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Abstract

This paper examines a continuous-time intertemporal consumption and portfolio

choice problem for an investor with Duffie and Epstein (1992a)’s recursive prefer-

ences who worries about model misspecification (model uncertainty) and wants to

seek robust decision rules. The expected excess return of a risky asset follows a

mean-reverting process. I find that whether the concern about model uncertainty

decreases the total demand for equities largely depends on risk aversion and the

attitude toward intertemporal substitution. When the elasticity of intertemporal

substitution (EIS) is about one and risk aversion is moderate, the concern about

model uncertainty increases the proportion of wealth invested in equities. The aver-

sion to model uncertainty also increases the importance of the intertemporal hedging

demand in portfolio decisions. The calibration analysis based on the detection-error

probabilities shows that the quantitative effect of robustness is almost negligible for

both the long sample of Campbell and Viceira (1999) and the short sample of Bar-

beris (2000).
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1 Introduction

One notable puzzle in financial economics is that although the canonical models on dynamic consump-

tion and portfolio choice (Samuelson, 1969; Merton, 1969) predict aggressive investment strategies for

moderately risk-averse investors, the actual equity holdings in the real world are surprisingly low. A

number of recent papers (e.g., Kim and Omberg, 1996; Brennan et al., 1997; Campbell and Viceira,

1999; Campbell et al., 2004) have analyzed dynamic portfolio choice under return predictability or

mean-reverting expected returns. They find that the intertemporal hedging motives can substantially

increase the demand for equities, which indeed aggravates the low equity allocation puzzle.1 To re-

solve the apparent puzzle, one successful approach is to introduce model uncertainty and uncertainty

aversion (e.g., Maenhout, 2004; Chen and Epstein, 2002). Taking into account model misspecifica-

tion, investors are concerned with the validity of a benchmark model describing the dynamics of asset

returns and are willing to consider a family of candidate models. This approach has the feature of

robust decision-making, which is usually formulated into a max-min problem in the multiple priors

framework. The investor’s aversion to the multiplicity of beliefs over the investment opportunity set

imputes pessimism into decision-making, which then translates into an uncertainty adjustment in the

optimal portfolio choice. This adjustment can help turn aggressive portfolios into conservative ones

and also explain the low equity demand in the real world. This approach and related results seem to

make concrete the intuition that uncertainty aversion necessarily lowers the equity demand.

However, since those findings are based on the assumption of i.i.d. returns, whether the estab-

lished result on the effect of model uncertainty can carry on to time-varying investment opportunities

deserves further research. This paper finds that the argument that investors’ aversion to model

uncertainty necessarily leads to lower equity demand is neither theoretically true in general nor

is empirically relevant for time-varying investment opportunities and investors with recursive prefer-

ences. To analyze the question, I consider a continuous-time intertemporal consumption and portfolio

choice problem in which an investor is uncertain whether an underlying model governing return dy-

namics is true. The expected returns of a risky asset follow a mean-reverting Ornstein-Uhlenbeck

process. To separate the effects of risk aversion and of the willingness to substitute intertempo-

rally, I adopt Duffie and Epstein (1992a)’s continuous-time parameterization of recursive preferences.

The model presented here nests the robust portfolio choice model analyzed by Maenhout (2006),

where an uncertainty-averse investor with the constant relative risk aversion (CRRA) utility function
1 The puzzle also manifests itself in a general equilibrium setting as the well-known equity premium puzzle (Mehra and

Prescott (1985)).



maximizes utility over terminal wealth.

To the best of my knowledge, it is the first paper to incorporate model uncertainty into a

continuous-time consumption and portfolio choice problem in which risk aversion, uncertainty aver-

sion and the willingness to substitute intertemporally are separated among each other and investment

opportunities are time varying.2 I obtain an exact analytical solution when the elasticity of intertem-

poral substitution is equal to one. For elasticities of intertemporal substitution different from one, I

use the log-linear approximation method described in Campbell et al. (2004) to solve for the optimal

decision rules. I show that increasing uncertainty aversion is observationally equivalent to increasing

effective risk aversion. This result extends the findings of Maenhout (2004, 2006) to the case with

both recursive preferences and time-varying investment opportunities. Maenhout (2004, 2006) show

that the observational equivalence holds, respectively, in a i.i.d. returns setting with recursive utility

and in a mean-reverting setting with CRRA utility. Furthermore, I show that when the elasticity

of intertemporal substitution is close to one, uncertainty aversion can increase the total equity de-

mand for moderately risk-averse investors. This result stands in contrast to the findings in Maenhout

(2006) where a CRRA investor maximizes utility over terminal wealth. Maenhout (2006) finds that

the concern about model uncertainty always leads to lower equity demand when the coefficient of

relative risk aversion is greater than one. I argue that this seeming contradiction stems from the

effect of intertemporal substitution, namely, a low elasticity of intertemporal substitution implies a

mitigated effect of model uncertainty on the equity demand.

In the presence of model uncertainty, the investor pursues robust decision rules that can work

reasonably well not only when the underlying model is correct, but also when it is misspecified.

In this paper, I use the robust control framework developed by Anderson et al. (2000) to embed

model uncertainty and uncertainty aversion and adopt the homothetic robustness specification of

Maenhout (2004, 2006) to solve for analytical solutions. An uncertainty-averse investor entertains a

set of alternative models surrounding the benchmark model that may be misspecified; each alternative

model governs a particular process of return dynamics. The investor wants to hedge against a worst-

case alternative model that is difficult to distinguish from the benchmark model. The statistical

criterion is a relative entropy criterion weighted by a preference parameter that measures the degree

of uncertainty aversion.
2 Ju and Miao (2009) and Chen, Ju and Miao (2009) use the generalized recursive smooth ambiguity preferences frame-

work, which allows for Bayesian learning and the distinction among risk aversion, uncertainty aversion and intertemporal
substitution. Schroder and Skiadas (2003) consider the generalized recursive preferences that also take into account
uncertainty aversion. However, the analytical solutions for optimal consumption and portfolio policies are not available
for time-varying investment opportunities in these papers.
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The concern about model misspecification stems from substantial degree of uncertainty in es-

timating dynamics of asset returns. It has long been argued that estimating expected returns is

very difficult (Merton, 1980). Further, whether asset returns are predictable has become one of the

most debated question in the empirical finance literature in recent decades.3 Thus, the typical bulk

of work on dynamic portfolio choice, which assumes that the model governing return dynamics is

fixed and perfectly known, may encounter difficulties due to the concern that the benchmark model

used to guide portfolio decisions is possibly misspecified. Introducing model uncertainty also has a

well-grounded decision theoretic basis. Uncertainty is used to describe the situation where a decision-

maker is uncertain over a set of probability distributions whereas risk is used to describe the situation

in which a probability distribution can be precisely known. Distinguishing uncertainty from risk can

provide an explanation to the well-known Ellsberg paradox.

