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WEIGHTED POWER MEAN COPULAS: THEORY AND APPLICATION

Ingo Klein, Matthias Fischer & Thomas Pleier

Department of Statistics and Econometrics

University of Erlangen-Nürnberg, Germany

summary

It is well known that the arithmetic mean of two possibly differ-

ent copulas forms a copula, again. More general, we focus on the

weighted power mean (WPM) of two arbitrary copulas which is not

necessary a copula again, as different counterexamples reveal. How-

ever, various conditions regarding the mean function and the underly-

ing copula are given which guarantee that a proper copula (so-called

WPM copula) results. In this case, we also derive dependence prop-

erties of WPM copulas and give some brief application to financial

return series.

Keywords and phrases: Copulas, generalized power mean, max id,

left tail decreasing, tail dependence

1 Introduction

For two given copulas C1(u, v) and C2(u, v) we consider the function

Cr(u, v) ≡
(
αC1(u, v)r + (1− α)C2(u, v)r

)1/r
(1)

where r ∈ R and α ∈ (0, 1) on [0, 1] × [0, 1]. Letting r → 0, (1) reduces to the
weighted geometric mean of C1 and C2,

C0(u, v) = C1(u, v)αC1−α
2 . (2)

Assuming that Cr(u, v) is again a copula – which is not guaranteed at all – it is
governed by – beside of the specific copula parameters of C1 and C2 – by two addi-
tional parameters r and α which may allow for more flexibility regarding dependence
modelling. In this case, Cr will be denoted as weighted power mean copula, or briefly
WPM copula.

Certainly, there are single results on weighted arithmetic, geometric or harmonic
means of two specific copulas (see, e.g. Nelsen, 2006). Nelsen even shows, that
certain copula families are closed with respect to the operation in (1), i.e. Cr
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belongs to the same copula family as C1 and C2 for a fixed r. But a systematic
proof that C is a copula for all r can only be found for the weighted power mean of
the maximum- and independence copula (see Fischer & Hinzmann, 2007).

On the other hand, we will provide counterexamples within this paper, where the
weighted power mean of two copulas fails to satisfy the postulates of the copula
definition. This motivates the derivation of certain criteria for C1 and C2 such that
Cr is again a copula. Therefore, our objective is to give solutions for broad classes
of copulas C1 and C2 and possibly comprehensive domain of r.

For this reason, the paper is organized as follows: First of all we restrict ourselves
to benign copulas C1 and C2, where the copula densities exist and, consequently,

the two-increasing condition is valid if ∂2Cr
∂u∂v

is non-negative. Up to a few special
cases (see, for instance, Fischer & Hinzmann, 2007), the direct proof of the two
increasing-condition seems to be impossible without assuming the existence of the
density. We then show that this sufficient (but not necessary) condition is satisfied
for extrem value copulas and positive r. Applying weighted power means with
positive r to max-id copulas will also result in proper copulas. As the max-id
property of Archimedean copulas can be easily checked, we will provide results for
various Archimedean copulas. It will also be shown that combining a copula with
a specific positive dependence structure (i.e. left-tail decreasing property) with the
independence copula gives again a copula. For r < 0, we are only able to derive single
results for specific copulas. Afterwards, we investigate how the dependence structure
of C1 and C2 transforms to the WPM-copula. For the positive quadrant ordering
of Lehmann (1966) and the stronger positive ordering of Colangelo (2006), which is
based on the concept of tail dependence (so-called LTD-ordering) it will be shown
that the WPM-copula (with respect to this orderings) measures a strength/degree of
positive ordering which lies between that of C1 and C2. This implies that well-known
dependence measures like Spearman’s ρ and Kendall’s τ (which both satisfy this
orderings) of WPM-copulas lie also in between those of C1 and C2 liegen. However,
only numerical approximation to these measures are available because no closed
formula can be derived in general. After that, general formulas for the weak and
strong tail dependence coefficients of WPM copulas are derived. Finally, we discuss
the joint estimation of the WPM parameters r and α together with the copula
parameters of C1 and C2 and apply the estimation formula to empirical data.

2 A short primer on copulas

Let [a, b] ⊆ R. A function K : [a, b] × [a, b] → R is said to be 2-increasing if its
K-volume

VK(u1, u2, v1, v2) ≡ K(u2, v2)−K(u2, v1)−K(u1, v2) +K(u1, v1) ≥ 0 (3)

for all a ≤ u1 ≤ u2 ≤ b and a ≤ v1 ≤ v2 ≤ b. If, additionally, [a, b] = [0, 1] and K
satisfies the boundary conditions

K(u, 0) = K(0, v) = 0, K(u, 1) = u and K(1, v) = v (4)
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for arbitrary u, v ∈ [0, 1], K is commonly termed as copula and we write C, instead.
For details on copulas we refer to Nelsen, 2006 and Joe, 1999.

Putting a different way, let X and Y denote two random variables with joint distri-
bution FX,Y (x, y) and continuous marginal distribution functions FX(x) and FY (y).
According to Sklar’s (1959) fundamental theorem, there exists a unique decomposi-
tion

FX,Y (x, y) = C(FX(x), FY (y))

of the joint distribution into its marginal distribution functions and the so-called
copula

C(u, v) = P (U ≤ u, V ≤ v), U ≡ FX(X), V ≡ FY (Y ) (5)

on [0, 1]2 which comprises the information about the underlying dependence struc-
ture. From (5) it becomes obvious that a copula is a bivariate distribution function
of a pair of random variable (U, V ) defined on [0, 1] × [0, 1]. Assuming that C is
differentiable with respect to both arguments, equation (3) is satisfied if

c(u, v) ≡ ∂2C(u, v)

∂u∂v
≥ 0.

Moreover, it is known that

∂C(u, v)

∂u
= P (V ≤ v|U = u) ≥ 0 and

∂C(u, v)

∂u
= P (V ≤ v|U = u) ≥ 0. (6)

Later on, we will frequently use the independence copula CI(u, v) = uv which cor-
responds to bivariate distributions with independent marginals, the maximum cop-
ula CU(u, v) = min{u, v}, associated to random variables which are co-monotone
and, thus, constituting an upper bound for all copulas and the minimum copula
CU(u, v) = max{u + v − 1, 0}, associated to random variables which are counter-
monotone and, thus, constituting an lower bound for all copulas. A copula which
comprises minimum, maximum and independence copula is commonly called com-
prehensive.

