

her transfer decision. We know from the analysis of the benchmark model

that, under Assumption 1, this optimal behaviour is not to save anything.16

We are thus looking for an equilibrium with s∗L = 0 and where s∗H is

positive. The analysis will be facilitated by Fig. 3a, which shows the saving-

transfer space. The two straight lines in the figure represent A’s optimal

transfer as given by equation (2); the lower straight line corresponds to A’s

believing that β = βL, and the upper one corresponds to A’s believing that

β = βH . At values of s larger than αβLω respectively αβHω, the non-

negativity constraint on A’s transfer is binding and the optimal transfer

is zero. The figure also depicts two indifference curves through the point

(s, t) = (0,αβLω/ (1 + αβL)), one for the low type and one for the high type

of B. Hence, these represent the levels of utility associated with the types’

choosing the low type’s equilibrium amount of savings and receiving the low

type’s equilibrium transfer.17 Notice that each type is made better off if one

moves northward in the diagram, i.e., if B receives a higher t for any given

s. A move in the northwest direction is not necessarily making B better off.

It turns out, however, that if one moves northwest along the upper straight

line, both types are made better off.

As indicated in the figure, the value of s for which the low type’s indif-

ference curve intersects the upper straight line is denoted s
0
, and the value

of s for which the high type’s indifference curve intersects the same line is

denoted s
00
. The first point of intersection, which will turn out to be the

16This logic does not apply to the high type. The reason is that if the high type chose
some s 6= s∗H , he would possibly, depending A’s beliefs, be perceived as the low type.
17One can show that the two types’ indifference curves through the point (s, t) =

(0,αβLω/ (1 + αβL)) must, as drawn in Figure 3a, be strictly concave functions of s,
which tend to infinity as s tends to ω. Moreover, at s = 0, the slopes of these functions
are negative but still larger than the slope of the lower straight line; and, as s approaches
ω, the slopes approach infinity. Finally, for any given s, the low type’s indifference curve
has a larger slope than the high type’s (the single-crossing property).
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most important one in the subsequent analysis, is implicitly defined by the

following identity:

log

µ
1− s

0

ω

¶
+ βL log

µ
1 +

s
0

ω

¶
≡ βL log

µ
βL (1 + αβH)

βH (1 + αβL)

¶
. (6)

As Fig. 3a is drawn, both s
0
and s00 are located to the left of αβHω. In the

Appendix (Lemma A1 and A2, respectively) it is shown that we always have

s
0
< αβHω, and that s

00
< αβHω if and only if either (i) αβH ≥ 1 or (ii)

αβH < 1 and α > α∗ (βL,βH), where α
∗ (βL,βH) is implictly defined by

β
βH
L ≡ β

βH
H (1 + βLα

∗)βH (1− βHα
∗) . (7)

For later use, the following lemma notes some properties of the function α∗.

Lemma 2. ∂α∗ (βL, βH) /∂βL < 0, limβL→0 α
∗ (βL,βH) = 1/βH ,

and limβL→βH α∗ (βL,βH) = 0.

To start with, suppose that either condition (i) or (ii) holds so that indeed

s
00
< αβHω, and refer again to Fig. 3a. In order to sustain a separating

equilibrium there are two necessary conditions. First, the low type must not

have an incentive to choose the high type’s amount of savings. Second, the

high type must not have an incentive to choose the low type’s amount of

savings. Since A will learn B’s type perfectly in any separating equilibrium,

A will (after having observed s∗L or s
∗
H) make a transfer according to either

one of the two straight lines in the figure. Hence, by mimicking the high

type, the low type can get a transfer according to the upper straight line.

For the low type not to have an incentive to do this we must have s∗H ≥ s0;
otherwise the low type could, by saving s∗H , obtain a saving-transfer pair that

gives him a higher utility than he will get if saving only s∗L = 0. Similarly,

for the high type not to have an incentive to mimic the low type, we must

have s∗H ≤ s00.
If A’s out-of-equilibrium beliefs are chosen appropriately, the two neces-

sary conditions s∗H ≥ s0 and s∗H ≤ s00 are also sufficient for having s∗L = 0 and
any s∗H ∈

£
s
0
, s

00¤
as part of a separating equilibrium. For instance, one may

let (recall that eµ is A’s posterior beliefs that B is the high type)
eµ (s) = ½ 0 for s ∈ [0, s∗H)

1 for s ∈ [s∗H ,ω] . (8)
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These posterior beliefs are consistent with the equilibrium requirements and

they guarantee that the types do not have an incentive to deviate from s∗L
respectively s∗H .