In the calibration analysis, I empirically assess the strength of the quantitative effect of model

uncertainty based on the detection error probabilities. In particular, I want to address the question of

how large can the scope of robustness reach with recursive preferences and time-varying investment

opportunities? According to Anderson et al. (2000), the detection error probabilities provide a

useful approach to calibrate the preference parameter of robustness given a finite sample of data,

which allows us to explore the quantitative effect of model uncertainty. Maenhout (2006) suggests

a methodology for calculating the detection error probabilities based on Fourier inversion of the

conditional characteristic functions of the Radon-Nikodym derivatives between the worst-case model

and the benchmark model. In this paper, I further show that the conditional characteristic functions

have analytical solutions under recursive preferences. As a result, the detection error probabilities

can be explicitly characterized in closed-form (up to a Fourier inversion). I find that the scope of

model uncertainty is almost negligible for the two samples considered in Campbell and Viceira (1999)

and Barberis (2000). This implies that distinguishing the worst-case alternative model from the

benchmark model turns out to very easy. Thus, one can argue that the attempt to explain low equity

demand by introducing model misspecification as well as robust decision-making is only relevant for

i.i.d. returns. My results comprise a striking difference from those of Maenhout (2004) and Chen

and Epstein (2002) in which i.i.d. returns are examined. Maenhout (2004) documents a large effect

of robustness on asset holdings and asset returns. Maenhout (2006) further finds that the room for
3 A number of papers argue that the empirically detected return predictability arises due to inference bias (e.g., Ang and

Bekaert, 2007; Bossaerts and Hillion, 1999; Campbell and Yogo, 2006; Ferson et al., 2003; Stambaugh, 1999). Other
studies suggest that the predictability may have experienced structural breaks (Goyal and Welch, 2003), and the equity
premium is also subject to structural breaks (Pastor and Stambaugh, 2001). There is also a recent debate on the
out-of-sample performance as a test against the predictability (e.g., Goyal and Welch, 2008; Campbell and Thompson,
2008; Cochrane, 2008).
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the effect of robustness declines to a lesser extent in a time-varying investment opportunities setting

than in the i.i.d. setting, though the scope is still large enough to turn highly levered portfolios into

empirically plausible ones. Nevertheless, I find that this scope shrinks to a negligible level under the

Duffie-Epstein’s recursive preferences.

This paper is related to a large literature on the dynamic portfolio choice problem. Brennan et al.

(1997) examine asset allocation decisions when returns are predictable. Kim and Omberg (1996) and

Wachter (2002) derive closed-form solutions for mean-reverting risk premia in incomplete markets and

complete markets, respectively. Chacko and Viceira (2005) study the effect of stochastic volatility on

consumption and portfolio decisions. Liu (2007) analyzes dynamic portfolio choice when investment

opportunities are governed by quadratic processes. Those papers concerning model uncertainty and

uncertainty aversion include Epstein and Miao (2003), Uppal and Wang (2003), Garlappi et al. (2007)

and Gollier (2007). Epstein and Schneider (2007) develop a model of learning under ambiguity and

study its effect on dynamic portfolio choice. Recent papers examining the effects of Bayesian learning

and model uncertainty include Miao (2001), Cagetti et al. (2002), Ju and Miao (2009) and Chen, Ju

and Miao (2009).

The rest of the paper is organized as follows. Section 2 presents the dynamic optimization problem

for a robust investor with recursive preferences. Section 3 gives an exact analytical solution and an

approximate analytical solution when expected returns are time-varying. Section 4 describes the

calculation of detection error probabilities, based on the conditional characteristic functions of the

Radon-Nikodym derivatives and a Fourier inversion. Section 5 explores the quantitative effect of

robustness by calibrating the model to the market data. Section 6 concludes. The appendix contains

the proofs of the main results.

2 The Investor’s Robust Optimization Problem

I assume that there are two assets available for investment, a riskless short-term bond paying instan-

taneous return r and a risky asset with the following price dynamics:

dSt = Stµtdt+ StσdBt. (1)

The instantaneous expected return µt is assumed to follow a mean-reverting process:

dµt = κ (µ̄− µt) dt+ σµdB̃t. (2)
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where κ, µ̄ and σµ are all positive constants. The Brownian motions Bt and B̃t are allowed to be

correlated with correlation coefficient ρ.4 The process (2) can be written in terms of independent

Brownian motions of the form:

dµt = κ (µ̄− µt) dt+ σµρdBt + σµ
√

1− ρ2dB̂t

where B̂t and Bt are independent Brownian motions. The investor’s wealth dynamics can be described

by the following stochastic differential equation (SDE):

dWt = [Wt (r + αt (µt − r))− Ct] dt+WtαtσSdBt (3)

where αt is the proportion of wealth Wt invested in the risky asset.

I assume that the investor has recursive preferences over consumption and adopt Duffie and

Epsteins (1992a, b) continuous-time parameterization:

Vt =
∫ ∞

t
f (Cs, Vs) ds

where f (C, V ) is a normalized aggregator of current consumption and continuation utility that takes

the form

f (C, V ) =
β

1− 1
ψ

(1− γ)V

( C

((1− γ)V )
1

1−γ

)“
1− 1

ψ

”
− 1

 . (4)

Here, β is the rate of time preference, γ is the coefficient of relative risk aversion and ψ is the elasticity

of intertemporal substitution. With the restriction ψ = 1/γ, the normalized aggregator (4) reduces

to the standard additive power utility function, for which log utility obtains for γ = ψ = 1. When

ψ = 1, the aggregator f (C, V ) takes the form

f (C, V ) = β (1− γ)V
[
log (C)− 1

1− γ
log ((1− γ)V )

]
.

In the absence of model uncertainty and uncertainty aversion, the investor’s problem is

max
Ct,αt

Et

[∫ ∞

t
f (Cs, Vs) ds

]
subject to the state dynamics (2) and the budget constraint (3). This optimization problem has been

analyzed by Campbell et al. (2004). The Hamilton-Jacobi-Bellman (HJB) equation for this problem
4 I would be able to proceed in the following derivations using this formulation. However, it is more convenient to work

with the formulation with independent Brownian motions when model uncertainty is introduced.
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is

0 = sup
αt,Ct

{
f (Ct, Vt) +D(C,α)V

}
where D(C,α)V is the infinitesimal generator applied to the value function V and is defined for an

expected utility maximizer by

D(C,α)V = VW [Wt (r + αt (µt − r))− Ct] + Vµκ (µ̄− µt)

+
1
2
VWW (αtσSWt)

2 + VWµWtαtρσSσµ +
1
2
Vµµσ

2
µ.

Intuitively, D(C,α)V is a measure of the instantaneous expected continuation value in the Bellman

equation. As will be seen later, the adjustment to this term reflects the concern about model uncer-

tainty. A robust investor deems the state dynamics (2) and (3) as only an approximation and possibly

misspecified. The investor partly accepts the usefulness of this reference model but still doubts its

validity. He therefore wants to consider a family of alternative models that are close to and hard to

distinguish from the reference model.

Denote the state vector Yt ≡ (Wt, µt)
>. The reference model can then be written as

dYt = Θ(Yt) dt+ Λ (Yt) dBt

where Θ is the drift vector, Λ is the volatility matrix of the state vector Yt, Σ = ΛΛ> is the covariance

matrix and B is the Brownian vector Bt ≡
(
Bt, B̂t

)>
. The vector Θ and the matrix Λ have the

appropriate functional forms inherited from (2) and (3). The distorted law of motion of the state

vector implied by an alternative model is

dYt = Θ(Yt) dt+ Λ (Yt)
[
Λ (Yt)

> u (Yt) dt+ dBt

]
(5)

where u (Yt) is an endogenous drift adjustment vector to be determined from solving the optimization

problem. Thus, model uncertainty indeed concerns the uncertainty about the drift functions of the

state variables. Suppose P is the subjective probability measure under the reference model and Q

under the alternative model. Then it follows from Girsanov’s theorem that the Radon-Nikodym

derivative is (
dQ
dP

)
t

= Ξ1,t (6)

where
dΞ1,t

Ξ1,t
= Λ (Yt)

> u (Yt) dBt, Ξ1,0 = 1. (7)

The interpretation is that the investor endogenously chooses an alternative belief about the dynamics
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of the state variables and accordingly the optimal consumption and portfolio rules.

