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Abstract

The returns to scale for nineteen South Asian countries are estimated
using window and cumulative rolling stochastic frontier regression analysis.
The stochastic frontier analysis accounts for technical inefficiency of Hicks
non-neutral technology production function in the estimation of the returns
to scale. The window rolling regression and cumulative rolling regression
allows the estimation of short and long run time-varying returns to scale,
respectively. Empirical application to Asian agriculture sector using Food
and Agricultural Organization data from 1961-2008 indicates returns to
scale are under (over) estimated by the traditional panel models in the
short (long) run time-varying estimation. The time-varying estimates of
returns to scale indicate decreasing trend in the short run compared to
long run analysis.
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1 Introduction

Production economics, one of the fundamental pillars of neoclassical economics,

has been the subject of intense research over the last century. At the macro-

level, the focus has been on the use of aggregate production functions to explain

technological progress, convergence, and factors contributing to economic growth.

At the micro-level, economists use production functions to construct cost and

profit functions, estimate the input elasticity1, and compute returns to scale for

a firm, sector, state, or country (Marschak, and Andrews, 1944; Bhattacharjee,

1955; Hoch, 1958, 1962; Zellner, Kmenta, and Dreze, 1966; Nerlove, 1963; Hayami

and Ruttan, 1970; Diewert, 1974; Fuss, and McFadden, 1978; Nguyen, 1979;

Yamada and Ruttan, 1980; Kawagoe and Hayami, 1983 and 1985; Antle, 1984;

Kawagoe, Haymai, and Ruttan, 1985; Basu and Fernald, 1997; and Trueblood,

1991). In the post-World War II era, the focus of production function has been the

analyses of cross-country productivity differences using parametric methods, linear

programming and stochastic frontier analysis (Forsund, Lovell and Schmidt, 1980;

Greene, 1993; Bureau, Fare and Grosskopf, 1995; Arnade, 1998; and Kumbhakar

and Lovell, 2000).

Existing literature estimating production functions have computed the elastic-

ity of inputs and reported the returns to scale without accounting for inefficiency2.

Further, much of the earlier work in estimating production functions focused on

the developed world where inefficiency, though present, was not of paramount

interest. In developing or underdeveloped continents like Africa and Asia, the

focus has been on poverty alleviation and food security, respectively. However,

when estimating production function in developing or underdeveloped continents,

accounting for inefficiency3 is critical, particularly when assessing the impact of

1Input elasticity measures the rate of response of output due to input change and the sum-
mation of input elasticity provides the return to scale estimates.

2Efficiency concept introduced by Farrell (1957) is defined as the distance of the observation
from the production frontier and measured by the observed output of a firm, state or country
relative to realized output, i.e., output that could be produced if it were 100 % efficient from a
given set of inputs.

3Ideally, there is a need to account for the overall inefficiency as well as input specific ineffi-
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inputs and returns to scale due to green revolution.

This research first examines the importance of accounting for inefficiency on

the elasticity of inputs and returns to scale. Stochastic frontier analysis (SFA)

not only estimates the input elasticities but also accounts for inefficiency in the

estimation of production function. However, is it necessary to account for in-

efficiency in the estimation of production function? The answer is yes, for the

simple reason that the estimation of input elasticity and return to scale should

be based on the efficient utilization of input resources to produce output after

accounting for technology change. Accounting for inefficiency which was not done

in production function estimation prior to the 1980s, leads to realization of true

or accurate elasticity of inputs and returns to scale measures. If inefficiency is

not accounted, it is possible to over or under estimate input elasticity in turn the

return to scale. Second, apart from accounting for inefficiency there is also a need

to estimate the short and long run time-varying elasticity of inputs, and returns

to scale. Time-varying estimates represent one of the most widely used concepts

in finance. The importance of time-varying estimates has been well established in

the finance, risk, and time series literature (Rosenberg and Guy, 1976; Fisher and

Kamin, 1985; Lawrence and Kamin, 1985; Chiang, 1988; Corckett, Nothaft and

Wang, 1991; Groenewold and Fraser, 1999; Smith and Taylor, 2001). It is widely

used by financial economist and practitioners to estimate the stocks sensitivity to

the market and identify variations in stock prices.

In the context of production function, elasticity of inputs and returns to scale

were assumed to be systematic (constant over time after accounting for technol-

ogy changes) and driven by state, national and worldwide difference in the short

and long run. But is it true to assume constant parameter coefficients over time

when we observe short and long run variations. For example in India, there was

enormous investment in development of high yield variety seeds during the green

revolution. This was associated with use of fertilizers, construction of dams for

ciency measures. This could be accomplished by stepwise or input specific SFA estimation but
would be biased and not efficient.
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constant supply of water and expanding land use for agriculture. However, in

recent years the quality of labor, seeds and chemicals has led to selective input

resource usage. This would have differential implications in the short and long

run. Hence, the systematic nature of the elasticity of inputs and returns to scale

is questionable due to short and long run changes in the industry induced by

advancements in structure of agriculture production. This paper aims to close

this gap by empirically estimating the window and cumulative rolling regression

to estimate short and long run time-varying input elasticity/returns to scale, re-

spectively. The cumulative rolling regression allows the quantification of long run

changes in the elasticity of inputs and returns to scale estimates with each ad-

ditional year of data or information. The window rolling regression captures the

short run changes in the elasticity of inputs and returns to scale estimates with

dropping the earliest observation and adding new data or information.

Next, the short and long run time-varying stochastic production function fron-

tier models are proposed along with the traditional panel production function

model. In the data section, the details on the sources and construction of the re-

gression variables along with their average and standard deviation are discussed.

Results of empirical applications to Food and Agricultural Organization (FAO)

data from 19 Asian countries forming the cross-sectional units over the period

1961-2008 with emphasis on the agricultural sector are presented next. Finally,

general implications are presented.