For a general introduction to copulas we refer to Nelsen (2006) or Joe (1999). A
recent overview on the multivariate case is provided by Fischer (2010). Application
to finance see Fischer et al. (2009) or Fischer & Köck (2010).

3 Examples and counterexamples

In the literature there are numerous examples of copulas which are specific means
of other copulas. Joe (1999), for instance, considers copula B11

C(u, v) = αmin(u, v) + (1− α)uv

which composes as weighted arithmetic mean of the maximum copula and of the
independence copula. Similarly, copula B12 in Joe (1999)

C(u, v) = min(u, v)α(uv)1−α α ∈ [0, 1]
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results as the corresponding geometric mean of both copulas. Nelsen (2006) investi-
gates whether the mean of two copulas with a specific building law is again a copula
with the same building law. Consider, for example, the weighted arithmetic mean
of two Farlie-Gumbel-Morgenstern copulas with the building law

Ci(u, v) = uv + θiu(1− u)(1− v), θi ∈ [−1, 1], i = 1, 2,

which results again in a Farlie-Gumbel-Morgenstern-Copula:

αC1(u, v) + (1− α)C2(u, v) = uv + α(θ1 + (1− α)θ2)u(1− u)v(1− v).

A similar result is proven by Nelsen (2006, p. 107) for weighted geometric means
and Gumbel-Barnett copulas which are defined by

Ci(u, v) = uv exp(−θi lnu ln v), θi ∈ (0, 1], i = 1, 2.

Consequently, the geometric mean of C1 and C2,

C1(u, v)αC2(u, v)1−α = uv exp(−(αθ1 + (1− α)θ2) lnu ln v)

is again a Gumbel-Barnett copula. Also the weighted harmonic mean can be suc-
cessfully used to construct new copulas. Starting from Ali-Mikhail-Haq copulas (see
Nelsen, 2006, p. 82) of the form

Ci(u, v) =
uv

1− θi(1− u)(1− v)
, θi ∈ [−1, 1], i = 1, 2,

the weighted harmonic mean(
α

1

C1(u, v)
+ (1− α)

1

C2(u, v)

)−1
=

uv

1− (αθ1 + (1− α)θ2)(1− u)(1− v)

is again a Ali-Mikhail-Haq copula.

Fischer & Hinzmann (2007) turn away from concrete means and consider the broad
class of so-called power means which are of the form

Cr(u, v) = (αmin(u, v)r + (1− α)(uv)r)1/r , α ∈ [0, 1]

where r ∈ R. Included as special and limiting cases are the weighted arithmetic
(r = 1, B11), the weighted geometric (r → 0, B12) and the weighted harmonic
mean (r = −1). Fischer & Hinzmann (2007) proved that Cr(u, v) is again a copula
for all r ∈ R. Due to the simple structure of both copulas, the authors succeed in
verifying the 2-increasing-condition even without using the copula density.

In contrast, the question whether in general the weighted power mean of two copulas
is again a copula has to be negotiated. Consider, for instance, the following simple
counterexample:

4



Example 1 (Counterexamples) 1. Given the specific power mean of the mini-
mum and the maximum copula, i.e

K(u, v) = (α(uv)r + (1− a) max{u+ v − 1, 0}r)1/r

with α = 0.5 and r = −1 (harmonic mean). Plugging u1 = 0.6564, u2 = 0.9114,
v1 = 0.3450 and v2 = 0.9240 into the formula above,

K(u2, v2) = 0.8388, K(u2, v1) = 0.2825, K(u1, v2) = 0.5932, K(u1, v1) = 0.0028.

Hence, K(u2, v2) − K(u1, v2) − K(u2, v1) + K(u1, v1) = −0.0341 < 0 and the 2-
increasing condition is no longer valid, i.e. K(u, v) is no copula.

2. Consider C(x, y) =
(

0.5
√
CI(x, y) + 0.5

√
CL(x, y)

)2
, where CI denotes the in-

dependence copula and CL the minimum copula. It can be checked that the C-volume
of [0.8, 0.9]× [0.2, 0.3] is negative: C(0.9, 0.3) ≈ 0.2336895, C(0.8, 0.3) ≈ 0.1624597,
C(0.9, 0.2) ≈ 0.1370820, C(0.9, 0.3) ≈ 0.04 and hence

VC(0.9, 0.8, 0.3, 0.2) = 0.2336895− 0.1624597− 0.1370820 + 0.04 ≈ −0, 0258522 < 0

4 Necessary conditions

Obviously, the boundary conditions of a copula are easily checked for the weighted
power mean of two given copulas:

C(u, 1) = (αC1(u, 1)r + (1− α)C2(u, 1)r)1/r = (αur + (1− α)r)1
/r = u

for 0 < u < 1. The crucial point is the proof of the 2-increasing condition. If we
focus on copulas with existing densities, it suffices to show that the second mixed
derivative of C is non-negative. In the general case of WPM copula the mixed
derivative of C is given by

∂2

∂u∂v
Cr(u, v) =

∂2

∂u∂v
(αC1(u, v)r + (1− α)C2(u, v)r)

1
r =

=
1

r

M1/r

M2

(
1− r
r

AB +MC

)
, (7)

where M ≡ αC1(u, v)r + (1− α)C2(u, v)r ≥ 0,

A = α
∂

∂v
C1(u, v)r + (1− α)

∂

∂v
C2(u, v)r, B = α

∂

∂u
C1(u, v)r + (1− α)

∂

∂u
C2(u, v)r,

C = α
∂2

∂u∂v
C1(u, v)r + (1− α)

∂2

∂u∂v
C2(u, v)r.

Whether A, B and C are non-negative depends in particular on the sign and amount
of r. For r ≥ 1 it immediately follows that both A, B (according to equation (6))
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and C (due the existence of the copula density of Ci, i = 1, 2) are non-negative. On
the other hand, the sign of (1 − r)/rAB is non-positive for r ≥ 1. However, using
the equivalent representation

1

K

∂2Cr(u, v)

∂u∂v
= α2 c1

C1

(
C1

C2

)r
+ α(1− α)

c1
C1

+ α(1− α)
c2
C2

+ (1− α)2
c2
C2

(
C2

C1

)r
−(1− r)α(1− α)

(
∂ lnC1

∂u
− ∂ lnC2

∂u

)(
∂ lnC1

∂v
− ∂ lnC2

∂v

)

with K =
Cr(u, v)

(αC1(u, v)r + (1− α)C2(u, v)r)2
C1(u, v)rC2(u, v)r > 0

and where ci denotes the copula density of Ci for i = 1, 2, we derive the sufficient
condition (

∂ lnC1

∂u
− ∂ lnC2

∂u

)(
∂ lnC1

∂v
− ∂ lnC2

∂v

)
≥ 0 (8)

that Cr is a copula for all r ≥ 1. In toto, we proved the very general result for r ≥ 1:

Theorem 1 For two copulas C1, C2 with(
∂ lnC1

∂u
− ∂ lnC2

∂u

)(
∂ lnC1

∂v
− ∂ lnC2

∂v

)
≥ 0 (9)

the weighted power mean of C1 and C2 is again a copula for all r ≥ 1.