The important feature of the beliefs in (8) is that they put a sufficiently

high probability on the event that B is the low type whenever s < s∗H ;

this is what guarantees that the high type does not, in the equilibria in

which s∗H > s
0
, want to deviate to some s ∈ £s0 , s∗H¢. There is, however, a

very good reason to regard beliefs that have this feature as unreasonable.

Namely, choosing some s > s
0
is a strictly dominated action for the low

type, regardless of which posterior beliefs eµ (s) ∈ [0, 1] A holds: choosing

s = 0 always gives him a higher utility (see Fig. 3a). One may plausibly

argue that A should realize this and therefore assign zero probability to the

event that B is the low type when observing some saving level s > s
0
. But

if we accept this argument and require that eµ (s) = 1 for all s > s
0
, then

it will be impossible to sustain any s∗H > s
0
as the high type’s saving level

in a separating equilibrium. Below I will refer to this line of reasoning as

the “dominance argument”.18 The only equilibrium saving level of the high

type that survives the dominance argument is s∗H = s
0
. Hence, when the

parameters are such that s
00
< αβHω, the dominance argument gives us a

unique separating equilibrium outcome, in which s∗L = 0 and s
∗
H = s

0
.

Let us now turn to the case where s
00 ≥ αβHω (or, equivalently, the

subset of the parameter space where αβH < 1 and α < α∗ (βL,βH)), which

is illustrated in Fig. 3b. Here, again, a necessary condition for sustaining

a separating equilibrium is that the two types do not have an incentive to

mimic each other: s∗H must be between s
0
and s◦, where s◦ is the value of

s at which the high type’s indifference curve crosses the s-axis from below.

I will again invoke the dominance argument from above, which means that

A’s out-of-equilibrium beliefs must put all probability on the event that B

is the high type when s > s
0
. As a consequence, for some s∗H ∈

£
s
0
, s◦
¤
to

be part of a separating equilibrium, this saving level and the transfer that

it induces must give the high type a utility that is at least as high as what

18This equilibrium refinement is implied by (but is weaker than) the so-called intuitive
criterion, suggested by Cho and Kreps (1987). The intuitive criterion is very often applied
in signalling games. Later I will use it here, too, in order to rule out pooling equilibria.
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he would get by choosing any other s > s
0
, given that by choosing any

such s he will be recognized as the high type. Hence, if the high type saves

some amount greater than αβHω in an equilibrium, this amount must be

equal to βHω/ (1 + βH), since this is the high type’s optimal saving level if

not expecting any transfer. Moreover, if the high type saves some amount

smaller than or equal to αβHω in an equilibrium, this amount must equal

s
0
, since the high type’s utility increases as one moves northwest along the

upper straight line.

Before proceding with the analysis, let us define the following two pa-

rameter regimes: Regime I is where (1 + βH)
−1 ≤ α, and Regime II is where

(1 + βH)
−1 > α. In Regime I, the high type’s optimal saving level if not

expecting any transfer, βHω/ (1 + βH), is smaller than or equal to the saving

level where the high type’s transfer scheme meets the horizontal axis, αβHω.

It follows from this and the arguments in the previous paragraph that in

Regime I only s∗H = s
0
can be part of a separating equilibrium that survives

the dominance argument. In Regime II, βHω/ (1 + βH) > αβHω.
19 Whether

we in Regime II can sustain s∗H = s
0
or s∗H = βHω/ (1 + βH) as part of a

separating equilibrium that survives the dominance argument thus amounts

to asking which of these saving levels gives the high type the highest util-

ity, given that A will correctly infer B’s type and transfer resources to him

accordingly. Hence, we need to know the sign of ∆U , where

∆U ≡ UB
µ
s
0
,
αβHω − s0
1 + αβH

| βH
¶
− UB

µ
βHω

1 + βH
, 0 | βH

¶
.