2 Stochastic frontier production function econo-

metric model

Depending on the availability of the data, returns to scale can be estimated for

a single country using time series data or multiple countries using cross-sectional

or for a group of countries using panel data. The production function can be

represented by a linear Cobb-Douglas functional form. A generalized Hicks non-
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neutral4 Cobb-Douglas production function can be represented as:

yit = f ((xit, x(t)it; β) , t) · εit (1)

where i = 1, ..., I represent the cross-section units, i.e., countries and t = 1, ..., T ,

represents the time series, i.e., number of years, y denotes output produced from a

vector of input,x, Hicks non-neutral technology change vector of input,x(t), β the

associated vector of parameter coefficients, t the time trend represents the Hicks

neutral technology trend, and ε the error term. These parameter coefficients are

the elasticity of inputs if the vectors of inputs and output are in logarithmic form.

The stochastic frontier model5 that decomposes the error term, ε into random

error, v and inefficiency6, u can be represented as:

yit = f ((xit, x(t)it; βsfa) , t) · vit − uit (2)

where βsfa is the vector of stochastic frontier parameter coefficients, vit represents

firm and time-specific random errors which are assumed to be i.i.d. and normally

distributed variables with mean zero and variance, σ2
V ; and uit must be non-

negative and one-side with variance,σ2
V . The variables y and x are as defined in

equation (1). The returns to scale are computed as the sum of the parameter

4Likelihood ratio test suggest the use of Hicks non-neutral technology change
5The stochastic frontier model, introduced by Aigner et al. (1977); Meeusen, van den Broeck

(1977); and Battesse and Cora (1977) decomposes the error term, ε into random error, v and
u inefficiency. Stochastic frontier analysis has become a popular tool to model the production
relationship between input and output quantities and has been primarily used to estimate the
technical efficiency of firms. In 1982, Jondrow et al. suggested a method to estimate firm
specific inefficiency measures. Since it was introduced in 1977, the stochastic frontier analysis
has been evolving theoretically with a surge in empirical application. Furthermore, progress has
been made on extending to fixed effects, random effects and random parameters panel models,
time invariant and time variant models, correcting for heteroskedasticity and heterogeneity
and alternative distributions (normal- half normal, normal-exponential and normal-gamma) of
technical inefficiency term. Additionally, research has investigated the influence of a broader set
of determinants of technical efficiency, namely geographic variables, market structure conduct
and performance hypothesis, policy variables and size of the firm.

6Truncated, exponential and gamma distributed SFA models were also estimated but are not
reported.
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coefficients, βsfa or the elasticity of inputs.

2.1 Time-varying stochastic frontier production function

econometric model

To examine time-varying elasticity of inputs and the returns to scale, simple meth-

ods such as time dummies or testing for breaks using Chow tests, and separating

the estimation into different periods have been used in the literature. To examine

time-varying elasticity of inputs and the returns to scale, a window rolling regres-

sion and cumulative rolling regression of stochastic production function frontier

is estimated to capture the short and long run changes. With cumulative rolling

regression, a set of coefficients are estimated with each additional year of data.

The cumulative rolling stochastic frontier production function can be re-written

as:

yLit = f
((

xL
it, x(t)

L
it; β

L
sfa

)

, tL
)

· vLit − uL
it (3)

where L = 26, ......., T and represents the number of cumulative rolling stochastic

frontier production function regression runs. The first regression starts with a

window of the first 26 observations. The second regression includes an additional

year of data; that is the first 27 observations. The third regression includes two

additional years of data; that is the first 28 observations. The final regression

would include all T years of data. This would be equivalent to the traditional

regression analysis. With window rolling regression, a set of coefficients are esti-

mated with each additional year of data and dropping data related to the earliest

year. The window rolling stochastic frontier production function can be re-written

as:

ySit = f
((

xS
it, x(t)

S
it; β

S
sfa

)

, tS
)

· vSit − uS
it (4)

where s represents a constant number of years of data for each window rolling

stochastic frontier production function regression run. The first regression starts

with a window of the first 26 observations or years of cross-section units. The

second regression includes adding an additional year and dropping the early year
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of data; that is 2 to 27 observations or years of cross-sectional units. The third

regression includes adding an additional year and dropping the early year of data

for the second regression run; that is 3 to 28 observations or years of cross-section

units. Even though the number of years of data is constant, the composition of

the window changes with time reflecting the short-run changes.

For comparison purpose, the cumulative and window rolling regression is also

estimated using one-way fixed effect panel model as follows:

yLit = f
((

xL
it, x(t)

L
it; β

L
sfa

)

, tL
)

· εLit (5)

and

ySit = f
((

xS
it, x(t)

S
it; β

S
sfa

)

, tS
)

· εSit (6)

The short and long run analysis of Asian agriculture sector elasticity of inputs

and returns to scale measures will provide insight into the economic performance

accounting for any short and long-term variation. The results will also provide

information that will be useful to policy makers for assessing the effects of variation

on the elasticity of inputs and returns to scale.

Proposition 2.1 Comparison of panel and stochastic frontier models allows the

quantification of the difference (over or under estimation) in input elasticity and

return to scale associated with accounting for inefficiency in the estimation of

production function.

Conceptually, over or under estimation of input elasticity and return to scale

associated with accounting for inefficiency7 using stochastic frontier analysis could

be quantified by comparing the parameters estimated from panel and stochastic

7There are two issues associated with the derivative, ∂ y/∂ xineff . First, examine what
happens when over using inputs or not using inputs efficiently. Second, and not discussed
in this paper: Parameter biases that may arise from not correctly specifying your estimating
equations. This is an issue by itself and is not explored in this paper. For example, if the one
side error relates to any of the inputs in the production function, then it is possible to end up
with a parameter bias if you do not account for inefficiency. Battese and Coelli (1995) addressed
this issue by relating one side error to variables.
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frontier model. Earlier literature have examined one or the other methods and

but did not compared the differences between methods. Comparison of stochastic

frontier and panel model would be useful to evaluate the importance of accounting

for inefficiency in the production function. Over or under estimation of input

elasticity can be represented as:

