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Matching methods have been extensively used to evaluate economic policy. However,
they are not without fault and, indeed, a selection bias may appear. In 1998, Heckman and
al. (1998) have precisely characterize this bias by a decomposition in three parts which can be
non parametrically estimated. These estimations depend among others on the support of the
conditional density function of the covariates X used for the matching.

In a study of the impact of the policy of supporting the adoption of advanced manufac-
turing technologies by Swiss firms, we have measured the different components of the bias. We
put into evidence the extreme sensibility of the results to the measure of support density.

1. The selection bias decomposition

Heckman and al. (1998) find the following bias decomposition.
Given S1X = {X|f(X|D = 1) > 0}, the support of X for D = 1, i.e. for the parti-

cipation to a programme; f(X|D = 1) is the conditional density of X given D = 1; S0X =
{X|f(X|D = 0) > 0}, the support of X for D = 0, i.e. for the no participation to a pro-
gramme; SX = S0X ∩ S1X , the intersection region of both supports. One can rewrite the
traditional measure of the bias B = E(Y0|D = 1) − E(Y0|D = 0), where Y0 is the output
variable in the case of no treatment, as the sum of three components:

(1) B = B1 + B2 + B3,

where

(2)

B1 =

∫

S1X\SX

E(Y0|X, D = 1)dF (X|D = 1) −
∫

S0X\SX

E(Y0|X, D = 0)dF (X|D = 0),

B2 =

∫

SX

E(Y0|X, D = 0) [dF (X|D = 1) − dF (X|D = 0)],

B3 = PXB̄SX
.

with B̄SX
=

R

SX
B(X)dF (X|D=1)

R

SX
dF (X|D=1)

the mean selection bias; PX =
∫

SX
dF (X|D = 1), the proportion

of the density of X given D = 1 in the intersection region SX ; S1X\SX is the support of X

given D = 1 which is not in the intersection region SX ; S0X\SX is the support of X given
D = 0 which is not in the intersection region SX .

The interpretation of these three terms is the following. The first one B1 appears if the
supports S0X\SX and S1X\SX are not empty. In this case, one cannot find the counterpart of
E(Y0|X, D = 1) in the set S0X\SX or the counterpart of E(Y0|X, D = 0) in the set S1X\SX .



The term B2 is issue from the difference in weighting of E(Y0|X, D = 0) by the both densities
of X given D = 1 and D = 0. Finally, B3 is due to the differences in the result which remain
even after controlling for observable differences. The selection bias, defined as B̄SX

can be of
different size, or even of different sign than the traditional measure of the bias B.

What happens with the matching method about this ? If the method doesn’t impose a
common support for the matching, the first source of bias appears. The second component
of the bias is eliminated if the matching is done with the help of the probabilities P of the
participants. In this case, the matching weights effectively the data of the non participants.
The last source of the bias is not eliminated with the matching. Thus, the B̄SX

is the bias
associated with a matching estimator.

2. Non parametric estimation of selection bias

Heckman and al. (1998) describe how estimate convergently the selection bias. The main
steps are the following. First, from a traditional econometric model of selection, Y0 = Xβ +U0,
we have E(Y0|P (X), D = 1) = Xβ + E(U0|P (X), D = 1) and E(Y0|P (X), D = 0) = Xβ +
E(U0|P (X), D = 0), where P (X) is the probability that the events ”D = 0” or ”D = 1” would
have been append for all X ∈ χc, a set of covariates. The selection bias can be written as

(3)
B(P (X)) = E(Y0|P (X), D = 1) − E(Y0|P (X), D = 0)

= E(U0|P (X), D = 1) − E(U0|P (X), D = 0).

We define, for a unit i the bias functions K1(Pi) = E(U0i|Pi, Di = 1) and K0(Pi) =
E(U0i|Pi, Di = 0). These functions will be estimated by the so called ”Double residual regression
technique” and non parametrically. The first thing to do is to estimate the participation
probabilities P , denoted by P̂i. Those can be easily obtained by estimating for example a logit
regression model. The regressors are the characteristics X common to the participants and
non participants. On the other hand, one can postulate the following partial linear regression
model1

(4) Y0 i = Xiβ + DiK1(Pi) + (1 − Di)K0(Pi) + εi.

We form an adjusted version of (4) by subtracting from it its conditional expectation with
respect to Pi and Di. We obtain

(5) Y0 i − E(Y0 i|Pi, Di) = [Xi − E(Xi|Pi, Di)]β + εi.

We then estimate β from equation (4) by ordinary least squares. In this aim we first
estimate the conditional expectations E(Y0i|Pi, Di) and E(Xi|Pi, Di). Those are estimated
non parametrically by using separately the observations on one hand for Di = 1 and on the
other hand for Di = 0. We also use the suggestion of Heckman and al. (1998) to eliminate
a small fraction of the data (2 % ) for which the estimated density function f̂(P̂i|Di = d),
d ∈ {0, 1}, is small.2 This operation permits to guarantee a parametric estimator that is
uniformly convergent.