Given that the size of the transfer is increasing in α, one would expect that

∆U is positive if and only if α exceeds some threshold. Lemma 3 below

confirms this.
19One also has that βHω/ (1 + βH) < s◦. To see this, notice that the high type’s

indifference curve through the point (s, t) = (βHω/ (1 + βH) , 0) must be tangent to the
s-axis at s = βHω/ (1 + βH) (cf. Fig. 3b); otherwise s = βHω/ (1 + βH) would not
maximize the high type’s utility given that he is not expecting a transfer. Moreover, this
indifference curve can of course not cross the one of the high type that is drawn in Fig.
3b. It follows that s◦ > βHω/ (1 + βH).
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Lemma 3. There exists a function α∗∗ (βL, βH ,ω), implicitly defined by

log

µ
1− s

0
(α∗∗)
ω

¶
+ βH log

µ
1 +

s
0
(α∗∗)
ω

¶
≡ βH log

µ
1 + α∗∗βH

α∗∗

¶
− (1 + βH) log (1 + βH)

(where s
0
(α∗∗) is s

0
evaluated at α∗∗), such that ∆U S 0 as α S

α∗∗ (βL,βH ,ω). Moreover, α
∗∗ (βL,βH ,ω) > ϕ (βH) for all βL ∈ (0,βH)

and all ω > 0, and

lim
βL→0

α∗∗ (βL,βH ,ω) = lim
βL→βH

α∗∗ (βL,βH ,ω) = ϕ (βH) . (9)

Hence, summing up the analysis so far, if (i) the parameters are such

that s
00 ≥ αβHω, (ii) we are in Regime II, and (iii) α < α∗∗ (βL, βH ,ω),

then in any separating equilibrium that survives the dominance argument

we have s∗H = βHω/ (1 + βH). These three conditions are met if and only if

α < bα (βL, βH ,ω), where
bα (βL, βH ,ω) ≡ min½α∗ (βL, βH) ,α∗∗ (βL, βH ,ω) , 1

1 + βH

¾
.

If, on the other hand, at least one of the three conditions is violated (i.e.,

if α > bα (βL,βH ,ω)), then in any separating equilibrium that survives the

dominance argument we have s∗H = s
0
.

We have not yet considered the existence of pooling equilibria. For the

sake of brevity, this will not be done here. In Lagerlöf (2002), however, I

show that the intuitive criterion, (Cho and Kreps, 1987), rule out all pooling

equilibria. As explained in footnote 18, this equilibrium refinement implies

the dominance argument used above, although it is stronger. Since the intu-

itive criterion rules out all pooling equilibria, it gives us a unique equilibrium

outcome.

Proposition 3. Suppose α 6= bα (βL,βH ,ω). Then there is a unique equilib-
rium outcome that satisfies the intuitive criterion. If α > bα (βL, βH ,ω),
then this outcome is (s∗L, t

∗
L, s

∗
H , t

∗
H) =

³
0, αβLω

1+αβL
, s

0
, αβHω−s0
1+αβH

´
; and ifbα (βL, βH ,ω) < 0, this outcome is (s∗L, t∗L, s∗H , t∗H) = ³0, αβLω

1+αβL
, βHω
1+βH

, 0
´
.
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In Fig. 4, the results are illustrated in a diagram that depicts α on the

vertical and βL on the horizontal axis. Recall that Assumption 1 is satified

in the region above the graph of ϕ (βL) and below the graph of (1− βL)
−1,

where ϕ (βL) is slightly downwardsloping, starts at 1/e, and ends at ϕ (βH).

The figure also shows the graphs of α∗ (·, βH), α∗∗ (·,βH ,ω), and (1 + βL)
−1

(in drawing these graphs, I made use of Lemmas 2 and 3). Proposition 3 tells

us that when we are in the region below all these three graphs (the shadowed

area in the figure), i.e., when α < bα (βL, βH ,ω), the unique equilibrium
outcome has the high type saving βHω (1 + βH)

−1. Otherwise, in the region

where α > bα (βL,βH ,ω), the unique equilibrium outcome has the high type

saving s
0
. An important question for the subsequent analysis will be whether

the shadowed area is non-empty, as presumed in Fig. 4. Although this paper

cannot offer any analytical result that answers this question, plotting the

relevant graphs for various parameter values with the help of the software

Mathematica indicates that the area is indeed always non-empty.