βsfa
>
−

< β =
∂ y

∂ x

>
−

<

∂ y

∂ (x+ xineff)
≡

∂ y

∂ x

>
−

<

∂ y

∂ x
±

∂ y

∂ xineff

(7)

where βsfa and β are the parameter coefficients estimated from stochastic frontier

and panel model, respectively. When dealing with inefficiency, βsfa can be zero

or negative due to the decomposed error structure assumptions of stochastic fron-

tier analysis. The parameter, β from the panel model would be underestimated

compared to βsfa parameter from stochastic frontier model ifandonlyif(iff) the

inputs are actually or efficiently utilized in the production even after accounting

for inefficiency. The panel model parameter, β would be overestimated compared

to stochastic frontier model parameter βsfa iff the inputs are actually utilized in

the production but not efficiently. But this depends if the inputs are being used

efficiently either due to the cost or regulations (for example clean air act of 1972

lead to the efficient use of chemicals and fertilizers). The βsfa will be equal to

β iff the same amount of inputs are utilized with and without accounting for

inefficiency in the production function. The over or under estimation of parameter

(βsfa − β) can be represented as:

(βsfa − β) ⇒















positive ∂ y

∂ x
− ∂ y

∂ xineff
......iff the input is actually utilized but efficiently

Zero ∂ y

∂ x
− 0 ......iff xineff is zero

negative ∂ y

∂ x
+ ∂ y

∂ xineff
.....iff the actual input is utilized but inefficiently















(8)

Proposition 2.2 Long (short) run time-varying parameter, βL(S) estimated from

the equation 3 (4) allows quantifying the extent of long and short run input elas-
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ticity and return to scale.

Irrespective of the model (panel or stochastic frontier), the parameter estimates

varies in the short and long run and this variation would be captured if the input

and output variation is different than the earlier sample. Mathematically this can

be represented as

βL(S)+1 >
−

< βL(S) =
∂ yL(S)+1

∂ xL(S)+1

>
−

<

∂ yL(S)

∂ xL(S)
≡

∂
(

yL(S) + y1
)

∂ (xL(S) + x1)
>
−

<

∂ yL(S)

∂ xL(S)
(9)

The βL+1 estimated from production function with L(S) observations plus

one additional year of observation would be great than β estimated with L(S)

observations if the marginal effect, β1 = ∂y1/∂x1 is positive and greater than

βL(S) = ∂yL(S)
/

∂xL(S). The βL(S)+1 parameter estimated from production func-

tion with L(S) observations plus one additional year of observation would be less

than |beta parameter estimated with L(S) observations if the marginal effect,

β1 = ∂y1/∂x1 is negative and greater than βL(S) = ∂yL(S)
/

∂xL(S). The βL+1 will

be equal to β if the marginal effect, β1 = ∂y1/∂x1 is equal to zero. This can be

represented as:

βL(S)+1−βL(S) ⇒



























positive
(

∂ yL(S)

∂ xL(S) +
∂ y1

∂ x1

)

or
(

βL(S) + β1
)

...iff β1 is positive

zero
(

∂ yL(S)

∂ xL(S) + 0
)

or
(

βL(S) + 0
)

...iff β1 is zero

negative
(

∂ yL(S)

∂ xL(S) −
∂ y1

∂ x1

)

or
(

βL(S) − β1
)

...iff β1 is negative

&greater than β1



























(10)

The over or under estimation in input elasticity, (βsfa − β) and return to

scale associated with accounting for inefficiency in the estimation of production

function, and the extent of variation in the time-varying parameter with each

additional year of information is empirically examined next.
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3 Input and output Agriculture sector data for

Asian Countries

This study is based on Food and Agricultural Organization data available online.

The study includes 19 countries (Figure 1) for the period 1961 to 2008. For

the output and the five inputs, the output quantity index and quantity of input

resources used was constructed.
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Figure 1: Map of the 19 countries of Southeast Asia
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Due to the problems of estimating multiple outputs in primal production func-

tions, an aggregate output variable published by FAO is used in the analysis. The

FAO output concept is the output from the agriculture sector net of quantities of

various commodities used as feed and seed, which is why feed and seed, are not

included in the input series. Details on the construction of the aggregate output

variable are available on FAO webpage, www.fao.org.

This analysis considers only five input variables following earlier studies esti-

mating a production function. These variables include land, labor, capital, fertil-

izer and livestock. The land variable includes harvested acres of cereals, fibers,

fruits, nuts, oil crops, pulses, roots and tubers, rubber, spices, stimulants, sugar

crops, tobacco and vegetables unlike earlier studies that use land under cultiva-

tion. The capital variable covers the total number of agricultural tractors, and

number of harvesters and threshers used in agriculture. With respect to tractors,

no allowance was made to the quality (horsepower) of the tractors. The labor

variable refers to the economically active population in agriculture. An econom-

ically active population is defined as all persons engaged or seeking employment

in an economic activity, whether as employers, own-account workers, salaried em-

ployees, or unpaid workers assisting in the operation of a family farm or business.

The economically active population in agriculture includes all economically active

persons engaged in agriculture, forestry, hunting, or fishing. This variable obvi-

ously overstates the labor input used in agricultural production, but the extent

of overstatement depends on the level of development of the country. Follow-

ing other studies on inter-country comparisons of agricultural productivity, this

analysis uses the sum of nitrogen, (N) potassium, (P2O2) and phosphate (K2O)

contained in the commercial fertilizers consumed. This variable is expressed in

thousands of metric tons.

The livestock input variable used in the study is the sheep-equivalent of five

categories of animals. The categories considered are buffaloes, cattle, goats, pigs

and sheep. The number of these animals is converted into sheep equivalents using

conversion factors of 8.0 for buffalo and cattle and 1.00 for sheep, goats and pigs.
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Chicken numbers are not included in the livestock figures.

Table 1 provides the means and standard deviations of the output and input

index variables used in the analysis for the period 1961-2005.

