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Abstract

Economists and econometricians very often work with data which has been temporally

disaggregated prior to use. Hence, the quality of the disaggregation clearly affects the qual-

ity of the analyses. Building on Chow and Lin’s (1971) disaggregation model this paper

proposes a new estimation approach and a specification test which assesses the quality of

the disaggregation model. An advantage of the proposal is that estimation and testing can

both be pursued using the aggregated data while the standard method requires a mixture of

high and low frequency data. A small simulation study shows that the test indeed provides

useful information.
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1 Introduction

Quantitative economic analysis very often has to rely on data whose observation frequency is

systematically lower than desired. For example, economic activity which is commonly expressed

as the flow of value added is generated continuously. However, as it would require enormous

resources to actually observe this process, most countries use annual estimates of economic ac-

tivity as the basis of their statistics. In contrast, many other variables such as money stock and

interest rates are available at a far higher frequency (and can often also be observed more accu-

rately). Nevertheless, researchers, policy makers and the public, all have genuine interest in high

frequency information on low frequency data for efficient and timely decision making. There-

fore, statistical offices all around the world work on providing temporarily disaggregated data to

serve this aim. Statisticians at the European Commission have even developed a free software

tool for conducting disaggregation. This software is called ECOTRIM and is available upon re-

quest from Roberto Barcellan, European Commission, Statistical Office Directorate

C -Unit C2, Jean Monnet Building BECH B3/398, L-2920 Luxembourg.

It is evident that the quality of the disaggregation is very important for the users. Unfortu-

nately, an according assessment is in general haunted by the fact that the true high frequency

data is unobservable. This paper proposes a statistical test that is consistent with a very popular

disaggregation procedure due to Chow and Lin (1971), henceforth CL. This test is thus meant

to make an informed choice between modelling alternatives. An advantage of the proposal is

that estimation and testing can both be pursued using the aggregated data while the standard

method requires switching between high and low frequency data.

The next section reviews the disaggregation approach in question, reasons why this model is

still very attractive despite its numerous alternatives and sets thus the framework of the analysis.

The third section describes the new estimation approach while the fourth outlines the testing

strategy and provides simulation result. Finally, conclusions are drawn.
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2 Chow&Lin revisited

2.1 The basic model

The following data generating process for the high frequency data is supposed.

Yh = βXh + Uh (1)

Uh ∼ (0, Σh)

The endogenous variable, Yh = (yh,1, yh,2, . . . , yh,T )′, is thus assumed to depend on an ex-

ogenous variable, or a set of exogenous variables, Xh = (xh,1, xh,2, . . . , xh,T )′, and an innovation

process, Uh. The subscript h indicates high frequency. The general idea is to use high fre-

quency information on x and an estimate of Σh to obtain estimates for yh,t which is not directly

observable. In order to estimate yh,t, CL suggest a particular structure for Σh. Denoting

Uh = (uh,1, uh,2, . . . , uh,T )′ they suggest to consider the stationary process

uh,t = ρuh,t−1 + εh,t (2)

|ρ| < 1 (3)

εh,t ∼ i.i.d.(0, σ2
h).

It is worthwhile to notice that (1) is suitable for both, stationary and non-stationary variables

Yh and Xh as long as (3) holds. If yh,t and xh,t were both nonstationary, then under (3), they

are cointegrated in the sense of Engle and Granger (1987). Due to the fact that cointegration

is now a well understood property of many fundamental economic relationships (1) represents

a very attractive approach to the disaggregation of low frequency data. Furthermore, if (1) is

a cointegration relationship, forecasts of yh,t based on xh,t will in general outperform forecasts

which are not based on cointegration relations at least at longer horizons. In contrast, the

proposals by Fernandez (1981) and Litterman (1983) suggest nonstationary processes in (2)

which generally result in ‘smoother’ high frequency estimates at the expense of forecasting

performance. The latter property is important because many disaggregation exercises serve the

provision of early estimates of high frequency information on y such as quarterly GDP estimates.

These are usually constructed on forecasted values of y and hence large forecast errors imply

according revisions later on. For the purpose of the current paper it shall be assumed that the

variables x and y are both integrated of the same order. This order may be one or zero.
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In the CL approach (1) is transformed into a low frequency model with observable data series

yl,t, xl,t and the error process εl,t. In the following, the focus will be on the temporal aggregation

which is accomplished by pre-multiplying (1) by a matrix Cm of dimension (T/m× T ) where

Cm =




11×m 01×m . . . 01×m
01×m 11×m . . . 01×m

...
. . .