The investor worries that an alternative model has adverse effect on the expected continuation

payoff and wants to take into account this worst-case alternative model when making decisions.

However, it is rarely possible for the investor to consider alternative models that are extremely bad

and very far away from the reference model. Only those models that are reasonably close to the

reference model will be considered. Thus, a penalty term should be incurred to penalize the distance

of an alternative model. This penalty term is operationalized by Anderson et al. (2000) using relative

entropy. Put formally, the investor seeking robustness considers the following adjustment to D(C,α)V :

inf
u

{
D(C,α)V + u>Σ∂V +

1
2η
u>Σu

}
.

The second terms reflects the adjustment to the expected continuation value when state dynamics are

governed by the alternative model (5). This term captures adverse effect of model misspecification

on the continuation value. The third term is the relative entropy term. Alternative models that are

close to the reference model have with low entropy and low log-likelihood ratios. These models are

therefore statistically difficult to distinguish from the reference model.

The preference parameter η ≥ 0 measures the strength of preference for robustness, or put another

way, the degree of confidence on the reference model. When η = 0, the investor has complete

confidence and does not worry about model uncertainty. In this case, the problem reduces to the

expected utility maximization. A higher η implies less confidence on the reference model and more

desire for robustness. The investor then considers distant alternative models with large drift distortion

and large entropy.

3 The Robust Intertemporal Consumption and Portfolio Decisions

I impose the set of admissible portfolio strategies with well-defined utility, namely, set A given by

A =
{
α : Wt ≥ 0 and EQ [f (Ct, Vt) <∞] for all t ≥ 0,

}
.

The HJB equation for a robust investor with recursive preferences is

0 = sup
αt,Ct

inf
u

{
f (Ct, Vt) +D(C,α)V + u>Σ∂V +

1
2η
u>Σu

}
. (8)

The first order conditions (FOCs) with respect to u are

u∗ = −η∂V.

7



The endogenous drift distortion depends on the state variables through the partial derivatives of the

value function in an implicit way. Thus, unless I obtain a complete solution to the problem, the

dependence cannot be explicitly characterized.

Substituting the FOCs back into the HJB equation gives

0 = sup
αt,Ct

{
f (Ct, Vt) +D(C,α)V − η

2

[
(WtαtσS)2 V 2

W + 2WtαtρσSσµVWVµ + σ2
µV

2
µ

]}
. (9)

As noted by Anderson et al. (2000) and Maenhout (2006), robustness leads to an adjustment term

in the HJB equation which reflects a concern about the quadratic variation in the partial derivatives

of the value function weighted by the preference parameter η.

The first order conditions for consumption are

Ct = V −ψW [(1− γ)V ]
1−γψ
1−γ βψ when ψ 6= 1 (10)

Ct =
V

VW
(1− γ)β when ψ = 1 (11)

The first order condition for portfolio choice is

αt =
VW (µt − r)(

−VWWWt + ηV 2
WWt

)
σ2
S

+
VWµρσµ(

−VWWWt + ηV 2
WWt

)
σS

+
−ηρσµVWVµ(

−VWWWt + ηV 2
WWt

)
σS
. (12)

The (implicit) optimal portfolio rule has three components and is similar to the one derived in

Maenhout (2006). The first component is the myopic demand, which only depends on the current

risk-return trade-off. Different from the case of expected utility maximization, the standard risk

aversion factor, −VW
VWWWt

, has now been adjusted to VW
(−VWWWt+ηV 2

WWt) . The second term represents

the standard hedging demand as in Kim and Omberg (1996) and Campbell et al. (2004) when η = 0.

This term is zero when investment opportunities are constant (σµ = 0), or when the investment

opportunity set cannot be used as a tool of hedging (ρ = 0) or when the investor has log utility

(VWµ = 0). The third term can be interpreted as the hedging demand due to robustness. When no

robustness is desired (η = 0), this term vanishes. An interesting property is that even with log utility

(VWµ = 0), this term still persists.

To explicitly solve the model, I follow Maenhout (2004, 2006) and impose the homothetic robust-

ness specification. In particular, I assume that the preference parameter η is state-dependent and

scaled by the value function:

η (Wt, µt) =
φ

(1− γ)V (Wt, µt)
> 0 (13)

where the parameter φ can be interpreted as the preference robustness or uncertainty aversion. The

8



HJB equation then becomes

0 = sup
αt,Ct

{
f (Ct, Vt) + VW [Wt (r + αt (µt − r))− Ct] + Vµκ (µ̄− µt)

+
1
2
VWW (αtσSWt)

2 + VWµWtαtρσSσµ +
1
2
Vµµσ

2
µ

−

(
φ

2 (1− γ)
α2
tσ

2
SW

2
t V

2
W

V
+

φ

1− γ

WtαtρσSσµVWVµ
V

+
φ

2 (1− γ)
σ2
µV

2
µ

V

)}
.

For different values of the elasticity of intertemporal substitution (ψ = 1 or ψ 6= 1), the HJB equation

results in different forms of partial differential equations because different normalized aggregators are

used. I show these equations, respectively, for each case in Appendix A.

3.1 The analytical solution for ψ = 1

I present an exact analytical solution for ψ = 1, which is summarized in the following proposition.

The solution nests the case of γ = 1, for which log utility obtains.

Proposition 1 When ψ = 1 and γ 6= 1, the solution to the value function is

V (Wt, µt) = (I (µt))
1−γ W

1−γ
t

1− γ
(14)

with

I (µt) = exp
{
A+Bµt +

C

2
µ2
t

}
(15)

where A, B and C satisfy a system of recursive equations given in Appendix A and are functions of
the primitive parameters of the model describing investment opportunities and preferences.

The value function for ψ = 1 and γ = 1 is of the form

V (Wt, µt) = logW +A+Bµt +
C

2
µ2
t

where A, B and C satisfy the system of recursive equations given in Appendix A with γ = 1.
The optimal consumption and portfolio rules are given by

Ct = βWt

αt =
µt − r

(γ + φ)σ2
S

+
1− γ − φ

γ + φ

ρσµ
σS

(B + Cµt) . (16)

Proof. See Appendix A.

3.2 The approximate analytical solution for ψ 6= 1

For the more general case of ψ 6= 1, there is no exact analytical solution to the problem (8). But

I can use the log-linear approximation method described in Campbell et al. (2004) to solve for an

approximate analytical solution. The solution is summarized in the following proposition.

9



Proposition 2 When ψ 6= 1 and γ 6= 1, the solution to the value function is given by

V (Wt, µt) = (K (µt))
− 1−γ

1−ψ
W 1−γ
t

1− γ
(17)

where K (µt) satisfies an ordinary differential equation given in Appendix A. By applying the log-linear
approximation method of Campbell et al. (2004), the analytical solution to K (µt) is

K (µt) = exp

{
Â+ B̂µt +

Ĉ

2
µ2
t

}

where Â, B̂ and Ĉ satisfy a system of recursive equations shown in Appendix A and are functions of
the primitive parameters of the model describing investment opportunities and preferences.

