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Abstract 
 
This paper examines the relationships between the R&D sector activities of the EU and the US 
using multivariate Granger-causality tests. The multivariate framework employed also allows us to 
make causal inferences about the effects of R&D activity on labour productivity in the home and 
foreign country. As a novelty, we employ the subset transfer function methodology to account for 
the possibility of “dry holes” in the effects of R&D efforts on economic activity. Our estimation 
results indicate that R&D activity in the EU is a direct Granger-cause of both R&D and labour 
productivity in the US, and the effects are negative. On the other hand, the EU reacts positively to 
increases in R&D productivity in the US. These findings are largely in line with the actual 
developments in the productivity differentials between the EU and the US and the patterns in their 
relative shares in the world market for high tech exports. 
 
JEL Codes: O30, O40, C32 
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1. Introduction 

 

In their Lisbon summit in 2000, the Ministers of the European Council declared the goal of 

turning the European Union (EU) into “…the most competitive and dynamic knowledge-based 

economy in the world by 2010”. Among various targets to achieve this aim, the ratio of spending 

on research and development (R&D) activity was envisaged to increase from about 1.9 percent in 

2000 to 3 percent in 2010. This target was emphasised again in the Barcelona meeting of the 

European Council in March 2002. As of early-2006, the progress made towards meeting the 

Lisbon target on R&D has been slow and partly impeded by the politics of the allocation of 

expenditures in the EU budget. 

Historically speaking, the ratio of overall spending on R&D (public and private sources) to 

GDP in the EU has varied between 1.6 and 2 percent since the beginning of 1980s. On the other 

hand, this ratio was as high as 3 percent in Japan and generally above 2.5 percent in the United 

States (US). Furthermore, the R&D spending to GDP ratio showed a secular increase both in the 

US and in Japan since 1996 while the R&D spending/GDP ratio stagnated in the EU. In this 

context, the ambitious R&D target set by the European countries is a signal of showing aggressive 

reaction – at least at the policy making level – first of all not to lag behind and then to overtake the 

R&D (location) leadership. If successful, this policy should help enhance the EU’s long-term 

economic growth potential.1 Putting the political and economic realism of the EU’s R&D targets 

aside, the EU’s stated willingness to make an aggressive move to match the already higher and 

increasing level of R&D activities in other countries has game-theoretic implications.2 

While the R&D races and games among firms (e.g., whether or not to innovate, when to 

innovate, formation of research joint ventures, etc.) and government policies towards the 

protection of inventions through patent policy are well-discussed in the industrial organisation 

literature, the direct relationship between the R&D activities of two countries or trading blocks has 

received less attention. An early exception is Scherer (1991) who examined the case of an “R&D 

race” between the US and Japan by means of bivariate Granger-causality tests. Scherer’s findings 

illustrated that the US firms reacted submissively, rather than aggressively, to the market 

penetration through R&D success by Japanese firms.3  

In this context, a submissive reaction by a firm (say, “A”) to the R&D efforts by others 

(say, “B”) is said to occur when “A” decides to reduce its R&D budget/efforts and shifts resources 

rather into non-R&D physical capital investments or into marketing and advertising in response to 

increased R&D effort by “B”. It is well documented in the business and industrial organisation 

literature that both R&D and marketing & advertising expenditures influence sales positively (e.g., 
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Brenner and Rushton, 1989) and that there is a trade-off between R&D and marketing spending 

given the budget constraints (Ko, 2005). Thus, the submissive reaction discussed above might 

indeed be compatible with profit maximisation since what is at stake from a firm’s perspective is 

the sales figures. That is, when a firm cannot (or decides not to) match the innovations made by 

the competitors, it may well increase its marketing & advertising spending in an attempt to 

increase the sales. The optimisation problem is, of course, a dynamic one. Hence, at the micro-

level, the myopic behaviour of shifting resources into marketing at the expense of R&D activity 

may indeed lead to an inferior market position in the long-term. 

Sherer’s (1991) finding that the US displayed a submissive reaction to increases in 

Japanese R&D has been supported by a number of subsequent studies (Park, 1995; Eaton and 

Kortum, 1996; and Blonigen and Slaughter, 2001; among others).4 More recently, Luintel and 

Khan (2004) used cointegration analysis and showed that international R&D spillovers could 

indeed be costly for the US. At the macro level, the cost of not responding to competitors’ R&D 

moves aggressively enough could be felt first as a loss of export share in the world markets for 

high technology goods (i.e., exports originating from R&D intensive industries). In the longer run, 

lagging behind in innovation activities should also reflect itself in relatively lower economic 

performance and productivity growth rates. 

Assessing the direction and the sign of the causality in R&D interactions between 

firms/countries is a complicated task since innovation activity leads to knowledge spillovers. 

These spillovers mainly stem from the imperfect appropriability of rents from innovations and 

diffuse through international trade, foreign direct investments, imitation, and labour mobility, 

among other channels.5 As such, they occur not only within the home country but also across 

countries. Indeed, firms (domestic and/or foreign) may need to undertake catch up investments in 

R&D capability just to be able to make good use of the newly acquired technology from other 

firms since even sheer imitation requires the reverse engineering and reconstruction of the new 

product.6 This is in line with the argument that absorptive capacity plays a role in determining the 

extent of R&D spillovers (Carlsson and Mudambi, 2003). 

In addition, R&D is a risky business. Increased spending on R&D activities does not 

guarantee a successful outcome – at least immediately. Thus, there exists a phenomenon of “dry 

holes” in the nature of R&D activities. Hence, the actual results of R&D games are not easy to 

predict due to the inherent uncertainties and information asymmetries associated with innovation 

activities. In sum, the possibility of an aggressive or a submissive reaction, coupled with the 

particularities of the nature of innovation activity, makes the sign of the effects of R&D efforts by 

a firm/country on the R&D efforts of others indeterminate. Then, a deeper look into the nature of 
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causality in the recent history of the R&D interactions between the EU and the US is especially 

important in view of the EU’s decision to set explicit R&D spending targets to counter the US’s 

R&D lead. 

This paper investigates the direction and the sign of causality in the international and 

domestic effects of R&D activity in the European Union (EU15 – i.e., the EU before the 

enlargement in 2004) and the United States in a multivariate framework. The analysis uses annual 

data on R&D productivity and labour productivity for the 1979-2002 period. In particular, we test: 

1) whether changes in the R&D effort in the EU Granger-cause a response in the R&D activity by 

the US, and if so, whether the reaction is aggressive or submissive; 2) whether changes in the 

R&D effort in the US Granger-cause an R&D response in the EU, and if so, whether this reaction 

is aggressive or submissive. 

The multivariate framework allows us to test whether the nature of the Granger-causality 

between the EU’s and the US’s R&D activities are robust to inclusion of additional variables. This 

is an important point. According to Hsiao (1982), for example, for a (weakly) stationary stochastic 

variable X to be a “direct Granger-cause” of another (weakly) stationary stochastic variable Y, X 

should Granger-cause Y in all setting: bi- and multi-variate. In addition to allowing for the testing 

of “direct causality” between the variables of interest, the multivariate framework allows for the 

detection of any other causal relationships among the variables in the system. In our case, this 

approach provides additional insights into the interaction of the R&D efforts in the EU and the US 

with their overall domestic economies (EU, US) as well as the overall foreign economy (US, EU). 