3.3 Efficiency

Let us now investigate whether the unique equilibrium outcome that we de-

rived above is efficient and, if not, whether B saves too little or too much. In

a game with incomplete information the concept of efficiency is not straight-

forward. Here I will use the following definitions. Following Holmström and

Myerson (1983) I say that an outcome (sL, tL, sH , tH) is incentive feasible if

UB (si, ti | βi) ≥ UB (sj, tj | βi) , ∀i, j ∈ {L,H} with i 6= j

and (sL, tL, sH , tH) ∈ [0,ω]4. An outcome
¡
s
0
L, t

0
L, s

0
H , t

0
H

¢
ex post dominates

an outcome (sL, tL, sH , tH) if

Ui
³
s
0
j, t

0
j | βj

´
≥ Ui

¡
sj, tj | βj

¢
, ∀j ∈ {L,H} and ∀i ∈ {A,B} , (10)

with at least one strict inequality. And an outcome (sL, tL, sH , tH) is ex post

incentive efficient if there is no other incentive feasible outcome that ex post

dominates (sL, tL, sH , tH).

It turns out that no outcome of a separating equilibrium can be ex post

incentive efficient. This is because in a separating equilibrium the signalling
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mechanism does not affect the low type’s saving choice (cf. Lemma 1). The

high type’s choice, however, is distorted upwards in a separating equilibrium:

s∗H > 0; thus, it is conceivable that s
∗
H is part of an outcome that is “efficient

for the high type”. In the following I will investigate if and when the high

type’s saving level in the unique equilibrium outcome indeed is “efficient

for the high type”. Formally, I say that an outcome
¡
sL, tL, s

0
H , t

0
H

¢
ex post

dominates an outcome (sL, tL, sH , tH) for the high type if (10) is satisfied for

j = H with at least one strict inequality. And an allocation (sL, tL, sH , tH)

is ex post incentive efficient for the high type if there is no other incentive

feasible outcome that ex post dominates this outcome for the high type.

There are two conditions that are necessary for (s∗L, t
∗
L, s

∗
H , t

∗
H) to be ex

post incentive efficient for the high type as well as the outcome of a separating

equilibrium:

s∗H ∈ argmax
s∈[0,ω]

UB (s, t
∗
H | βH) , (11)

t∗H ∈ argmax
t∈[0,ω]

UA (s
∗
H , t | βH) . (12)

The first condition guarantees that the intertemporal allocation of resources

is efficient, and the second condition is necessary for (s∗L, t
∗
L, s

∗
H , t

∗
H) to indeed

be the outcome of a separating equilibrium. Straightforward algebra shows

that, in Regime I, conditions (11) and (12) are met only for (s∗H , t
∗
H) =¡esI ,etI¢, where¡esI ,etI¢ ≡ µ1− α (1− βH)

1 + α (1 + βH)
ω,

α (1 + βH)− 1
1 + α (1 + βH)

ω

¶
.

Similarly, in Regime II conditions (11) and (12) are met only for (s∗H , t
∗
H) =

(βHω/ (1 + βH) , 0) ≡
¡esII ,etII¢. One can verify that, in Regime I, ¡s∗L, t∗L, esI ,etI¢

is indeed ex post incentive efficient for the high type; and, in Regime II,¡
s∗L, t

∗
L, esII ,etII¢ is indeed ex post incentive efficient for the high type.

Recall from Proposition 3 that in Regime I the high type saves s
0
. Thus,

in this regime the high type will save the efficient amount only in the special

case where s
0
= esI ; if s0 < esI then the high type saves too little, and if s0 > esI

he saves too much. So how does s
0
relate to esI? Lemma 4 below tells us that
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this depends on how α relates to a cut-off value α∗∗∗ (βL,βH). The lemma

also notes some useful properties of this cut-off value.

Lemma 4. There exists a function α∗∗∗ (βL, βH), implicitly defined by

log

·
1 + (1 + βH)α

∗∗∗

2α∗∗∗

¸
+ βL log

·
βL [1 + (1 + βH)α

∗∗∗]
2βH (1 + βLα

∗∗∗)

¸
≡ 0, (13)

such that s
0 S esI as α S α∗∗∗ (βL,βH). Moreover, limβL→0 α

∗∗∗ (βL, βH) =

limβL→βH α∗∗∗ (βL,βH) = (1− βH)
−1; and, for βL sufficiently close to

βH , α
∗∗∗ (βL, βH) < (1− βL)

−1.