The approximate analytical solution to the value function for ψ 6= 1 and γ = 1 is of the form

V (Wt, µt) = logW − 1
1− ψ

(
Â+ B̂µt +

Ĉ

2
µ2
t

)

where Â, B̂ and Ĉ satisfy the system of recursive equations given in Appendix A with γ = 1.
The optimal portfolio choice is given by

αt =
µt − r

(γ + φ)σ2
S

− 1
1− ψ

1− γ − φ

γ + φ

ρσµ
σS

(
B̂ + Ĉµt

)
(18)

Proof. See Appendix A.

I obtain the approximate solutions using a numerical recursive procedure suggested in Campbell

and Viceira (1999). Appendix A describes the details. By incorporating model uncertainty and the

preference for robustness, the results shown in Proposition 1 and 2 extend the work of Campbell

et al. (2004) and nest their solutions by setting φ = 0. The solutions shown here also extend the

work of Maenhout (2004) by exploring the effects of time-varying investment opportunities and of

Maenhout (2006) by disentangling risk aversion and intertemporal substitution. When ψ = 1, model

uncertainty has no effect on the optimal consumption-wealth ratio, which only depends on the time

preference parameter β. By contrast, I show through numerical examples that model uncertainty

does affect the consumption-wealth ratio when ψ 6= 1.

In the optimal portfolio rules (16) and (18), model uncertainty affects both the myopic demand

and the intertemporal hedging demand. The myopic allocation µt−r
σ2
S

is scaled by effective risk aversion

γ+φ. The effect on myopic demand is mirrored by the adjusted risk aversion factor VW
(−VWWWt+ηV 2

WWt)
appearing in the first term of the implicit optimal portfolio rule (12). The explicit solutions to the

second term and the third term in (12) are 1−γ
γ+φ

ρσµ
σS

(B + Cµt) and −φ
γ+φ

ρσµ
σS

(B + Cµt) for ψ = 1, and

− 1
1−ψ

1−γ
γ+φ

ρσµ
σS

(
B̂ + Ĉµt

)
and 1

1−ψ
φ

γ+φ
ρσµ
σS

(
B̂ + Ĉµt

)
for ψ 6= 1. However, it is impossible to separate

from the total hedging demand a hedging component in analytical form that is solely attributed

10



to model uncertainty because the uncertainty aversion parameter φ also appears in the recursive

equations for A(Â), B(B̂) and C(Ĉ).

Maenhout (2004) derives the first term in (16) and (18) to be the optimal portfolio rule for constant

investment opportunities. Thus, intertemporal substitution does not affect robust portfolio decisions.

More important, this implies that a high level of uncertainty aversion always leads to a low equity

demand for risk-averse investors. Maenhout (2006) assumes a mean-reverting risk premium and finds

that having φ > 0 lowers the optimal equity demand for a CRRA utility investor.5 The Duffie and

Epstein (1992a)’s recursive preferences nest the CRRA utility function employed by Maenhout (2006)

as a special case and allows me to distinguish the role of intertemporal substitution from risk aversion.

Thus, I can examine the effects of risk aversion, uncertainty aversion and intertemporal substitution

in a neatly manner.

The following proposition establishes the link between my model and the model of Campbell et

al. (2004) without model uncertainty.

Proposition 3 Given investment opportunities described by the equations (1)–(2), an uncertainty-

averse investor with a homothetic preference for robustness η (W,µ) =
φ

(1− γ)V (W,µ)
and Duffie

and Epstein’s recursive preferences is observationally equivalent to a Campbell, Chacko, Rodriguez
and Viceira(2004) investor with effective risk aversion γ + φ.

Proof. See Appendix A.

The above result extends the findings of Maenhout (2004) (Proposition 4) to a time-varying investment

opportunities setting. The optimal consumption and portfolio decision rules of a uncertainty-averse

investor with risk aversion γ and uncertainty aversion φ are identical to those of an expected utility

investor with risk aversion γ + φ. An interesting property to note is that a log-utility investor

also hedges for time-varying investment opportunities since his effective risk aversion accounted for

uncertainty exceeds one. Moreover, the intertemporal hedging demand of an uncertainty-averse log

utility investor is solely attributed to his preference for robustness. Another interesting property

concerns the case of γ < 1, for which the intertemporal hedging demand may shrink to zero when the

level of uncertainty aversion φ is nonzero. This happens when the stock allocation to hedge against

risk and the allocation to hedge against model uncertainty exactly balance each other.
5 Through numerical calibration, Maenhout (2006) finds that increasing the desire for robustness can bring the optimal

equity share below 100% without assuming a high level of risk aversion.
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4 Detection error probabilities

Our task is to calibrate the price dynamics (1)–(2) to the market data and use the optimal portfolio

rules derived above to find the quantitative effect of model uncertainty. A natural question is how

to calibrate the preference parameter φ in a meaningful way? To deal with the issue, I employ the

statistical model-detection tool in the form of detection error probabilities suggested in Anderson et

al. (2000) to calibrate model uncertainty. According to Anderson et al. (2000), a reasonable value

for uncertainty aversion φ should render the corresponding worst-case alternative model sufficiently

close to the reference model based on a time series sample with finite length. A high detection error

probability indicates a high likelihood that a robust investor will make a mistake when choosing

between the worst-case alternative model and the reference model. The value of the preference

parameter φ should be chosen in such a way that the detection error probability is high enough for

the investor to face a difficult model selection problem.

In this section, I follow Maenhout (2006) and calculate the detection error probabilities based

on Fourier inversion of the conditional characteristic functions of the Radon-Nikodym derivatives

between the worst-case model and the reference model. I first derive the worst-case model implied by

the solution to the intertemporal consumption and portfolio choice problem. The Radon-Nikodym

derivatives between the two models follow naturally. Then I show that the conditional characteristic

functions of the Radon-Nikodym derivatives admit closed-form solutions in explicit forms. Finally, I

apply Fourier inversion to the characteristic functions and obtain detection error probabilities.

Methods for analytical calculation of the detection-error probabilities when state variables are

time-varying are rare in the literature. Maenhout (2006) first use the method of the conditional

characteristic functions to characterize detection error probabilities up to the solution to a system

of ODEs and up to Fourier inversion. Here, I extend Maenhout’s method to recursive preferences

and show that the conditional characteristic functions permit analytical solutions, making calculation

feasible in practice.

The solutions to the intertemporal consumption and portfolio problem (8) imply that the worst-

case alternative model (model Q hereafter) has the form:

dSt =
[
µt −

φ

γ + φ
[(µt − r) + (Bj + Cjµt) ρσµσS ]

]
Stdt+ σSStdBt (19)

dµt =
[
κ (µ̄− µt)−

φ

γ + φ

µt − r

σS
ρσµ−φ

(
1 +

1− γ − φ

γ + φ
ρ2

)
(Bj + Cjµt)σ2

µ

]
+σµρdBt + σµ

√
1− ρ2dB̂t (20)

j = 0, 1
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where B0 = B, C0 = C corresponds to the case of ψ = 1, and B1 = − B̂
1−ψ , C1 = − Ĉ

1−ψ corresponds

to the case of ψ 6= 1. It is worth to note that unlike the i.i.d. case considered in Maenhout (2004),

the implied drift distortions rely on the state variables not only explicitly but also implicitly through

the intertemporal portfolio choice rule. Under recursive preferences, the risk aversion parameter

γ and the elasticity of intertemporal substitution ψ are both free parameters affecting the implied

drift distortions. In addition, the drift distortions include a myopic distortion and an intertemporal

hedging distortion, captured respectively by the first term and the second term of the drift distortions

in Equations (19) and (20). Note that the implied drift distortion is independent of the planning

horizon since the horizon is infinite and the optimal decision rules are stationary. This simplification

allows me to derive exact analytical solutions to the conditional characteristic functions of the Radon-

Nikodym derivatives.