As a further methodological novelty, we address the possibility of “dry holes” in the nature of 

R&D activity by using a subset transfer function methodology in choosing the optimal 

specifications in the test equations. 

The rest of the paper is organised as follows. Section 2 discusses the data and the 

methodology used in this paper. Section 3 presents the empirical results and puts them in 

perspective with respect to the observed productivity differentials between the US and the EU as 

well as the patterns in the relative shares of the US and EU in world high tech goods exports 

markets. Section 4 concludes. 

 

2. Data and Methodology  

 

2.1. Data Issues 

The most commonly employed measure of productivity in the studies of R&D spillovers is total 

factor productivity (TFP). The TFP is calculated as a residual from an aggregate production 
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function, such as Y = AKαL(1-α) , where Y is output, K is capital stock, L is labour input, A is a 

technology parameter, and 0<α<1 is an elasticity parameter. In principle, one can obtain the 

estimates for TFP given the capital and labour input and the value of α. However, there are 

numerous assumptions behind this approach and the estimates of technological progress hence 

obtained are model dependent. In addition, any adjustments made by the national statistical 

agencies to account for quality changes in the capital stock may reduce or eliminate the impact of 

embodied technical progress. Furthermore, the estimation of capital stock is problematic in itself. 

Also, since we take the EU as an overall entity or a trading block of 15 countries, it might be 

erroneous to combine the capital stock figures calculated by different national statistical offices. 

Labour productivity is an alternative measure to TFP. It is not dependent on the 

assumptions of a theoretical model and it does not require capital stock estimates.7 Furthermore, 

various versions of labour productivity are used in making cross-country comparisons of 

economic growth and development. In a study of knowledge spillovers through trade, Falvey, 

Foster, and Greenaway (2002, 2004) argue in favour of a productivity measure (GDP per capita), 

which is rather related to labour productivity than the TFP. In view of the above considerations, 

we also take labour productivity as a measure of domestic productivity developments in the EU 

and in the US. 

The choice of the R&D variable is made as follows. In the literature, the R&D activity is 

generally quantified in terms of expenditures. The EU indeed set its target in terms of R&D 

expenditure/GDP ratio. Nevertheless, there are a number of problems in using R&D expenditure 

data. First of all, the timing and the intensity of successful outcomes from increased R&D 

expenditures involve uncertainties. Secondly, the definition of what is “high tech” or R&D 

intensive good changes overtime. Furthermore, the R&D expenditure figures from the OECD’s 

Main Science Indicators database contain many breaks, making them unsuitable for long-term 

time series analysis purposes. It may be possible to pool the R&D expenditure data for shorter 

periods of time, where they are consistent, and use panel data methods. Indeed, a large share of the 

studies in the literature that uses R&D expenditure data employs pooled time-series – cross-

section data and conducts panel cointegration tests. The panel data techniques are useful especially 

when the span of data is too small to conduct meaningful cointegration and causality tests between 

the variables of interest. However, they are subject to more stringent assumptions about the data 

generating processes due to pooling. Indeed, Luintel and Khan (2004) in a study of R&D spillover 

across G10 countries conclude that it is not appropriate to pool their data since “…long-run 

spillover elasticities differ significantly among sample countries; and panel estimates, in general, 
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do not correspond to country-specific parameters. Thus, panel tests appear to conceal important 

cross-country differences in knowledge spillovers.” (Luintel and Khan, 2004: 909). 

Since this paper is particularly aiming at causally investigating the foreign and domestic 

effects of R&D activities in the EU and in the US, we need consistently compiled time series data 

with a reasonably long span to run the multivariate Granger-causality tests. Therefore, we make 

use of the University of Groningen’s “Growth and Development Centre, 60-Industry Database 

(GGDC_60), version February 2005”. The GGDC_60 reports national-accounts-based value-

added data, standardised by the ISIC (revision 3) classification system, for a large number of 

OECD countries for the 1979-2002 period. Under the ISIC rev. 3, “Section 73” is the “research 

and development” activity from all sources.8 Thus, we select this entry to as a measure of the 

economy-wide R&D activity. 

Both the value added in R&D activities and in the total economy are measured in real 

terms (at 1995 constant prices). They are further adjusted for differences in employment levels and 

indexed as 1995=100 to make the data comparable across countries and in levels. The resulting 

four real variables are thus the real value added per worker (labour productivity) in the R&D 

sectors and in the total economies of the EU (EURD, EULP) and the US (USRD, USLP). Since 

labour productivity growth is also due to other factors than R&D, we also take the deviations of 

these series from their 1979-2002 trend growth. Figures 1-4 show the graphs of the series in 

question.  

 

< Figure 1 and Figure 2 approximately here> 

 

As Figures 1 and 2 show, there is a coincidence between the general productivity slump 

(1989 – 1998) in the US and the slump in the real value-added per worker in R&D activities (1985 

– 1996). Furthermore, there appears to be a leading effect from the R&D sector. In the case of EU, 

the situation is not clear (see Figures 3 and 4). However, a time-series analysis of the lead-lag 

relationships may still tell a different story than the visual first impressions. 

 

< Figure 3 and Figure 4 approximately here> 

 

When it comes to the relationship between the deviation of the value added in R&D 

activities per worker from its long-run trend in the US and the EU, there indeed appears to be a 

negative relationship.9 This is illustrated as a scatterplot with a linear regression line in Figure 5.  
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< Figure 5 approximately here > 

 

Nevertheless, Figures 5 displays the bivariate relationship between the productivity in the 

EU’s and the US’s R&D sectors without controlling for any third variables. In any case, the 

direction of causality cannot be deduced by using (partial-) correlation analysis. Then, the question 

is whether the observed negative relationship between USRD and EURD – suggesting the 

existence of a possibly submissive reaction by one of the players – should be seen as the US’s 

R&D hurting the EU’s or vice versa. 

 

2.2. Methodology: Testing for Granger-causality in a multivariate framework 

Granger’s (1969) definition of causality between two weakly stationary stochastic variables X and 

Y is as follows. X is said to Granger-cause Y if and only if Y can be better predicted by using X in 

addition to the history (lags) of Y and all other relevant information. In a bivariate case, this 

definition takes the following form in practice:  
 

εγβα 1tj-t1j

q

1=j
j-t1j

p

1=j
1t  +  x + y +  = y ΣΣ       (1) 

εγβα tj-tj

s

1=j
j-tj

r

1=j
t  +  x + y +  = x 2222 ΣΣ       (2) 

where: α’s are constant terms, β’s and γ’s are parameters to be estimated, p, q, r, and s are lag-

lengths, and εit are well-behaved error terms. In equation (1) if Σγ1j ≠ 0, then X Granger-causes Y. 

Granger-causality from Y to X can be similarly defined. The practical problem with the above 

equations is how to choose the optimal lag-lengths (p,q,r,s). This is an important consideration 

since the results from Granger-causality tests are generally sensitive to the specification of the test 

equation. Granger (1969) used fixed lags, i.e., p=q=r=s. In later versions of the Granger’s causality 

test, flexible lag-lengths were used, e.g., Hsiao (1979, 1982). In this study, we use the subset 

autoregression and transfer function approach which includes only the significant lags in the 

specification of equations (1) and (2) as suggested by Penm and Terrel (1984) and Kang (1989). 