...
01×m . . . . . . 11×m




and m is the number of high frequency observations that are temporally aggregated to yield

the low frequency data. For example, if temporal aggregation of quarterly to annual data is

considered, m = 4 would be chosen. Although the test to be proposed in the following can be

applied to various values of m, we are going to look at the case m = 4 only. Further special

cases can be dealt with along similar lines.

After temporal aggregation (1) mutates to

Yl = βXl + Ul (4)

Yl = CmYh

Xl = CmXh

Ul = CmUh

and thus Yl = (yl,1, yl,2, . . . , yl,τ , . . . )′, Xl = (xl,1, . . . , xl,τ , . . . )′, and Ul = (ul,1, . . . , ul,τ , . . . )′ are

temporal aggregates. It is important to notice that the aggregation only affects the parameters

of the error process while the parameter characterising the linear relationship between dependent

and independent variable is still completely described by β. The latter is thus independent of

Cm for all m. A general treatment of linear aggregation and its implications for multivariate

autoregressive models is provided by Marcellino (1999), for example.

2.2 Estimation

Chow and Lin (1971) suggest to estimate ρ and β subject to the aggregation constraint (4).

They proposed the following feasible generalised least squares (GLS) estimate:

β̂CL =
(
X ′

lΣ
−1
l Xl

)−1
X ′

lΣ
−1
l Yl (5)

Σl = E(UlU
′
l )

Ûl =
[
C1 −Xl

(
X ′

lΣ
−1
l Xl

)−1
X ′

lΣ
−1
l

]
Yl
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The key element in the estimation is the matrix Σl, which however, can be obtained by

considering that

Σl = E(UlU
′
l )

= E(CmUhU ′
hC ′

m)

= CmΣhC ′
m.

Since Σh is known by assumption, and Cm by construction Σl is also identified up to ρ. In

general, as Marcellino (1999) has shown, the elements of Σl are nonlinear functions of ρ and

m. Notice, however, that estimation is feasible by a sequence of linear regressions where only

an initial value for ρ is required. Subsequent updates of ρ can be based on a regression of ûh,t

on ûh,t−1 where ûh,t is the estimated high frequency residual. The details of this calculation

are not repeated here. The reader is referred to Chow and Lin (1971), p. 373. The resulting

estimates for Yh have desirable properties such as being BLUE (cf. CL). However, I would like

to highlight the fact that the CL regression procedure requires repeated switching between the

level of aggregation of the observable data and the level of the estimated high frequency data.

One contribution of this paper is to provide an alternative that makes the switching redundant.

As has been noted before, once assumption (2) has been made, the opportunities for checking

the appropriateness of the disaggregation procedure are rather limited. The main reason is that

the implied low frequency structure of the variance-covariance matrix needs to be imposed on the

data in order to obtain the estimates. This paper suggests to explicitly scrutinise this aspect by

testing whether or not the implicit nonlinear restrictions on the parameters of the low frequency

residual process are statistically acceptable or not.

3 An alternative to the Chow&Lin estimation approach

Before doing so, an alternative estimation procedure is described in the following. It permits

the formulation of a general model against which the temporally aggregated model appears as a

restricted version. That allows the definition of a likelihood ratio test to check appropriateness

of the temporal aggregation.

I start by repeating that the aggregation restriction can alternatively be expressed as a

restriction on the error process Ul. Following Wei (1990), temporal aggregation of an autore-
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gressive process Uh of order one results in a new error process which can be described as an

autoregressive–moving average process. The order of the autoregressive as well as the moving

average component is one (ARMA(1, 1)) and the components will be labelled ρ∗, and φ∗ respec-

tively. Given the fact that β is invariant to Cm the aggregation restriction is thus a restriction

on the parameters of the low frequency error process, Ul.

The following lines exemplify the approach for m = 4. A general approach is dealt with in the

appendix. The basic idea is to express ρ∗ and φ∗ in terms of ρ and m. Define zh,t = yh,t− βxh,t

and calculate zl,τ = zh,t + zh,t−1 + zh,t−2 + zh,t−3. After some algebra, one obtains

zl,τ = ρ4zl,τ−1 + u∗l,τ , (6)

where

ul,τ = εh,t + (1 + ρ)εh,t−1 + (1 + ρ + ρ2)εh,t−2 + (1 + ρ + ρ2 + ρ3)εh,t−3

+(ρ + ρ2 + ρ3)εh,t−4 + (ρ2 + ρ3)εh,t−5 + ρ3εh,t−6 (7)

and hence ρ∗ = ρ4. According to Wei (1990, p. 409) ul,τ has an MA(1) structure

ul,τ = φ∗εl,τ−1 + εl,τ

εl,τ ∼ i.i.d.(0, σ2
l )

with

E(ul,τ , ul,τ−s) =

{
(1 + φ∗2)σ2

l for s = 0,
φ∗σ2

l for s± 1,
0 else.