The column vector g, defined as g ≡ Λ>u is given by

g (µt) = −φ

 1
γ + φ

(
µt − r

σS
+ (Bj + Cjµt) ρσµ

)
σµ
√

1− ρ2 (Bj + Cjµt)

 (21)

with j = 0, 1. It follows from (6) and (7) that the log of the Radon-Nikodym derivative of the

probability measure of the worst-case model Q with respect to that of the reference model P is

ζ1,t ≡ log Ξ1,t = −
∫ t

0
g (µs)

> dBs −
1
2

∫ t

0
g (µs)

> g (µs) ds.

The log-likelihood ratio therefore follows a stochastic process with time-varying drift and volatility

which are functions of the primitive parameters describing preferences and investment opportunities.

Similarly, the log of the Radon-Nikodym derivative Ξ2,t ≡ dP
dQ of the probability measure of model P

with respect to that of model Q is

ζ2,t ≡ log Ξ2,t =
∫ t

0
g (µs)

> dBs +
1
2

∫ t

0
g (µs)

> g (µs) ds.

Suppose model P is true, the investor will mistakenly reject it in favor of model Q based on a finite

time series sample with length N when ζ1,N > 0. Conversely, if model Q is correct, it will be rejected

erroneously when ζ2,N > 0. Let {Ft : t ≥ 0} be the filtration with respect to which expectations and

probabilities are conditioned.6 The detection error probability εN (φ), which is the time-0 conditional

probability of choosing a wrong model based on a finite sample of length N , is defined as

εN (φ) ≡ 1
2

Pr (ζ1,N > 0 | P,F0) +
1
2

Pr (ζ2,N > 0 | Q,F0) .

6 I maintain the usual assumption that the filtration satisfies the regular conditions.

13



The definition highlights the dependence of the detection error probability on the uncertainty aversion

parameter φ. As φ increases, the investor desire more robustness. In this case, the worst-case

alternative model looks more differently from the reference model and the model selection problem

becomes easier for the investor, resulting in a lower detection error probability.

Calculating the detection error probabilities requires the (conditional) cumulative distribution

functions of ζ1,t and ζ2,t. Deriving the distribution of ζ1,t and ζ2,t are challenging but fortunately can

be achieved by first deriving the conditional characteristic functions and then by Fourier inversion.

The characteristic functions of ζ1,N conditioned on model P and model Q are denoted by ϕP (ω, t,N)

and ϕQ (ω, t,N) respectively, where ω is the usual transform variable. We can write ϕP (ω, t,N) and

ϕQ (ω, t,N) as

ϕP (ω, t,N) ≡ EP [exp (iωζ1,N ) | Ft] = EP [Ξiω1,N | Ft
]

(22)

ϕQ (ω, t,N) ≡ EQ [exp (iωζ1,N ) | Ft] = EQ [Ξiω1,N | Ft
]

(23)

where the second equalities follow from ζ1,t ≡ log Ξ1,t. Applying the change of measure from Q to P,

we can rewrite (23) as

ϕQ (ω, t,N) ≡ EP [exp (iωζ1,N ) exp (ζ1,N ) | Ft] = EP
[
Ξiω+1

1,N | Ft
]
. (24)

It can be shown by the Feynman-Kac theorem the conditional characteristic functions satisfy certain

PDEs, known as Kolmogorove backward equations, together with the appropriate boundary condi-

tions. Appendix B displays these equations and conditions. The following proposition presents the

exact analytical solutions to Kolmogorove backward equations.

Proposition 4 The analytical solution for ϕP (ω, t,N) satisfying Equation (37) subject to (38) is
given by

ϕP (ω, t,N) = Ξiω1,N exp
[
D (t) + E (t)µt +

F (t)
2

µ2
t

]
(25)

where the functions D (t), E (t) and F (t) satisfy a system of first-order nonlinear complex-valued
coefficients ODEs with the explicit solutions given in Appendix B.

The analytical solution for ϕQ (ω, t,N) satisfying Equation (39) subject to (40) is given by

ϕQ (ω, t,N) = Ξiω+1
1,N exp

[
G (t) +H (t)µt +

J (t)
2

µ2
t

]
(26)

where the functions G (t), H (t) and J (t) satisfy a system of first-order nonlinear complex-valued
coefficients ODEs with the explicit solutions given in Appendix B.

Proof. See Appendix B.

Based on the result in Maenhout (2006)(Proposition 4), one can obtain the detection error proba-
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bility by applying the Levy inversion formula to the conditional characteristic functions. The detection

error probability at time zero based on a finite sample of length N is given by

εN (φ) =
1
2
− 1

2π

∫ ∞

0

{
Re

[
ϕQ (ω, 0, N)

iω

]
−Re

[
ϕP (ω, 0, N)

iω

]}
dω (27)

where i ≡
√
−1 and Re (·) represents the real part of the argument. For the parameter values

considered in this paper, the integrand decreases rapidly with the transform variable ω. As a result,

the integral in (27) can be computed using quadrature methods.

5 Calibration and Results

Parameter estimates for calibration are drawn from Barberis (2000) (the monthly data span from

1986 to 1995) and Campbell et al. (2004) (the quarterly data span from 1947 to 1995). Both papers

estimate VAR models for the market returns, using dividend yield as a predictor. The continuous-

time parameters are calculated from the discrete-time estimates using the methodology in Campbell

et al. (2004). Table 1 displays the parameter estimates for the two samples.

[Insert Table 1 here]

In this section, I undertake two tasks. First, I analyze the role of risk aversion, uncertainty aversion

(the preference for robustness) and intertemporal substitution in the intertemporal consumption and

portfolio decisions.7 Second, I calibrate the extent of model uncertainty using the detection error

probabilities.

[Insert Table 2 and Figure 1 here]

Table 2 and Figure 1 summarize the effect of model uncertainty on the optimal consumption

policy. Figure 1 plots the optimal consumption-wealth ratio as a function of the state variable µt.

A notable result is that whether the optimal consumption-wealth ratio increases or decreases with

a change in the investment opportunity set is solely determined by the elasticity of intertemporal

substitution, while risk aversion and uncertainty aversion has no effect on the direction of the effect.8

When there is an improvement in the investment opportunity set (a higher µt), the income effect is

to increase the current consumption relative to wealth and the substitution effect tends to reduce the

consumption-wealth ratio since investing in equities becomes more attractive. When the investor is
7 In this paper, I only show the results based on the parameter estimates of Campbell et al. (2004). The results based

on the estimates of Barberis (2000) are very similar and thus not shown here.
8 See Campbell and Viceira (1999) and Bhamra and Uppal (2006) for related discussions.
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more willing to substitute intertemporally (ψ > 1), the substitution effect dominates and the ratio

decreases with the state variable. When the investor is less willing to substitute intertemporally

(ψ < 1), the income effect dominates and the ratio increases with better investment opportunities.

