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Abstract 

This paper tests the co-terminal swap market model (SMM) pricing and hedging performance 

on Bermudan swaptions.  To our knowledge, the drift for SMM is derived explicitly for the 

first time here, and the procedures for calibration and simulation using a collection of forward 

swap rates are also shown in detail. The Longstaff-Schwartz least square method is used to 

approximate the early exercise decision in Bermudan swaption.  By introducing individual 

parameters for volatility of each co-terminal forward swap rate, the model can match the 

market quoted European swaption price perfectly. It is noted that, for the SMM, one 

particular volatility formula may not be enough to capture the term structure of different 

markets.  Hedging performance of the model is tested on Euro and USD European co-

terminal swaption using a set of swaps as hedge instrument. Principle component analysis 

(PCA) is adopted to capture the trend of the forward rates’ movement and absolute mean of 

the PCA factors is used for the bumping of forward rate curve. Hedge ratio is calculated 

based on the delta ratios with respect to PCA factors. P&L of the hedge portfolio generated 

by co-terminal SMM is examined on Euro and USD market. The result shows that more 

factors may be needed in order to improve the hedge performance of the model.  

Nevertheless, the SMM is very similar to LMM in terms of implementation and model 

performance, and the SMM is more convenient when dealing with exotic interest rate 

derivatives where swap rate is the underlying. 



Swap Market Model: Theory and Empirical Evidence

1 Introduction

Ho and Lee (1986) �rst propose the arbitrage free approach for interest rate term

structure modelling. This class of models take initial term structure of interest rate

as input which have made great advances along with the development of modeling

techniques. The Asset Liability Managemetn (ALM) department in global �nancial

institutions face the problem like: Is it feasible for a global bank to use a single

model for its interest rate businesses around the world stretching from the US, Eu-

rope? Would there be any inconsistency and risk of arbitrage if the bank adopts

di¤erent interest rate models for di¤erent interest rate markets. These are pro-

found questions, and this paper aims to address a simple question by looking at the

e¤ectiveness of the swap market model (SMM) for the purpose of Asset Liability

Management. This paper concentrates on the implementation of SMM.

Both the SMM and LMM fall in the category of market model where market

observable interest rates such as LIBOR rates and swap rates are modeled under the

arbitrage free dynamics, and give prices of European caplet/swaption compatible

with the standard Black formula.

Under the market model dynamics, there are basically two market observable

forward rates being modeled, the LIBOR rates and the swap rate. Brace, Gatarek

and Musiela (1997) �rstly introduced the arbitrage free process for forward LIBOR

rates which lead to the LIBOR Market Model (LMM, also known as BGM model)

under the HJM framework. Miltersen, Sandmann and Sondermann (1997) derive

a uni�ed interest rates term structure which gives closed form solution for caplet

under the assumption of log-normally distributed interest rates. Di¤erent methods

of parameterization and calibration of LMM are examined in Brigo, Mercurio and

Mrini (2003). The term structure of swap rates is �rstly developed in Jamshidian

(1997) which is known as Swap Market Model (SMM). Jamshidian (1997) also

proposed the concept of co-terminal market model at the earliest. Base on the
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research of the above papers, Galluccio, Huang, Ly and Scaillet (2007) use graph

theory to classify the �admissible�market models into three subclasses named co-

initial, co-sliding and co-terminal. Among other things, they show that the LMM

is the only admissible model for swaps of a co-sliding type.

There are comparatively fewer papers on the implementation of SMM at the

time of writing while extensive research have been done on the theories and im-

plementation of the LMM have already been published. This is partly because the

libor rate is often taken as the basic instrument in pricing and hedging interest rate

derivatives and partly due to the misperception that swap rate is more di¢ cult to

model because of the overlapping interest rate periods. However, it cannot be de-

nied that SMM is natural for pricing many exotic interest rate derivatives since it is

designed to capture the term structure of volatilities of swaps. This misconception

is noticed and partly corrected in Galluccio et al (2007) by giving numerical results

on the pricing and calibration of co-terminal SMM to European swaptions. Their

co-terminal SMM set is built under di¤erent measures and pricing test is done on

European swaptions. However, the drift term of SMM has not been discussed in

their paper. Jamshidian (1997) examined the drift of SMM and give examples on

Bermudan swaption but the implementation is restricted to two exercise dates due

to the limitation in simulation method at that time.

In this paper, the drift of the ctSMM under the terminal measure is explicitly

derived. This is a crucial for pricing Bermudan swaptions. The model is then im-

plemented by Monte Carlos simulation using least square (Longsta¤ and Schwartz)

method to price Bermudan swaption.

The rest of this paper is organised as follows. Section 2 introduces fundamen-

tal de�nitions and equations that will be used in later implementation. The tenor

structure is de�ned and the co-terminal SMM comes next by assigning arbitrage

free dynamics to a collection of forward swap rates of the same terminal date. It is

assumed that the forward swap rates are log-normally distributed and satisfy the

arbitrage free condition under their respective measures. Drift are derived in Sec-
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tion 3 with further details given in the Appendix. Cross-variation method proposed

by Joshi and Liesch (2006) is used in the derivation. Section 4 gives details of the

Monte Carlo simulation under the terminal measure and procedure of the calibra-

tion to co-terminal European swaptions. A linear-exponential formula is used to

replicate term structure of implied volatilities of a collection of one-year swaptions

with di¤erent maturity length. Section 5 derives the discounting factor needed for

pricing Bermudan swaption, and the Longsta¤-Schwartz least square approximation

for early exercise decision. Section 6 investigates the idea of bumping the rate curve

using results from principle component analysis on forward rates. Details of deriv-

ing hedge ratios with respect to principle component factors are explained. Hedge

ratios with respect to hedge instruments can be calculated by minimizing the delta

mismatch error. The equation for calculating pro�t and loss of hedge portfolio is

also given in this section. Section 7 provides details of data and procedure of testing

the co-terminal SMM on Euro and USD market. The results of numerical test are

reported and discussed as well. Section 8 concludes.

2 Theory of Co-terminal Swap Market Model

2.1 Basic Theories and De�nitions

Assume that there is a set of reset/exercise dates 0 := T0 < T1 < T2 < � � � < TM ,

where T0 is the contract starting date and TM is the maturity of underlying deriva-

tive. This is the tenor structure under which the interest rate model is constructed

in this paper. Also de�ne �n;m = Tm � Tn, (0 � n < m < M), as the time interval

between two reset dates. For simplicity, we assume that all time intervals between

two adjacent reset dates are the same, so �n�1;n (n = 1; � � � ;M) can be reduced to

� . The time t value of a zero-coupon bond that pays one unit currency at maturity

Tn (n = 0; � � � ;M) is denoted by BTn (t). For any n, BTn (Tn) = 1. In the following

section, Bn (t) is used as short version of BTn (t).

The spot LIBOR rate at time Tn prevailing for period Tn to Tm (0 � n < m < M)
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is denoted by L (Tn; Tm) and de�ned as:

L (Tn; Tm) =
1

Tm � Tn

�
Bn (Tn)�Bm (Tn)

Bm (Tn)

�
=
1�Bm (Tn)
�n;mBm (Tn)

(1)

The forward LIBOR rate at time t for period prevailing for period Tn to Tm is

denoted by F (t; Tn; Tm) where t � Tn < Tm < TM+1. It is de�ned by:

F (t; Tn; Tm) =
1

Tm � Tn

�
Bn (t)�Bm (t)

Bm (t)

�
=

1

�n;m

�
Bn (t)

Bm (t)
� 1
�

(2)

A plain vanilla interest rate swap is a contract which exchanges �xed-rate interest

payments at swap rate K for �oating interest rate payments based on LIBOR on

each reset date during period Tn to Tm (0 < Tn < Tm). That is, the contract starts

from Tn while the �rst cash �ow will happen at time Tn+1 and the last cash �ow

will take place at time Tm. Also note that the related �oating rate used to calculate

cash �ow of time Tk is known at time Tk�1 (k = 1; � � � ;M). A swap can also be

viewed as a collection of Forward Rate Agreements (FRAs). Then the value of a

payer swap at time t (0 � t < Tn < Tm) can be calculated by the following formula.

PayerSwapn;m (t) =
mP

i=n+1
�Bi (t)

heL (Ti�1; Ti)�Ki
Here, eL (Ti�1; Ti) represents the unknown spot LIBOR rate at future time Ti�1.