(8)

The first and second line can alternatively be expressed as

(1 + φ∗2)σ2
l = σ2

hS0 = σ2
h

(
4 + 6ρ + 8ρ2 + 8ρ3 + 8ρ4 + 6ρ5 + 4ρ6

)

φ∗σ2
l = σ2

hS1 = σ2
h

(
ρ + 2ρ2 + 4ρ3 + 2ρ4 + ρ5

)

where it has been made use of (7) and (8). The solution for φ∗ can consequently be given as

φ∗ =
S0

2S1
±

√
S2

0

4S2
1

− 1. (9)

Notice that the square root term is always positive which can be conjectured from its monotonic-

ity in ρ and looking at the limiting cases of ρ → 0 and ρ → ±1 respectively. As it turns out

only one of the solutions yields an invertible MA representation. Furthermore, the whole ex-

pression will be dominated by the first term since | S0
2S1
| >

√
S2

0

4S2
1
− 1 given ρ 6= 0. The first
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Figure 1: The parameter φ∗ (vertical axis) as a function of ρ (horizontal axis).

term can also be written as 1
2ρ

S0
(1+2ρ+4ρ2+2ρ3+ρ4)

telling that ρ and φ∗ will always have the same

sign. The variance of the aggregated error process can be calculated as σ2
l = S0/(1 + φ∗2)σ2

h.

It implies that φ∗ can finally be identified as the choice out of the two possible options that

always ensures a non degenerate variance. Noticing that σ2
l approaches zero for ρ → 0, ρ > 0

and φ∗ = S0
2S1

+
√

S2
0

4S2
1
− 1, it is reasonable to consider the resulting invertible MA coefficient

as the true coefficient of the aggregated process. This completes the characterisation of the

aggregated model. Figure 1 illustrates the results by depicting the relation between ρ and φ∗.

As a notational convention I will provide the value of m (in parentheses) if convenient because

S0, S1, φ
∗, and ρ∗ all depend on m.

Finally, (9) implies an important restriction of the alternative approach. It is given by the

impossibility to calculate φ∗ for ρ = 0. It can therefore be expected that values of ρ close to

zero may cause serious trouble. Feasible approaches to estimate the model parameters are the

Kalman filter and various numerical optimisation methods. Using standard notation, L is the

lag operator with Lxt = xt−1, and we set up a model as in (4), but consider the ARMA(1, 1)

error process

(1− %L)ul,τ = (1 + φL)εl,τ (10)
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where % = ρ∗ and φ = φ∗ when the aggregation restriction is in place. The corresponding

empirical model is denoted ARMA∗(1, 1). Furthermore, I introduce the parameter vectors

θ =
( %

φ
)

and θ∗(m) =
(

ρ∗(m)
φ∗(m)

)
to obtain handy expressions for future use.

4 Testing disaggregation

Once estimated, the parameters of the model allow the calculation of a maximum likelihood

value that can be obtained from filtering the data with the derived ARMA∗(1, 1). Based on

those values and on the corresponding likelihood values of alternative models of an unrestricted

model, straightforward likelihood-ratio tests can be computed.

What hypothesis should be tested depends naturally on the final objective of the analysis.

If the researcher wants to know whether or not a given data set can be regarded aggregated in

the way Chow and Lin (1971) presumed, from quarterly to an annual level, say, the following

steps of analysis could be considered. First, test whether or not the aggregated process follows

an ARMA(1, 1) model. This can be done by standard tests in a general-to-specific setting,

for example. In the simulation study below, tests of significance of the AR(1) and the MA(1)

components are looked at individually. Given, that the process is indeed an ARMA(1, 1), the

aggregation restriction might be tested against the hypothesis of an unrestricted ARMA(1, 1)

process. The latter test will be in the focus of the following exercise.