Example 2 Consider the Gumbel-Barnett copulas with different parameters: For
Ci(u, v) = uv exp (θi lnu ln v),

∂ lnCi(u, v)

∂u
=

1

u
− θi

ln v

u
,

∂ lnC1(u, v)

∂u
− ∂ lnC2(u, v)

∂u
= (θ2 − θ1)

ln v

u
(10)

Hence, the expression in brackets in equation (10) are positive for θ1 > θ2 and
negative for θ1 < θ2. In both cases, the condition from above is satisfied.

In case of 0 < r < 1, A and B and hence (1 − r)/rAB are non-negative; the term
C may be also negative if the first expression (summand) is negative. For r < 0, A
and B are non-positive and, consequently, (1 − r)/rAB non-negative. The sign of
C is again undetermined, because r(r − 1) > 0. To sum up, for r < 1 we obtain no
general result for copulas Ci, i = 1, 2. Additional requirements have to be put on
Ci, i = 1, 2 to obtain a specific result.

Finally, let’s consider the special case of the weighted geometric mean which results
for r → 0. For

C0(u, v) = C1(u, v)αC2(u, v)1−α = exp (α lnC1(u, v) + (1− α) lnC2(u, v)) (11)

6



we derive that

∂2

∂u∂v
exp (α lnC1(u, v) + (1− α) lnC2(u, v)) = C(u, v; r = 0, α)(DE + F ), (12)

where

D = α
∂C1(u,v)

∂u

C1(u, v)
+ (1− α)

∂C2(u,v)
∂u

C2(u, v)
≥ 0, E = α

∂C1(u,v)
∂v

C1(u, v)
+ (1− α)

∂C2(u,v)
∂v

C2(u, v)
≥ 0

and F = α
C1(u, v)c1(u, v)− ∂

∂v
C1(u, v) ∂

∂u
C1(u, v)

C1(u, v)2

+ (1− α)
C2(u, v)c2(u, v)− ∂

∂v
C2(u, v) ∂

∂u
C2(u, v)

C2(u, v)2
. (13)

However, the sign of the expression F is undetermined.

5 Results for specific copula classes

5.1 Extrem-value copulas

Consider now the first restriction that Ci, i = 1, 2 are extreme-value copulas. In
this case Cr

i (u, v) = Ci(u
r, vr) for r > 0 and i = 1, 2. For expression C we obtain

∂2

∂u∂v
Cr
i (u, v) =

∂2

∂ur∂vr
Ci(u

r, vr)
∂

∂v
vr
∂

∂u
ur ≥ 0,

such that AB +MC ≥ 0 holds and we can stated the follow theorem.

Theorem 2 The weighted power mean Cr(u, v) of two arbitrary extrem-value cop-
ulas C1(u, v) and C2(u, v) is again a copula for r > 0.

Example 3 (WPM-logistic) Assume that r > 0 and α ∈ [0, 1]. Combining two
possibly different logistic extreme-value copulas by means of a weighted power mean
function, the resulting four-parameter copula has the form

C(u, v; θ) =

[
αe

[
(− ln(u))

1
λ1 +(− ln(v))

1
λ1

]rλ1
+ (1− α)e

[
(− ln(u))

1
λ2 +(− ln(v))

1
λ2

]rλ2] 1
r

with θ ≡ (α, r, λ1, λ2) and 0 < λ1, λ2 ≤ 1.
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5.2 Max-id copulas

Instead of restricting to extreme-value copulas, we extend our analysis to copulas
which are maximal infinitely divisible (max-id). Originally, the max-id property
for distribution functions is intensively discussed by Joe (1999). As copulas can be
simply extended to distribution functions, we can apply the max-id property direct
to copulas. A copula C(u, v) will be denoted as max-id, if C(u, v)r satisfies the
properties of a bivariate distribution function for all r > 0. Note that Cr is not a
copula for r 6= 1 because the boundary conditions are no longer valid. Consider a
bivariate copula C with copula density c. In order to be max-id it has to be shown
that

∂2C(u, v)r

∂u∂v
= rCr−1

(
Cc+ (r − 1)

∂C

∂u

∂C

∂v

)
≥ 0 ∀ (u, v) ∈ [0, 1]× [0, 1]. (14)

Replacing C by Cr and after some re-arrangement we obtain

1

K

∂2Cr(u, v)

∂u∂v
= α2 c1

C1

(
C1

C2

)r
+ (1− α)2

c2
C2

(
C2

C1

)r
+(1− r)α(1− α)

∂ lnC1

∂v

∂ lnC2

∂u
+ (1− r)α(1− α)

∂ lnC1

∂u

∂ lnC2

∂v

+α(1− α)
1

C2
1

(
C1c1 − (1− r)∂C1

∂u

∂C1

∂v

)
+α(1− α)

1

C2
2

(
C2c2 − (1− r)∂C2

∂u

∂C2

∂v

)

for K ≡ Cm
(αCm

1 + (1− α)Cm
2 )2

Cm
1 C

m
2 > 0.

This expression is positive, if C1 and C2 satisfy condition (14), i.e. are both max-id.
Obviously, this assertion also holds for r = 0, because D,E ≥ 0 and the max-id
property in (13) guarantees that F ≥ 0. Hence, we derived the following result:

Theorem 3 Assume that C1(u, v) and C2(u, v) are two max-id copulas and r ∈
[0, 1). Then Cr is again a copula.

We conclude with two examples of max-id copulas.

Example 4 The logarithm of the Galambos copula with parameter δ ∈ (0,∞) is
given by

logCδ = log u+ log v +
(
(− log u)−δ + (− log u)−δ

)−1/δ
and hence

∂2 logCδ(u, v)

∂u∂v
= (a+δ)

(
(− log u)−δ + (− log v)−δ

)−1
δ
−2

((− log u)(− log v))−δ−1 ≥ 0.
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Example 5 Taking the logarithm of the FGM-Copula Cθ(u, v) = uv(1+θ(1−u)(1−
v)) with parameter θ ∈ [−1, 1],

logCθ(u, v) = log u+ log v + log (1 + θ(1− u)(1− v)) .