4 Empirical Application and Results

Effect of accounting for technical inefficiency on the elasticity of inputs and returns

to scale (Proposition 1) and short and long run time-varying estimates (Propo-

sition 2) are examined using Cobb-Douglas Hicks non-neutral stochastic frontier

production function8. Long and short run time-varying elasticity of inputs and

returns to scale measures are recovered by estimating cumulative (equation 3)

and window (equation 4) rolling stochastic frontier Hicks non-neutral production

function, respectively. To compare the elasticity of inputs and returns to scale

recovered from SFA to panel model equation (5 and 6) is also estimated. Alter-

native panel models one or two way fixed and random effects models accounting

for autocorrelation and heteroskedasticity can be used to estimate the production

function. Several possibilities exist for the estimation of one or two way random ef-

fects models in the traditional regression analysis. This includes the use of pooled

OLS residuals (Wallace-Hussian estimator) within residuals (Amemiya estima-

tor) or within residuals, between cross-sectional residuals and between time-series

residuals (Swamy-Arora estimator). However, these alternative random effects

models are not yet available in the SFA framework (exception, Shaik and Mishra,

2010). This research focuses on the one-way fixed effects9 specification of the

Cobb-Douglas Hicks non-neutral production function.

The one-way fixed effect Cobb-Douglas Hicks non-neutral production function

8Confidence interval of parameter coefficients of panel and stochastic frontier model for propo-
sition 1 and 2 based on bootstrapping estimates are available upon request from the author. The
bootstrapping estimate provides similar difference across panel and stochastic frontier models.

9One-way random effects, and two-way fixed and random effects models were also estimated.
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can be econometrically represented as:

ln yit = α+

5
∑

k=1

βk ln xk,it+βt Trend+

5
∑

k=1

γk ln x(t)k,it+

19
∑

n=1

λn−1CS dummyit+εit

(11)

Similarly, the one-way fixed effect Cobb-Douglas Hicks non-neutral stochastic

frontier production function can be econometrically represented as:

ln yit = α+
5

∑

k=1

βk ln xk,it+βt Trend+
5

∑

k=1

γk ln x(t)k,it+
19
∑

n=1

λn−1CS dummyit+vit−uit

(12)

where βk represents the elasticity of inputs and the sum represents returns to

scale, βt represents Hicks neutral (HN) technology change, γk represents the input

specific Hicks non-neutral (HNN) technology change and the sum represents HNN

change, and λn−1 represents n− 1 individual country dummies.

Long and short run set of results are presented for panel and SFA models

using logarithms of the input and output variables. A nice feature about using

logarithms is that the slope coefficient measures the elasticity, that is, percentage

change in output given a percentage change in input. Result of proposition 1 is

presented in tables 2 to 4, and results of proposition 2 are presented in tables 5

and 6, and graphically in figures 1, 2 and 3.

Proposition 4.1 Comparison of panel and stochastic frontier models allows the

quantification of the difference (over or under estimation) in input elasticity and

return to scale associated with accounting for inefficiency in the estimation of

production function.

Over or under estimation of elasticity of inputs, HN trend and HNN input

change, and returns to scale associated with accounting for inefficiency is exam-

ined by comparing the stochastic frontier production function and panel model.

Table 2 presents the average and standard deviation of the time varying parameter

coefficients estimated from window (short-run) and cumulative (long run) regres-

sion runs. Not all the short-run time varying parameter coefficients are significant
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in the panel and SFA model. However, the SFA model has more statistically signif-

icant parameter coefficients than panel model. In general, all the input variables

are positive and significant for the window (short-run) regression model. How-

ever, the inputs with Hicks non-neutral technology are negatively related with the

exception of labor and fertilizer. The Hick neutral technology trend was negative

related to output in the window (short-run) regression models. In contrast for

the cumulative (long-run) regression models, all the input variables and the Hicks

neutral technology trend are positive and significantly affect agricultural output

with the exception of fertilizer. The fertilizer variable is negative and significant

for the panel and SFA models. The inputs with Hicks non-neutral technology are

positively related with the exception of land and capital.

First, the results from the SFA model indicate an input elasticity of 0.44

(0.28) for land which is the highest (second) relative to the other inputs in the

long-run (short-run). Land elasticity of 0.44 and 0.28 seems to be consistent with

earlier estimates that range 0.02 to 0.42 (see table 1 from Mundlak, Larson and

Butzer, 1997). A 100 percent increase in the allocation of land to agriculture

would increase the output by 44 and 28 percent, respectively in the long and

short run, which indicates more agricultural products can be produced when more

land is under agricultural production. Difference between the short and long

run suggests land contributes more to the output in the long compared to the

short run. Similar results for labor (capital) suggest an increase in farm labor

(capital) would contribute to higher output by 17 and 39 percent (4 and 8 percent)

respectively in the short-run and long-run. The labor elasticity is consistent with

earlier estimates that range from 0.03 to 0.46 (see table 1 from Mundlak, Larson

and Butzer, 1997). Livestock with an input elasticity of 0.37 (0.39) is ranked third

(first) after land and farm labor in the long (short) run. A 100 percent increase in

the availability of livestock on the farm would increase the output by more than

30 percent in both the short and long run.

Hicks non-neutral technological changes in land and capital are negatively re-

lated to output in the short and long run analysis. This suggests the technological
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changes associated with land and capital is declining even though they are posi-

tively used in the production of output. In the short run even the technological

changes in the livestock is changing due to the substitution of capital for livestock

in Asian farming. In contrast the Hicks non-neutral technological changes in labor

and fertilizer is positively associated to production suggesting there is investments

in these input that is contributing to higher output in Asian countries. Hicks neu-

tral technology trend variable is negatively related to the output in the short run

compared to the positive effect long run and is a reflection of the changes in recent

years.

The panel short and long run results are similar with SFA results. So instead of

detailed panel results, a comparison between panel and SFA model results would

reveal the importance of accounting for inefficiency in the estimation of production

function. Table 3 and 4 presents the ratio of the SFA to panel models results for

the short and long run time-varying estimates, respectively.

With short run time-varying estimates, labor and livestock input elasticities are

always underestimated by the panel compared to SFA model with one exception

(see table 3). This suggest two things first the inputs are used inefficiently

and second even after accounting for inefficiency in the estimation of production

function, higher values seem to reflect the higher usage of labor and livestock in

the production of output leading to higher return to scale measure. Similar lower

land and capital elasticity measures were estimated by panel model. However,

the trend reversed in recent years suggesting inefficient use of land and capital.