The estimator β̂ of β estimated in the first step permits us to calculate the adjusted
residuals ci = Y0i − Xiβ̂. In a second step, we estimate then by a local linear regression of the
residuals ci on the probabilities P̂i. The regression model is written as

1A partial linear regression model is postulate because it is supposed that the bias functions K0 and K1 are
non parametric functions of continuous variables.

2The details of this operation called ”trimming”, is given in Heckman and al. (1998), annex A.2.



(6) min
γ1d,γ2d

∑

i∈{D=d}

[

ci − γ1d − γ2d(P̂i − P0)
]2

G

(

P̂i − P0

aN

)

, d ∈ {0, 1} ,

where γ̂1d is the estimator of Kd(P0), i.e. of the expectation E(U0i|P = P0) in P0 and γ̂2d

estimates convergently the first derivative of E(ci|P = P0); P0 is a given point of the support
of P̂i for {D = d}; G is a kernel and {aN} is a sequence of smoothing parameters;3 P̂i is the
estimated value of P for unit i.4

3. Estimation of the selection bias components and the mean bias selection

One can obtain a non parametric estimation of the selection bias components given in
(2). Indeed, Heckman and al. (1998) propose to compute those in the following manner

(7)

B̂ = Ê(Y0|D = 1) − Ê(Y0|D = 0) = B̂1 + B̂2 + B̂3

where

B̂1 = 1
N1

∑

i∈{D=1}
Pi∈S1P \SP

Y0(Pi)− 1
N0

∑

i∈{D=0}
Pi∈S0P \SP

Y0(Pi) ,

B̂2 = 1
N1

∑

i∈{D=1}
Pi∈SP

Ê(Y0 i|Pi, Di = 0)− 1
N0

∑

i∈{D=0}
Pi∈SP

Y0(Pi) ,

B̂3 = 1
N1

∑

i∈{D=1}
Pi∈SP

[

Y0(Pi) − Ê(Y0 i|Pi, Di = 0)
]

,

N1 and N2 are respectively the number of observations D = 1 and D = 0, Y0(Pi) is the
value of Y0i for the unit i with probability Pi, and where the supports SP , S1P\SP , S0P\SP are
defined in similar manner as supports SX , S1X\SX , S0X\SX in (2).

In order to estimate the region of overlapping support SP , we estimate non parametrically
the densities f(P̂i|Di = d), d ∈ {0, 1}, and we retain as common support the region where for
each group the densities are positive.

We will estimate Ê(Y0i|Pi, Di = 0) by a local linear regression model of Y0i on Pi for the
observations D = 0, i.e. one have to solve the problem

(8) min
γ1,γ2

∑

i6N0

[

Y0 i − γ1 − γ2(P̂i − P0)
]2

G

(

P̂i − P0

aN

)

,

which has the same characteristics as (6).
One can show assuming a random sample that each term of the bias is estimated conver-

gently and that, centred on the expectation, multiplied by
√

n, it is asymptotically normal.
The mean selection bias (MSB) is estimated from the bias functions Kd(Pi), d ∈ {0, 1},

computed according to the steps describe above. Furthermore, it will be estimated on the
common support SP . We have

3Heckman and al. (1998) propose to use a quartic kernel function. If the choice of the kernel function is not
a problem – it is proving in practice that the results are not much sensible to the type of function used –, on
the contrary those of the smoothing parameter aN , the ”bandwidth”, is more delicate to determine. We follow
the following rule: aN = 2:7768(Ĥ=1:34)N−1/5 where Ĥ is the interquartile range of P̂i.

4One can remark in fact that the problem to solve is those of a weighted least squares regression, weights
being given by the kernel.



(9) MSB = ˆ̄BSp
=

1

N1

∑

i∈{D=1}
Pi∈SP

(K̂1i(Pi) − K̂0i(Pi)).

4. Data description

In 1996, the KOF ETH Zurich investigated, in the framework of its business innovation
survey in the industry sector, the adoption by the Swiss firms of advanced manufacturing
technologies (AMT). This survey provides us the data of our study.

The final data base with witch we made our estimations contains 463 enterprises, all of
them using at least one component AMT in 1996 or scheduling to use at least one until 1999.
These data are remarkably representative with respect to the economic activities and to the
enterprise sizes of the initial data. Apart from the initial variables of the questionnaire, other
variables have been generated, notably with factor analyses. The study of Arvanitis and al.
(2002) describes and justifies the variables used in the formulation of their model of Economic
policy and adoption of new technologies. We adopt in this paper the same framework.

5. Empirical results and sensitivity analysis

In Donzé (2002), besides the measure of the impact of supporting the adoption of advanced
manufacturing technologies by Swiss firms, we estimate the selection bias of different matching
methods. The different components of the bias may be important although generally not
significant. Furthermore, our empirical results show that the definition, and then the estimation
of the density support, may have relatively high influence on these biases.