The corresponding derivatives are given by

∂2 logCθ(u, v)

∂u∂v
=

θ

(1 + θ(1− u)(1− v))2
, (15)

which means that the max-id property depends only from the sign of the parameter.

In particular, Archimedean copula Cφ with continuous, convex and strictly monotone
decreasing generators φ – which guarantees that the inverse function φ−1 exists –
are max-id if and only if − lnφ−1 ∈ L∗2, where

L∗2 ≡ {ω : [0,∞]→ [0,∞], ω(∞) =∞, sign(ω(i)) 6= (−1)i, i = 1, 2}.

The following table summarizes Archimedean copulas for which the max-id property
has already been verified (Nikoloulopoulos & Karlis, 2010 and own calculations), the
names and equations are adopted from Nelsen (2006).

Name Copula function Parameter

Clayton
(
u−θ + v−θ − 1

)− 1
θ θ > 0

AMH uv
1−θ(1−u)(1−v) θ ≥ 0

Gumbel exp
(
−
(
(− lnu)θ + (− ln v)θ

) 1
θ

)
θ ≥ 1

Frank −1
θ

ln
(

1 + (e−θu−1)(e−θv−1)
e−θ−1

)
θ > 0

Joe 1−
(
(1− u)θ + (1− v)θ + (1− u)θ(1− v)θ

) 1
θ θ ≥ 1

(4.2.12)
(

1 +
(
(u−1 − 1)θ + (v−1 − 1)θ

) 1
θ

)−1
θ ≥ 1

(4.2.13) exp
(

1−
(
(1− lnu)θ + (1− ln v)θ − 1

) 1
θ

)
θ > 1

(4.2.14)

(
1 +

(
(u−

1
θ − 1)θ + (v−

1
θ − 1)θ

) 1
θ

)−θ
θ ≥ 1

(4.2.19) θ

ln
(
e
θ
u+e

θ
v−eθ

) θ > 0

(4.2.20)
(
ln
(
exp(u−θ) + exp(v−θ)− exp(1)

))− 1
θ θ > 0

Table 1: Selected Archimedean max-id copulas

5.3 Left tail decreasing property and independence copula

Both copulas B11 and B12 in Joe (1999) and the copula discussed in Fischer &
Hinzmann (2006) result as a mixture of a copula C1 with the independence copula
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C2(u, v) = uv . For the independence copula we easily conclude that ∂ ln(C2)
∂u

= 1
u

and ∂ ln(C2)
∂v

= 1
v
, respectively. Hence, condition (8) re-writes as(

∂ ln(C1)

∂u
− 1

u

)(
∂ ln(C1)

∂v
− 1

v

)
≥ 0. (16)

This condition is closely related to a property of positive dependence: Assume that
U and V are random variables with copula C as bivariate distribution function. V

given U is called ”left-tail decreasing” (briefly: LTDV |U) if C(u,v)
u

is non-increasing in
u. Exchanging the part of u and v, we say that U given V is ”left-tail decreasing”.
If LTDV |U and LTDU |V holds for the underlying copula C, C is briefly denoted as
”left tail decreasing” (LTD-) copula. An equivalent condition for the LTD-property
of a copula is

∂ lnC(u, v)

∂u
− 1

u
≤ 0 und

∂ lnC(u, v)

∂v
− 1

v
≤ 0,

Hence, for a LTD-copula C1 we state the following result:

Theorem 4 The weighted power mean of a LTD-copula and the independence cop-
ula is again a copula for r > 0.

The following example illustrates the procedure for a specific Archimedian copula
(which is max-id for θ > 1).

Example 6 Consider the copula (4.2.12) in Nelsen (1999):

C1(u, v) = exp
(

1−
(
(1− ln(u))θ + (1− ln(v))θ − 1

)1/θ)
, θ > 0

with partial derivatives

∂ lnC1

∂u
= −

(
(1− ln(u))θ + (1− ln(v))θ − 1

) 1
θ
−1

(1− lnu)θ−1)

u
< 0,

∂ lnC2

∂v
< 0.

Consequently, (
∂ ln(C1)

∂u
− 1

u

)(
∂ ln(C1)

∂v
− 1

v

)
≥ 0.

We are also able to derive the result of Fischer & Hinzmann (2007) as a special case
because the maximum copula is a LTD-Copula.

Example 7 For C1 = min(u, v) we have

∂ lnC1(u, v)

∂u
=

{
1
u

für u < v

0 sonst
and

∂ lnC1(u, v)

∂v
=

{
1
v

für u > v

0 sonst

10



Hence, (
∂ ln min(u, v)

∂u
− 1

u

)(
∂ ln min(u, v)

∂v
− 1

v

)
= 0

for u, v ∈ [0, 1]. This explains why the weighted power mean of the maximum and
the independence copula is always a copula (for the direct proof we refer to Fischer
& Hinzmann (2007).

Finally, we consider a copula which is not max-id.

Example 8 The Gumbel-Barnett-Copula is of the form

C1(u, v) = uve−θ lnu ln v =⇒ ∂ lnC1

∂u
=

1

u
− θ · ln v

u
.

I.e. it is a LTD-copula. Therefore,(
∂ lnC1

∂u
− 1

u

)(
∂ lnC1

∂v
− 1

v

)
= θ2

lnu ln v

uv
> 0,

which implies that the weighted power mean of the Gumbel-Barnett copula and the
independence copula is a copula for all r ≥ 1. Moreover,

c1 = e−θ lnu ln v
(
θ2 lnu ln−θ(lnu+ ln v) + (1− θ)

)
and

c1
C1

=
θ2 lnu ln−θ(lnu+ ln v) + (1− θ)

uv
.

For C2(u, v) = uv we have(
C1

C2

)r
= e−θr lnu ln v und

(
C2

C1

)r
= eθr ln ln v.

Note, that for 0 ≤ r < 1

α(1− α)
c1
C1

= α(1− α)θ2
lnu ln v

uv
− α(1− α)θ

lnu+ ln v

uv

+α(1− α)(1− θ) 1

uv

≥ (1− r)α(1− α)θ2
lnu ln v

uv

= (1− r)α(1− α)

(
∂ lnC1

∂u
− 1

u

)(
∂ lnC1

∂v
− 1

v

)
,

such that the weighted power mean of the Gumbel-Barnett-copula und the indepen-
dence copula is a copula for 0 ≤ r < 1, too.