Hence accounting for inefficiency in the production function lead to lower land

and capital elasticity measures in SFA compared to panel model. Fertilizer was

exactly opposite of land and capital, in the sense SFA model underestimated the

fertilizer measures in the earlier years and overestimated in the latter years.

These results are quite interesting as they suggest that fertilizer is overused

due to the prevalence of wetland rice in Asian agriculture and introduction of new

green revolution seed and technology. However in recent years with increase cost

and environmental awareness (regulations), there is more efficient application and
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use of fertilizer in Asian countries.

Hicks non-neutral technological changes in land, labor, capital, livestock and

Hicks neutral technology trend was overestimated by SFA earlier and underesti-

mated in recent years. These results suggest the technology induced input use

is more inefficient in recent years. Overall the return to scale is underestimated

by panel model as inefficiency is not accounted in the estimation of production

function.

Table 4 presents the ratio of the SFA to panel models results for long run time-

varying estimates. Long run time-varying labor, capital, livestock, fertilizer, and

Hicks neutral technology trend measures suggest the panel model underestimates

(overestimates) in the earlier (later) years. While the Hicks non-neutral tech-

nological changes in land, labor, capital, livestock and fertilizer, the SFA model

always overestimates the contribution to agriculture output. Overall the return

to scale is under (over) estimated by panel model in the earlier (later) years as

inefficiency is not accounted in the estimation of production function.

Proposition 4.2 Long (short) run time-varying parameter, βL(S) estimated from

the equation 3 (4) allows quantifying the extent of long and short run input elas-

ticity and return to scale.

Tables 5 and 6 presents the time-varying parameter coefficients estimated from

stochastic frontier window and cumulative rolling regression analyses of 24 runs

from 1986 to 2008. The mean, minimum, and maximum values in the time-varying

elasticity of inputs, technical change and return to scale are also presented in

the tables. The land, labor, capital, fertilizer, and livestock estimated from the

stochastic frontier window and cumulative rolling regression model is graphically

presented in figure 1. The Hicks non-neutral technology land, labor, capital,

fertilizer, and livestock are graphically presented in figure 2. Finally, the Hicks

neutral technology trend, sum of Hicks non-neutral technology and returns to

scale is graphically presented in figure 3.

Results from table 5 indicate the mean elasticity of land from stochastic frontier

window rolling regression analysis was 0.28 with a standard deviation of 0.24.
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The lower and upper bound of the estimated elasticity of land is -0.13 using

data from 1984-2008 and 0.55 using data from 1967-1991, respectively. The time-

varying elasticity of land indicates an increasing trend from 1961-1986 to 1961-

1992. This indicates the land elasticity increases with each additional year of

data. Elasticity of land shows a drastically decreasing trend from 1961-1993 to

1961-2008 indicating that with each additional year of data, the land elasticity

decrease. In contrast long run time-varying results in table 6 suggest a decreasing

but not as drastic as short run time-varying results. This suggests in the over the

long and short run the contribution of land to agriculture production has been

decreasing.

The mean elasticity of labor from stochastic frontier cumulative rolling regres-

sion analysis (table 6) was 0.39 with a standard deviation of 0.05. The lower

bound of elasticity of labor is 0.29 and is estimated using data from 1961-1990;

the upper bound of labor elasticity is 0.48 estimated using data from 1961-1985.

The time-varying elasticity of labor indicates a decreasing trend from 1961-1985

to 1961-1992 followed by increasing trend till 1961-1996 indicating the elasticity

decreases and then increase with each additional year of data. Then the labor

elasticity measure settles around 0.37. In contrast short run time-varying results

in table 5 suggest a decreasing trend and ends up with a labor elasticity measure

of 0.014. This suggests in recent years the contribution of labor is not much to

agriculture production.

Elasticity of capital indicates the mean from stochastic frontier cumulative

rolling regression analysis (table 6) from 1986 to 2008 was 0.08 and a standard

deviation of 0.009. The upper and lower bound of the estimated elasticity of

capital is 0.098 using data from 1961-1996 and 0.062 using data from 1961-1985.

Time-varying elasticity of capital indicates an inverted cup shape trend increasing

and then decreasing trend with starting and end capital elasticity measure around

0.06. In contrast short run time-varying results in table 6 suggest a decreasing

trend and ends up with a negative sign on the capital.

Long run time-varying fertilizer elasticity was negative and showed a slightly
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increasing trend over the 24 regression runs. In contrast the short run time-varying

fertilizer elasticity was negative from 1961-1985 to 1971-1995 and then became

positive with an increase trend to the end with an elasticity of 0.19 suggesting a

positive contribution to agriculture production.

Results of elasticity of livestock in table 6 (5) indicates the mean of stochastic

frontier cumulative (window) rolling regression analysis from 1986 to 2005 was

0.37 (0.39) with a standard deviation of 0.03 (0.104). Both the short and long run

time-varying elasticity of livestock indicates an increasing trend with the short

run showing a much higher trend.

With Hicks non-neutral technological changes in inputs short a contrasting

trend compared the elasticity of inputs. For example, the elasticity of land and

capital showed a decreasing trend in both the short and long run time-varying

estimates (figure 1). Hicks non-neutral technological changes in land and capital

in figure 2 suggest an increase trend. Similarly the technology associated with

fertilizer and livestock showed a decreasing trend. The Hicks neutral technology

trend with the short and long run time-varying estimates indicates a decreasing

and then an increasing trend.

Finally, returns to scale results indicate the mean of cumulative rolling regres-

sion analysis from 1985 to 2008 was 1.21 and a standard deviation of 0.06. However

the mean of window rolling regression analysis from 1985 to 2008 was 0.925 and

a higher standard deviation of 0.24. Trends in the long run time-varying return

to scale indicate a decreasing, increasing and then a decreasing trend. However

the short run time-varying returns to scale for Asian countries suggest decreasing

trend.

5 Conclusions

In this paper first, the importance of accounting for technical efficiency on the

elasticity of inputs, technical change and calculation of returns to scale as defined

in proposition 1 is examined. Second, the importance of each additional year of
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data or information on the elasticity of inputs, technical change estimates and

calculation of returns to scale as defined in proposition 2 is quantified applying

window and cumulative rolling regression.