Recall that a payer swap is a contract where the buyer will pay �xed rate and

receive �oating rates, whereas a receiver swap involves paying �oating rates and

receiving �xed rate on the buyer part. In a risk neutral world by arbitrage free

arguments, the above formula can also be written in terms of forward libor rate

from (2) as follows:

PayerSwapn;m (t) =
mP

i=n+1
�Bi (t) [F (t; Ti�1; Ti)�K]

=
mP

i=n+1
�Bi (t)

�
1

�

�
Bi�1 (t)�Bi (t)

Bi (t)

�
�K

�
= Bn (t)�Bm (t)�

mP
i=n+1

�KBi (t) : (3)

The forward swap rate Sn;m (t) is de�ned as the swap rateK that makes the swap

contract value at starting date Tn equal to zero. Hence, by setting PayerSwapn;m (t)
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in equation (3) to be zero, we can get the forward swap rate Sn;m (t):

Sn;m (t) =
Bn (t)�Bm (t)

mP
i=n+1

�Bi (t)

(4)

From equation (4), we can also derive the spot swap rate at Tn by setting t = Tn

and then Bn (Tn) = 1 leads to the equation as below.

Sn;m (Tn) =
1�Bm (Tn)
mP

i=n+1
�Bi (Tn)

(5)

Furthermore, from equation (4), Bn (t) � Bm (t) = Sn;m (t)
mP

i=n+1
�Bi (t), we can

write PayerSwapn;m (t) in equation (3) as:

PayerSwapn;m (t) = [Sn;m (t)�K]
mP

i=n+1
�Bi (t) (3�)

Let (
;F ;Q; Ft), t 2 [0; TM ], be a �ltered probability space and Wt be a Wiener

process (in case of one dimensional model). Let Cn;m (t) =
Pm
i=n+1 �Bi (t) represent

the value of the annuity from Tn+1 to Tm. Jamshidian (1997) proves that Cn;m (t)

induces a probability measure Qn;m such that Bi(t)
Cn;m(t)

for (n+ 1 � i � m) are Qn;m

martingales. It follows that with the given tenor structure, each forward swap

rate Sn;m (t) is a martingale under the associated forward swap measure Qn;m and

numeraire Cn;m (t). It should be noted that Cn;m (t) is uniquely determined by

the two reset dates Tn and Tm. Furthermore, we assume that Sn;m (t) follows a

geometric Brownian motion, which leads to the general SDE:

dSn;m (t) = Sn;m (t)�n;m (t) dW
n;m
t for t 2 [0; TM ] (6)

Here Wn;m
t is a Wiener process under measure Qn;m and �n;m (t) is deterministic.

By Ito�s formula, we can obtain the solution of the SDE as:

Sn;m (Tn) = Sn;m (t) e
� 1
2

R Tn
t
�2n;m(s)ds+

R Tn
t
�n;m(s)dW

n;m
s (7)

Now let�s recall a European swaption that gives the holder the right to enter into

a swap contract on option maturity date which involves cash �ows taking place
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over period Tn+1 to Tm (0 < Tn < Tm). From equation (3�), the value of a payer

swaption at option maturity date Tn is given by:

PayerSwnn;m (Tn) = [Sn;m (Tn)�K]+
mP

i=n+1
�Bi (Tn) (8)

It can be viewed as a call option on forward swap rate Sn;m (t). Under mea-

sure Qn;m with associated numeraire Cn;m (t) =
Pm
i=n+1 �Bi (t), the value of the

payer swaption at time t can be obtained by taking the risk neutral expectation

of [Sn;m (t)�K]+, then multiply it with the numeraire under the martingale mea-

sure. Here we get the classic Black formula for European payer swaption used by

practitioners.

PayerSwnn;m (t) = En;m
�
[Sn;m (Tn)�K]+

mP
i=n+1

�Bi (Tn)

Cn;m (Tn)
Cn;m (Tn)

�
Bn (t)

= Cn;m (t)E
n;m

�
[Sn;m (Tn)�K]+

mP
i=n+1

�Bi (Tn)

Cn;m (Tn)

�
= Cn;m (t)E

n;m
�
[Sn;m (Tn)�K]+

	
= Cn;m (t) [Sn;m (t)N (d1)�KN (d2)] (9)

where

d1 =
ln
�
Sn;m(t)
K

�
+ 1

2v
2
n;m (Tn � t)

vn;m
p
Tn � t

;

d2 = d1 � vn;m
p
Tn � t;

N (�) is the cumulative distribution function of a standard normal distribution. The

Black implied volatility can be expressed as

v2n;m =
1

Tn � t
R Tn
t �2n;m (s) ds:

2.2 Co-terminal Swap Market Model

Given the tenor structure, a co-terminal Swap Market Model refers to a model which

assigns the arbitrage free dynamic to a set of forward swap rates that have di¤erent

swap starting date Tn (n = 1; � � � ;M � 1) but conclude on the same maturity date
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TM . One important feature about the co-terminal swaption is that it is internally

consistent with a Bermudan swaption that gives the holder the right to enter into

a swap at each reset date during period T1 to TM�1 with TM being the terminal

maturity of the underlying swap. When considering at each tenor date whether

or not to exercise the option to enter into a swap contract, the holder need to

consider the forward swap rate dynamics from that tenor date till �nal maturity,

which is actually driven by the volatility prevailing at that time. The advantage

of co-terminal SMM over other market models in pricing Bermudan swaptions has

already been noted and discussed in Jamshidian (1997) and Galluccio et al (2007).

Although most research concentrates on pricing swaption under LMM frame-

work, it has been widely accepted that LMM is the natural model for cap/caplet

whereas SMM is the natural model for European swaptions. Galluccio et al (2007)

point out that it involves strong assumptions and complicated algorithm to force

LMM to re-produce the swaption dynamics. As to co-terminal SMM, the calibra-

tion to the market quoted implied volatilities (swaption prices) can be done directly

and e¢ ciently since the modelling objectives of the SMM are actually swap rates.

Here, our objective is to price and hedge a Bermudan swaption (or a portfolio of

European swaptions), the SMM is an ideal candidate for this job.

In Galluccio et al (2007) the co-terminal SMM is de�ned by introducing a collec-

tion of mutually equivalent probability measures and a family of Brownian motions

such that for any the forward swap rate satis�es the SDE (6) for all . They also

test the calibration and pricing of co-terminal SMM to European swaptions under

di¤erent measure. Since our goal here is to price and hedge a Bermudan swaption,

where early exercise is permitted, it is necessary to �x one measure and derive the

drift of di¤erent forward swap rates under this measure.
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3 Drift of Co-terminal SMM under the Terminal Mea-

sure

If we take CM�1;M (t) = �MBM (t) as the numeraire and use the risk neutral mea-

sure QM�1;M for all co-terminal forward swap rates, then only the last (one period)

swap rate SM�1;M (t) is a martingale. As mentioned before, the co-terminal forward

swap rates satisfy the following general SDE under the terminal measure:

dSn;m (t) = Sn;m (t)�n;m (t) dW
M�1;M
t + drift for n = 1; � � � ;M � 1 (10)

where WM�1;M
t is the Wiener process under the terminal measure QM�1;M .

Joshi and Liesch (2006) recommend using the cross-variation in assessing the

impact of numeraire changing on a drift. Let Xt and Yt be two continuous semi-

martingales in . From Ito Formula:

dXtYt = XtdYt + YtdXt + hXt; Yti dt

where hXt; Yti denotes the quadratic co-variation process of Xt and Yt. Given the

SDEs:

dXt = �X (t) dt+ �X (t) dW
X
t

dYt = �Y (t) dt+ �Y (t) dW
Y
t

then, we have hXt; Yti = �X;Y �X (t)�Y (t) where �X;Y is the correlation between

WX
t and W Y

t . If we substitute Xt with Sn;M (t) and Yt with Sm;M (t) with 0 < n <

m < M , the co-variation between two forward swap rates de�ned in SDE (10) is

then �n;m�n;M (t)�m;M (t).