Using the subset transfer function methodology has a further relevance in the context of empirical 

modelling of the effects of R&D activity. As discussed earlier, there might exist “dry holes” in the 

relationship between R&D and economic activity (see Rouvinen, 2002). That is, not every 

increase in R&D effort necessarily immediately reflects itself into higher productivity in the 

economy. At times, there might be no visible effects, or the effects are small and unclear. But, 
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they accumulate (e.g., learning effects even from unsuccessful attempts) and may show 

themselves after a long lag, or perhaps after “…some promising discovery.” (Rouvinen, 2002: 

125). Then, the subset transfer function approach that suppresses the insignificant lags and allows 

for the possibility of including distant but significant lags into the specification is conceptually 

well-suited for empirically addressing the phenomenon of “dry holes”. 

For the selection of the optimal lag specifications in subset autoregressions and subset 

transfer functions, we use Schwarz’s (1978) “Bayesian Information Criterion (SBIC)”. SBIC is 

given by the formula: SBIC = (ESS/T)*T(k/T), where ESS is the error sum of squares from 

estimation of the model in question, T is the sample size, and k is the number of estimated 

parameters in the model. Conceptually, SBIC is derived from Bayesian foundations. As such, it is 

an attempt to find the most probable model for the data at hand.  

The detection of Granger (non-) causality from X to Y even in a bi-variate framework has 

important implications. According to Hsiao (1982), for X to be a direct cause of Y, X should cause 

Y in all settings: bi- and multi-variate. Furthermore, if X causes Y only indirectly via another 

variable Z, X should still cause Y when Z is not in the equation. Nevertheless, if Z is a common 

cause of both X and Y, and if there is no other direct or indirect relationship between X and Y, one 

may detect Granger-causality between X and Y in the absence of Z. The detected causality in this 

case would be spurious. In our study, we start with the examination of Granger-causality in the 

bivariate case, but extend the analysis into a 4-variable framework subsequently. Still, we qualify 

our findings as prima facie since the missing cause problem is not necessarily solved in a 

multivariate framework.  

Analysing the causal relationships among the variables of interest in a multivariate 

framework is a complex task due to any indirect linkages and possible spurious relationships. For 

example, consider the case where a variable X Granger-causes Y in a trivariate system (i.e., in the 

presence of a distinct variable Z) but not in a bivariate relationship. Hsiao (1982) calls this as 

“Type I spurious causality”. This may be a misnomer since the Z variable indeed acts as a catalyst 

or as a co-requisite condition for the causal relationship between X and Y to hold. In order to 

conclude in favour of non-causality from X to Y in a multivariate setting, X should not cause Y in 

a bivariate setting and, in addition, X should not be a (direct) cause of any variable that in turn 

causes Y. Further definitions can be found in Hsiao (1982). See also the Appendix to this study for 

a parameterised extension of Hsiao’s (1982) definitions in a 4-variable framework.  

Another complication that arises in testing for Granger-causality is the following 

possibility: even if the introduction of X (say, with lags 1 and 2) over the best univariate 

specification for Y leads to a lower forecast error variance of Y (i.e., X Granger-causes Y), the 
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estimated coefficients on lag 1 and 2 may carry opposite signs and cancel out, or their sum may 

not be statistically significant. In this case, it would be wrong to conclude that X does not cause Y 

since the conditions for Granger-causality are still fulfilled. This case, discussed in Sturm and De 

Haan (1998) among others, is called “neutrality”. 

In addition, the following case may also be encountered in a 4-variable system consisting 

of Y, X, W, and Z. That is, one runs the Granger-causality test between X and Y first in a bivariate 

relationship, secondly in a system when W is present (X,Y,W), thirdly in a system when Z is 

present (X,Y,Z), and finally when all four variables are in the system (X,Y,W,Z). Now, let us 

assume that X is found to be a direct cause of Y (that is, X casuses Y in all settings), but the sign 

of the estimated coefficients changes from specification to specification. Then, one must conclude 

that the relationship between X and Y is not robust in different specifications despite the findings 

of direct causality in the Granger-Hsiao sense. 

 

3.1 Empirical Findings 

 

3.1. Causal Analysis 

Following the above discussion of the data and the methodological details and problems, we now 

turn to the examination of the Granger-causal links between the four variables described and 

graphically displayed above: EURD, EULP, USRD, and USLP. We are especially interested in 

finding out whether there are cases of “direct causality” between these variables. In running the 

Granger-causality tests, we first test for the time series properties of the variables in question using 

the augmented Dickey-Fuller (ADF), Phillips-Perron (PP), and the KPSS unit root tests. The test 

results shown in the Appendix (Table A1) indicate that all series are stationary. Next, we examine 

the bivariate causal relationships using the system shown in equations (1) and (2). The generic 

variable names X and Y are replaced with a pair of the EURD, EULP, USRD, USLP variables in 

the actual test. The lag-lengths are selected through a subset autoregression and transfer function 

methodology as discussed earlier. The maximum lag-length was set to six. This is in line with 

Ravenscraft and Scherer (1982) who calculate that the mean lag for the R&D efforts to show their 

effects (on industrial profitability) is 4 to 6 years. Our choice has also been necessitated by the 

available number of observations (1979-2002, i.e., 23 years) and the number of variables (four) in 

our study. For example, if we were to estimate a vector autoregression (VAR) that is formed 

without a subset autoregression and transfer function methodology, we would be able to use at 

most 4 lags – leaving only 2 degrees of freedom in each equation, not a healthy choice for making 

statistical inferences. Nevertheless, the subset methodology eliminates the insignificant or 
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redundant parameters and leads to more efficiency in estimation in addition to allowing for the 

inclusion of more distant but possibly significant lags in the specification. Table 1 shows the 

summary results from the bivariate Granger-causality tests. The “Caused Variables” and the 

“Causing Variables” in Table 1 can be read as the Y and X variables, respectively, in equation (1). 

[See the Appendix Table A2 for the details of the specifications and the resulting SBIC values.] 

The qualitative findings from the Granger-causality tests provide a first glimpse into the 

causal relationships among our set of variables. First of all, the impact of an increase in the 

productivity of R&D activity (above the long-run trend) in the EU is found to have negative 

effects on the R&D and overall labour productivity in the US. On the other hand, the EU appears 

to be positively affected from an increase in the US’s R&D productivity. Similar to the findings 

on the effects of Japanese R&D efforts on the US, the R&D efforts in the EU also appear to be 

costly for the US. 

 

Table 1. Results of the Bivariate Granger-Causality Tests 

 ← 

Causing Variables 

Caused Variables ↓ EURD EULP USRD USLP 

EURD --- None (+) (+) 

EULP Neutrality --- (+) Neutrality 

USRD (-) (-) --- (-) 

USLP (-) None None --- 

Notes: “None” means no Granger-causality is detected; (.) indicates there is Granger-causality between the 
variables in question and shows the sign of the relationship. The sign is confirmed as a result of joint-
significance tests (Wald) in case of multiple lags entering the specification. The indicator “Neutrality” is 
used when there is indeed Granger-causality from the causing variable to the caused one, but the signs on 
the lags of the causing variable do not turn out to be jointly significant. Detailed estimation results and 
regression diagnostics are available upon request. 
 