It remains to consider Regime II. It follows immediately from Proposi-

tion 3 and the algebra above that, if α < bα (βL,βH ,ω), in Regime II the
equilibrium outcome (s∗L, t

∗
L, s

∗
H , t

∗
H) is indeed ex post incentive efficient for

the high type. For α > bα (βL,βH ,ω), however, the high type will undersave,
since s

0
< esII .

Summing up, we have the following proposition.

Proposition 4. The unique equilibrium outcome is ex post incentive effi-

cient for the high type if α < bα (βL,βH ,ω) or α = α∗∗∗ (βL,βH); it

involves undersaving on the part of the high type if bα (βL, βH ,ω) <
α < α∗∗∗ (βL,βH); and it involves oversaving on the part of the high

type if α > α∗∗∗ (βL,βH).

Fig. 5 illustrates the results stated in the proposition. This figure is sim-

ilar to Fig. 4, but it also shows the graph of α∗∗∗ (·,βH). From Lemma 4 we
know that, at least if βL is sufficiently close to βH , this graph goes through the

region of the parameter space where Assumption 1 is satisfied. Hence, there

is a non-empty region of the parameter space (namely, the checked area in the

figure) where the high type saves too much!20 Proposition 4 also tells us that

on the lower border of this region, i.e., where α = α∗∗∗ (βL,βH) and where

Assumption 1 is satsified, the unique equilibrium outcome is indeed ex post

20In Lagerlöf (2002) it is shown that, for all βL and βH , α
∗∗∗ (βL,βH) > 1; hence, in

order to obtain the result that the high type oversaves, A must care more about B than
about herself.
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incentive efficient for the high type, although this is of course a knife-edge

phenomenon. In the region where α < bα (βL,βH ,ω) (the shadowed area in
the figure), however, we have generically that the unique equilibrium outcome

is indeed ex post incentive efficient for the high type. In the intermediate

part of the parameter space, where α < α∗∗∗ (βL,βH) and α > bα (βL, βH ,ω),
the high type will undersave. Yet, even here, the high type’s saving choice

will be distorted upwards: he will save more than he would have done under

complete information.

Of particular interest among these results is the one saying that for a

subset of the parameter space the high type saves exactly the efficient amount.

What is the logic behind this? To see this, notice that here as in other

signalling games the intuitive criterion will select the separating equilibrium

in which the high type separates at the lowest possible cost. If we had not

excluded negative transfers, the cost would always had been minimized at

the lowest possible amount of savings, s0. The presence of the non-negativity

constraint, however, creates a convexity in the transfer schedule (cf. Figs. 3a

and 3b), which might make the high type prefer to save an amount somewhere

on the horizontal part of the schedule; if so, the high type’s saving choice

will not be distorted, since he does not expect any transfer.

Clearly, B is more likely to be better off by saving this larger amount

instead of only s0 when A’s degree of altruism is relatively low, since then the

transfer associated with s0 will be relatively small and thus less attractive for

him. What is not that obvious, though, is whether Assumption 1 will still

be met for such a low degree of altruism. The algebra (and the computer

plottings referred to in Section 3.2), however, tell us that there are indeed

parameters such that the high type saves the efficient amount and Assump-

tion 1 is satisfied, although this cannot happen when βL is very close to zero

or βH , as is seen from Fig. 5 (and proven in Lemma 3).

4 Concluding Discussion

The Samaritan’s dilemma–i.e., the idea that, in the presence of altruism,

people may choose to save (or work or insure) to a too small extent–certainly

appeals to our intuition. In the alternative formulation of the Samaritan’s
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dilemma considered in this paper there is an additional effect present, which

counteracts the undersaving effect. The logic of this new force should also,

once we have become aware of it, be very intuitive. For the new force to in-

deed work in the “right” direction (i.e., to counteract the undersaving effect),

the following condition must hold. Suppose that B has private information

about some parameter x and that he, everything else being equal, has an in-

centive to save more when knowing that x is high (respectively, low). Then,

believing that x is high (respectively, low) will induce A to make the transfer

to B larger. Since B wants the transfer to be large, he would like A to believe

that x is high (respectively, low); and he can try to make A believe this by

saving more.