In order to derive the dynamic of the ratio of two SDEs, Joshi and Liesch (2006,

p.4) �rst assume A, B and C are three tradable assets. If we take C as numeraire,

then under the associated measure, A=C and B=C are martingales while A=B is an

Ito process. By Ito formula we have:

d
A

C
= d

�
A

B

B

C

�
=
A

B
d
B

C
+
B

C
d
A

B
+

�
A

B
;
B

C

�
dt (11)
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from which we obtain

d
A

B
= �C

B

�
A

B
;
B

C

�
dt+

C

B
d
A

C
� C

B

A

B
d
B

C
(11)

Since the last two terms on the RHS are martingales and driftless, the drift of

A=B is given by:

E

�
d
A

B

�
= �C

B

�
A

B
;
B

C

�
dt

Now apply the formula to the co-terminal SMM de�ned under the given tenor

structure in this paper. Let A = Bn (t) � Bm (t), B = Cn;M (t) =
PM
i=n+1 �Bi (t)

and C = CM�1;M (t) = �MBM (t). By equations (4) and (11), the drift of a forward

swap rate Sn;M (t), n = 1; � � � ;M � 1 under the terminal measure QM�1;M is given

by:

EM�1;M [dSn;M (t)] = �n;M = �CM�1;M (t)

Cn;M (t)

�
Bn (t)�Bm (t)

Cn;M (t)
;
Cn;M (t)

CM�1;M (t)

�
= �CM�1;M (t)

Cn;M (t)

�
Sn;M (t) ;

Cn;M (t)

CM�1;M (t)

�
(12)

Note that when n =M � 1, �M�1 = 0 because hSn;M (t) ; 1i = 0.

In Joshi and Liesch (2006), they simplify the covariance term by moving the

forward swap rate and volatility out (See Joshi and Liesch (2006), page 6, equation

5.3): �
SRj ;

Aj
Pn

�
= SRj

PF
k=1 ajk

�
Wk;

Aj
Pn

�
where Wk is independent and ajk is the volatility.We don�t move SRj

PF
k=1 ajk out

of the sharp bracket.

In Joshi and Liesch (2006), the Sn;M (t) term inside the square brackets is sim-

pli�ed into independent Wiener process Wk, 1 which explains why their drift term

1 In their paper, they simplify the covariance term by moving the forward swap rate and volatility

out (See Joshi and Liesch (2006), page 6, equation 5.3):�
SRj ;

Aj
Pn

�
= SRj

PF
k=1 ajk

�
Wk;

Aj
Pn

�
where Wk is independent and ajk is the volatility. The equation in this paper doesn�t move

SRj
PF

k=1 ajk out.
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does not contain the correlation terms �n;m. Although for one factor model, the

correlation terms �n;m = 1 can be ignored, it cannot be omitted when the dimen-

sion of Wk is two or more. Expanding the cross-variation term in equation (12)

(as shown in the appendix), the drift becomes a complicated function of numeraires

and cross-variation of two forward swap rates. By induction, the general form of

drift under terminal measure can also be written as:

�n;M =
M�2P
i=n

 
� i+1

Ci+1;M
CM�1;M

�n;i+1Sn;M�n;MSi+1;M�i+1;M
iQ

j=n+1
(1 + � jSj;M )

!
(12�)

Details of the derivation are given in appendix. However, the above equation is not

an explicit function of Sn;M (t) for n = 1; � � � ;M � 1, because the Cn;M term is

derived from a set of Si;M (t) for n � i � M � 1. Detail on the derivation of Cn;M
is provided in Section 4.1.1. This drift term is complicated in appearance but not

time-consuming in computation.

4 Pricing and Calibration of European Swaptions

In this section, the co-terminal SMM under the terminal measure is used to price

European swaption. The price of the swaption can be calculated by Black formula

given the market quoted Black implied volatility. The co-terminal SMM is naturally

�t for a collection of co-terminal European swaptions in a sense that it can capture

the term structure of volatilities of forward swap rates prevailing at the given tenor

period. As mentioned in Galluccio et al (2007), co-terminal SMM can be easily

and e¤ectively calibrated to co-terminal European swaptions. As LMM is not a

natural model for swaptions, complicated euqations of libor rates have been used to

replicate the movement of swap rate. In practice, this may lead to over�tting during

calibration. While Galluccio et al (2007) calibrated their model under di¤erent

forward swap measures to caplets, the co-terminal SMM built here is under (one)

terminal measure with time dependent drift terms because we need to accommodate

early exercise decision.
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4.1 Pricing of Co-terminal European Swaptions

To simulate the forward swap rates within the tenor structure, we need the time

T0 forward swap rate as the original input of the model. The forward rate can be

easily derived from a set of zero coupon bonds by equation (4) while the latter can

be found from many interest rate derivatives on the market. For example, given a

set of time T0 interest rate swaps, we can calculate the bond price by equation (5).

The latter is used in the numerical test of this paper.

4.1.1 Simulation of Forward Swap Rate

Given tenor structure 0 := T0 < T1 < T2 < � � � < TM and taking CM�1;M (t) =

�MBM (t) as the numeraire, under terminal measure QM�1;M , the distribution of

the forward swap rate follows the SDE as below:

dSn;M (t) = �n;M (t) dt+ Sn;M (t)�n;M (t) dW
M�1;M
t for n = 1; � � � ;M � 1

By Ito formula we can get the solution as:

Sn;M (Tn) = Sn;M (t) e

R Tn
t
[�n;M (s)� 1

2
�2n;M (s)]ds+

R Tn
t
�n;M (s)dW

M�1;M
s

= Sn;M (t) e
[�n;M (t)� 1

2
�2n;M (t)]�+�n;M (t)

p
�zt (13)

where the volatility is periodically deterministic and the drift is derived by equation

(12)�. Here zt for T0 � t � Tn are independent random numbers drawn from

standard normal distribution N (0; 1).

In each simulation path, only SM�1;M (Tn) is evolved without the drift term.

Other co-terminal forward swap rates are driven by drift determined by other for-

ward swap rates of the previous step as well as the volatility terms. That means,

each step we move forward, new numeraires need to be recalculated from the evolved

and new set of swap rates and new drifts will be re-derived for next step�s simula-

tion. This makes the drifts become time dependent. Also note that with each time

step forward, we will throw away one forward swap rate that becomes spot swap

rate at the next reset date.
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In order to compute time dependent bond prices and numeraire at each time

step, we need to solve equations de�ning relative swap rates. At time TM�1, we

have

SM�1;M (TM�1) =
BM�1 (TM�1)�BM (TM�1)

CM�1;M (TM�1)
=
1�BM (TM�1)

�BM (TM�1)
:

It is easy to deduce the bond price using

BM (TM�1) =
1

1� �SM�1;M (TM�1)
:

At time TM�2, we have

SM�2;M (TM�2) =
BM�2 (TM�2)�BM (TM�2)

CM�2;M (TM�2)
=

1�BM (TM�2)

� [BM�1 (TM�2) +BM (TM�2)]
;

SM�1;M (TM�2) =
BM�1 (TM�2)�BM (TM�2)

�BM (TM�2)

With two equations and two unknowns, we can get time TM�2 bond pricesBM�1 (TM�2)

and BM (TM�2) as well as numeraire CM�2;M (TM�2).

Similarly, at each subsequent reset date Tn for n =M �3; � � � ; 1, we can deduce

a collection of forward bond prices and the relative numeraire given the related set

of simulated forward swap rates although it requires more labour to solve multi-

variable linear equation. In this paper, NAG C function (f07aec) is called to solve

the real system of linear equations of di¤erent zero coupon bonds. This NAG routine

solves a real system of linear equations by forward and backward substitution and

the computation has been proved to be quite e¢ cient.

It is worth noting that we can derive bond prices at any reset date only if we

have complete set of relevant forward swap rates. Therefore it is not necessary to

work backward from time TM�1. The algorithm is actually forward deduction in

practice. First, we should use time T0 swap rates and bond prices derived from time

T0 market quoted interest rate derivatives (may be called initial term structure) to

calculate the drift prevailing from time T0 to T1 with equation (12)�. Then we can

simulate time T1 forward swap rates based on equation (13). These newly simulated

forward swap rates can be decomposed as functions of di¤erent zero coupon bonds
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Table 1: Simulated Forward Swap Rates
T0=0 T1 T2 TM-2 TM -1 TM

S1,M(T0) S1,M(T1)*

S2,M(T0) S2,M(T1) S2,M(T2)*

… … … …

SM-2,M(T0) SM-2,M(T1) SM-2,M (T2) … SM-2,M (TM-2)*

SM-1,M (T0) SM-1,M (T1) SM-1,M (T2) … SM-1,M (TM-2) SM-1,M (TM-1)*

and by solving these functions with method described above, we can derive time T1

bond prices and numeraire. The next step is to calculate drifts for time T2 again by

equation (12)�. Repeat these steps from time T2 till time TM . After one simulation,

we can get a set of co-terminal forward swap rates as below. The forward swap

rates marked with �*�are �nished at that time step.

The co-terminal SMM is built using Monte Carlo simulation with 10,000 paths

due to the limit on the matrix size that the library regression function can handle.