11



5.4 Complementary results for r < 0

The difficulty for r < 0 of the proof that the power mean of two copulas is again a
copula will again be illustrated by means of the Gumbel-Barnett copula, where we
can prove the result only for a restricted range of the parameter set.

Example 9 Again, we focus on a Gumbel-Barnett copula C1(u, v) = uve−θ lnu ln v.
The series representation of the exponential expression reads as

eθ(−r)θ lnu ln v =
∞∑
i=0

(−r)iθi(lnu ln v)i

i!

and contains completely positive addends if −r > 0 and θ > 0. Subtracting α(1 −
α)(−r) lnu

ln v
uv from (1−θ)/(uv)α2 times the first addend of this series representation

we obtain α(1−α)(−r) lnu
ln v
uv, such that (−r) (α2(1− θ)θ − α(1− α)θ2) lnu ln v/(uv).

This difference is positive if α > θ. That means in this special case where either
the range of the dependence parameter θ is restricted or the range/domain of the
weighting factor α is restricted, the weighted power mean of a Gumbel-Barnett and
the independence copula is again a copula for r < 0.

6 Properties of positive dependence and ordering

The LTD-property is only one form of positive dependence of random variables.
For a detailed treatment of that topic we refer to Joe (1999) or Nelsen (2006).
¿From these properties we can derive orderings of positive dependence. Probably
the most famous one is the positive dependence ordering (briefly: PQD-ordering) of
Lehmann (1966). In this context, a copula C1 is said to be less positive dependent
than a copula C2 (in short: C1 ≤PQD C2) if C1(u, v) ≤ C2(u, v) for all u, v ∈ [0, 1].

Similarly, based on the LTD-property, we can introduce a LTD-ordering of positive
dependence. According to Colangelo (2006), C1 has less positive dependence than C2

(in short: C1 ≤LTD C2) if D(u, v) ≡ (C1(u, v)−C2(u, v))/u is monotone decreasing
in u for all u, v ∈ [0, 1]. For differentiable copulas it suffices to demonstrate that
∂D(u, v)/∂u ≤ 0 for all u, v ∈ [0, 1]. It can be shown that LTD-ordering implies
PQD-ordering.

Assume now that the positive dependence of C1 is weaker than that of C2 in the
sense of one of that orderings. It raises the question whether the positive dependence
of the corresponding WPM-copula is stronger than that of C1 and weaker than that
of C2. The answer turns out to be very simple for the PDQ-ordering due to the fact
that every weighted power mean lies in between the minimum and the maximum of
all values. Not so simple is the answer for the LTD-ordering as the next theorem
shows.

Theorem 5 For given copulas C1 and C2 with C1 ≤LTD C2 let Cr denote the
corresponding WPM-Copula with parameters α ∈ [0, 1] and r ∈ R. Then holds

C1 ≤LTD Cr und Cr ≤LTD C2.

12



Proof: Note first that for every copula C holds

∂C/u

∂u
=
C

u

(
∂ lnC

∂u
− 1

u

)
.

After some simple re-formulations we obtain

∂ lnCr

∂u
− 1

u
= g

(
∂ lnC1

∂u
− 1

u

)
+ (1− g)

(
∂ lnC2

∂u
− 1

u

)
with weight

0 ≤ g =
αCr

1

αCr
1 + (1− α)Cr

2

≤ 1.

Therefore,
(
∂ lnCr
∂u
− 1

u

)
is a weighted arithmetic mean of

(
∂ lnC1

∂u
− 1

u

)
and

(
∂ lnC2

∂u
− 1

u

)
which implies that(

∂ lnC1

∂u
− 1

u

)
≤
(
∂ lnCr

∂u
− 1

u

)
≤
(
∂ lnC2

∂u
− 1

u

)
.

It follows from the property of PQD-orderings that C1 ≤ Cr ≤ C2 and, consequently,

Cr

u

(
∂ lnCr

∂u
− 1

u

)
≥ C1

u

(
∂ lnC1

∂u
− 1

u

)
(i.e. C1 ≤LTD Cr)

and
Cr

u

(
∂ lnCr

∂u
− 1

u

)
≤ C2

u

(
∂ lnC1

∂u
− 1

u

)
(i.e. C2 ≥LTD Cr).

7 Measures of dependence

Copula-based dependence measures T are nothing else but specific mappings from
the space of bivariate copulas to the interval [−1, 1]. As an essential requirement
to such a mapping we have to proclaim that it preserves elementary dependence
orderings. In case of the LTD-ordering we have to make sure that

C1 ≤LTD C2 =⇒ T (C1) ≤ T (C2).

In this case, the domain of T for the WPM-copula Cr is determined by [T (C1), T (C2)].
The most prominent representatives of global dependence measures which only de-
pendent from the underlying copula and preserve the LTD-ordering are Spearman’s
rank correlation coefficient ρ(C) = 12

∫ 1

0

∫ 1

0
(C(u, v)− uv)dudv, Kendall’s rank cor-

relation coefficient τ(C) = 4
∫ 1

0

∫ 1

0
C(u, v)c(u, v)dudv − 1 and, recently introduced

by Blest, ν(C) = 2− 12
∫ 1

0

∫ 1

0
(1− u)2vc(u, v)dudv.

13



Now assuming that C(u, v) is a WPM copula, we face the problem of solving integrals
over non-linear functions in C1 and C2 for r 6= 1. Hence, a closed and analytic form
cannot be expected (as a function of r, α and C1, C2. Solely for r = 1, it is well-
known that Spearman’s ρ is given by ρ(C1) = αρ(C1) + (1−α)ρ(C2), Kendall’s τ is
given by τ(C1) = α2τ(C1) + (1− α)2τ(C2) + α(1− α)(4

∫ ∫
(C1c2 + C2c1)dudv − 1)

and Blest’s coefficient by ν(C1) = α(ν(C1)) + (1 − α)ν(C2). General results for
Spearman’s ρ and Kendall’s τ have been derived by Fischer & Hinzmann (2006)
only for the weighted power mean of the independence- and the maximum copula,
basically using the linear structure of these copulas.

Exemplarily, the next figure displays Spearman’s rho and Kendall’s tau for different
WPM copulas.