Two remarks are in order. Firstly, it will not be the objective of the study to discuss the

implicit complications due to the multi-step testing. It is always assumed that no particular test

decision has been made at a previous stage of the analysis when applying a test. In other words,

only “ideal” conditions are supposed. Secondly, while a researcher might also be interested in

the question whether or not a series is aggregated from, say, quarterly to annual rather than

from monthly to annual levels, the corresponding testing problem is only briefly addressed. The

reason is the following. Testing, for example, H0 : m = 4 against H1 : m = 12 results in a

non-nested testing problem. As of today, no satisfactory solution for that is available. The

existing answers are rather demanding and would take this work too far away from its core.

Instead, an indirect testing strategy is pursued. The null hypothesis H0 : m = 4 will be tested

against an ARMA(1, 1) of arbitrary (albeit stationary and invertible) parametrisation. Thus,
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a – as it turns out – rather local power analysis is conducted. Most importantly, however, the

size of the basic test is scrutinised in detail.

The principal simulation approach uses a moderate sample size of T/m = 100 although a

limited investigation also addresses asymptotic properties.

4.1 Aggregation restriction

The question in the centre of this paper is whether or not an observed ARMA(1, 1) structure

arises from the aggregation of the data. This question can be answered by considering

H1
0 : θ = θ∗(m) vs. H1

1 : θ arbitrary, (11)

given m > 1. Here, the decision rule is to accept the disaggregation procedure if H1
0 cannot be

rejected. For the current purpose it appears reasonable to test H1
0 against some other, general

ARMA(1, 1) process. In particular, data will be generated by ARMA(1, 1) processes (ref. (10))

where either % or φ systematically vary unidirectionally.

4.2 Model selection

In applied problems, the researcher may face a model selection problem. If, for example, the

data is generated at the level of the observable data frequency, no MA effect should be present.

Accordingly, if there was no AR effect, the CL method would not be applicable and a linear inter-

polation would be as good. Hence, both these hypotheses could be tested and the corresponding

pairs of hypotheses are:

H2
0 : φ = 0 vs. H1

3 : |φ| < 1, (12)

H3
0 : ρ = 0 vs. H2

2 : |ρ| < 1. (13)

4.3 Simulation study

In this section the results of a limited simulation study are presented. I combine the analysis

of hypotheses (12) through (13) by the following strategy. The data is filtered by an AR(1),

an MA(1), ARMA∗(1, 1) and an unrestricted ARMA(1, 1) process. A˜on top of the estimates

indicates the means of the estimators over the random draws. The test results may then be

9



interpreted in the following way. Rejecting H2
0 and H3

0 indicate the possibility of an aggregation

effect i.e. the observed data may have been generated at a lower frequency and the presence of

the ARMA(1, 1) structure may be due to subsequent temporal aggregation. Significance of H1
0

indicates that the presence of a moving average effect cannot be attributed to the aggregation

of the data. In such a case the CL procedure should not be applied. On the other hand, if H2
0

and H3
0 are rejected while H1

0 is not, the data can be regarded aggregated and disaggregation by

the CL method is appropriate. In order to obtain a clear view on the capabilities of the testing

procedure in this paper each test is performed independently. In an alternative analysis yet to

come the result of the combined tests are going to be discussed. Besides the test statistics the

average coefficient estimates are reported.

The first simulation regards the size of the test of H1
0 . Data is generated according to (4)

and (10) with % = ρ∗(4), φ = φ∗(4) and xl,τ , εl,τ as independent pseudo normal variables. The

empirical size for various choices of ρ, and σ2
h is compared to its nominal level which is set

to .05. In each draw xl,τ is a zero mean random normal variable with variance σ2
h. For each

draw 1000 (pre-sample) values of yl,t are discarded to reduce the dependency on starting values.

The means of testing is a standard likelihood-ratio test being chi-square distributed with one

degree of freedom under the null hypothesis and under the assumption of independent tests.

In addition, a general model selection criteria, the Akaike (Akaike, 1969) criterion, is used to

discriminate between possible m.

Figure 2 summarises the simulation setup. The size of H0 is investigated along the solid line

in Figure 2. This line represents the possible values of φ∗(4) given ρ and ρ∗(4). The solid circles

signify the points at which the size will be investigated. Furthermore, ARMA(1, 1) processes

are generated under H1
1 with choices of % and φ represented by the circles off the solid line.

Thus, these test result indicate the power of the test against arbitrarily chosen alternatives in

the admissible parameter space.

In order to assess the test procedure tables 1 and 2 give the corresponding rejection frequen-

cies as well as the population means and standard deviations of the estimates for % and β. Note

however, for the ARMA∗(1, 1) models the reported % correspond to the value in (2). Finally,

the opportunity to discriminate between various alternative disaggregate levels is scrutinised by

generating data under H1
1 : m = 2 and m = 12.
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Figure 2: Summary of first simulation experiment in (ρ, φ) and in (ρ∗(4), φ) space.