When ψ = 1, the two effects offset each other and the optimal consumption-wealth ratio is invariant

to a change in the investment opportunity set. Risk aversion and uncertainty aversion can change

the magnitude of both effects but cannot change the sign of the net effect.

Table 2 reports the exponentiated mean of the optimal log consumption-wealth ratio. The effect

of model uncertainty is clear: the desire for robustness increases the average level of consumption

in relation to wealth when the elasticity of intertemporal substitution ψ is greater than one, but

decreases the ratio when ψ is less than one. The result can be explained by the consideration that

the worst-case alternative model indeed worsens the investment opportunity set and persists in the

long run. According to the findings of Campbell and Viceira (1999), the consumption-wealth ratio is

determined by long-run considerations rather than the current state of the investment opportunity set.

When the investor perceives that the model describing investment opportunities is misspecified, two

competing effects on the average consumption-wealth ratio arise. First, he cuts consumption because

a given quantity of wealth generates a lower flow of consumption under the worst-case alternative

model. Second, he increases consumption as investment opportunities seem unfavorable. When ψ > 1,

the second effect dominates and thus the investor concerned about model uncertainty increases the

average consumption-wealth ratio. When ψ < 1, the first effect dominates and the ratio declines

with the preference for robustness. Furthermore, for those who are extremely unwilling to substitute

intertemporally (e.g. ψ = 1/40), the effect of model uncertainty is strong as compared to those

with a moderately low elasticity of intertemporal substitution (e.g. ψ = 1/2). The investor with a

low elasticity of intertemporal substitution is unwilling to rearrange consumption over time through

saving. When the level of uncertainty aversion rises, he has to reduce consumption a great deal

to smooth utility across states. If the investor has a high elasticity of intertemporal substitution,

saving can provide a buffer stock for rearranging consumption. In this case, when the investor

becomes more uncertainty averse, the incentive to save is enhanced and the consumption-wealth ratio

decreases modestly.

Turning to the effect of model uncertainty on portfolio choice, Table 3 and Table 4, respectively,

display the mean optimal equity allocations and the mean intertemporal hedging portfolios. Table

5 shows the the proportion of hedging demand in the mean optimal allocation. A striking result

is that when the elasticity of intertemporal substitution is about 1 (e.g. ψ = 1/0.75 and 1), the
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concern about model uncertainty increases the mean optimal equity allocation for moderate levels

of risk aversion (e.g. γ = 1.5 and 2), though for other values of the preference parameters, model

uncertainty reduces the mean optimal equity allocation. The result stands in contrast to the previous

findings of Maenhout (2004) and Chen and Epstein (2002) that model uncertainty lowers the total

equity demand, and also in contrast to the findings of Maenhout (2006) that robustness always

reduces the equity demand when the coefficient of relative risk aversion is greater than one. The

notable difference stems from a more general model with both time-varying investment opportunities

and the distinction between risk aversion and intertemporal substitution.

[Insert Table 3 here]

To understand the effect of model uncertainty on portfolio choice, I first examine the role of the

desire for robustness in the intertemporal hedging demand. As discussed above, a robust investor

guards against the worst-case alternative model and has a stronger preference for smoothing future

utility across states than an expected utility investor. To see this clearly, I write down the discrete-

time Bellman equation analogous to (8):

V (Wt, µt) = max
Ct,αt

{
f (Ct, Vt) + EQ

t [Vt+∆t] +
1

η (Wt, µt)
EQ
t

[
log
(
dQ
dP

)]}
where the last term is relative entropy (expected log likelihood ratio between the worst-case model and

the reference model) scaled by the preference for robustness. This term determines the “distance ”of

the worst-case model to the reference model. Note that a robust investor evaluates future utility Vt+∆t

under the endogenously selected worst-case alternative model, which reinforce his motive to smooth

utility across states. Because portfolio decisions are largely driven by the desire to smooth utility

across states, the preference for robustness translates into a strong desire to hold a less risky portfolio.

As shocks to stock returns and revisions in expected future returns are negatively correlated (ρ < 0),

stocks tend to have high returns when their expected future returns are low. A portfolio is deemed

less risky if it can deliver wealth when investment opportunities are poor, or say when expected

returns are low. Thus, the investor desiring robustness optimally increases the investment in the

risky asset, leading to a higher intertemporal hedging demand than in the expected utility case when

the coefficient of relative risk aversion, γ, is greater than one. When γ < 1, the effect of robustness

obtains in a similar way except for the fact that the initial position in the risky asset that a non-robust

investor takes in his hedging portfolio is negative. This is because the non-robust investor with a level

of risk aversion less than one prefers a more risky portfolio. As noted by Campbell and Viceira (1999),

when the coefficient of relative risk aversion increases further away from unity, a non-robust investor
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limits his exposure to the risky asset in all states of the investment opportunity set. In this case, the

desire for robustness decreases the intertemporal hedging demand. Thus, different from the findings

of Bhamra and Uppal (2006) that the size of risk aversion relative to unity is solely responsible for

determining the sign of the intertemporal hedging demand, the results here suggest that the sign

is determined by risk aversion together with uncertainty aversion. In particular, the intertemporal

hedging demand has a positive sign when the level of effective risk aversion (γ+φ) exceeds unity and

a negative sign when it is less than unity. Table 5 shows that model uncertainty greatly increases

the importance of hedging demand in portfolio decisions. For example, when γ = 2, ψ = 1/0.75, 78%

of total equity demand is due to the hedging motive for an investor with uncertainty aversion γ, as

compared to 58% for a non-robust investor.

[Insert Table 4 and Table 5 here]

Having analyzed the effect of model uncertainty on the intertemporal hedging demand, one can

investigate its effect on the optimal equity allocation. From the expressions for the optimal portfolio

formulas (16) and (18), it is obvious that the concern about model uncertainty decreases the myopic

allocation. However, as discussed above, uncertainty increases hedging demand for moderate levels of

risk aversion. Whether the optimal equity demand increases or decreases with uncertainty depends

on the relative strength of the two effects. When the elasticity of intertemporal substitution is near

around 1 and the levels of risk aversion are not too high, the latter effect dominates over and thus

the desire for robustness increases the optimal equity allocation. This can explain the results shown

in Table 3.

I now explore the role of intertemporal substitution in the intertemporal hedging demand taking

into account model uncertainty. As noted by Bhamra and Uppal (2006), the elasticity of intertemporal

substitution affects the magnitude of the intertemporal hedging demand without changing its sign.

The reason is that the parameter controlling the attitude toward intertemporal substitution, ψ,

determines the desire to smooth consumption over time but not the desire to smooth future utility

across states. Future utility depends on a function of the state (µt) multiplied by the power function

of the portfolio return in that state. The function of the state is where the elasticity of intertemporal

substitution appears (see the value functions (14) and (17)). An investor who is unwilling to substitute

intertemporally wants to maintain a stable consumption growth rate and only has modest motive to

hedge against the change in the investment opportunity set. As a result, when the desire for robustness

enhances the hedging motive, its effect on the intertemporal hedging demand is stronger for investors

who are more willing to substitute intertemporally than those who are less willing to do so. For

18



example, Table 3 shows that a robust investor with ψ = 1/0.75 and γ = 1.5 increases his hedging

demand from 101% to 185% when the uncertainty aversion parameter φ increases to a level of γ,

while an investor ψ = 1/40 and γ = 1.5 increases his hedging demand from 50% to 95%.