4.1.2 Calculation of Discounting Factor

In order to discount the cash �ow in the case where the option is exercised before

maturity, we need to deduce the discounting bond values at the maturity of the Eu-

ropean swaption. For simulation, the discounting factor is path dependent. Under

the terminal measure, time Tn cash �ow should be discounted back to time T0 by

the discounting factor

D0;n (Tn) =
BM (T0)

BM (Tn)
for n = 2; � � � ;M

where BM (T0) is already known at time T0 and BM (Tn) can be derived by method

described in Section 4.1.1.

4.1.3 Calculation of Exercise Value at Maturity

Given the simulated forward swap rate and relative numeraire, it is trivial to cal-

culate the exercise value at swaption maturity date Tn where �n� represents dif-
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ferent type of European swaption. For a payer swaption PayerSwnn;m (t) for

n = 1; � � � ;M � 1, if we exercise the option at maturity, the exercise value (dis-

counted cash �ow) is [Sn;M (Tn)�K]+Cn;M (Tn) as equation (8) indicates.

4.1.4 Swaption Value

With N paths simulation and corresponding discounted exercise values, the swap-

tion value at time T0 can be calculated by summing them up and dividing by simu-

lation number N according to law of large numbers. For a European payer swaption

under the terminal measure, after simulating N possible paths for Sn;M (Tn), the

swaption value is then calculated as

PayerSwnn;m (t) =
1

N

NP
j=1

h
Sjn;M (Tn)�K

i+
Cjn;M (Tn)D

j
0;M (Tn)

4.2 Calibration of Co-terminal SMM

Brigo, Mercurio and Morini(2003), Rebonato(2003), and other literatures attribute

a lot to the parameterisation and calibration of LMM . Based on their research,

Galluccio et al (2007) test calibration of co-terminal SMM using similar methodol-

ogy as the one advocated by Rebonato (2003) in the case of LMM . By calibrating

to swaption and caplet ATM volatilities, they �nally get di¤erent set of parame-

ters
�
�j ; aj ; bj ; cj ; dj

	
where j = 1; � � � ;M � 1 for M � 1 number of co-terminal

swaptions under di¤erent forward measure. Since the model built in this paper is

under one measure and the volatility of di¤erent co-terminal swap rate will a¤ect

the drift terms in a complicated way, it is unrealistic to use di¤erent parameter

set for di¤erent co-terminal swaption. Therefore, a similar parameter formula is

followed here, but four common parameters will be allocated to volatilities of all

co-terminal swaptions.

In order to capture the term structure of swaption volatilities which are period-

ically deterministic, the linear-exponential formulation proposed in Brigo, Mercurio

and Morini (2003) is adopted here as swaption volatility function. Further more
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the swaption vol is formulated as

�n;m (t) = �n;M (Tn � t; a; b; c; d)

 (Tn � t; a; b; c; d) = [a (Tn � t) + b] e�c(Tn�t) + d (14)

The term  can preserve the well-known humped shape of market quoted Black

implied volatility.

The method adopted in this paper is to calibrate parameter a, b, c, and d to the

implied volatilities of a set of co-terminal swaptions with di¤erent maturities but

associated with same length of swaps. The parametric form is as below

v (t;M) =  (t; a; b; c; d) = [at+ b] e�ct + d for T0 < t < TM

where v (t;M) is the market implied volatility, and t denotes the maturity of swap-

tion. Because of its simple log-linear character, calibration algorithm using this

parametric formula is quite fast and robust.

5 Pricing of Bermudan Swaption

After the calibration to co-terminal swaptions, we obtain a set of parameters�
�n;M ; a; b; c; d

	
that can be used to re-produce the term structure of volatili-

ties of di¤erent forward swap rates during the given tenor period. The problem

now lies on how to decide the optimal exercise boundary and get the value of

the Bermudan swaption. As mentioned before, under the given tenor structure

0 := T0 < T1 < T2 < � � � < TM , the Bermudan swaption is exercisable from time T1

to time TM�1 with TM being the terminal maturity of the underlying swap.

5.1 Deriving the Discount Factor Dn;n+1 (Tn)

The procedure of simulation is exactly the same as that in the pricing of European

swaptions. But it should be noted that, here, we need one step forward discounting

factor to discount cash �ows between two reset dates instead of the one used to

discount cash �ow from maturity directly back to the value date since we want to
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calculate and compare the immediate exercise value and holding value of the option.

Under the terminal measure, the discounting factor is given by

Dn;n+1 (Tn) =
BM (Tn)

BM (Tn+1)
for n = 1; � � � ;M � 1

Note that BM (Tn) and BM (Tn+1) are derived at time Tn and Tn+1 respectively by

method described before. At the swaption maturity date TM�1, DM�1;M (TM�1) is

exactly BM (TM�1). For each simulation path, we need to derive the discounting

factor for any two adjacent exercise dates.

5.2 Least Square Approach

After generating N paths co-terminal forward swap rates on every reset date that

corresponds to an exercise point of the Bermudan swaption, we can use the least

squares method to determine the expected continuation value of the option. Least

squares approach, �rstly proposed in Longsta¤ and Schwartz (2001, P.114) and also

called Longsta¤ and Schwartz method, is a method used to estimate the conditional

expectation of the payo¤ of holding the option from cross-sectional information in

the simulation. The key step of this method is to run a regression of future realised

option payo¤s as a function of the underlying assets values.

At each exercise point Tn for n = 1; � � � ;M � 1, holder of the swaption needs to

know the exercise value and continuous value in order to decide whether to exercise

the option or not. That is, at one particular exercise date, if the immediate ex-

ercising payo¤ [Sn;M (Tn)�K]+Cn;M (Tn) is larger than the expected payo¤ from

holding the swaption ETn
�
[Sn;M (Tn)�K]+Cn;M (Tn)

	
, one will exercise the op-

tion and get the cash �ow at that date. Just as other ways to price Bermudan

option, we work backward to decide the holding value of the swaption.

In view of simplicity and computation e¢ ciency, I use quadratic regression for-

mula

yj = F
�
xj
�
= a0 + a1x

j + a2
�
xj
�2

(1)

and do regression through NAG library routine. The procedure of pricing Bermudan
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(payer) swaption using least square method is stated as follows.

(i) At the last exercise/reset date , we need to record the cash �ows of N di¤erent

paths , which is exactly the exercise values at maturity.

(ii) Moving one step backward, we should also calculate the time TM�2 exercise

values by equation (8) for all paths. Since regression will be done only on

in-the-money (ITM) paths, it is necessary to pick out those paths where the

time TM�2 exercise value is larger than zero. Assume that the number of in-

the-money items is N�, then for N� number of selected paths, we can make xj

for j = 1; � � � ; N� equals to the corresponding simulated forward swap rates

SjM�2;M (TM�2). Meanwhile, let yj be the continuation value which is actually

the discounted time TM�1 cash �ow given byh
SjM�1;M (TM�1)�K

i+
CjM�1;M (TM�1)D

j
M�2;M (TM�2) for j = 1; � � � ; N�

(iii) For all ITM paths, we can now perform the regression xj of on yj for j =

1; � � � ; N� and get value of parameter a0, a1, a2. With these parameters, the

time TM�2 continuation values of each ITM path can be recalculated by the

same quadratic formula (1). In the numerical test, NAG C routine (g02dac)

is employed to perform a general multiple linear regression using least squares

estimation.

(iv) For all N paths, revalue the new cash �ow at time TM�2 of each path. Let

it be the time TM�2 exercise value if the later is larger than the recalculated

time TM�2 continuation value. Otherwise, we should discount time TM�1 cash

�ow back to time TM�2 and make it the time TM�2 cash �ow.

(v) Keep moving backward step by step until time T1. On each exercise date, re-

peat procedure (i) to (iv). Then we can get the exercise point and discounted

cash �ows of every simulation path.
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(vi) The Bermudan swaption value can be obtained if we sum up time T1 cash

�ows of N paths discounted to time T0 by D
j
0;1 (T0) for j = 1; � � � ; N , and

divide it by number of simulation N .

One may have noticed that vectors with at least two dimensions are required

here to record the relative information for di¤erent path at every reset date.

This may cause memory problem when the simulation number become very

large. Besides, the vector size that the regression function can handle will also

set constraint on the number of simulation path.

6 PCA and Hedging of Bermudan Swaption

Here, we assume that a 10� 1 Bermudan swaption at time T0 and want to hedge it

with some interest rate derivatives. The hedged portfolio will be unwound on next

exercise date T1, which is one year later. By analysing the P&L (pro�t and loss)

of the hedged portfolio on the unwind date, we can check the hedge performance

of the interest rate models. A good model should, on average, produce a hedged

portfolio P&L close to zero. First of all, we need to decide the hedge instruments

and calculate corresponding hedge ratios. Since the underlying assets of swaptions

are swaps, it seems logical to hedge the Bermudan swaption using a set of swaps.