The calculations were performed using an Ox3.40 program (Doornik and Ooms, 1993) making

use of its standard ARFIMA package. It is capable of filtering data by various definitions of

ARFIMA models and of calculating the according likelihood function. In combination with a

simple hill climbing algorithm estimates for ρ and φ∗ can be obtained.

4.3.1 Disaggregation restriction

The simulation results indicate that the empirical size of the test of H1
0 has a tendency to

exceed its nominal level. While the nominal level has been fixed at .05, the empirical size is in

the range of .061 – .117 (see table 1). The over rejection may be a result of the small sample

size. In addition, the choice of the model parameters seems to be related to excess rejections.

In particular, the smaller ρ the more readily the empirical size is above its nominal level. For

values ρ ≥ .5 the test size appears satisfactory, however. Equivalently, the convergence rate of

the test size with respect to T appears rather low for ρ close to zero. Using T/m = 1000, the

empirical size remains significantly above its nominal level for ρ < 0.2.
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Table 1: Parameter estimation and empirical test size in a small sample simulation

yh,t = 1 + 1.5xh,t + uh,t, T/m = 100
xh,t ∼ N(0, σ2

h)
uh,t = ρuh,t−1 + εt

εt ∼ N(0, σ2
h)

m = 4, ref.: equation (4)

σ2
h ρ model H0 % ρ̂ σ̂ρ̂ φ̂ σ̂φ̂ β̂ σ̂β̂

1 .2 AR(1) H3
0 10.1 .24 .47 1.51 .23

MA(1) H2
0 8.7 .06 .11 1.51 .23

ARMA∗(1, 1) H1
0 11.7 .20 .18 1.51 .23

ARMA(1, 1) -.01 .80 .07 .59 1.51 .24

.5 AR(1) H3
0 10.3 .64 .19 1.52 .31

MA(1) H2
0 7.1 .22 .10 1.52 .31

ARMA∗(1, 1) H1
0 7.7 .47 .15 1.52 .31

ARMA(1, 1) .02 .73 .21 .42 1.51 .31

.8 AR(1) H3
0 35.3 .86 .03 1.52 .40

MA(1) H2
0 56.8 .55 .08 1.51 .41

ARMA∗(1, 1) H1
0 6.1 .79 .05 1.52 .39

ARMA(1, 1) .73 .25 .27 .19 1.51 .40

.95 AR(1) H3
0 62.6 .96 .01 1.51 .41

MA(1) H2
0 100.0 .77 .07 1.50 .53

ARMA∗(1, 1) H1
0 6.1 .94 .02 1.51 .40

ARMA(1, 1) .94 .02 .27 .12 1.51 .40

4 .8 AR(1) H3
0 35.3 .86 .03 1.57 1.60

MA(1) H2
0 56.8 .55 .08 1.56 1.65

ARMA∗(1, 1) H1
0 6.1 .79 .05 1.57 1.58

ARMA(1, 1) .73 .25 .27 .19 1.56 1.59

ARMA∗(1, 1) denotes the restricted ARMA(1, 1) model (m = 4). The column
headed % signifies the rejection frequency of the hypotheses to the left in percent-
age points. Columns ‘ρ̂’ (‘σ̂ρ̂’), ‘φ̂’ (‘σ̂φ̂’), ‘β̂’ (‘σ̂β̂ ’) report the average (standard
deviation) of the estimated model parameters. Note: Estimates for ρ can be com-
pared to the true parameter only for ARMA∗(1, 1). A comparison to % = ρ∗(4)
should otherwise be made. The empirical size of the test of H1

0 exceeds its nominal
level especially for ρ close to zero.
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Table 2: Empirical power against arbitrary alternative hypotheses

yt = 1 + 1.5xt + ut, t = 1, 2, . . . , 100
xt ∼ N(0, 1)
(1− %L)ut = (1 + φL)εt

εt ∼ N(0, 1)