For the CRRA utility function, Maenhout (2006) shows that robustness always leads to a lower

optimal equity allocation when the coefficient of relative risk aversion is greater than one. To rec-

oncile the seeming contradiction, I argue that Maenhout’s result is partly driven by the effect of

intertemporal substitution, not entirely by the effect of robustness. The Duffie-Epstein’s recursive

preferences allow me to disentangle the attitude toward intertemporal substitution and risk aversion,

and enable me to gain a better understanding of the effect of model uncertainty on portfolio choice.

The CRRA utility function implies that the elasticity of intertemporal substitution and the coefficient

of risk aversion are inversely related (ψ = 1/γ). A high level of risk aversion implies low willingness

to substitute intertemporally, for which the effect of robustness on the intertemporal hedging demand

is underplayed. When the effect is not strong enough, it will be dominated by the effect of model un-

certainty on the myopic equity demand. Thus, the net effect is to reduce the optimal equity demand,

as observed by Maenhout (2006). By disentangling risk aversion and intertemporal substitution, the

effect of intertemporal substitution is controlled for and I can therefore obtain a clean result on the

effect of model uncertainty.

To examine the state-dependence of portfolio decisions, Figure 2, 3 and 4 plot the optimal equity

allocation and the intertemporal hedging demand as functions of the state variable for different

elasticities of intertemporal substitution (Figure 2 for ψ = 1/0.75, Figure 3 for ψ = 1 and Figure 4

for ψ = 1/4). All graphs show that the amount of wealth allocated by the non-robust log investor

to hedge against the change in the investment opportunity set is increasing in the state. However,

the concern about model uncertainty does not necessarily raise the total equity demand above the

myopic demand for all states. For ψ = 1, the optimal demand exceeds the myopic demand when

the state variable is less than four-fifth of standard deviation beyond its long-run mean, while for

ψ = 1/4 the optimal demand increases above the myopic demand when the state variable is higher

than 1 standard deviation below its long-run mean. The figures also show that for a high level of risk

aversion, the preference for robustness reduces the total demand for equities and the magnitude of

the effect is stronger for higher values of the state variable. In other words, the slope of the optimal

demand for equities declines in the presence of model uncertainty and this property also holds true for

the log investor. Thus, an investor worrying model uncertainty responds less sensitively to a change

in the investment opportunity set.
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[Insert Figure 2, Figure 3 and Figure 4 here]

Although model uncertainty can have theoretically sizable effect on portfolio decisions (e.g. turn-

ing highly levered portfolios into empirically reasonable ones), its empirical importance cannot be

rigorously assessed without a thoughtful calibration analysis. Finally, I investigate the extent of the

impact of robustness based on the detection error probabilities. Anderson et al. (2000) advocate a

threshold of 10% for the detection error probability εN (φ).

Table 5 reports εN (φ) for γ = {0.75, 1, 1.5, 2, 4, 6} and ψ =
{

1
0.75 , 1,

1
1.5 ,

1
2 ,

1
4 ,

1
6

}
for the short

sample (monthly data from 1986 to 1995) in Barberis (2000). The values of the uncertainty aversion

parameter φ are chosen such that εN (φ) stays beyond the threshold. A striking result is that the short

sample allows little room for a concern about model uncertainty. To achieve meaningful detection

error probabilities, the postulated uncertainty aversion parameter is of the second order as compared

to the risk aversion parameter γ. For example, when γ = 6 and ψ = 1/0.75, the investor’s concern

about model misspecification can at best lead to a value of φ that is about a quarter of γ, which

implies an effective risk aversion of γ × 1.25. The scenario for the long sample is even worse: the

concern about model misspecification can only support a level of uncertainty aversion that is about

1/10 of γ. The effect of robustness is therefore of a lower order of magnitude. These findings are in

contrast to the results in Maenhout (2004) for i.i.d. returns, where a large magnitude of φ (larger than

γ) can be allowed for, while strengthen the results in Maenhout (2006) for mean-reverting returns,

where model detection becomes easier and the significance of model uncertainty shrinks. The little

room for model uncertainty indicates that detecting model misspecification turns out to be very easy

for a robust investor with a long horizon.

As noted by Maenhout (2006), the main reasons driving down the scope of model uncertainty when

expected returns are mean-reverting include (1) the continuous observability of the state variable, (2)

negative autocorrelation in returns and (3) the presence of the portfolio choice in the drift distortion9.

The drift distortion implied by the worst-case model (19)–(20) depends on the portfolio rule. When

expected returns are time-varying, a robust investor invest significantly more to the risky asset than in

the i.i.d. case, due to the intertemporal hedging demand. In our model with recursive preferences and

infinite horizon, the intertemporal hedging demand plays a more important role than in Maenhout

(2006) with the CRRA preferences and finite horizon. This results in a larger drift distortion and

more easily detectable model misspecification. Table 5 and Table 6 also show that as the elasticity of
9 As shown in (19)–(20), the drift distortion consists of a nonlinear function of the state variable which is continuously

observable, resulting in a easier model selection problem than in the i.i.d. case. Mean-reverting returns exhibit negative
autocorrelation, which facilitates the estimation of the mean of a time series data. See Maenhout (2006) for further
details.
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intertemporal substitution increases, detecting model misspecification turns out to be more difficult.

The reason is that the investor puts less weight on the intertemporal hedging demand in his portfolio

decisions as he becomes more reluctant to substitute intertemporally. As a result, the drift distortion

is smaller and model selection is more obscure to the investor.

6 Conclusion

I have examined a continuous-time intertemporal consumption and portfolio choice problem in which

investment opportunities are time-varying and the roles of risk aversion, uncertainty aversion and

intertemporal substitution are distinguished among each other. The investor worries that his model

of asset returns may be misspecified and wants robust portfolio rules that take into account model

uncertainty. In contrast to the previous findings in the literature, I find that uncertainty aversion

increases the total equity demand for moderately risk-averse investor when the elasticity of intertem-

poral substitution is about 1. The result is mainly driven by the effect of the concern about model

uncertainty on the intertemporal hedging demand. Using the technique of detection error proba-

bilities, I calibrate the quantitative effect of model uncertainty and find that the scope of model

uncertainty is very small. My findings suggest that introducing model uncertainty and uncertainty

aversion is insufficient to explain the low equity demand prevailing in the real world when investment

opportunities are time-varying and investors have a long horizon.

In this paper, I assume that the investment opportunity set is fully observable. An interesting

extension for future research is to introduce elements of learning into the model with robustness

concerns. Intertemporal hedging of time-variation in perceived investment opportunity sets may

generate interesting implications for dynamic portfolio choice. In addition, large scope of model

uncertainty may be allowed for in a model with hidden states. Extensions along the lines of Ju and

Miao (2009) and Chen, Ju and Miao (2009) are very promising.
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A Proof of Proposition 1, Proposition 2 and Proposition 3

Proof of Proposition 1

Proof. Substitution of (14) into the first order conditions for consumption and portfolio choice (11)

and (12) leads to the optimal consumption policy C∗ = βW and the optimal portfolio rule

αt =
µt − r

(γ + φ)σ2
S

+
1− γ − φ

γ + φ

ρσµ
σS

(B + Cµt) .