The condition is met if, as was suggested in the Introduction, x is a

measure of B’s second-period income or if, as was assumed in the formal

model of Section 3, x is a discount factor or a weight on B’s second-period

utility. One may wonder whether the presence of the counteracting effect is

hinging on the assumption that the incomplete information concerns one of

these two particular characteristics of B. What if B had private information

about the return on his savings or about his first-period income?

If the parameter x is interpreted as the return on B’s savings and if we

stick to the log-utility specification in the present paper, then it is clear that

there would not be any counteracting force present. This is because with

log-utility and with A’s transfer t being equal to zero, the optimal saving

level is independent of the return; and if t is positive, then the optimal sav-

ing level is increasing with the return. Yet if the intertemporal elasticity of

substitution is constant but sufficiently less than one (or, equivalently, if the

degree of relative risk aversion is sufficiently greater than one), then B will

have an incentive to save more when knowing that the return is low. And

A will of course have an incentive to make her transfer larger when believ-

ing that the return is low. Hence, under this assumption, one would again

get efficiency-enhancing signalling. The assumption about the intertemporal

elasticity of substitution seems reasonable: the log-utility assumption in the

present paper was made for the sake of tractability, and there is empirical

evidence that this elasticity is indeed less than one.
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Private information about B’s first-period income does of course not give

rise to any opportunity to signal as long as B’s utility function is additively

separable over time, since then the size of B’s income in the first period does

not affect A’s incentive to transfer income to him in the second period. But

if B’s marginal utility of second-period consumption is increasing with B’s

first-period consumption, then the condition above is again satisfied. This

requirement on the sign of the cross derivative of the utility function is, for

instance, met for the following preferences: UB (c1B, c2B) = (c1B)
a (c2B)

b for

some a, b > 0.

Yet another parameter in the model that there could conceivably be un-

certainty about is the altruism parameter, α.21 In the model analyzed in this

paper, A’s having private information about α would not give rise to any

signalling, since A is acting last in the game. Yet this is not true for the

formulation of the Samaritan’s dilemma considered in Lindbeck and Weibull

(1988). In that model there are two individuals who are altruistic towards

each other. They both, simultaneously, make a saving decision in period

one. In period two they observe the other one’s saving decision and then,

simultaneously, decide how much (if anything) to transfer to each other. If

they both are equally wealthy, then, in equilibrium, only the individual who

is more altruistic will make a positive transfer. Anticipating this, the less

altruistic individual will undersave in the first period. If one to this setting

added the assumption that one or both of the individuals have incomplete

information about the other one’s degree of altruism, then one should expect

the undersaving to be exacerbated, the reason being that both individuals

would like to signal that they are less altrusitic than the other one, and a

person whose degree of altruism is indeed low should expect a transfer from

the other and will therefore save less on his own.

One particularly interesting result of the present paper says that for a

subset of the parameter space the high type of B saves exactly the efficient

amount. Crucial for this result is the assumption that the transfer cannot be

negative, which is indeed both natural and standard in the literature. Given

the logic that leads up to the result (see the discussion after Proposition

21Uncertainty about the degree of altruism has been modelled by Chakrabarti, Lord,
and Rangazas (1993) and Lord and Rangazas (1995).
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4), it is clear that it is robust: it would, for instance, hold also for other

utility functions, as long as these are not too different from the log-utility

specification assumed here. Exactly how and in what direction things would

change if one instead assumed, for example, a utility function with a constant

but not necessarily unitary intertemporal elasticity of substitution is harder

to say, and this question is left for future work.

As noted in the Introduction, the logic of the traditional Samaritan’s-

dilemma model and in particular the undersaving result has been employed

in an extensive literature, addressing various issues. Although these models

are not identical to the benchmark model of the present paper, the basic logic

is the same. Hence, one should expect the undersaving result also in those

other models to be sensitive to the assumption that information is complete.

An interesting topic for future research would be to investigate the signalling

mechanism in the present paper in a setting that is closer to the ones in the

existing literature, in order to find out to what extent those results indeed

are sensitive to the complete-information assumption.

Appendix

Proof of Lemma 1: Suppose that α > ϕ (βL) and that s
∗
L > 0 in a

separating equilibrium. I will show that this leads to a contradiction. To start

with, consider the case where s∗L ∈ (0,αβLω]. Then the low type receives
a transfer from A according to the first line in equation (2) but with βL
substituted for β. The low type’s utility is accordingly given by (cf. the first

line of equation (3)):

V (s∗L) = log (ω − s∗L) + βL log (ω + s
∗
L) + βL log

µ
αβL

1 + αβL

¶
.