Figure 1: Spearman’s rho and Kendall’s tau for different WPM copulas

8 Tail dependence

8.1 Notions of tail dependence

Whereas the LTD-property deals with conditional properties of the form

P (U ≤ u|V ≤ v) und P (V ≤ v|U ≤ u)
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for varying u and v, the lower strong tail dependence coefficient (TDC) considers
the asymptotic behavior of this conditional probability for u = v and u→ 0+:

λL = lim
u→0+

P (U ≤ u|V ≤ u) = lim
u→0+

C(u, u)

u
= 2− lim

u→0+

ln(1− 2u+ C(u, u))

ln(1− u)
.

Similarly, the upper strong TDC is usually defined as

λL = lim
u→1−

P (U ≥ u|V ≥ u) = lim
u→1−

1− 2u+ C(u, u)

1− u
= 2− lim

u→1−

lnC(u, u)

lnu
.

Provided their existence, these limits vary between 0 and 1. If λU = 0 (λL = 0) the
pair (U, V ) is commonly termed as upper (lower) strong tail independent.

In general, there are a lot of copulas (e.g. Gaussian copula, hyperbolic copula, FGM
copula) which admit upper and/or lower tail independence but nevertheless allow
a certain dependence between the variables U and V in the tail areas (see, e.g.
Heffernan, 2000). A measure to quantify ”dependence within tail independence”
is suggested by Coles et al. (1999) who defines the weak upper tail dependence
coefficient as

χU = lim
u→1

χU(u) with χU(u) =

(
2 log(1− u)

log(1− 2u+ C(u, u))
− 1

)
for u ∈ [0, 1],

provided the existence. It can be shown that −1 ≤ χU ≤ 1, χU = 1 in case of upper
tail dependence (i.e. for λU > 0), χU = 0 in case of C = Π being the independence
copula and for copulas with upper tail independence (i.e. with λU = 0), χU increases
with the strength of dependence in the tail area. In the sequel, we speak of weak
upper tail independence if χU = 0, and of weak upper tail dependence if χU 6= 0.
It should be again pointed out that it is not necessary to calculate χU in case of
strong upper tail dependence, because then χU = 1 holds. Instead of analyzing
the limit behaviour for u → 1, one usually considers the bivariate transformation
S = −1/ logU and T = −1/ log V . The variables S and T have so-called uniform
Fréchet marginal distributions with

P (S > s) = P (T > s) = P (U > e−1/s) = 1− e−1/s for s > 0.

Applying a Taylor approximation for large s, e−1/s ≈ 1 − 1
s

and P (S > s) =

P (T > s) ≈ 1
s
. Ledford & Tawn (1996) showed that for uniform Fréchet marginal

distributions and under weak conditions

P (S > t, T > t) ≈ L(t)P (S > t)1/η for large t

holds, where L(t) is a slowly varying function in ∞, i.e. with L(ct)
L(t) → 1 for t→∞

for each c > 0. Moreover, the coefficient η quantifies a weak upper tail dependence
coefficient because χU = 2η − 1. Furthermore, it can be shown that λU = c in case
of L(t)→ c and χU = 1 and λU = 0 in case of χU < 1. Moreover, using

P (S > t, T > t) = P (U > e−1/t, V > e−1/t) = 1− 2e−1/t + C(e−1/t, e−1/t)
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the relation between the uniform Fréchet marginal distributions and the copula C
can be established. Thus one has to check if there is a function L(t) slowly varying
in ∞ and a η satisfying

1− 2e−1/t + C(e−1/t, e−1/t) ≈ L(t)

(
1

t

)1/η

for large t.

Likewise, the weak lower tail dependence coefficient equals the limit of

χL(u) =
2 log(u)

log(C(u, u))
− 1

for u→ 0.

In the next step we show that the TDC of a WPM copula (provided its existence)
is independent from the type of mean (i.e. r) and easily derived from the individual
TDC’s of C1 and C2.

8.2 Strong tail dependence

Theorem 6 Assume that the strong upper (lower) tail dependence coefficients of
C1 and C2 are given by λU,1 (λL,1) and λU,2 (λL,2), respectively. If

Cr(u, v) = (αCr
1(u, v) + (1− α)Cr

2(u, v))1/r

is again a copula, the corresponding strong upper and lower TDC of Cr are given by

λU,r = αλU,1 + (1− α)λU,2 and λL,r =
(
αλrL,1 + (1− α)λrL,2

)1/r
.

Proof: At first, we focus on the upper case. It holds that

∂Cr(u, u;α)

∂u
=

(
α

(
C1(u, u)

Cr(u, u)

)r−1
∂C1(u, u)

∂u
+ (1− α)

(
C2(u, u)

Cr(u, u)

)r−1
∂C2(u, u)

∂u

)
.

Applying the rule of de l’Hospital, the following representation holds:

λU,r = 2− lim
u→1

∂Cr(u, u;α)

∂u

= 2− α lim
u→1

(
C1(u, u)

Cr(u, u)

)r−1
∂C1(u, u)

∂u
+ (1− α) lim

u→1

(
C2(u, u)

Cr(u, u)

)r−1
∂C2(u, u)

∂u
.

Noting that lim
u→1

C(u, u) = 1 for every copula C,

λU,r = α

(
2− lim

u→1

∂C1(u, u)

∂u

)
+ (1− α)

(
2− lim

u→1

∂C2(u, u)

∂u

)
= αλu,1 + (1− α)λu,2.
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Similarly, for the strong lower TDC,

λL,r = α lim
u→0

(
C1(u, u)

Cr(u, u)

)r−1
∂C1(u, u)

∂u
+ (1− α) lim

u→0

(
C2(u, u)

Cr(u, u)

)r−1
∂C2(u, u)

∂u

= α lim
u→0

(
C1(u, u)

Cr(u, u)

)r−1
λL,1 + (1− α) lim

u→0

(
C2(u, u)

Cr(u, u)

)r−1
λL,2.

Applying again de l’Hospital,

λL,r = α

(
λL,1
λL,r

)r−1
λL,1 + (1− α)

(
λL,2
λL,r

)r−1
λL,2

and therefore

λL,r = λ1−rL,r

(
αλrL,1 + (1− α)λrL,2

)
⇐⇒ (λL,r)

r =
(
αλrL,1 + (1− α)λrL,2

)
⇐⇒

λL,r =
(
αλrL,1 + (1− α)λrL,2

)1/r
�

8.3 Weak tail dependence

In contrast to the strong TDC, it will be shown that the weak TDC depends on
r (i.e. on the type of mean) to some extend. Moreover, only in case of geometric
means (i.e. for r = 0) we also come across to the dependence of α.