Both analyses are conducted using the stochastic frontier analysis of Cobb-

Douglas Hicks non-neutral production function with an application to Asian agri-

culture data from 1961-2008. In contrast to previous studies that assume technical

efficient production function, stochastic frontier analysis accounts for technical ef-

ficiency and estimates the relationship between input and output quantities via

the elasticities and returns to scale. Second, earlier studies assumed elasticity of

inputs, technical change and returns to scale to be systematic over time. The

time-varying estimates of elasticity of inputs, technical change and returns to

scale estimated using window and cumulative rolling regression provide evidence

of differential short and long run variation in the elasticity measures.

Estimates from this study indicate returns to scale are underestimated by

the traditional panel compared to stochastic frontier model that accounts for

inefficiency. These input elasticity are consistent with earlier research but differs

with respect to the time period used and use of stochastic frontier analysis. Also,

the returns to scale are overestimated by earlier research as they used time-series

or pooled that does not account for the spatial variation instead of stochastic

frontier panel models that accounts for technical inefficiency.

Short and long run time-varying estimates of elasticity of inputs, technical

change and returns to scale indicate differential variations in the short and long

run. Further the time-varying elasticity of inputs, technical change and returns to

scale indicate variations across inputs and over time questioning the systematic

nature due to differential short and long run changes in the agriculture production,

investments and domestic and international policies.
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Figure 2: Panel and SFA estimated Short and long run time-varying input elas-
ticity
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Figure 3: Panel and SFA estimated Short and long run time-varying Hicks non-
neutral input elasticity
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Figure 4: Panel and SFA estimated Short and long run time-varying returns to scale, Hicks neutral and
non-neutral technology and total technology
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Table 1: Average and standard deviation of variables, 1961-2008

Country Output Land Labor Capital Livestock Fertilizer

Average

Bangladesh 72 14,099 29,149 2,015 28,309 682,007
Cambodia 71 2,145 3,076 1,587 3,371 15,686

China 59 171,397 407,401 668,363 243,252 20,953,941
India 68 201,937 191,089 964,473 308,109 9,189,858

Indonesia 69 25,898 36,073 2,798 22,197 1,635,110
Japan 99 4,612 4,923 2,209,005 9,812 1,816,126

Korea, North 87 2,938 3,178 46,945 2,007 437,779
Korea, South 67 2,834 4,316 64,894 3,871 744,354

Lao PDR 60 850 1,406 663 2,347 3,327
Malaysia 63 4,444 1,850 16,361 2,357 712,655
Mongolia 88 433 222 7,021 8,659 6,807
Myanmar 68 11,475 13,562 7,740 12,800 86,312

Nepal 67 3,679 6,434 9,247 10,693 41,518
Pakistan 63 21,792 15,095 181,311 49,467 1,552,561

Philippines 71 13,882 9,933 27,764 9,825 426,057
Singapore 514 5 10 45 188 4,481
Sri Lanka 84 1,996 3,127 15,033 2,656 174,575
Thailand 71 14,292 17,502 175,818 13,429 796,103
Vietnam 58 8,948 20,126 59,575 10,798 811,866

Standard deviation

Bangladesh 24 968 5,609 944 3,077 523,578
Cambodia 34 635 923 943 1,131 25,731

China 34 13,192 83,502 456,255 72,361 15,989,617
India 27 13,489 41,872 959,994 33,991 6,968,939

Indonesia 34 6,384 8,570 2,173 8,485 1,185,131
Japan 10 1,303 1,740 1,610,360 1,885 274,762

Korea, North 25 191 274 22,945 539 262,371
Korea, South 25 578 1,746 86,651 1,696 202,336

Lao PDR 34 161 432 376 807 4,153
Malaysia 36 2,558 123 14,986 850 528,442
Mongolia 13 158 23 2,837 1,008 6,584
Myanmar 37 3,412 3,571 3,023 3,478 63,173

Nepal 29 1,009 2,154 11,048 2,031 34,785
Pakistan 31 3,516 4,287 150,050 16,925 1,179,548

Philippines 28 2,269 2,337 23,028 1,531 244,385
Singapore 343 5 6 22 101 2,289
Sri Lanka 17 158 516 3,993 521 69,936
Thailand 28 2,714 3,113 274,174 1,467 722,518
Vietnam 36 2,186 5,427 59,309 3,819 781,476

Units of output is gross PIN (1999-2001=100); land is 1000 hectares; labor in 1000s;
capital and livestock in numbers and fertilizer in metric tons.
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Table 2: Average and standard deviation of parameter coefficients or elasticity of inputs of production
function for short and long-run regressions

Panel Model SFA Model

Short run Long run Short run Long run

Mean Stdev Mean Stdev Mean Stdev Mean Stdev

Intercept -5.1284 1.9173 -7.6283 0.525 -5.1272 1.9168 -7.5154 0.5512
Land 0.2735 0.2353 0.4409 0.0552 0.2775 0.2354 0.4359 0.0525
Labor 0.1687 0.1556 0.3914 0.0533 0.1727 0.1558 0.3856 0.0472

Capital 0.0413 0.0383 0.0831 0.0072 0.0438 0.0377 0.0803 0.0089
Livestock 0.3885 0.1052 0.3486 0.036 0.3938 0.1041 0.3648 0.0334
Fertilizer 0.0323 0.1004 -0.0577 0.0061 0.0368 0.0998 -0.0615 0.0109

Land*t -0.0001 0.0074 -0.0055 0.0023 -0.0015 0.0071 -0.0061 0.0025
Labor*t 0.0019 0.0011 0.0013 0.0008 0.0024 0.001 0.0017 0.0009

Capital*t -0.0007 0.0013 -0.0012 0.0006 -0.001 0.0015 -0.0013 0.0006
Livestock*t -0.0002 0.0027 0.0011 0.0008 0.0002 0.0028 0.0011 0.0008
Fertilizer*t 0.0006 0.0037 0.0038 0.0008 0.0005 0.0036 0.0039 0.0009