One could also use a set of zero coupon bond which is the basic elements of swap.

However, swap has zero value at inception, whereas zero coupon bond as a hedge

insrrument will produce a lot of extra cash �ows which may not be desirable. Hence,

in this paper, swaps are chosen to hedge the 10� 1 Bermudan swaption.

6.1 PCA on Change of Forward Rates

When calculating the hedge ratio, it would be inexpedient to take into account the

change of only one single forward swap rate and compare it with the change of the

swaption value because the forward swap rates are related to each other and they

don�t moving independently. In other words, if the yield curve at a particular time
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is changed, all forward swap rates will be a¤ected. To overcome this problem, we

derive the hedge ratios using Principle Component Analysis (PCA) on the historical

change of forward rates. Since the swap rate is a function of forward rates, making

PCA analysis directly on the forward rates should be more e¢ cient. Yallup (2006)

shows that immunization scheme based on forward curve, compared with other

types of yield curves, produced the best results.

To avoid complications due to time series dynamics of interest rate factors mea-

sured at di¤erent time frequencies, it is important to conduct the PCA analysis

(for hedging purpose) on forward rates with data frequency the same as the unwind

interval of the hedged portfolio. Hence, PCA was carried out using forward rates

measured at annual interval and derived from zero yields, forward LIBOR and for-

ward swap rates under the given tenor structure. Let Ljt denote the j-th forward

libor rate at time t and

�Ljt = Ljt+� � L
j
t ; j = 1; � � � ; J

where � is the data frequency, which in this case is one year. Since we use 11 forward

rates as input, j = 1; � � � ; 11.

The outcome of the PCA analysis is a set of PCA scores, ajk, from the following

multivariate relationship

�Ljt = �j + aj1P1;t + a
j
2P2;t + � � �+ ajmPm;t + "t

Pk;t for k = 1; � � � ;m are m number of PCA factors. By theoretical construct

m � J . By changing these PCA factors, we know in which direction and by how

much will each of the forward rates move wrt to changes in the PCA factor(s).

In practice, three components were reported to drive the interest rate curves.

The �rst component corresponds to parallel shifts, where a shock has an uniform

impact on the whole curve. The second factor a¤ects the slope of the interest rate

curve causing the short and the long rates to move in opposite direction. The third

factor a¤ects the curvature, where short and long rates move in the same direction

whereas intermediate maturity rates move in the opposite direction. Hence, the
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following relationship is used in the hedging exercise (omitting the j superscript for

the time being)

Lt+� � Lt = �+ a1P1;t + a2P2;t + a3P3;t + "tbLt+� = Lt + �+ �+ a1P1;t + a2P2;t + a3P3;t:

If we increase each of the three PCA components by a�Pk amount, this will increase

the forecast bLt+� by �bLt+� :
�bLt+� = 3P

k=1

ak�Pk;t:

We introduce an upward and a downward shift, �P�k , of each of the three PCA

factors. The amount of factor move could have been based on (i) the mean absolute

change in the history (ii) standard deviation of changes in the history or (iii) ARIMA

forecast of using the entire PCA history. Since, we do not have a very long time

series of annual forward rates, method (iii) is ruled out. In this paper, we use the

mean absolute change of PCA factor to produce �P�k . Once the change in the

PCA factor is determined, the corresponding change in the forward rate can be

derived from equation (DeltaL) above. The same process of bumping the forward

rate is repeated for each forward rate on the forward curve.

6.2 Calculation of Hedge Ratio

After bumping the forward rate curve by PCA factors, we can recalculate new

values of Bermudan swaption and swaps at the time of hedging. Here the bumping

behaviour includes adding �Pk to the PCA factor (bumping up) and subtracting

�Pk from the PCA factor (bumping down). The delta ratios of these derivatives

with respect to PCA factors can be derived by equations as below:

�BerSwnk =
@BerSwn (T0)

@Pk
=
[BerSwn (T0)]

+
k � [BerSwn (T0)]

�
k

P+k � P
�
k

�
Swap0;m
k =

@Swap0;m (T0)

@Pk
=
[Swap0;m (T0)]

+
k � [Swap0;m (T0)]

�
k

P+k � P
�
k

(15)
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Here the value of Bermudan swaption is given by the co-terminal SMM while values

of hedging swaps are calculated by equation (3)�. It should be noted that the strike

rate of Bermudan ATM swaption is the relevant time T0 market observable forward

swap rate no matter how the forward curve is bumped. Similarly, the strike rate

of the swap is exactly the relevant time T0 spot swap rate. Therefore, without

bumping the curve, the value of swap is zero at T0 under no arbitrage condition.

Here, we construct our hedging portfolio with 1-year, 5-year and 11-year swaps

with hedge ratios, xt; yt and zt. These hedge ratios are derived by minimizing the

amount of delta mismatch (w.r.t. the �rst three PCA factors). So we want to

optimize the following

min
xt;yt;zt

3P
k=1

wk"
2
t;k (2)

where

"t;k = �
BerSwn
k � xt�Swap0;1k � yt�Swap0;5k � zt�Swap0;11k

is the amount of delta mismatch with respect to PCA factor k, and wk is the weight

associated with each PCA factor. It is indisputable that the �rst factor will be

given the largest weight considering the much larger proportion it contributes to

explaining the forward rate curve movements. Simplex algorithm from NAG C

library is used to �nd the optimal solution of xt, yt and zt so that equation(2) is

satis�ed.

F (") =
Pm
k=1wk"

2
k

"2k = �kBerSwn+
P
xn�kSwapn;M for 1 < n < M (16)

6.3 Pro�t & Loss of Hedge Portfolio

On the unwind date T1, hedge performance of the model can be checked by calcu-

lating the pro�t and loss of the hedged portfolio. After interval � , the maturity of

the Bermudan swaption becomes one period shorter but the strike rate will remain

unchanged. It is necessary to recalibrate the co-terminal SMM to the market im-

plied volatilities at time T1 under new tenor structure 0 := T1 < T2 < � � � < TM , so
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that we can use the T1-calibrated model to price the Bermudan swaption (now 10

years to maturity). Meanwhile, the length of hedge instruments will also become

one period shorter. Their prices are calculated using the yield curves prevailing at

time T1 and the same strike rate as time T0. P&L at time T1 can be calculated as

follows

P&L (T1) =
BerSwn (T0)

B1 (T0)
�BerSwn (T1)�

P
xnSwapn�1;M�1 (T1) (17)

7 Data and Empirical Study

In this paper, the numerical test is carried out on both Euro and USD markets.

The tenor structure is set to be 0 := T0 < T1 < T2 < � � � < T11 with interval � equal

to one year. Then there are ten reset/exercise dates between now (T0) and �nal

swap maturity date (T11). A set of zero curves (zero yields) with length ranging

from one year to eleven years are used in the test. In calibration, the zero curves of

di¤erent calibrating dates are used as inputs of the model. When carrying out the

PCA on change of forward rates, monthly zero yields are used to derive the forward

LIBOR rates of each month. Model calibration will be conducted at the end of each

month from February 2005 to September 2006. So there are nineteen calibration

dates and corresponding parameter sets. The matrix of market implied volatility of

ATM swaptions includes 1-year forward 10-year swaption to 10-year forward 1-year

swaption, which are also observed on the above nineteen dates.