When it comes to the effects of R&D on the domestic sectors, no significant or persistent 

effect is found either in the EU or in the US. In addition, the impact of an increase in labour 

productivity (above the long-run trend) does not appear to spill into the R&D efforts in the case of 

EU. In the US, the impact is indeed negative. Since labour productivity may increase also due to 

improvements in human capital quality or substitution of physical capital for labour, the firms may 

be in a position to cut down their R&D budgets and shift resources into marketing and advertising 

and/or compete in the domestic or international markets through productivity increases brought 

about by other means. Finally, there is no spillover effect from the EU’s labour productivity on the 
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US. There is some indication of spillovers from the US labour productivity to the EU’s , but the 

overall effect is neutral. 

Keeping these findings in mind, we extend the causal analysis into 3- and 4-variable 

settings. The following are the trivariate systems to be investigated: 1) EULP, EURD, USRD, 2) 

EULP, EURD, USLP, 3) EULP, USRD, USLP, and 4) EURD, USRD, USLP. In the 4-variable 

system, we estimate four models, each one explaining one of the above variables (as the dependent 

variable) on its own lags and on the lags of the three remaining variables. 

In multivariate models, the choice of the lag-lengths and thus the optimal model becomes 

rather complicated. We follow the following route. First, we use the bivariate specifications (say, 

EULP and EURD) as the basis to introduce the third variable (say, USRD). The optimal 

specification was found through minimising the SBIC criterion resulting from different lag-length 

specifications. This procedure was repeated once more by changing the order of the variables in 

the bivariate specification (i.e., EURD and EULP with USRD again being the third variable), and 

the resulting SBIC value was noted. Then, comparing the SBIC values from the two models, we 

pick the one with the lowest value as the basis for the 4-variable model. This is in line with the 

principle that the optimal specification should be robust to variable orderings. Next, we enter the 

fourth variable into the systems. A similar methodology to the trivariate case is again used to 

select the model with the lowest SBIC value. The equations of the 4-variable case and a 

description of the conditions to evaluate the causal relationships among the variables are given in 

the Appendix. The qualitative results obtained from the trivariate and 4-variate models are 

presented in Table 2, while the underlying optimal specifications and the resulting SBIC values 

are shown in the Appendix (Tables A3 and A4). 

An examination of Table 2 shows that robust results (i.e., both the existence of a causal 

relationship and the estimated sign of it) are obtained for the following cases only: EURD → 

USRD (-), EURD → USLP (-), USRD → EURD (+), and USLP→ EURD (+), where the “→” 

sign shows the direction of Granger-Hsiao causality and the (.) shows the sign of the causal 

relationship. 
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Table 2. Summary of the Causal Findings from Bi- and Multi-variate Systems 

Causal Relationship Bivariate 

Model 

Trivariate Model 

 (Sign), third variable in the system 

4-Variate 

Model 

EURD → EULP (Neutrality) (-), USRD (Neutrality), USLP (Neutrality) 

EURD → USRD (-) (-), EULP (-), USLP (-) 

EURD → USLP (-) (-), USRD (-), EULP (-) 

     

EULP→ EURD None (-), USRD (Neutrality), USLP (-) 

EULP→ USRD (-) (-), EURD (-), USLP (+) 

EULP→ USLP (Neutrality) (+), EURD (Neutrality), USRD (-) 10% sig. 

     

USRD→ EURD (+) (+), EULP (+), USLP (+) 

USRD→ EULP (+) (-), EURD (-), USLP (-) 

USRD→ USLP None (-), EURD (+), EULP (+) 

     

USLP→ EURD (+) (+), EULP (+), USRD (+) 

USLP→ EULP None (Neutrality), EURD (+), USRD (+) 

USLP→ USRD (-) (-), EULP (+), EURD (-) 

Notes: As in Table 1. The variable names indicated in the columns for the trivariate models 
indicate the third variable present in the model. 

 

The neutral causal impact of EURD on EULP is close to being invariant to the inclusion or 

exclusion of other variables, but EURD negatively causes the EULP when the USRD is in the 

system. On the other hand, the USRD is found to be a direct cause of EURD with a positive sign. 

Are these results reconcilable? One explanation may be as follows. To start with, “neutrality” does 

not mean “no causality”. Thus, there is evidence of some complex causal relationship, but the 

overall effect is neutral over time. Secondly, an increase in USRD leads to an increase in EURD. 

Thus, the producers in the EU react aggressively to an R&D move from the US. This reaction 

may, in turn, require a diversion of other productive resources into R&D activities given that there 

are budget constraints. Then, the fact that R&D takes time and that its outcome is uncertain might 

reflect itself as a decline in labour productivity in the short-run. Nevertheless, in the 4-variable 

system where USLP is also present, the negative effect is mitigated through the positive spillovers 

of USLP on the EULP. In a way, the non-R&D EU activity could be compensating the decline in 

the resources allocated to it through positive international productivity spillovers. This analysis 
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illustrates the contribution of a multivariate framework to the understanding of the causal linkages 

among the variables of interest. The results presented in Table 2 provide a rich ground for 

discussion both in terms of possible linkages (or lack thereof) and also the status of the causal 

relationships. The analysis, however, is further complicated by the sign reversals of the causal 

relationships and the so-called “neutrality” findings.  

At this point, we focus mainly on the robust findings that provide evidence for direct 

Granger-causality and suggest answers to the questions asked in the Introduction.10 

1) R&D effort in the EU is a direct Granger-cause of R&D productivity in the US with a 

negative sign. That is, the reaction of the R&D effort in the US to an increase in EU’s R&D 

productivity is found to be submissive – using Scherer’s (1991) terminology. This is a strong and 

robust result which extends the similar previous findings between the US and Japan’s R&D 

interactions into the context of the US and the EU. 

2) An increase in the R&D productivity in the US leads to an increase in the EU’s R&D 

productivity. This is also a robust result, which holds across all settings, and satisfies the Granger-

Hsiao definition of direct causality. This finding is also in line with the literature on R&D games 

that the follower benefits from the leader.  

3) The R&D productivity in the EU is found to be a direct Granger-cause of the US total 

economy labour productivity, and the sign of the relationship is negative. As seen in Figure 6, a 

negative relationship is also visible in a scatterplot of USLP and EURD. The effect of US’s R&D 

on total economy labour productivity in the EU, however, is ambiguous due to the sign reversals 

in the causal relationship over the bi- and multi-variate specifications. 

In general, these findings relate to the literature on the effects of foreign R&D on domestic 

productivity. In particular, the negative effect of EURD on USLP is puzzling and it contradicts, 

for example, the results reported by Coe and Helpman (1995), who argued for positive foreign 

R&D spillovers on domestic (total factor) productivity. Nevertheless, the results of Coe and 

Helpman have been weakened by Kao, Chiang, and Chen (1999) who showed that the estimation 

method of Coe and Helpman contains a bias and the bias-corrected results on the effects of foreign 

R&D on domestic productivity are rather weak. It should be noted that Coe and Helpman’s 

estimations cover the period from 1971 to 1990 while we investigate the 1979 – 2002 period. 