HN trend -0.0007 0.0069 0.0014 0.0043 0.0085 0.0069 0.0027 0.0055
HNN trend 0.0015 0.0024 -0.0005 0.0008 0.0006 0.0024 -0.0007 0.0009
HNN & HN 0.0008 0.0093 0.0008 0.0051 0.0091 0.0093 0.002 0.0064

Returns to Scale 0.9044 0.2392 1.2062 0.0578 0.9246 0.2406 1.2051 0.0622
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Table 3: Ratio of SFA over panel Short run time-varying elasticity of inputs and returns to scale

roll Land Labor Capital Livestock Fertilizer Land*t Labor*t Capital*t Lstock*t Fert*t HN RTS

1961-1985 101% 101% 100% 102% 93% 113% 126% 123% 157% 94% 275% 102%
1962-1986 101% 101% 101% 102% 94% 112% 153% 121% 133% 93% 230% 102%
1963-1987 101% 101% 102% 102% 95% 109% 119% 125% 128% 94% 241% 102%
1964-1988 101% 101% 102% 102% 95% 106% 99% 124% 123% 93% 232% 102%
1965-1989 101% 101% 103% 102% 94% 105% 95% 122% 120% 93% 213% 102%
1966-1990 101% 101% 103% 102% 93% 103% 92% 122% 118% 92% 223% 102%
1967-1991 101% 102% 103% 102% 92% 103% 96% 119% 112% 91% 248% 102%
1968-1992 101% 102% 103% 102% 89% 102% 95% 117% 108% 88% 310% 102%
1969-1993 101% 102% 103% 102% 87% 115% 107% 114% 117% 90% 404% 102%
1970-1994 101% 102% 104% 102% 84% 138% 124% 126% 179% 96% 458% 102%
1971-1995 102% 102% 104% 102% 47% 332% 170% 132% -39% 101% 722% 103%
1972-1996 102% 103% 104% 102% 147% -105% 309% 132% -1% 112% -435% 103%
1973-1997 102% 104% 105% 102% 130% -637% 179% 143% 2102% 116% -60% 103%
1974-1998 102% 106% 107% 102% 114% -540% 155% 184% 298% 199% -4% 103%
1975-1999 102% 105% 110% 101% 109% -135% 152% -1336% 214% 62% 11% 103%
1976-2000 102% 103% 115% 101% 105% 55% 243% 35% 246% 96% 28% 102%
1977-2001 104% 105% 122% 101% 103% 73% 223% 62% 71% 98% 17% 102%
1978-2002 105% 128% 140% 101% 102% 77% 163% 71% 84% 99% -4% 103%
1979-2003 110% 68% 139% 101% 102% 81% 148% 70% 90% 99% -6% 103%
1980-2004 117% 136% 311% 101% 102% 83% 153% 78% 93% 101% -29% 103%
1981-2005 81% 150% 69% 101% 102% 85% 134% 79% 96% 101% -158% 103%
1982-2006 96% 122% 78% 101% 102% 88% 122% 77% 98% 102% -411% 103%
1983-2007 97% 145% 84% 101% 102% 90% 119% 75% 100% 102% 1162% 103%
1984-2008 97% 132% 87% 101% 102% 90% 116% 78% 100% 103% 485% 103%
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Table 4: Ratio of SFA over panel Long run time-varying elasticity of inputs and returns to scale

roll Land Labor Capital Livestock Fertilizer Land*t Labor*t Capital*t Lstock*t Fert*t HNtrend RTS

1961 - 1985 97% 96% 74% 115% 83% 100% 361% 100% 62% 78% 131% 101%
1961 - 1986 100% 95% 95% 110% 101% 104% 115% 104% 121% 104% 40% 101%
1961 - 1987 101% 99% 91% 108% 113% 104% 92% 116% 107% 109% 94% 101%
1961 - 1988 96% 107% 98% 99% 105% 95% 90% 98% 90% 101% 85% 100%
1961 - 1989 101% 101% 93% 109% 118% 107% 125% 106% 85% 96% 191% 102%
1961 - 1990 101% 99% 101% 111% 130% 108% 121% 132% 74% 114% 159% 102%
1961 - 1991 79% 117% 103% 118% 88% 76% 56% 79% 14% 96% 179% 101%
1961 - 1992 103% 100% 97% 108% 129% 110% 102% 126% 96% 113% 165% 102%
1961 - 1993 98% 103% 98% 101% 103% 99% 98% 99% 99% 101% 93% 100%
1961 - 1994 98% 96% 95% 102% 102% 99% 99% 106% 107% 102% 86% 98%
1961 - 1995 96% 94% 85% 123% 107% 117% 110% 129% 160% 115% -19% 101%
1961 - 1996 102% 100% 107% 107% 132% 156% 301% 153% 138% 122% 867% 102%
1961 - 1997 101% 99% 105% 109% 128% 163% 413% 149% 107% 119% -437% 101%
1961 - 1998 99% 97% 98% 99% 101% 102% 115% 102% 104% 101% 124% 98%
1961 - 1999 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
1961 - 2000 98% 101% 97% 99% 102% 106% 125% 99% 102% 103% 104% 99%
1961 - 2001 96% 101% 94% 110% 112% 180% 1354% 108% 65% 106% -204% 101%
1961 - 2002 102% 94% 97% 98% 99% 110% 211% 102% 111% 100% 97% 98%
1961 - 2003 102% 94% 97% 98% 99% 111% 160% 102% 118% 100% 97% 98%
1961 - 2004 102% 96% 98% 99% 99% 109% 134% 101% 115% 100% 98% 99%
1961 - 2005 101% 96% 98% 99% 99% 107% 118% 102% 134% 100% 97% 99%
1961 - 2006 102% 96% 98% 99% 99% 105% 108% 105% 58% 100% 97% 99%
1961 - 2007 102% 96% 98% 99% 99% 106% 106% 105% 84% 100% 98% 99%
1961 - 2008 102% 96% 98% 99% 99% 107% 103% 106% 89% 100% 98% 99%
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Table 5: Short run time-varying elasticity of inputs and returns to scale from
stochastic frontier regressions