7.1 Data

The data comprises annual forward rates and implied volatility of at-the-money

European swaptions from the Euro and USD interest rate markets. All data for

this study is downloaded from Datastream. We have monthly data (last business

day of each month) from 28 Feburary 2005 till 30 September 2007 for Euro and

USD payer swaptions. We also downloaded the corresponding zero-yield curve to

derive the forward Libor rates spanning from 1 year to 10 year.
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Table 2: Example of Implied Volatilities of ATM swaptions on 2006-4-28 (Euro

Market)

1 2 3 4 5 6 7 8 9 10

1 0 .167        0 .166        0 .165        0.162        0.158        0.160        0.145        0.17 1        0.13 7        0.13 4        

2 0 .165        0 .163        0 .162        0.158        0.153        0.147        0.142        0.13 8        0.13 5        0.13 2        

3 0 .164        0 .160        0 .158        0.153        0.148        0.142        0.137        0.13 3        0.13 0        0.12 7        

4 0 .161        0 .157        0 .152        0.149        0.144        0.138        0.133        0.13 0        0.12 7        0.12 4        

5 0 .157        0 .152        0 .148        0.145        0.140        0.135        0.131        0.12 8        0.12 5        0.12 2        

6 0 .153        0 .149        0 .145        0.141        0.137        0.132        0.129        0.12 5        0.12 2        0.12 0        

7 0 .149        0 .145        0 .142        0.138        0.134        0.130        0.127        0.12 4        0.12 1        0.11 8        

8 0 .146        0 .142        0 .139        0.136        0.132        0.129        0.125        0.12 2        0.12 0        0.11 7        

9 0 .144        0 .140        0 .136        0.134        0.131        0.127        0.124        0.12 1        0.11 9        0.11 7        

1 0 0 .141        0 .137        0 .134        0.132        0.129        0.126        0.123        0.12 1        0.11 8        0.11 6        

7.2 The Interpolation for the Swaption Matrix

As mentioned before, the co-terminal SMM will be calibrated to the market price

that requires the Black implied volatilities as inputs. Table (2) gives an example of

the implied volatilities matrix of swaptions.

In the table, the �rst row indicates the maturity of the swaption, while the �rst

column is the index of the length of swaps involved with the swaption. We can see

that several volatilities from column of 6-year forward, 8-year forward and 9-year

forward swap are written in bold letters because these data are unavailable on the

market and have been interpolated using the adjacent market data on the same row.

The following log-linear (or power) functional parametric formula for interpolation

is recommended in Brigo and Morini (2005, P.24)

Y = �1X
��2

where X is the maturity of the swaption and Y is the volatility of swaption. Since

the calibration target is a set of co-terminal European payer swaptions (the diagonal

cells), we care only about the upper triangular part of the matrix.

It is noticed that in the Euro market, Black implied volatilities of 6-year for-

ward 1-year swaption and 8-year forward 1-year swaption are �xed at abnormally
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higher level in comparison with other market quotations from Jan 2006 to Jul 2006.

Therefore they are not selected in interpolation and calibration during that period.

From experience in the numerical test, the pricing results will be a¤ected by the

way we interpolate the swaption�s implied volatilities to a large extent, especially

in some abnormal market conditions.

7.3 Calibration of Co-terminal SMM

As mentioned in Section IV, zero curves and market implied volatilities are used

as input of the model in calibration. Given a collection of zero curves, we can

conveniently calculate the price of zero coupon bond by formula:

Bn (T0) =
1

(1 + yn)
n for n = 1; � � � ; 11

where yn is the zero yield for n year(s). Then the strike rate and the time T0 forward

swap rate can be derived by equation (4).

The �rst step is to calibrate parameter a, b, c, and d to implied volatility of

t year forward and (M � t)-year forward swaption. Here t denotes the swaption�s

maturity time and varies from 1 year to 10 years. In other words, we want to �nd a

set of fa; b; c; dg values that can replicate the term structure of implied volatilities

of the co-terminal swaption as shown below

vt;M =  (t; a; b; c; d) = [at+ b] e�ct + d for t = 1; � � � ; 10 (18)

Details of the procedure have been discussed in Section 4. NAG C function (e04unc)

is employed here to do the calibration by minimizing an arbitrary smooth sum of

squares function subject to constraints using a sequential quadratic programming

(SQP) method.

According to experience in calibrating, sometimes the library routine may give

combination of parameters whose values have no economic meaning. For example, it

can �t the function ideally under given tolerance of error where parameter a = �100

and c = 200. But these values have no realistic meaning. To avoid such result and
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Table 3: Initial settings for paprameters a, b, c, d.

a b c d
I n i t i a l  e s t im a te 0 .0 4 0 .0 6 0 .5 0 .1

U p p e r  b o u n d 1 1 1 1

L o w e r  b o u n d 0 - 1 0 0

to improve the computational e¢ ciency, we need to set initial values and boundaries

for these parameters. Actually, these initial settings play an important role on the

performance of the library routine. Taking into account both the parameter range

given by FINCAD for their LMM calibration functions and distinctiveness of the

SMM, the initial constraints of the parameter set are chosen for both markets as

shown in Table 3.

For the purpose of hedging test where we need to recalculate the value of 9*1

Bermudan swaption (maturity is 9 years), it is necessary to do the calibration on

the unwind date again so that the SMM can match the term structure of the set

of European payer swaption with common maturity date T10. Here, parameter set

fa; b; c; dg is calibrated to volatility of a collection of European payer swaptions with

common maturity date T10.

Table 5 and Figure 2 present the parameter values from calibration. The para-

meters are quite stable through time.

7.4 Bermudan Pricing Results

We compare the price calculated from one-factor SMM with those from one-factor

LMM. The results are summarized in Table 6 and Table 7 and Figure 3. The �rst

part, we are pricing a 11-year Bermudan swaption whereas in the second part we

are pricing the same set of Bermudan swaptions one year later when the option

maturity has reduced to 10 year. As we could see from the table, given one factor

LMM and SMM model, the Bermudan swaption prices are very close to each other.
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7.5 PCA on Change of Forward LIBOR Rates

A set of monthly zero yields ranging from Feb 1999 to Jul 2007 is used here to

derive the relative zero coupon bond prices. Then a set of forward LIBOR rates

L (T0; Tn; Tn+1) for n = 0; � � � ; 10 for each month can be calculated by equation (2).

The PCA was carried out on the time series of the yearly change of these forward

LIBOR rates. Here, � is equal to 12 months. From PCA results, it is con�rmed

that three factors can describe 93% of the pattern of �Lj (T0; Tn; Tn+1) on the Euro

market with factor one (P1) accounting for 69.2%, factor two (P2) accounting for

16:2% and factor three (P3) accounting for 7:6% and the corresponding data from

USD market are 94:2%, 79:6%, 8:7% and 5:9%.

Table 8 and 9 and Figure 4 and 5 display the loadings of the �rst three factors.

We have used absolute of mean of scores for computing the shocks. We could

have used mean of scores or standard deviation of scores or some other statistical

criteria. Litterman and Scheikman (1991) used one standard deviation to compute

the shocks. The values show that for our data set the standard deviations are quite

large and can estimate rather unrealistic shocks, thereby we used mean absolute of

scores for estimating the forward rate bumps.

Since the standard deviations for three factors are all larger than the absolute

means, the later is chosen as �Pk for k = 1; 2; 3 to bump the LIBOR curve. The

ARIMA prediction approach is not used here and is left for future research because

the time series used for PCA has covered those hedging dates. After getting the

bumped forward LIBOR curves by methods discussed in section VI, we can transfer

it into new set of forward swap rates through the medium of zero coupon bonds by

equation (2) and (4).

32



Table 6: 11Y and 10Y Bermudan swaption prices in EUR market from February

2005 to September 2007.

DATE(11Y) SMM LMM AVERAGE
2005-2-28 0.0463 0.0459623 0.0462
2005-3-31 0.0479 0.0479900 0.0479
2005-4-29 0.0481 0.0484811 0.0483
2005-5-31 0.0499 0.0500876 0.0500
2005-6-30 0.0534 0.0549168 0.0541
2005-7-29 0.0484 0.0478462 0.0481
2005-8-31 0.0483 0.0474547 0.0479
2005-9-30 0.0458 0.0464061 0.0461
2005-10-31 0.0450 0.0452753 0.0451
2005-11-30 0.0444 0.0447728 0.0446
2005-12-30 0.0415 0.0414789 0.0415
2006-1-31 0.0395 0.0393072 0.0394
2006-2-28 0.0379 0.0376263 0.0378
2006-3-31 0.0375 0.0373956 0.0375
2006-4-28 0.0386 0.0389507 0.0388
2006-5-31 0.0397 0.0403900 0.0401
2006-6-30 0.0384 0.0387323 0.0386
2006-7-31 0.0382 0.0384757 0.0384
2006-8-31 0.0384 0.0385994 0.0385
2006-9-29 0.0379 0.0381707 0.0380

DATE(10Y) SMM LMM Strike
2006-2-28 0.0273 0.0271 0.0402
2006-3-31 0.0365 0.0364 0.0395
2006-4-28 0.0519 0.0521 0.0377
2006-5-31 0.0591 0.0592 0.0363
2006-6-30 0.0722 0.0723 0.0344
2006-7-31 0.0585 0.0586 0.0356
2006-8-31 0.0575 0.0576 0.0339
2006-9-29 0.0519 0.0522 0.0344
2006-10-31 0.0399 0.0397 0.0369
2006-11-30 0.0371 0.0369 0.0371
2006-12-29 0.0540 0.0537 0.0357
2007-1-31 0.0504 0.0502 0.0377
2007-2-28 0.0423 0.0422 0.0378
2007-3-30 0.0328 0.0329 0.0409
2007-4-30 0.0293 0.0290 0.0431
2007-5-31 0.0370 0.0369 0.0433
2007-6-29 0.0464 0.0466 0.0442
2007-7-31 0.0473 0.0474 0.0428
2007-8-31 0.0502 0.0504 0.0408
2007-9-28 0.0573 0.0576 0.0401

Note: SMM stands for Swap Market Model and LMM stands for Libor Market Model. 11-y Bermudan
swaption are priceed as at-the-money from February 2005 to September 2006; 10 year Bermudan swaptions
are priced with the corresponding 11-y ATM strikes one year ago. For example, on February 2006, the strike
rate for 10-y Burmudan swaption is 0.0402 which is the ATM strike rate for 11-y Bermudan swaption on
February 2005. 10-y Bermudan swaption are priced  from February 2006 to September 2007.