Indeed, an inspection of the Figures 1 and 4 for USLP and EURD suggests the presence of a 

negative relationship especially in the 1990s. This is consistent with our finding of a negative 

causal effect from EURD to USRD coupled with a positive reaction of USLP to USRD (e.g. in the 

4-variate model). That is, as EURD increases, the USRD decreases, which in turn leads to a 

decrease in USLP. In view of these findings, the present study adds to the R&D literature by first 
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illustrating the possibility of a negative relationship between foreign R&D and domestic 

productivity (as in Figure 5) and then presenting causal evidence in favour of it in a multivariate 

framework. Nevertheless, the effects of R&D activity in the EU on the labour productivity in the 

US require further research using up-to-date R&D data by source (e.g., public, private, defense) 

and at the sectoral level. 

4) There is no conclusive evidence on direct causality from domestic R&D activity on 

domestic labour productivity growth. However, an indirect effect is still suggested by the finding 

that USRD does not Granger-cause USLP in the bivariate model but the causal impact of USRD 

on USLP is positive in the 4-variate model. As a result, the increase in the R&D productivity in 

the US and the factors driving it might have contributed to the post-1997 increase in the economy-

wide labour productivity in the US. In the case of EU, the causal relationships between domestic 

R&D and labour productivity are rather complex. While there is clear evidence of a causal link 

from R&D to labour productivity, the lag structure of this relationship involves both positive and 

negative coefficients and leads to an overall neutrality result within our sample period. Several 

explanations for this finding can be offered. First, as Cameron (2005) argues, in a leader-follower 

game of R&D, the follower may face slower (productivity) growth as it needs to invest into 

genuine R&D (not just imitation and capital deepening) as the technological distance to the leader 

narrows. Therefore, a negative relationship between R&D spending and productivity growth might 

indeed be detected. Hence, our results indicating a complex relationship between the R&D activity 

and labour productivity in the EU might be partly reflecting the dynamics during the catching-up 

process. Secondly, the source of R&D is an important consideration. Guellec and Van Pottelsberg 

de la Potterie (2004), among others, suggest that defense R&D leads to negative spillovers, and 

the domestic productivity spillovers from business R&D are higher than those of public R&D. 

Since we use aggregate EU15 R&D data from all sources, our findings might be capturing the 

possibly differential effects of different R&D-sources on overall productivity. In this context, if 

achieved, the Lisbon target that two-thirds of the R&D expenditures should be business R&D 

would help enhance the positive spillovers from R&D activity on the EU’s overall labour 

productivity. Third, Carlsson and Mudambi (2003) argue that the extent of R&D spillovers on 

domestic productivity depends on the degree of absorptive capacity, the degree of homogeneity of 

R&D activity location, and the extent of intra-regional linkages. Looking at our results in this 

respect, the aggregate nature of our R&D data set may again explain the rather unclear findings. 

For the EU, we use R&D data from 15 countries and the fact is that the distribution of R&D is 

rather heterogeneous across EU countries. The distribution of the R&D by location is skewed also 

in the case of the US, possibly limiting the extent of aggregate gains from R&D activity. 
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Overall, our results from aggregate R&D and labour productivity data support the 

theoretical and institutional arguments that the effects of R&D activity on domestic labour 

productivity might indeed be ambiguous. While there is some evidence of positive spillovers, the 

actual dynamics are more complex. 

 

3.2. An Examination of  the Patterns in the High Tech Goods Exports Markets 

Since we measure the R&D effort in the US and the EU in actual terms (i.e., the value added per 

worker) and not as a figure with an uncertain outcome (e.g., expenditures on R&D or patent 

registrations), it may be interesting to see if the causal patterns found in our analysis reflect 

themselves in the actual developments of the EU’s and the US’s relative positions in the world 

market for high tech exports. We would, for example, expect that the EU should be improving its 

world share in high tech goods exports, possibly to the detriment of the US, especially when the 

EU’s R&D productivity increases. Table A5 presents the developments in world high tech goods 

exports market by industry. In choosing the periods displayed in Table A5, we made use of the 

patterns evident in Figure 4. For instance, the EURD is below trend but increasing between 1981 

and 1984; it is above trend between 1985 and 1994; it is below trend and decreasing between 1995 

and 1999; and it is below trend but increasing between 2000 and 2002. We obtained the data on 

trade in high tech goods from the OECD’s Main Science Indicators database (version 2004, 

release 02). The data is available for the 1981-2002 period, but a change in the definitions 

effective from 1995 onwards renders the comparison of the pre- and post-1995 figures difficult. 

Therefore, we focus on the pre- and post-1995 periods individually. Furthermore, since the export 

market penetration of other countries (e.g., Japan and the Asian countries) leads to changes in the 

overall composition of trade, we also look at the shares of the EU and the US in their total world 

export market share [i.e., US/(US+EU) and EU/(US+EU)] to evaluate the changes in their relative 

positions with respect to each other. This is shown in Table A6.  

The picture that emerges from Table A6 is that the EU expanded its relative export market 

share in the “aerospace” and “office equipment & computers” industries vis-à-vis the US even 

when the R&D productivity in the EU was below its long-run trend. In the “electronics” industry , 

the EU gained ground in export markets only slightly between 1981-1984 and 1985-1994, but it 

lost to the US between the 1995-1999 and 2000-2002 periods. In the “pharmaceuticals” and 

“instruments” industries, the EU increased its relative export market share in the 1981-1994 

period, but the pattern was reversed in the post-1995 period. These findings are largely in line with 

our causal findings: when the EU’s R&D productivity increases or when it is above its long-run 

trend, the US’s relative share of high tech exports in all sectors (1981-1984 and 1985-1994 



 15

periods) suffers. On the other hand, when the EU’s R&D productivity is below its long-run trend, 

the US generally gains relative ground in the high tech exports markets. The aerospace and the 

office equipment and computers industries are the exceptions. Nevertheless, the main driving 

factor for the EU’s success, especially in the aerospace area, should be linked to the Airbus 

project. Overall, the post-1996 stagnation in the EU’s R&D sector is reflected in the actual high 

tech exports data. This is again in line with the Lisbon summit’s explicit call for taking measures 

in the R&D sector to remedy and reverse the situation. 

 

4. Conclusions 

 

In this study, we examine the domestic and international linkages among R&D productivity and 

economy-wide labour productivity in the EU and the US using multivariate Granger-causality 

tests. The definition of Granger-causality in a multivariate context is more complicated than the 

bivariate case due to possible additional causal interactions between the variables of interest as 

Hsiao (1982) demonstrates. A variable X, for example, is said to be a “direct Granger-cause” of 

another variable Y if X causes Y in all settings: bi- and multivariate. Empirical evidence on the 

Granger-causal relationships between the aggregate R&D activities of two countries or trading 

blocks is scarce in the literature. Even so, the analysis is restricted to a bivariate framework, which 

does not allow for the testing of “direct causality”. This paper contributes to the literature by 

investigating the causal relationships between the R&D activities of the EU and the US in a 

multivariate framework. The multivariate framework employed also allows us to make causal 

inferences about the effects of R&D activity on labour productivity in the home and foreign 

country. 