Year Land Labor Capital Livestock Fertilizer HN HNN RTS

1961 - 1985 0.485 0.507 0.084 0.374 -0.062 0.0149 -0.0027 1.388

1962 - 1986 0.494 0.452 0.082 0.361 -0.071 0.0165 -0.0025 1.318

1963 - 1987 0.508 0.46 0.085 0.347 -0.075 0.0157 -0.0025 1.325

1964 - 1988 0.526 0.395 0.084 0.337 -0.078 0.0161 -0.0022 1.264

1965 - 1989 0.534 0.312 0.084 0.331 -0.076 0.0167 -0.002 1.184

1966 - 1990 0.544 0.245 0.082 0.317 -0.067 0.0161 -0.0019 1.121

1967 - 1991 0.545 0.205 0.08 0.304 -0.06 0.0151 -0.0017 1.075

1968 - 1992 0.534 0.183 0.075 0.301 -0.048 0.0142 -0.0015 1.044

1969 - 1993 0.479 0.178 0.07 0.307 -0.038 0.0133 -0.0012 0.996

1970 - 1994 0.431 0.211 0.069 0.314 -0.028 0.0124 -0.001 0.998

1971 - 1995 0.319 0.209 0.063 0.331 -0.005 0.012 -0.0004 0.918

1972 - 1996 0.261 0.181 0.058 0.336 0.016 0.0086 0.0003 0.851

1973 - 1997 0.306 0.135 0.052 0.329 0.022 0.0038 0.0008 0.845

1974 - 1998 0.312 0.091 0.044 0.336 0.035 0.0004 0.0013 0.818

1975 - 1999 0.287 0.091 0.035 0.348 0.047 -0.0013 0.0018 0.809

1976 - 2000 0.176 0.133 0.023 0.374 0.077 -0.0036 0.0026 0.783

1977 - 2001 0.108 0.081 0.016 0.399 0.117 -0.0018 0.003 0.721

1978 - 2002 0.078 0.016 0.01 0.418 0.147 0.0003 0.0033 0.668

1979 - 2003 0.042 -0.008 0.01 0.433 0.16 0.0005 0.0036 0.638

1980 - 2004 0.024 0.013 0.004 0.462 0.161 0.0018 0.0035 0.663

1981 - 2005 -0.015 0.01 -0.007 0.518 0.169 0.0051 0.0034 0.676

1982 - 2006 -0.075 0.019 -0.012 0.578 0.174 0.0069 0.0033 0.684

1983 - 2007 -0.117 0.011 -0.018 0.637 0.181 0.0096 0.0032 0.693

1984 - 2008 -0.126 0.014 -0.022 0.658 0.186 0.011 0.0032 0.71

Mean 0.277 0.173 0.044 0.394 0.037 0.009 0.001 0.925
Std 0.235 0.156 0.038 0.104 0.1 0.007 0.002 0.241

Minimum -0.126 -0.008 -0.022 0.301 -0.078 -0.004 -0.003 0.638
Maximum 0.545 0.507 0.085 0.658 0.186 0.017 0.004 1.388
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Table 6: Long run time-varying elasticity of inputs and returns to scale from
stochastic frontier regressions

Year Land Labor Capital Livestock Fertilizer HN HNN RTS

1961 - 1985 0.467 0.483 0.062 0.421 -0.055 0.0071 -0.0016 1.378

1961 - 1986 0.478 0.429 0.076 0.395 -0.067 0.0025 -0.0013 1.31

1961 - 1987 0.486 0.423 0.074 0.383 -0.073 0.0059 -0.0017 1.293

1961 - 1988 0.478 0.396 0.081 0.341 -0.07 0.0058 -0.0012 1.227

1961 - 1989 0.515 0.317 0.077 0.366 -0.077 0.0136 -0.0019 1.197

1961 - 1990 0.51 0.285 0.084 0.36 -0.08 0.0111 -0.0018 1.159

1961 - 1991 0.391 0.337 0.086 0.364 -0.051 0.012 -0.0019 1.127

1961 - 1992 0.507 0.304 0.085 0.325 -0.073 0.0101 -0.0019 1.147

1961 - 1993 0.479 0.342 0.088 0.304 -0.06 0.0045 -0.0011 1.153

1961 - 1994 0.467 0.365 0.088 0.309 -0.061 0.0033 -0.0009 1.169

1961 - 1995 0.445 0.383 0.079 0.384 -0.064 -0.0004 -0.0008 1.227

1961 - 1996 0.457 0.429 0.098 0.344 -0.08 0.005 -0.0015 1.248

1961 - 1997 0.45 0.418 0.096 0.352 -0.076 0.0035 -0.0013 1.24

1961 - 1998 0.434 0.407 0.088 0.325 -0.059 -0.002 -0.0003 1.195

1961 - 1999 0.444 0.409 0.088 0.331 -0.059 -0.0019 -0.0003 1.212

1961 - 2000 0.415 0.445 0.083 0.355 -0.06 -0.0032 -0.0002 1.239

1961 - 2001 0.396 0.447 0.079 0.408 -0.064 0.0076 -0.0012 1.266

1961 - 2002 0.416 0.396 0.08 0.36 -0.054 -0.0033 0.0002 1.197

1961 - 2003 0.409 0.376 0.079 0.361 -0.052 -0.0031 0.0003 1.173

1961 - 2004 0.402 0.379 0.078 0.367 -0.052 -0.0032 0.0004 1.174

1961 - 2005 0.391 0.373 0.076 0.374 -0.051 -0.0026 0.0005 1.163

1961 - 2006 0.369 0.374 0.073 0.391 -0.049 -0.0023 0.0006 1.157

1961 - 2007 0.337 0.372 0.067 0.411 -0.046 -0.0022 0.0007 1.141

1961 - 2008 0.32 0.365 0.064 0.426 -0.043 -0.002 0.0008 1.131

Mean 0.436 0.386 0.08 0.365 -0.061 0.003 -0.001 1.205
Std 0.053 0.047 0.009 0.033 0.011 0.005 0.001 0.062

Minimum 0.32 0.285 0.062 0.304 -0.08 -0.003 -0.002 1.127
Maximum 0.515 0.483 0.098 0.426 -0.043 0.014 0.001 1.378
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