33



Table 7: 11Y and 10Y Bermudan swaption prices in USD market from February

2005 to September 2007.

DATE(11Y) SMM LMM AVERAGE
2005-2-28 0.0562 0.0576 0.0569
2005-3-31 0.0568 0.0597 0.0582
2005-4-29 0.0574 0.0592 0.0583
2005-5-31 0.0555 0.0566 0.0560
2005-6-30 0.0570 0.0582 0.0576
2005-7-29 0.0529 0.0539 0.0534
2005-8-31 0.0547 0.0558 0.0553
2005-9-30 0.0532 0.0540 0.0536
2005-10-31 0.0531 0.0542 0.0536
2005-11-30 0.0545 0.0552 0.0549
2005-12-30 0.0520 0.0521 0.0520
2006-1-31 0.0500 0.0495 0.0498
2006-2-28 0.0430 0.0415 0.0422
2006-3-31 0.0459 0.0448 0.0454
2006-4-28 0.0455 0.0450 0.0452
2006-5-31 0.0463 0.0454 0.0458
2006-6-30 0.0432 0.0420 0.0426
2006-7-31 0.0446 0.0434 0.0440
2006-8-31 0.0441 0.0424 0.0432
2006-9-29 0.0448 0.0431 0.0440

DATE(10Y) SMM LMM Strike
2006-2-28 0.0430 0.0418 0.0496
2006-3-31 0.0471 0.0464 0.0522
2006-4-28 0.0701 0.0698 0.0482
2006-5-31 0.0802 0.0798 0.0464
2006-6-30 0.0883 0.0877 0.0454
2006-7-31 0.0643 0.0635 0.0486
2006-8-31 0.0653 0.0640 0.0456
2006-9-29 0.0485 0.0473 0.0492

2006-10-31 0.0383 0.0368 0.0520
2006-11-30 0.0349 0.0338 0.0517
2006-12-29 0.0428 0.0418 0.0503
2007-1-31 0.0424 0.0429 0.0512
2007-2-28 0.0372 0.0366 0.0514
2007-3-30 0.0327 0.0319 0.0548
2007-4-30 0.0270 0.0264 0.0573
2007-5-31 0.0289 0.0276 0.0577
2007-6-29 0.0371 0.0368 0.0585
2007-7-31 0.0453 0.0451 0.0566
2007-8-31 0.0458 0.0467 0.0538
2007-9-28 0.0526 0.0547 0.0525

Note:SMM stands for Swap Market Model and LMM stands for Libor Market Model. 11-y Bermudan
swaption are priceed as at-the-money from February 2005 to September 2006; 10 year Bermudan
swaptions are priced with the corresponding 11-y ATM strikes one year ago. For example, on
February 2006, the strike rate for 10-y Burmudan swaption is 0.0402 which is the ATM strike rate for
11-y Bermudan swaption on February 2005. 10-y Bermudan swaption are priced from February 2006
to September 2007.
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Figure 3: 11Y and 10Y Bermudan swaption prices in EUR and USD markets from

February 2005 to September 2007.

Note:SMM stands for Swap Market Model and LMM stands for Libor Market Model.
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Figure 4: Factor loadings for the �rst three principle components of forward rates

term structure in the EUR and USD markets
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Figure 5: PCA factor loadings (mean of the absolute change) for the �rst three

principle components in EUR and USD markets.
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Table 8: PCA factor loadings of Libor rates from January 2000 to September 2007.

EUR USD
Rates PCA1(EUR) PCA2(EUR) PCA3(EUR) PCA1(USD) PCA2(USD) PCA3(USD)

1 0.36 -0.63 0.64 0.47 -0.69 0.49
2 0.43 -0.34 -0.29 0.46 -0.22 -0.39
3 0.41 -0.09 -0.40 0.38 0.03 -0.41
4 0.35 0.05 -0.28 0.30 0.13 -0.34
5 0.32 0.13 -0.14 0.28 0.22 -0.09
6 0.28 0.21 -0.02 0.25 0.23 -0.01
7 0.27 0.26 0.12 0.23 0.25 0.15
8 0.20 0.31 0.14 0.20 0.27 0.21
9 0.20 0.29 0.19 0.20 0.27 0.28

10 0.19 0.29 0.29 0.17 0.27 0.33
11 0.18 0.28 0.32 0.17 0.27 0.26

Table 9: Explainary power of the �rst three principle components.
E U R

P e rc e n ta g e
v a r ia n c e

C u m u la t iv e
v a r ia n c e

U S D
P e rc e n ta g e
v a ra r ia n c e

C u m u la tiv e
v a ra r ia n c e

P C A 1 8 2 .3 7 % 8 2 .3 7 % P C A 1 7 4 .2 2 % 7 4 .2 2 %
P C A 2 1 3 .8 7 % 9 6 .2 4 % P C A 2 2 0 .5 9 % 9 4 .8 1 %
P C A 3 2 .8 1 % 9 9 .0 5 % P C A 3 2 .9 6 % 9 7 .7 7 %

7.6 Hedge Performance

Here, seventeen dates (annual interval) are selected for test of hedge performance.

They are the last business day of each month from Feberuary, 2005 to September,

2006. Then the corresponding unwound dates are the last business day of each

month from February 2006 to September 2007, which result in seventeen sets of

P&L.

Given the tenor structure, ten swaps with length ranging from 2 years to 11

years are used to hedge a 10�1 Bermudan swaption. Six sets of values of the 10�1

Bermudan swaption and ten di¤erent swaps are calculated using new forward rate

curves bumped up and bumped down by amount of with . Then these values are

taken into equation (15) to derive the delta ratios with respect to three PCA factor.

On the unwind date (one year later), the value of 9 � 1 Bermudan swaption is

given by the recalibrated co-terminal SMM. Meanwhile, the length of ten hedging

swaps all becomes one year shorter with length ranging from 1 years to 10 years,

and their prices are calculated using zero curve of the unwind date by equation (3)�.

The P&L given by equation (17) for seven unwind days are shown in Table 10 and
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Figure 6.

From Figure 6, it is noted that the P&L given by the model for USD market is a

bit higher than those for the Euro market, which may indicate that this co-terminal

SMM with volatility parameterised by that particular formula performs better on

Euro market than on USD market.

8 Conclusions

The study shows that simulation of co-terminal forward swap rates evolved with

drift terms under terminal measure is fast in computation although complex in

theory. In simulation, the drift term is determined by volatilities, correlations and

values of a set of co-terminal forward swap rates evolved from the previous step,

although the correlation term can be ignored if we are doing calibration of one factor

co-terminal SMM only to swaptions. In pricing of Bermudan swaption, vector of

two dimensions may be required for the implementation of least squares method.

It is noticed that model calibration plays an important role in pricing perfor-

mance of the model. The initial values and constraints set for parameters will a¤ect

the e¢ ciency and result of the calibration. It is quite time consuming to calibrate

several parameters simultaneously to market quoted price while calibrating to initial

term structure of market implied volatilities is quite e¢ cient and robust. Further-

more, a particular volatility formula may not be applicable to di¤erent market.