If the low type instead chose s = 0, however, he would receive a transfer

of at least αβLω/ (1 + αβL), which would give him a utility of V (0). This

utility level is strictly greater than V (s∗L) for all s
∗
L ∈ (0,αβLω], since V (s∗L)

is strictly decreasing in s∗L. Now consider the case where s
∗
L ∈ (αβLω,ω].

Then the low type receives a transfer from A according to the second line in

equation (2) (i.e., a zero transfer). However, since α > ϕ (βL), the low type is
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strictly better off from choosing s = 0 than from choosing any s∗L ∈ (αβLω,ω].
This follows from the proof of Proposition 1 (see Lagerlöf, 2002). We thus

have a contradiction, which proves the lemma. ¤

Lemma A1. s0 < αβHω.

Proof of Lemma A1: Since we must have s
0
< ω, it is obvious that

the lemma is true for αβH ≥ 1. Suppose that αβH < 1. Then s0 < αβHω if

and only if the left-hand side of (6) evaluated at s0 = αβHω is strictly smaller

than the righ-hand side. This condition can be written as

log (1− αβH) + βL log

µ
βH (1 + αβL)

βL

¶
≡ Υ (α,βL,βH) < 0.

It is readily verified thatΥ is strictly concave in βH , and that ∂Υ (α, βL,βH) /∂βH =

0 ⇔ βH = βL/ [α (1 + βL)]. Hence, if the above condition is satisfied for

βH = βL/ [α (1 + βL)], then it is always satisfied. Moreover, Υ is strictly

decreasing in α. It thus suffices to show that evaluated at α = ϕ (βL) and

βH = βL [ϕ (βL) (1 + βL)]
−1, Υ (α,βL,βH) ≤ 0. Straightforward algebra,

however, shows that Υ
¡
ϕ (βL) , βL,βL [ϕ (βL) (1 + βL)]

−1¢ = 0. ¤
Lemma A2. s00 < αβHω if and only if either (i) αβH ≥ 1 or (ii) αβH < 1

and α > α∗ (βL, βH).

Proof of Lemma A2: Let us first state the formal definition of s00:

log

µ
1− s

00

ω

¶
+ βH log

µ
1 +

s00

ω

¶
≡ βH log

µ
βL (1 + αβH)

βH (1 + αβL)

¶
. (A1)

If αβH ≥ 1, then it is obvious that s00 < αβHω. Suppose that αβH < 1. Then

s
00
< αβHω if and only if the left-hand side of (A1) evaluated at s

00
= αβHω

is strictly smaller than the right-hand side. Making this substitution and

rewriting yield

log (1− αβH) + βH log (1 + αβL) < βH log

µ
βL
βH

¶
.
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This inequality is satisfied for α’s close to β−1H and it is not for α = 0.

Moreover, it is readily verified that the left-hand side is strictly decreasing in

α for αβH < 1. Hence, the cut-off value α
∗ is well-defined, and s

00
< αβHω if

and only if α > α∗ (βL,βH). The identity in (7) that defines α
∗ is obtained

by changing the above inequality to an equality and re-arranging. ¤

Proof of Lemma 2: The result that ∂α∗ (βL,βH) /∂βL < 0 follows

immediately from the fact that s00 is strictly decreasing in α; this, in turn,

can be seen from (A1). The results that limβL→0 α
∗ (βL,βH) = 1/βH and

limβL→βH α∗ (βL, βH) = 0 follow from substituting βL = 0 respectively βL =

βH into (7). ¤

Proof of Lemma 3: By using the assumed functional form for UB (s, t | βH)
(see (5)), we can write

∆U = log

µ
1− s

0

ω

¶
+ βH log

µ
1 +

s
0

ω

¶
− βH log

µ
1 + αβH

α

¶
+ (1 + βH) log (1 + βH) .