φ % model H0 % %̂ σ̂%̂ φ̂ σ̂φ̂ β̂ σ̂β̂

.1 .2 ARMA∗(1, 1) H1
0 14.4 .58 .03 1.50 .03

ARMA(1, 1) .61 .22 .11 .11 1.50 .03

.5 ARMA∗(1, 1) H1
0 65.7 .79 .01 1.50 .02

ARMA(1, 1) .84 .02 .10 .05 1.50 .03

.8 ARMA∗(1, 1) H1
0 97.6 .93 .01 1.50 .02

ARMA(1, 1) .94 .01 .10 .04 1.50 .02

.9 ARMA∗(1, 1) H1
0 99.1 .97 .00 1.50 .02

ARMA(1, 1) .97 .00 .10 .03 1.50 .02

.2 .1 ARMA∗(1, 1) H1
0 6.7 .58 .03 1.50 .03

ARMA(1, 1) .38 .41 .20 .10 1.50 .03

.5 ARMA∗(1, 1) H1
0 100.0 .76 .01 1.50 .02

ARMA(1, 1) .52 .18 .50 .05 1.50 .02

.8 ARMA∗(1, 1) H1
0 100.0 .81 .01 1.50 .02

ARMA(1, 1) .55 .07 .80 .02 1.50 .01

.9 ARMA∗(1, 1) H1
0 100.0 .82 .01 1.50 .02

ARMA(1, 1) .55 .06 .90 .01 1.50 .01

.9 .2 ARMA∗(1, 1) H1
0 100.0 .84 .01 1.50 .02

ARMA(1, 1) .67 .03 .90 .01 1.50 .01

.5 ARMA∗(1, 1) H1
0 100.0 .91 .01 1.50 .02

ARMA(1, 1) .84 .01 .90 .01 1.50 .01

.8 ARMA∗(1, 1) H1
0 100.0 .97 .00 1.50 .02

ARMA(1, 1) .94 .01 .90 .01 1.50 .01

.9 ARMA∗(1, 1) H1
0 100.0 .98 .00 1.50 .02

ARMA(1, 1) .97 .00 .90 .01 1.50 .01

.2 .9 ARMA∗(1, 1) H1
0 23.1 .97 .00 1.50 .02

ARMA(1, 1) .97 .00 .20 .03 1.50 .02

.5 ARMA∗(1, 1) H1
0 100.0 .98 .00 1.50 .02

ARMA(1, 1) .97 .00 .50 .03 1.50 .02

.8 ARMA∗(1, 1) H1
0 100.0 .98 .00 1.50 .02

ARMA(1, 1) .97 .00 .80 .02 1.50 .01

ARMA∗(1, 1) denotes the restricted ARMA(1, 1) model (m = 4). The column
headed % signifies the rejection frequency of the hypotheses to the left in percent-
age points. Columns ‘%̂’ (‘σ̂%̂’), ‘φ̂’ (‘σ̂φ̂’), ‘β̂’ (‘σ̂β̂ ’) report the average (standard
deviation) of the estimated model parameters. The values of φ and % are only
provided if they change from line to line. The results show that the power of
the test rapidly increases with the distance between θ and θ∗(4). The increase is
more rapid in the direction of φ.
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The accuracy of the point estimates of the β parameter appears to be unaffected by the choice

of ρ. This can be conjectured from the reported standard deviations. There is no situation where

the t-ratio comes close the 2, it is always much larger. Quite reasonably, the variance depends

on the underlying variance of the innovation process and the variance of xl,τ .

In sum, when H1
0 is true, the performance of the test appears more or less appropriate. Prob-

lems arise when the autoregressive parameter becomes small. In such a situation, however, the

intra-annual information is not very important in the sense that a straightforward linear inter-

polation would result in very similar disaggregated data estimates compared to a disaggregation

which is based on a small ρ.

When regarding the power of the test against arbitrary alternatives data is generated as an

ARMA(1, 1) process with various autoregressive and moving average parameters. The results

are collected in table 2. In general, the difference between the true autoregressive parameter

and the supposed ρ∗(4) seems to be less important for obtaining a high rejection frequency than

the difference for the moving average component. This can be seen from the first five rows in

table 2 where the power is indeed larger the larger ρ. However, while 1 is only approached for

ρ close to 1, for φ > .2 the empirical power is always 1.

As expected the point estimates of β are again very reliably estimated. The estimated

variance of the estimates does hardly vary at all across models and is relatively small. Hence,

there is a good chance to correctly determine the related series. This leads to the conclusion

that independent of whether or not the true disaggregated model can be identified forecasting,

or nowcasting on the basis of the true related series is, in principle, feasible.

4.3.2 Model selection

So far, the aggregation restriction m = 4 has been tested. If a researcher was moreover also

interested in distinguishing between various possible disaggregation methods, i.e. the decision

about the most appropriate disaggregation level, an according choice of m has to be made.