In the literature on R&D, there is also a “dry holes” phenomenon that stems from the fact 

that R&D activity may not always have visible effects on the economy. For example, turning the 

successful research results into something concrete and practical may take time and indeed it may 

happen at irregular time intervals. To deal with this phenomenon in the framework of Granger-

causality tests, we used a subset transfer function approach which suppresses any insignificant 

lags, in choosing the optimal specifications. From a statistical point of view, this approach has the 

added benefit of providing more efficient parameter estimates. The application of the subset 

transfer function methodology to testing for Granger-causality in the R&D literature is novel. 

In an overall perspective, our findings identify the direction of causality in the observed 

negative correlation between the R&D activity in the EU and the R&D activity in the US (e.g. 

Figure 5). It is found that R&D in the EU is a direct Granger-Hsiao cause of R&D and labour 
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productivity in the US, and the signs of these effects are negative. The EU, on the other hand, 

shows a positive reaction to the increased R&D productivity in the US and also enjoys positive 

spillovers from increases in labour productivity in the US. In Scherer’s (1991) terms, the US is 

found to be responding rather submissively when R&D effort increases in the EU, while EU’s 

reaction to an increase in R&D efforts by the US is on the aggressive side. The aggressive reaction 

by the EU reflects itself in different forms, for example, by the gains made in basic research 

results (e.g., increased share of top 1% publications and citations) even when the R&D activity 

was stagnating in the EU. Nevertheless, it should be kept in mind that the findings of this study are 

based on aggregate R&D data from all sources. Thus, more disaggregate studies at the industry 

level are needed. Furthermore, there are differences in the composition of R&D by source (public 

vs. private) between the US and the EU – e.g., the share of public R&D in total R&D expenditures 

is higher in the EU. Indeed, the EU’s Lisbon targets envisage an increase in the share of private 

R&D in total R&D expenditures to about 66% from the current levels of about 55%. Therefore, an 

empirical investigation of whether there is a difference between the responses of public and 

private R&D in the EU (US) to public and private R&D in the US (EU) remains to be undertaken. 

Notwithstanding the above caveats, our results based on aggregate R&D data suggest that 

the EU did make efforts not to fall behind the US by taking positive counteraction in response to 

the US’s success as an R&D location. In this perspective, the explicit R&D targets set in the 

Lisbon summit in 2000 by the EU are largely a reflection on the need to increase the effort level 

further – given the stagnation in the share of R&D expenditures to GDP (which correlates well 

with the R&D productivity measure used in this paper) and the loss of some share in the high tech 

exports market in the post-1995 period. 

The empirical findings of our study as well as the results of other macro-and micro-level 

studies in the literature share the view that the US’s R&D reaction to the aggressive R&D efforts 

by competitors is generally submissive. Hence, if the EU can make progress towards achieving its 

ambitious R&D targets (possibly at a later date than 2010), the chances of achieving the Lisbon 

vision remains good. This, however, assumes that the game strategy does not change in the US. 

Even so, both the EU and the US would benefit from the technological progress hence achieved. 

 

Footnotes 

 
1 The link between R&D activity and economic performance has long been recognised. 

Schumpeter, for example, put forth the process of “creative destruction” as an engine economic 

growth. More recently, R&D is formally given a central role in the new theories of economic 

growth (e.g., endogenous growth theory and its variants) in driving technological progress and 
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long-term economic growth whereas technological progress comes as “manna from Heaven” in 

the neoclassical growth theory framework. The introduction of R&D as a driver of economic 

growth is an important development since it connects the economic growth process further with 

micro foundations, bearing implications for economic and public policy. See Lucas (1988), Romer 

(1990), Grossman and Helpmen (1991), Grilliches (1992), Jones (1995), Aghion and Howitt 

(1998), and Segerstrom (1998). See also Lingens (2005) for a short discussion of the various 

versions (the first and second generations) of endogenous growth models and their policy 

implications. Goel and Rich (2005) provide a neat representation of the various aspects of the 

markets for R&D activity. 

 

2 This is indeed a race for becoming an attractive R&D location since R&D activities in an 

economy (say, the EU, the US, or Japan) are undertaken not only by the nationals but also by the 

affiliates of foreign companies or as multinational research joint ventures. Kuemmerle (1999) 

studies the factors that determine the multinationals’ decision to invest in R&D abroad. The home-

base-exploiting (HBE) foreign direct investments (FDI) are found to be related to the relative 

attractiveness of the target market. The home-base-augmenting (HBA) FDI, on the other hand, 

correlates with the “…relative commitment to R&D of private and public entities in the target 

country, as well as with the level of human resource pool and the level of scientific achievement in 

relevant sciences.” (Kuemmerle, 1999: 18) 

 

3 This example illustrates the conceptual suitability of Granger’s (1969) causality test and its 

variants as an empirical tool to investigate the nature of R&D races and spillovers, e.g. the 

aggressive vs. submissive reaction of one country to an increase in another country’s R&D efforts 

as well as the causal nature of the dynamic interaction between R&D and domestic economic 

activity. In the literature on R&D, there exist a number of studies that use Granger-causality tests 

to examine the interactions between physical capital accumulation and R&D activity, the 

relationship between total productivity growth and R&D at the aggregate or industry level, the 

effects of government policies and subsidies on private sector R&D, and the interactions between 

publicly and privately funded R&D. The following papers, among others, cover some of these 

topics: Verspagen (1995), Colombo and Garrone (1996), Frantzen (1998), Chiao (2001), 

Neelankavil and Alaganar (2003), Guellec and van Pottelsberghe de la Potterie (2003), Garcia-

Quevedo (2004), Kim and Lee (2004), and Greunz (2004). 
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4 Bernstein and Mohnen (1998) estimate that there are positive R&D spillovers from the US to 

Japan but the conserve is not true. 

 

5 See Coe and Helpman (1995), Coe, Helpman and Hoffmaister (1997), and Engelbrecht (1997a, 

1997b). See also Hejazi and Safarian (1999) and Lewer and van den Berg (2003) for a discussion 

of the impact of foreign trade and foreign direct investment on R&D spillovers and economic 

growth. 

 

6 See, for example, Griffith, Redding, and van Reenen (2004). 

 

7 See Sargent and Rodriguez (2000) for a further discussion and comparison of the advantages and 

disadvantages of using total factor productivity or labour productivity in economic analysis. 

 

8 The dataset is available from http://www.ggdc.net (60-Industry Database) 

 

9 A negative correlation between the R&D activities of the EU and the US is also reflected by 

other indicators. For instance, the EU’s average share in the highly cited (top 1%) publications 

increased from 35.42% to 37.12% between the 1993-1997 and 1997-2001 periods, while the US’s 

share declined from 37.46% to 34.86% in the same periods. Similarly, the EU’s share of citations 

in the top 1% cited publications increased from 36.57% to 39.3% and the US’s share registered a 

decline from 39.3% to 32.85% between the 1993-1997 and 1997-2001 periods. See King (2004) 

for further details and comparisons.  