Notice that ∆U is strictly decreasing in s
0
and, keeping s

0
fixed, strictly

increasing in α. Moreover, s
0
is a function of α with ∂s

0
/∂α < 0. Hence,

∂∆U/∂α > 0. Also, it can easily be verified that if evaluating ∆U at α =

ϕ (βH), the two last terms of ∆U vanish; thus, ∆U |α=ϕ(βH)< 0. Moreover,
since s

0 → 0 as α → ∞, for large enough α’s ∆U > 0. It follows that the

threshold α∗∗ is well defined with ∆U S 0 as α S α∗∗ (βL,βH ,ω), and that

α∗∗ (βL,βH ,ω) > ϕ (βH) for all βL ∈ (0, βH) and all ω > 0. Moreover, since
s
0 → 0 as βL → 0 and as βL → βH , we get the equalities in (9). ¤

Proof of Lemma 4: By using the definition of s0, one can show thatesI ≥ s0 is equivalent to
log

·
1 + α (1 + βH)

2α

¸
+ βL log

·
βL [1 + α (1 + βH)]

2βH (1 + αβL)

¸
≥ 0. (A2)

Clearly, inequality (A2) is satisfied if α is sufficiently close to zero. Moreover,

the upper constraint on α in Assumption 1, (1− βL)
−1, is strictly smaller
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than [βL (βH − βL)]
−1. To prove the first claim of the lemma, it thus suffices

to show that (i) the left-hand side of (A2) is strictly decreasing in α for all

α ∈ ¡0, [βL (βH − βL)]
−1¢ and (ii) it does not hold for α = [βL (βH − βL)]

−1.

To establish (i), differentiate the left-hand side of (A2) with respect to α; the

resulting expression has the same sign as [αβL (βH − βL)− 1], which clearly
is strictly negative for all α < [βL (βH − βL)]

−1. To establish (ii), substitute

α = [βL (βH − βL)]
−1 into the left-hand side of (A2). This yields

(1 + βL) log

·
βL (βH − βL) + 1 + βH

2

¸
− βL log [(βH − βL + 1)βH ] ≡ g (βL,βH) .

One can show that g (βL, 1) < 0 for all βL ∈ (0, 1) (one has g (0, 1) =

g (1, 1) = 0, and g
00
11 (βL, 1) > 0whenever g

0
1 (βL, 1) = 0). Moreover, g (βL, βH)

is increasing in βH . To see this, note that we can write g
0
2 (βL, βH) > 0⇔

(1 + βL)
2 (βH − βL + 1)βH − (2βH + 1− βL) [βL (βH − βL) + 1 + βH ]βL > 0,

the left-hand side of which is increasing in βH and zero evaluated at βH =

βL. It follows that the threshold α∗∗∗ is well defined with s
0 S esI as α S

α∗∗∗ (βL,βH). Moreover, by substituting βL = βH and α∗∗∗ = (1− βH)
−1

into (13), one can verify that limβL→βH α∗∗∗ (βL,βH) = (1− βH)
−1. Similarly

with the claim that limβL→0 α
∗∗∗ (βL,βH) = (1− βH)

−1, although here one

must also make use of the fact that limβL→0 βL log (βL) = 0. Let us finally

show that for βL sufficiently close to βH , α
∗∗∗ (βL,βH) < (1− βL)

−1. Since

limβL→βH α∗∗∗ (βL, βH) = (1− βH)
−1, it suffices to show that

lim
βL→βH

∂α∗∗∗ (βL, βH)
∂βL

> lim
βL→βH

∂ (1− βL)
−1

∂βL
= (1− βH)

−2 .

Straightforward calculations yield

∂α∗∗∗ (βL,βH)
∂βL

= −∂ [LHS (13)] /∂βL
∂ [LHS (13)] /∂α

=
log
h
βL[1+α(1+βH)]
2βH(1+αβL)

i
+ (1 + αβL)

−1

1−αβL(βH−βL)
α(1+αβL)[1+α(1+βH)]

.

Hence, using limβL→βH α∗∗∗ (βL,βH) = (1− βH)
−1, one has

lim
βL→βH

∂α∗∗∗ (βL, βH)
∂βL

=
2

(1− βH)
2 > (1− βH)

−2 ,
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which always holds. ¤
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Fig. 3a.  Separating equilibria. 
The case s''≤αβHω.
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Fig. 3b.  Separating equilibria. 
The case s''>αβHω.
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Fig. 5.  Efficiency.  In the checked region the high type 
oversaves, whereas in the shadowed region he saves the 
efficient amount.  Elsewhere the high type undersaves, 
although not as severely as under complete information.
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