Theorem 7 Assume that C1 and C2 have weak lower TDC χL,1 and χL,2. If Cr(u, v)
is again a copula, the corresponding weak lower TDC of Cr is given by

χrL =


2 max(η1, η2)− 1 for r > 0

2 η1η2
αη2+(1−α)η1 − 1 for r = 0

2 min(η1, η2)− 1 for r < 0.

Proof: At first, assume that r = 0. Now,

C1(1− exp(−1

t
), 1− exp(−1

t
)) = L1(t)

α(1/t)α/η1 ,

C2(1− exp(−1

t
), 1− exp(−1

t
)) = L2(t)

(1−α)(1/t)(1−α)/η2

and we obtain for the weighted power mean

C(1− exp(−1

t
), 1− exp(−1

t
)) = L1(t)

αL2(t)
(1−α)(1/t)(α/η1)+(1−α)/η2 = L(t)

(
1

t

)1/η
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with η ≡ η1η2
αη2+(1−α)η2 . Secondly, assume that r > 0. W.l.o.g. we assume that η1 ≤ η2

and

Cr
(
1− e−1/t, 1− e−1/t

)
≈

(
αLr1

(
1

t

)r/η1
+ (1− α)Lr2

(
1

t

)r/η2)1/r

.

Hence, for large η1 ≤ η2, (
1

t

)r/η1
≤
(

1

t

)r/η2
,

such that

Cr
(
1− e−1/t, 1− e−1/t

)
≈ (1− α)L2

1

t

1/η2

.

Consequently, η = η2 and χrL = 2η2 − 1.

Finally, assume that r < 0 and set s ≡ 1− e−1/t. Then

Cr(s, s) =
C1(s, s)C2(s, s)(

αC
|r|
2 (s, s) + (1− α)C

|r|
1 (s, s)

)1/|r| (17)

Now the denominator can be treated similar to the positive case (but where C1 und
C2 are exchanged): For large t and small s,

Cr(s, s) ≈
L1(t)L2(t)

(
1
t

) 1
η1

+ 1
η2(

αL|r|2 (t)(1/t)|r|/η2 + (1− α)L|r|1 (t)(1/t)|r|/η1
)1/|r| . (18)

Assume η1 = η2 = η:

Cr(s, s) ≈
L1(t)L2(t)

(
1
t

) 2
η(

αL|r|2 (t) + (1− α)L|r|1 (t)
)1/|r| (

1
t

)1η
=

(
α

L|r|1 (t)
+

1− α
L|r|2 (t)

)−1/|r|(
1

t

)1/η

= (αLr1(t) + (1− α)Lr2(t))
1/r

(
1

t

)1/η

.

For η1 < η2 we obtain

Cr(s, s) ≈
L1(t)L2(t)

(
1
t

) 1
η1

+ 1
η2

α1/|r|L2(t)
(
1
t

)1/η2 =
L1(t)

α1/|r|

(
1

t

)1/η1

= α1/rL1(t)

(
1

t

)1/η1

.

Finally, for η1 < η2 we have

Cr(s, s) ≈
L2(t)

(1− α)1/|r|

(
1

t

)1/η2

= (1− α)1/rL2(t)

(
1

t

)1/η2

�
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Theorem 8 Assume that C1 and C2 have weak lower TDC χL,1 and χL,2. If Cr(u, v)
is again a copula, the corresponding weak upper TDC of Cr is given by

χU = 2 max{η1, η2} − 1 für r ∈ R

Proof: First note that we have for the survival copula Ĉr of Cr

Ĉr
(
1− e−1/t, 1− e−1/t

)
= 1− 2e−1/t + Cr

(
e−1/t, e−1/t

)
.

Assume at first that r 6= 0. In this case, xr ≈ 1 + r(x− 1) for x ≈ 1 and therefore

Cr
(
e−1/t, e−1/t

)
≈ αC1

(
e−1/t, e−1/t

)
+ (1− α)C2

(
e−1/t, e−1/t

)
for large t. Consequently,

Ĉr
(
e−1/t, e−1/t

)
≈ α

(
1− 2e−1/t + C1

(
e−1/t, e−1/t

))
+ (1− α)

(
1− 2e−1/t + C2

(
e−1/t, e−1/t

))
≈ αL1(t)

(
1

t

)1/η1

+ (1− α)L2(t)

(
1

t

)1/η2

.

1. Assume η1 = η2 = η. Then

Ĉr
(
e−1/t, e−1/t

)
≈ L(t)

(
1

t

)1/η

with
L(t) = αL1(t) + (1− α)L2(t).

2. Assume η1 < η2. Because of 1/η1 > 1/η2 for large t with 1/t < 1 we obtain(
1

t

)1/η1

<

(
1

t

)1/η2

,

such that

Ĉr
(
e−1/t, e−1/t

)
≈ L(t)

(
1

t

)1/η

with L(t) = (1− α)L2(t) and η = η2 = max{η1, η2}.

3. Assume η2 > η1. Then, obviously L(t) = αL1(t) and η = η1 = max{η1, η2}.

Secondly, assume that r = 0. Using the approximations lnx ≈ x− 1 for x ≈ 1 and
ex ≈ 1 + x for x ≈ 0,

Ĉr
(
e−1/t, e−1/t

)
≈ 1− 2e−1/t + exp

(
α lnC1

(
e−1/t, e−1/t

)
+ (1− α) lnC2

(
e−1/t, e−1/t

))
≈ 1− 2e−1/t + αC1

(
e−1/t, e−1/t

)
+ (1− α)C2(

(
e−1/t, e−1/t

)
≈ αL1(t)

(
1

t

)1/η1

+ (1− α)L2(t)

(
1

t

)1/η2

.