 

10 Since the R&D activity showed ups and downs both in the EU and in the US in our sample 

period, it is important to note that the findings from the causality tests are meant to be taken as 

results holding true on average during period under investigation. Furthermore, in interpresing the 

causal evidence presented in this paper, it should also be noted that all variables are expressed as 

deviations from their long-run linear trend. Thus, a “decrease” in this context does not necessarily 

mean a negative value for the variable in question. It could as well represent a positive but below 

the long-term trend growth rate.  
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APPENDIX 
 

The following is an application of Hsiao’s (1982) definitions of different types of causal 

relationships in a 4-variable framework.  
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For the causal relationship between X and Y: 
 

1) Direct Causality. a) ∑δ1i  ≠ 0, when ∑φ1i  ≠ 0 and ∑λ1i  ≠ 0; (in a 4-variable system) 
      b) ∑δ1i  ≠ 0, when ∑φ1i  ≠ 0 and ∑λ1i  = 0; (in a 3-variable system) 
      c) ∑δ1i  ≠ 0, when ∑φ1i  = 0 and ∑λ1i  ≠ 0; (in a 3-variable system) 
      d) ∑δ1i  ≠ 0, when ∑φ1i  = 0 and ∑λ1i  = 0; (in a bi-variate system) 
 

That is, X should cause Y in a bivariate system and in all multivariate systems. 
Direct causality from X to Y is represented as X ⇒ Y. 

2) Feedback. If X ⇒ Y and Y ⇒ X, then there is direct feedback between X and Y. 
 Or, X ⇔ Y 
 
 

 
3) No Causality. a) ∑δ1i  = 0, when ∑φ1i  = 0 and ∑λ1i  = 0; (sufficient condition) 

b) if ∑δ1i  = 0 but ∑φ1i  ≠ 0 and ∑λ1i  = 0 and if ∑δ3i  = 0 in all bi- and 
multivariate settings that involve X to explain M, 
c) if ∑δ1i  = 0 but ∑λ1i  ≠ 0 and ∑φ1i  =  0 and if ∑δ4i  = 0 in all bi- and 
multivariate settings that involve X to explain Z, 
d) if ∑δ1i  = 0 but ∑φ1i  ≠ 0 and ∑λ1i  ≠ 0 and if ∑δ3i  = 0 and ∑δ4i  = 0 in all 
bi- and multivariate settings that involve X to explain M and Z, then, there 
is no causality from X to Y (directly or indirectly). 
 
That is, for X not to be a Granger-cause of Y in any way, X should not 
cause Y directly or indirectly. 
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4) Type I Spurious Causality. If ∑δ1i  ≠ 0, when ∑φ1i  ≠ 0 and/or ∑λ1i  ≠ 0 in a 4- variable 
system,  but ∑δ1i  = 0 when ∑φ1i  = 0 and/or  ∑λ1i  = 0 (i.e. in a bi-variate system),  then X 
is said to cause Y spuriously. 
 
This situation may arise if M and/or Y (together or individually) is/are pre- or co-requires 
for X to cause Y.  
 

5) Indirect Causality.  If ∑δ1i = 0 when ∑φ1i ≠ 0 and/or ∑λ1i ≠ 0, but X ⇒ M and / or X ⇒ Z. 
Furthermore, ∑δ1i ≠0 when ∑φ1i = 0 and ∑λ1i = 0. Then, X is an indirect, but not spurious, 
cause of Y. This case is denoted by X → Y. 

 
In this case, X causes Y via other variables for which it is a direct cause of. Note that the X 
should cause in a bivariate system or in multivariate systems. 
 
6) Type II Spurious Causality. a) the no-causality conditions in (3) hold, except that ∑δ1i ≠0 

in a bivariate Granger-causality test between X and Y. b) Furthermore, M ⇒ X and M ⇒ 
Y and / or Z ⇒ X and Z ⇒ Y. Then, there is Type II spurious causality from X to Y. The 
case can be similarly derived for Z. 

 
This case may arise if, for example, M (Z) is a direct Granger-cause of both X and Y. Then, in 
the absence of M (Z) (say, in a bivariate causality test between X and Y), X is found to 
Granger-cause Y, when this result is indeed due to a missing common cause. 
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Figure 1. Labour Productivity in the US (USLP) 
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Figure 2. R&D Productivity in the US (USRD) 
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Figure 3. Labour Productivity in the EU15 (EULP)  
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Figure 4. R&D Productivity in the EU15 (EURD) 
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Figure 5. Scatterplot of the EU’s and the US’s R&D Productivities 
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Figure 6. Scatterplot of Labour Productivity in the US and R&D in the EU 
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Table A1. UNIT ROOT TEST RESULTS 
 

 EURD EULP USRD USLP 
ADF (level) -2.781663*** [N,4] -3.514640*** [N,1] -3.300224*** [N,0] -1.956874**   [N,4] 
ADF (1st Diff.) -3.681901*** [N,0] -2.435185**   [N,0] -7.207506*** [N,0] -3.786142*** [N,0] 
     
PP (Level) -2.040573**   [N,3] -2.413733**   [N,2] -3.247849*** [N,1] -1.176495       [N,2] 
PP (1st Diff.) -3.721546*** [N,2] -2.410303**   [N,2] -8.501124**   [N,6] -3.789211*** [N,1] 
     
KPSS (Level) 0.160017         [C,3] 0.116081         [C,3] 0.170184        [C,2] 0.145178        [C,3] 
KPSS (1st Diff.) 0.324349*       [C,2] 0.290246         [C,2] 0.270488        [C,7] 0.432268        [C,2] 
ADF: Augmented Dickey Fuller test, PP: Phillips – Perron Test, KPSS: Kwiatkowski-Phillips-Schmidt-Shin 
test. N: no trend and no intercept in the specification, C: intercept but no trend in the specification. The numbers 
in the square brackets indicate the lag-length in the ADF test, and the bandwidth in the PP and KPSS tests. Note 
that the null hypothesis is non-stationarity in the ADF and PP tests, while the KPSS takes the null hypothesis as 
stationarity. (***), (**), and (*) indicate, respectively that the null hypothesis can be rejected at 1%, 5% and 
10% statistical significance levels.   

 
 
TABLE A2. 
 