Although the pricing part is satisfactory, hedge performance of one factor model

is not good enough. More factors may be needed in order to improve the hedge

results of the model. Because of the limitation of time calibration of co-terminal

SMM with multiple factors to caps and swaptions jointly will be left for future

research. Also, performance of the model for Brazil market will be tested when the

data are available.
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Table 10: Hedging P&L

EUR SMM LMM USD SMM LMM
2006-02-28 -0.0029 -0.0012 2006-02-28 0.0121 0.0132
2006-03-31 0.0046 0.0066 2006-03-31 0.0147 0.0160
2006-04-28 0.0036 0.0047 2006-04-28 0.0138 0.0151
2006-05-31 0.0057 0.0070 2006-05-31 0.0089 0.0097
2006-06-30 0.0061 0.0089 2006-06-30 0.0078 0.0090
2006-07-31 0.0052 0.0061 2006-07-31 0.0145 0.0153
2006-08-31 0.0056 0.0061 2006-08-31 0.0169 0.0185
2006-09-29 0.0060 0.0060 2006-09-29 0.0165 0.0176
2006-10-31 0.0078 0.0080 2006-10-31 0.0169 0.0182
2006-11-30 0.0081 0.0086 2006-11-30 0.0153 0.0159
2006-12-29 0.0067 0.0067 2006-12-29 0.0186 0.0194
2007-01-31 0.0061 0.0058 2007-01-31 0.0200 0.0188
2007-02-28 0.0078 0.0074 2007-02-28 0.0089 0.0092
2007-03-30 0.0097 0.0094 2007-03-30 0.0081 0.0091
2007-04-30 0.0092 0.0096 2007-04-30 0.0025 0.0041
2007-05-31 0.0099 0.0103 2007-05-31 0.0105 0.0121
2007-06-29 0.0057 0.0055 2007-06-29 0.0073 0.0074
2007-07-31 0.0042 0.0040 2007-07-31 0.0024 0.0023
2007-08-31 0.0059 0.0054 2007-08-31 -0.0002 -0.0015
2007-09-28 0.0058 0.0066 2007-09-28 -0.0031 -0.0041

RMSS 0.0066 0.0070 RMSS 0.0553 0.0587

Note:SMM stands for Swap Market Model and LMM stands for Libor Market Model. All
numbers are in real value. RMSS is the root mean sum of sqaure of all P&L in each period.
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Appendix: Derivation of Drift

Three rules in computation of cross variation products will be obeyed, which are

mentioned in Joshi and Liesch (2006, P4):

(i) For any constant c, hX; ci = 0:

(ii) For any aj 2 R,
*
X;
P
j
ajYj

+
=
P
j
aj hX;Yji :

(iii) hX;Y Zi = hX;Y iZ + hX;ZiY

Note that BM (t)
CM�1;M (t)

= 1
�M

is a constant.

When n =M � 1 �
SM�1;M ;

Cn;M�1
CM�1;M

�
= hSM�1;M ; 1i = 0

and �M�1 = 0.

When n =M � 2

�
SM�2;M ;

CM�2;M
CM�1;M

�
=

�
SM�2;M ;

CM�1;M
CM�1;M

�
+

�
SM�2;M ;

�M�1BM�1
CM�1;M

�
= 0 + �M�1

�
SM�2;M ; SM�1;M +

BM
CM�1;M

�
= �M�1 hSM�2;M ; SM�1;M i

= �M�1�M�2;M�1SM�2;M�M�2;MSM�1;M�M�1;M

�M�2 = �CM�1;M
CM�2;M

�
SM�2;M ;

CM�2;M
CM�1;M

�
= �CM�1;M

CM�2;M
�M�1 hSM�2;M ; SM�1;M i

= �CM�1;M
CM�2;M

�M�1�M�2;M�1SM�2;M�M�2;MSM�1;M�M�1;M
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When n =M � 3�
SM�3;M ;

CM�3;M
CM�1;M

�
=

�
SM�3;M ;

CM�2;M
CM�1;M

�
+

�
SM�3;M ;

�M�2BM�2
CM�1;M

�
=

�
SM�3;M ;

CM�2;M
CM�1;M

�
+ �M�2

�
SM�3;M ;

SM�2;MCM�2;M
CM�1;M

+
BM

CM�1;M

�
=

�
SM�3;M ;

CM�2;M
CM�1;M

�
+ �M�2

�
SM�3;M ;

CM�2;M
CM�1;M

�
SM�2;M

+�M�2 hSM�3;M ; SM�2;M i
CM�2;M
CM�1;M

= (1 + �M�2SM�2;M )

�
SM�3;M ;

CM�2;M
CM�1;M

�
+ �M�2

CM�2;M
CM�1;M

hSM�3;M ; SM�2;M i

= (1 + �M�2SM�2;M ) �M�1 hSM�3;M ; SM�1;M i+ �M�2
CM�2;M
CM�1;M

hSM�3;M ; SM�2;M i

Finally, taking SM�3;M back into the procedure where we get
D
SM�2;M ;

CM�2;M
CM�1;M

E
.

�M�3 = �CM�1;M
CM�3;M

�
SM�3;M ;

CM�3;M
CM�1;M

�
= �CM�1;M

CM�3;M
(1 + �n�2SM�2;M ) �M�1�M�3;M�1SM�3;M�M�3;MSM�1;M�M�1;M

�CM�2;M
CM�3;M

�M�2�M�3;M�2SM�3;M�M�3;MSM�2;M�M�2;M

When n =M � 4�
SM�4;M ;

CM�4;M
CM�1;M

�
=

�
SM�4;M ;

CM�3;M
CM�1;M

�
+

�
SM�4;M ;

�M�3BM�3
CM�1;M

�
=

�
SM�4;M ;

CM�3;M
CM�1;M

�
+ �M�3

�
SM�4;M ;

SM�3;MCM�3;M
CM�1;M

+
BM

CM�1;M

�
=

�
SM�4;M ;

CM�3;M
CM�1;M

�
+ �M�3

�
SM�4;M ;

CM�3;M
CM�1;M

�
SM�3;M

+�M�3
CM�3;M
CM�1;M

hSM�4;M ; SM�3;M i

= (1 + �M�3SM�3;M ) [(1 + �M�2SM�2;M ) �M�1 hSM�4;M ; SM�1;M i

+ �M�2
CM�2;M
CM�1;M

hSM�4;M ; SM�2;M i
�
+ �M�3

CM�3;M
CM�1;M

hSM�4;M ; SM�3;M i
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Again, the last step can be deduced by taking SM�4;M back into the procedure

where we get
D
SM�3;M ;

CM�3;M
CM�1;M

E
. Follow this procedure and by induction, the

general form of drift under terminal measure can be written as

�n =
M�2P
i=n

"
� i+1

Ci+1;M
CM�1;M

�n;i+1Sn;M�n;MSi+1;M�i+1;M
iQ

j=n+1
(1 + � jSj;M )

#

Also note that the above equation is not an explicit function of Sn;M , because

the Cn;M term is calculated from a set of Sn;M .
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Appendix: Libor Market Model Calibration

There have been many empirical studies and theoretical discussion about how best

to calibrate the LMM model (see Pedersen (1998), Schoenmakers (2002), Brigo and

Mercurio (2003, 2004), Rebonato (1999, 2000, 2002)). Given that there is a huge

number of interest rate instruments and interest rate derivatives, it is impossible

to achieve a perfect �t to all market prices. Not only that it will be technically

challenging, it is also costly in terms of time. In general, one should calibrate the

interest rate model to the most relevant subset of market data. Since, our primary

concern is the pricing and hedging of Bermudan swaption, it seems appropriate

to calibrate the model to all co-terminal European swaptions of the same tenor

structure as the Bermudan swaption.

The past literature on calibration includes ways of imposing smoothing criteria;

parameterize the volatility and correlation function, choice of minimizing pricing

error or volatility mismatch. Here we adopt the volatility function proposed in

Rebonato (1999) and calibrate it directly to European swaption (Black) implied

volatility. This method has been used extensively in the literature and was proved

to possess very good properties. Since the one-factor LMM has no correlation

parameter, the volatility has the following speci�cation

�i(t) = �(i)[(a+ b(Ti � t))exp(�c(Ti � t)) + d]: (3)

With appropriate parameter values, this volatility function will produce a hump

share (wrt time) as observed among the real market data.

The one-factor calibration results are summarized in Table (5). The calibration

is performed on the last business date of each month from February 2005 to Sep-

tember 2007. From the table, we could see that the parameters from calibration is

quite stable. We also plot the percentage di¤erence between market data and the

calibrated result in Figure (1).

The Sequential Quadratic Programming (SQP) algorithm from NAG C library

was used for calibration. This routine is based on the algorithm suggested in Gill et
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al (1986) . Due to the complexity of our target function, we approximate all partial

derivatives using �nite di¤erences. This however does not appear to preclude the

convergence of the optimization routine. Calibration settings are summarized in

Table (3).
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