Obviously, the pure disaggregation test is not applicable because the alternative hypothesis does

not nest the null. This paper looks in the remainder at a multi-step model selection strategy to

identify the correct m. The first step is to ensure that indeed, an ARMA(1, 1) process describes

the observations appropriately. However, instead of a thorough general-to-specific approach, a
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Figure 3: Top and middle panel: Size and power of the likelihood ratio test against nested

alternatives, bottom panel: selection between non-nested models.

simple check of the significance of the AR and the MA parameter is pursued.

Secondly, in order to discriminate between different possible m, disaggregation tests are

performed with the various candidates of m in the null and arbitrary ARMA(1, 1) processes

in the alternative. Ideally, if the data was generated with m = 4, for example, then the null

hypotheses m = 2, or m = 12 should be rejected while the null hypotheses m = 4 should not.

Likewise, if the data was generated with m = 12, the null m = 4 should be rejected and so forth.

Figure 4 illustrates the choices of φ∗ and ρ∗ for various m. It is interesting to notice that

regardless of the actual choice of m the implicit ARMA(1, 1) parameters are close to each

other for a considerable range of ρ. In fact, all possible pair of lines have at least one point

in common. This implies that there are always some ρ for which the observable data could

have been generated at two possible higher frequencies. In other words, the aggregated data
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Figure 4: Top panel: the simulation experiment in the (ρ∗, φ∗) space, the lines connect pairs

of ρ∗ and φ∗ generated with ρ fixed yet varying m, middle panel: values of φ∗ for

popular choices of m (semi-annual to annual, monthly to quarterly, quarterly to

annual, monthly to annual aggregates), bottom panel: autocovariance for σ2
l = 1

and various m.

information does not suffice to identify m. Moreover, given a certain variance of the aggregated

process, the variance of the innovation process of the disaggregated model does not vary much

with m for ρ < .8 (see bottom panel of Fig. 4). A reasonable a priori presumption therefore

is that the discrimination on the basis of this indirect method might not be very powerful.

Thus, in an additional exercise the general model selection criterion due to Akaike (1969) will

be employed.

The simulation results are graphically depicted in Figure 3. Its top panel reports the power

of the first step of the model selection procedure. It shows that the probability to choose the

ARMA(1, 1) correctly increases with increasing ρ. This result does not come as a surprise given
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the fact that both, φ∗(m) and ρ∗(m), rise when ρ approaches one.

At the second step of the model selection procedure it should be decided what particular m

led to the observation of an ARMA(1, 1) process. The middle panel of the figure shows that the

corresponding indirect conjecture is ridden with low power of the disaggregation test against local

alternatives. Notice that an ARMA(1, 1) process owing to m = 12 is observationally fairly close

a process obtained with m = 4 (cf. Figure 4, top panel). However, at least the power exceeds

the corresponding size of the test implying that the test works in the appropriate direction.

In the bottom panel it is tested if it was possible to gain from using the Akaike information

criterion. The picture is drawn such that the probability of a correct choice is positive when the

filled symbol is above its empty counterpart. As it turns out, this is not always the case when

the objective is to discriminate between m = 4 and m = 2. When choosing between m = 4 and

m = 12, the Akaike criterion delivers some useful information. With the indirect test method, it

seems to be easier to discriminate between m = 4 and m = 2 when compared to choose between

m = 4 and m = 12. The details are given in the middle panel.

5 Summary and conclusions

This paper suggests an alternative estimation of the established CL disaggregation approach.

In addition to simplifying the analysis by allowing a one-step-estimation on the basis of the

aggregated data, it permits to perform various specification tests. In particular, the aggregation

restriction can directly be tested. A simulation study reveals that the test indeed has power

against alternative data generating processes. However, the use of the test is partly limited

due to excessive size in small samples and low power against local alternatives. Future research

might be devoted to correct for the small sample effects and to the development of superior model

selection strategies. In particular, testing against non-nesting alternatives might prove useful.

Nevertheless, the new estimation and testing approach may provide an additional valuable tool

for disaggregation model selection in the presence of modelling alternatives.
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A Appendix

In this appendix I outline the derivation of φ∗ as a function of m given the aggregation problem

described in the main text. Firstly, I write (6) for general m and then show how S0 and S1

result. The value of φ∗ then results by applying (9). Unfortunately, I only can guess but have

no proof for φ∗ being a real valued function for an arbitrary choice of m. On the other hand,

for any given m it is easy to check whether or not φ∗ is real. For most applications m will not

exceed 12, and for each of the corresponding φ∗ a real value is obtained.