To sum up, for all cases η1 = η2, η1 < η2 and η1 > η2 we obtain the same result for
r 6= 0. �
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Example 10 Following Fischer & Klein (2007), the weak TDC χL of the geometric
mean C of two (arbitrary) extreme value copulas C1 and C2 is given by

χL =
2− αV1(1, 1)− (1− α)V2(1, 1)

αV1(1, 1)− (1− α)V2(1, 1)
,

where Vi denotes the dependence function of Ci which underlies the extreme value
copula Ci, i.e. Ci(u, v) = exp (−Vi(−1/ ln(u),−1/ ln(u))) . Additionally, χL =
2−Vi(1,1)
Vi(1,1)

= 2ηi − 1, i.e. Vi(1, 1) = 1
ηi

. Hence, the dependence function V of C is

given by

V (1, 1) = αV1(1, 1) + (1− α)V2(1, 1) = α
1

η1
+ (1− α)

1

η2
=
αη2 + (1− α)η1

η1η2
.

and we obtain - according to the formula from Fischer & Klein (2007) -

χL =
2

V (1, 1)
− 1 =

2
αη2+(1−α)η1

η1η2

− 1 =
2η1η2

αη2 + (1− α)η1
− 1.

which corresponds to the formula from theorem 7, above.

9 Application to exchange rate data

1. Data: In order to illustrate the benefits of our new construction method, consider
two data series from foreign exchange markets (FX-markets) which are available
from the PACIFIC Exchange Rate Service (http://pacific.commerce.ubc.ca).
In contrast to the volume notation, where values are expressed in units of the target
currency per unit of the base currency, the so-called price notation is used within
this study which corresponds to the numerical inverse of the volume notation. All
values are expressed in units of the base currency per unit of the target currency.
For reasons of brevity, we focus on the Swiss Franc/US-Dollar (SFR) and the British
Pound/US-Dollar (GBP) henceforth, with daily observations from Feb 2, 1973 to
Dec 31, 2009 (see figure 2). Instead of using exchange rates itself we consider log-
returns (i.e. differences of log-prices), instead which are displayed in figure 3.

A first insight into the structure of the return series may be gained through table
2, below. It contains some basic descriptive and inductive statistics of the daily
time series: the number of observations (N), arithmetic means (Mean), standard
deviations (Std), third and fourth standardized moments (S,K). Moreover, tests on
normality (i.e. Jarque-Bera test, JB) and tests of GARCH effects (i.e. Ljung-Box

test for the squared returns Q2
LB with lag 5 and Engle’s LM test LM = N · R2 a∼

χ2(k), where R2 is the coefficient of determination of the regression R2
t = α0 +

α1R
2
t−1 + . . .+αkR

2
t−k + εt), complete the summary statistics (p-values´are cited for

all statistical tests).

20



N Mean Std S K JB Q2
LB(5) LM(5)

SFR 9307 −0.014 0.712 −0.055 6.257 0.000 0.000 0.000
GBP 9307 0.004 0.617 0.144 7.332 0.000 0.000 0.000

Table 2: Descriptive statistics.

Caused by the strong evidence of GARCH effects, we apply a data filter, which
means that we fitted GARCH models to the time series in a first and calculate
GARCH residuals in a second step.

Figure 2: Exchange rates

(a) SFR / USD (b) GBP / USD

Figure 3: Log-returns

(a) SFR / USD (b) GBP / USD
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Figure 4: GARCH residuals

(a) SFR / USD (b) GBP / USD

The scatter plot for both returns and GARCH residuals is dedicated to figure 5.
As to be expected, empirical correlations are essentially equal around 0.62 in both
cases.

Figure 5: Scatter plot

(a) Returns (ρ̂ = 0.6249) (b) Residuals (ρ̂ = 0.6200)

2. Estimation: Within this work we apply semi-parametric maximum likelihood
(SML) estimation which is treated, for example, by Hu (2002) and Genest, Ghoudi
& Rivest (1995). Without any parametric assumptions for the margins, the uni-
variate empirical cumulative distribution functions are plugged in the parametric
log likelihood function, instead. In other words, after transforming the observed
data pairs (xt; yt) to uniform data pairs (ut; vt), the SML estimator of the copula
parameter θc maximizes the log likelihood function:

θc = arg max
θc

T∑
t=1

log c(ut; vt; θc).

3. Copulas: The copulas under consideration are chosen on the basis of theorem
1. Exemplarily, the Clayton copula (denoted by C1), its rotated counterpart (C2)
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and the Gumbel copula (C3) are selected. For reasons of brevity we introduce some
abbreviations, in particular WPM(C1, C2; r, α) denotes the weighted power mean of
the two copulas C1 and C2 with parameter r and α (see also table 3, below).

Abbr. Copula C(u, v) Parameter

C1 Clayton (uθ + vθ − 1)1/θ θ > 0

C2 Rotated Clayton u+ v − 1 + ((1− u)θ + (1− v)θ − 1)1/θ θ > 0

C3 Gumbel exp(−((− ln(u))θ + (− ln(v))θ)1/θ) θ > 1

C4 WPM(C1,C2;r, α) see (1) r > 1

C5 WPM(C1,C3;r, α) see (1) r > 1

Table 3: Copulas under consideration

Finally, table 4 contains the estimation results from the SML estimation for both
original returns and GARCH residuals. In addition to the classical log-likelihood-
values (LL) and the parameter estimators we also calculated Akaike’s criterion

AIC = 2 · LL + 2N(k+1)
N−k−2 which takes the number k of parameter into account. In

both cases, the goodness-of-fit can be clearly improve for both WPM copulas under
consideration. In addition, parameter estimators for GARCH residuals and return
series are very similar.

Copula LL AIC r̂ α̂ θ̂

Returns

C1 2122.4 −4240.8 − − 1.1808

C2 1896.8 −3789.6 − − 1.1011

C3 2422.0 −4840.0 − − 1.7634

WPM(C1,C2;r, α) 2642.4 −5274.8 1.2759 0.5484 (1.3577, 1.8922)

WPM(C1,C3;r, α) 2715.9 −5421.8 5.4267 0.4244 (0.9502, 2.1446)

GARCH residuals

C1 2061.1 −4118.2 − − 1.1524

C2 1816.9 −3629.8 − − 1.0597

C3 2319.5 −4635.0 − − 1.7358

WPM(C1,C2;r, α) 2556.0 −5102.0 1.1780 0.5665 (1.3621, 1.8766)

WPM(C1,C3;r, α) 2610.5 −5211.0 3.5132 0.4164 (1.0628, 2.0518)

Table 4: Estimation results
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10 Conclusion

In general, the weighted power mean of two arbitrary copulas is not necessary a
copula again. We establish sufficient conditions which guarantee that this is true
and give several examples of new copulas. Moreover, dependence measures for so-
called weighted power mean (WPM) copulas are derived and calculated exemplarily
for some copulas. Finally, application of WPM copulas to financial return data is
given which highlight the flexibility of our new approach.
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