Let us take the case of the Kernel matching. In order to measure the different components
of the bias and the mean selection bias, we have to estimate the supports of the densities of the
probabilities of participation. More precisely, we have to estimate the common support of both
densities (participation vs not participation) and the complements of this common support.
But, we encounter the problem that the densities we estimate are discrete. Consequently, it is
not so easily, empirically, to combine these two densities in order to find the common support.
We have resolved this problem in generating classes with same probability and compute the
resulting densities. But the results depends on the number of bins chosen. In fact, the common
support of the densities is depending on this number of bins and thus are the bias too.

The results can be summarize as follows. The Figures 1 to 4 show the densities estimated
according to different number of bins (25, 50, 75 and 100); the Table 1 gives the number of
observations in and out the common support; finally, the Table 2 resumes the decomposition
of bias. It is not surprising that the different biases B1, B2 and B3 can vary considerably with
the support though the overall bias B, i.e the traditional measure of the bias, stays at the same
level. More interesting is the mean selection bias MSB which seems more or less sensitive
according to the definition of the support. In conclusion, one can say that a careful attention
to the definition of the support is necessary if we want control the bias of the matching method.



REFERENCES

1. Arvanitis, S.; Hollenstein, H. and Lenz, S. (2002): ”The Effectiveness of Govern-
ment Promotion of Advanced Manufacturing Technologies (AMT): An Economic Analysis
Based on Swiss Micro Data”, Small Business Economics, Publishers, K. A., pp. 1-20.
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RÉSUMÉ

Les méthodes d’appariement ont été intensivement utilisées dans l’évaluation de politiques
économiques. Cependant, elles ne sont pas sans défaut. En particulier, elles peuvent introduire
un biais de sélection. En 1998, Heckman et al. (1998) ont de manière rigoureuse caractérisé
ce biais en le décomposant en trois parties qui peuvent être estimées non paramètriquement.
Ces estimations dépendent entre autres du support de la fonction de densité conditionnelle des
covariables X utilisées dans la procédure d’appariement.

Dans une étude de l’impact de la politique suisse de soutien à la propagation des techno-
logies de production assistée par ordinateur, nous avons calculé les différentes composantes du
biais. Nous avons mis en évidence l’extrême sensibilité des calculs à la mesure du support de
la densité.



Table 1: Number of observations in and out the common support
Data before trim-
ming

Common support
estimated

Non common sup-
port estimated

N. of bins CIMPOL N In % N In % N In %
25 0 367 79.96 359 80.67 0 0

1 92 20.04 86 19.33 4 100
Total 459 100.00 445 100.00 4 100.00

50 0 367 79.96 343 81.09 16 61.54
1 92 20.04 80 18.91 10 38.46
Total 459 100.00 423 100.00 26 100.00

75 0 367 79.96 339 81.49 20 60.61
1 92 20.04 77 18.51 13 39.39
Total 459 100.00 416 100.00 33 100.00

100 0 367 79.96 285 78.95 74 84.09
1 92 20.04 76 21.05 14 15.91
Total 459 100.00 361 100.00 88 100.00

Table 2: Impact and bias decomposition: Kernel matching method; different number
of bins (Output variable : AMTDIF
Number

of bins

Impact

M

B1 B2 B3 B MSB

25 -0.0918
(0.2512)

0.1728 [71.73]
(0.0773)

0.0688 [28.55]
(0.1728)

-0.00068
[-0.28]
(0.2147)

0.2409 [-
262.41]
(0.1457)

0.0130 [-
14.16]
(0.2016)

50 -0.0918
(0.2512)

0.2016 [83.68]
(0.1067)

0.0116
[0.0481]
(0.1760)

0.0276 [11.45]
(0.1984)

0.2409 [-
262.41]
(0.1504)

-0.0170
[18.51]
(0.2209)

75 -0.0918
(0.2512)

0.3008
[124.86]
(0.1268)

-0.0751 [-
31.17]
(0.1733)

0.0153 [6.35]
(0.1883)

0.2409 [-
262.41]
(0.1504)

-0.01229
[13.38]
(0.2315)

100 -0.0918
(0.2512)

-0.09917
[-41.16]
(0.1593)

0.3080
[127.85]
(0.2026)

0.0321 [13.32]
(0.1870)

0.2409 [-
262.41]
(0.1504)

-0.0304
[33.11]
(0.2358)

Notes : AMTDIF is the number of AMT components introduced in the period 1990–1996;
we give in parentheses the bootstrap standard values and in brackets for B1, B2 and B3 the
value in % of the bias with respect to the total bias B and for B and MSB, the value in %
with respect to the mean impact M .



Note : Densities with number of bins equal to 25



Note : Densities with number of bins equal to 50



Note : Densities with number of bins equal to 75



Note : Densities with number of bins equal to 100