BIVARIATE GRANGER-CAUSALITY TEST SPECIFICATIONS AND RESULTS 
 
Caused variable: Univar. Spec. SBICUV Causing 

variable: 
TF Spec. SBIC2V 

EURD 1,4,5 4.673850 EULP 4             (+) 4.735744 
 1,4,5  USRD 2             (+)** 4.512524 ‡ 
 1,4,5  USLP 1,6          (+)*** 4.585471 ‡ 
      
EULP 1,4 2.563014 EURD 1,3,4       (-) 2.501711 ‡ 
 1,4  USRD 1,6          (+)*** 2.401400 ‡ 
 1,4  USLP 2,5          (-) 2.511896 ‡ 
      
USRD 6 5.952995 EURD 1,3          (-)*** 5.664985 ‡ 
 6  EULP 3,4,6       (-)*** 5.871018 ‡ 
 6  USLP 1,5,6       (-)*** 5.633191 ‡ 
      
USLP 1,5 2.692500 EURD 1,2,3       (-)** 2.336714 ‡ 
 1,5  EULP 1,2,3       (-) 2.693477 
 1,5  USRD 3             (+) 2.725659 
Notes : The entry for the case of EURD and USRD, for example, should be read as follows:  
EURDt = α + β1EURDt-1 + β2EURDt-4 +  β3EURDt-5 + β3USRDt-2, with the resulting univariate 
Schwarz BIC (SBICUV) value of 4.673850 and a subset bivariate transfer function (TF) SBIC value 
(SBIC2V) of 4.512524. Since the SBIC2V < SBICUV, the USRD can be said to Granger-cause EURD 
in a bivariate specification. The other entries in the table can be interpreted similarly. The signs of the 
coefficients are shown in parantheses. (***), (**), and (*) indicate, respectively that the coefficient(s) 
is/are (jointly) significant at 1%, 5% and 10% statistical significance levels. (‡) indicates that the 
SBIC2V < SBICUV for the entry in question, thus there is evidence of Granger-causality in a bivariate 
setting. Nevertheless, if the joint sum of the coefficients are not indicated as statistically significant, the 
resulting case is indicated as “Neutral” in Table 1 in the text. 
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Table A3. TRIVARIATE SPECIFICATIONS 
 
A) EULP, EURD, USRD 
 EULP(t-i) EURD(t-i) USRD(t-i) SBIC3V 
EULP(t) 1,4 1,3,4         (-) 2,3,4,6      (-) 1.821814 
EURD(t) 1,5,6         (-) 1,4,5 1,2,3,6      (+) 3.973010 
USRD(t) 6               (-) 1,3            (-) 6 4.871124 
     
B) EULP, EURD, USLP 
 EULP(t-i) EURD(t-i) USLP(t-i) SBIC3V 
EULP(t) 1,4 1,3,4        (N) 1,2,4,6     (N) 2.437927 
EURD(t) 1,4           (N) 1,4,5 1              (+) 4.292234 
USLP(t) 2              (+) 1,2,6        (+) 1,5 2.200939 
     
C) EULP, USRD, USLP 
 EULP(t-i) USRD(t-i) USLP(t-i) SBIC3V 
EULP(t) 1 1,2,3,4,5,6 (-) 2,5           (+) 1.540702 
USRD(t) 6               (-) 6 3,6           (-) 5.253640 
USLP(t) 1,2,3        (N) 1               (+) 1,5 2.764862 
     
D) EURD, USRD, USLP 
 EURD(t-i) USRD(t-i) USLP(t-i) SBIC3V 
EURD(t) 1,4 4,6           (+) 1,6           (+) 4.385553 
USRD(t) 1,3            (-) 6 3,4           (+) 5.064726 
USLP(t) 1,2,3         (-) 2              (-) 1 1.846757 
Notes: The entry for the trivariate system involving EURD, USRD, and USLP should be read as 
follows: EURDt = α + β1EURDt-1 + β2EURDt-4 +  β3USRDt-4 + β4USRDt-6 +  β5USLPt-1 + β6USLPt-6 
with the resulting Schwarz BIC (SBIC3V) value of 4.385553. Note that the SBIC3V value is less than the 
bivariate specification between the EURD and the USRD (SBIC = 4.512524). The sum of the 
coefficients β3 + β4 on the USRD are positive, as indicated in parantheses. Furthermore, they are found 
to be jointly significant by means of the Wald test. The same case is also established for the sign and 
the joint significance of the β5 + β6 coefficients on the USLP variable. These findings indicate that 
EURD is Granger-caused by USRD and USLP and the sign of these causal relationships is positive. 
The (N) sign in the Table indicates that the sum of the estimated coefficients is not statistically 
different than zero. The qualitative implications of the results presented here are shown in Table 2 in 
the text.  
 
 
Table A4. 4-VARIATE SPECIFICATIONS 
 
 EURD(t-i) USRD(t-i) EULP(t-i) USLP(t-i) SBIC4V 
EURD 1,4,5 2                (+) 1,5,6          (-) 1,4             (+) 3.693182 
USRD 3,4,6          (-) 6 1,5,6          (+) 1,5,6          (-) 3.994254 
EULP 4,6            (N) 1,2,3,4,5,6 (-) 1,4 2,5             (+) 0.694562 
USLP 1,2,6          (-) 3                (+) 5,6             (-) 1,5 1.588105 
Notes: The entries in this table can be read similar to those in Table A3, but the specifications are 
extended into a 4-variate framework. SBIC4V denotes the value of the Schwarz BIC in the best 4-
variate transfer function specification.  
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Table A5. The Export Shares of the US and the EU in the High Tech World Trade (%) 
 

  
Aerospace 

 
Electronics 

Office Equipment 
& Computers 

 
Pharmaceuticals 

 
Instruments 

 Total US EU Total US EU Total US EU Total US EU Total US US 
1981-84 76.4 49.4 27.0 34.8 19.0 15.8 48.4 36.7 11.7 53.0 18.2 34.8 43.1 22.4 20.7
1985-94 75.4 46.3 29.0 34.4 18.6 15.8 38.3 26.9 11.4 48.1 13.7 34.4 40.3 19.6 20.7
1995-99 72.5 41.6 30.9 37.6 21.0 16.6 35.1 23.0 12.1 45.1 11.1 34.1 46.8 24.2 22.7
2000-02 69.4 36.8 32.6 38.2 22.4 15.8 35.5 22.3 13.2 44.7 12.2 32.5 49.5 26.7 22.8
Source : OECD Main Science Indicators, 2004, Release 02. 
 
Note:  The corresponding ISIC revision 2 and revision 3 classification numbers for these industries are as follows 
(in the square brackets respectively): Aerospace industry [3845, 353]; Electronic industry [3832, 32]; Office 
machinery and computer industry [3825, 30]; Pharmaceutical industry [3522, 2423]; Instruments (medical, 
precision and optical instruments, watches and clocks industry) [385, 33]. Please also note that the EU figure 
excludes trade within the EU (15 countries). The export market shares are calculated according to the ISIC rev. 2 
until 1994, and the figure after 1995 are in line with the ISIC revision 3. Therefore, there is a break in the 
definition in 1994-1995. 
 
Table A6. The Relative Shares of the EU and the US in their Total (US +EU) High Tech Exports, (%) 
 

 
Aerospace Electronics 

Office Equipment 
& Computers 

 
Pharmaceuticals 

 
Instruments 

 US EU US EU US EU US EU US EU 
1981-84 64.7 35.3 54.7 45.3 75.8 24.2 34.3 65.7 51.9 48.1 
1985-94 61.5 38.5 54.2 45.8 70.3 29.7 28.6 71.4 48.7 51.3 
1995-99 57.4 42.6 55.9 44.1 65.5 34.5 24.5 75.5 51.6 48.4 
2000-02 53.0 47.0 58.7 41.3 62.8 37.2 27.3 72.7 53.9 46.1 

Source: Author’s own calculations using figures from Table A5. Please also see the notes to Table A5. 