The starting point is the notion that any zh,t can be given as

zh,t = ρnzh,t−n + ρn−1εh,t−n+1 + ρn−2εh,t−n+2 + · · ·+ εh,t (A.1)
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which implies for temporal aggregation over m periods,

zh,t + zh,t−1 + · · ·+ zh,t−m+1 = ρmzh,t−m + ρm−1εh,t−m+1 + ρm−2εh,t−m+2 + · · ·+ εh,t

+ ρmzh,t−m−1 + ρm−1εh,t−m + ρm−2εh,t−m+1 + · · ·+ εh,t−1

...

+ ρmzh,t−2cm + ρm−1εh,t−2m+2 + ρm−2εh,t−2m+3 + . . .

+εh,t−m+1

= ρm(zh,t + zh,t−1 + · · ·+ zh,t−m+1) + ul,τ .

The aggregated process can now more compactly be written as

zl,τ = ρmzl,τ−1 + ul,τ (A.2)

where the error term ul,τ is the sum of the elements of the (m×m) matrix Φτ :

Φτ = [εt εt−1 . . . εt−m+1]
′ ⊗ [

(ρL)m−1 (ρL)m−2 . . . (ρL)0
]

(A.3)

which makes use of the lag operator, L, with Lixt = xt−i. It is instructive to expand Φτ :

Φτ =




ρm−1εh,t−m+1 ρm−2εh,t−m+2 ρm−3εh,t−m+3 · · · ρ0εh,t

ρm−1εh,t−m ρm−2εh,t−m+1 ρm−3εh,t−m+2 · · · ρ0εh,t−1

ρm−1εh,t−m−1 ρm−2εh,t−m ρm−3εh,t−m+1 · · · ρ0εh,t−2

...
...

...
. . .

...

ρm−1εh,t−2m+1 ρm−2εh,t−2m+2 ρm−3εh,t−2m+3 · · · ρ0εh,t−m+1




(A.4)

This matrix has an interesting structure. In particular, the innovations with identical time

subscripts are to be found along the diagonals. Thus, the variance of ul,τ is the sum of the

squared sums of the diagonal elements. At the same time the power to which ρ is raised is the

same in each column. Therefore, every secondary diagonal can be regarded a truncated version

of the main diagonal with respect to the power coefficients. The following auxiliary matrices

and operator are useful in finding handy expressions. Let me use the operator diag which stacks
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the main diagonal of a symmetric matrix into a vector. Hence,

Ψ ≡ 1m×1 ⊗
[
ρm−1 ρm−2 . . . ρ0

]

diag(Ψ) =
[
ρm−1ρm−2ρm−3 · · · ρ0

]′

= ψ′

H ≡




1 1 · · · 1 1 0 · · · 0 0
0 1 · · · 1 1 1 · · · 0 0
...

...
...

...
...

...
...

...
...

0 0 · · · 1 1 1 · · · 0 0

0 0
. . . 1 1 1

. . . 1 0
0 0 · · · 0 1 1 · · · 1 1




where diag(Ψ) and H have dimensions (m × 1) and (m × 2m − 1) respectively, and 1m×1 is a

(m × 1) vector of ones. Notice that H is essentially a matrix of m rows of a m dimensional

column vector of ones within a (m× 2m− 1) matrix of zeros where in each successive row the

vector of ones is shifted one column to the right. The product ψH now conveniently collects the

2m − 1 sums of the diagonal elements of Φτ in a (1 × 2m − 1) vector omitting for the sake of

simplicity the innovation terms. The variance of ul,τ can now be obtained as

S0 ≡ ψHH ′ψ′

E(ul,τul,τ ) = σ2
hS0

which makes use of the i.i.d. property of the εt.

For deriving S1, decompose H = (h1, 1m×1, h2) where h1 and h2 are (m ×m − 1) matrices

collecting the sums of the diagonal elements below and above the main diagonal respectively.

Consider now Φτ−1 = LmΦτ whose sum of elements define ul,τ−1. The value of S1 is linear in

the covariance between ul,τ and ul,τ−1. Therefore, we need to multiply the sums of the elements

above the main diagonal of the matrix Φτ−1 with the sums of the elements below the main

diagonal of the matrix Φτ diagonal by diagonal. With the aid of h1 and h2 one can write

S1 = ψh1h
′
2ψ

′

E(ul,τul,τ−1) = σ2
hS1.

Figure 4 depicts the values of φ∗ which are obtained for various choices of ρ and sets them

in relation to the hypotheses tested in the simulation study.
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