Substituting (14) and (15) into the HJB equation (9), I obtain the following equation after sim-

plification:

0 = β log β − β

(
A+Bµt +

C

2
µ2
t

)
− β + r + (µt − r)αt + κ (µ̄− µt) (B + Cµt) +

σ2
µ

2
C

+
σ2
µ

2
[1− (γ + φ)] (B + Cµt)

2 − 1
2

(γ + φ)σ2
Sα

2
t + [1− (γ + φ)] ρσSσµαt (B + Cµt) .

Collecting terms in µ2
t , µt and constant terms, I can obtain A,B and C as the solution to the following

system of recursive equations:

0 =
1

2 (γ + φ)σ2
S

+
(
−β

2
− κ+

1− (γ + φ)
γ + φ

ρσµ
σS

)
C

+
σ2
µ

2

{
[1− (γ + φ)] +

(1− (γ + φ))2

γ + φ
ρ2

}
C2 (28)

0 = − r

(γ + φ)σ2
S

+
(
κµ̄− 1− (γ + φ)

γ + φ

ρrσµ
σS

)
C

+

{
−κ− β +

1− (γ + φ)
γ + φ

ρσµ
σS

+ σ2
µ

[
1− (γ + φ) +

(1− (γ + φ))2

γ + φ
ρ2

]
C

}
B (29)

0 = β (log β − 1) + r +
r2

2 (γ + φ)σ2
S

− βA+
σ2
µ

2
C +

(
κµ̄− 1− (γ + φ)

γ + φ

ρrσµ
σS

)
B

+
σ2
µ

2

(
1− (γ + φ) +

(1− (γ + φ))2

γ + φ
ρ2

)
B2. (30)

Equation (28) is a quadratic equation which has two roots. The solution to C is the root associated

with the positive discriminant of the equation. This root also ensures that C = 0 when γ + φ = 1.

The solutions to A and B follow immediately from Equations (29) and (30).

Next, I show that the solution to the optimal portfolio rule when ψ = 1 also nests the case of

logarithmic utility (ψ = γ = 1). When γ → 1, the preference parameter η assumed in (13) converges

to φ based on the solution to the value function when γ 6= 1:

ηlog = lim
γ→1

φ

W 1−γ exp
[
(1− γ)

(
A+Bµt + C

2 µ
2
t

)] = φ.
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Then one can show the HJB equation (9) can be solved by V (Wt, µt) = logW+A+Bµt+ C
2 µ

2
t , where

A, B and C solve the system of recursive equations (28)–(30) with γ = 1. The optimal portfolio rule

is then given by

αt =
µt − r

(1 + φ)σ2
S

− φ

1 + φ

ρσµ
σS

(B + Cµt) .

The proof is complete.

Proof of Proposition 2

Proof. Substituting the value function (17) into the HJB equation (9), I obtain, after some simpli-

fication, the following ordinary differential equation

0 = −βψK−1 + βψ + r (1− ψ) +
1− ψ

2 (γ + φ)

(
µt − r

σS

)2

−
σ2
µ

2
Kµµ

K

+
σ2
µ

2

[
1 +

1− γ − φ

1− ψ

(
1 +

1− γ − φ

γ + φ
ρ2

)](
Kµ

K

)2

−
[
κ (µ̄− µt) +

1− γ − φ

γ + φ
ρσµ

(
µt − r

σS

)]
Kµ

K
. (31)

This equation does not admit an exact analytical solution because the appearance of the term βψK−1.

But, I can use the log-linear approximation method described in Campbell et al. (2004) to find an

approximate analytical solution. Note that the term βψK−1 is exactly the consumption-wealth ratio,

which can be approximated around the unconditional mean of the log consumption-wealth ratio as:

βψK (µt)
−1 ≈ k0 + k1 (ψ log β − kt) (32)

with k1 = exp {E [ct − wt]} and k0 = k1 (1− log k1) where ct = logCt, wt = logWt, kt = logK (µt).

Substituting the approximation (32) for the first term of (31) gives another ODE which admits an

exact analytical solution. I conjecture K (µt) is of the exponential-quadratic form

K (µt) = exp

{
Â+ B̂µt +

Ĉ

2
µ2
t

}
. (33)

Substitution of (33) into ODE (31) with the log-linear approximation (32) transform the Bellman

equation into the following equation

0 = −k0 − k1

{
ψ log β −

(
Â+ B̂ +

Ĉ

2
µ2
t

)}
+ βψ + r (1− ψ)− κ (µ̄− µt)

(
B̂ + Ĉµt

)
+
σ2
µ

2

{
−
[(
B̂ + Ĉµt

)2
+ Ĉ

]
+
(

1− γ − φ

1− ψ
+ 1
)(

B̂ + Ĉµt

)2
}

+
1− ψ

2 (γ + φ)

(
µt − r

σS

)2

−1− γ − φ

γ + φ

(
B̂ + Ĉµt

)
ρσµ

(
µt − r

σS

)
+

(1− γ − φ)2

2 (γ + φ) (1− ψ)

(
B̂ + Ĉµt

)2
ρ2σ2

µ.
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Collecting terms in µ2
t , µt and constant terms, I can obtain Â, B̂ and Ĉ as the solution to the following

system of recursive equations:

0 =
1− ψ

2 (γ + φ)σ2
S

+
(
k1

2
+ κ− 1− γ − φ

γ + φ

ρσµ
σS

)
Ĉ

+
σ2
µ

2
1− γ − φ

1− ψ

(
1 +

1− γ − φ

γ + φ
ρ2

)
Ĉ2 (34)

0 = −1− ψ

γ + φ

r

σ2
S

−
(
κµ̄+

1− γ − φ

γ + φ

ρrσµ
σS

)
Ĉ + (κ+ k1) B̂

+
{

1− γ − φ

γ + φ

ρσµ
σS

+ σ2
µ

[
1 +

1− γ − φ

1− ψ

(
1 +

1− γ − φ

γ + φ
ρ2

)]
Ĉ

}
B̂ (35)

0 = k1Â− k0 − k1ψ log β + βψ + r (1− ψ) +
1− ψ

2 (γ + φ)
r2

σ2
S

−
σ2
µ

2
Ĉ

+
σ2
µ

2
1− γ − φ

1− ψ

(
1 +

1− γ − φ

γ + φ
ρ2

)
B̂2 +

(
1− γ − φ

γ + φ

ρrσµ
σS

− κµ̄

)
B̂ (36)

where the solution to Ĉ is the root of the quadratic equation (34) that is associated with the positive

root of the discriminant of the equation. The solutions to Â and B̂ follow immediately.

To obtain the optimal solutions to Â, B̂ and Ĉ, I use a numerical procedure suggested in Campbell

and Viceira (1999). I first set the exponentiated mean log consumption-wealth ratio (k1) to β, which

is the exact optimal solution for ψ = 1 and then find the solutions of
{
Â, B̂, Ĉ

}
given this value of k1.

These solutions imply a new value of k1, for which a new set of solutions to Â, B̂ and Ĉ is computed.

This recursion proceeds until the absolute value of the difference between two consecutive values of k1

is less than a small tolerance value. Finally, given the solutions to Â, B̂ and Ĉ, the optimal portfolio

rule is

αt =
µt − r

(γ + φ)σ2
S

− 1
1− ψ

1− γ − φ

γ + φ

ρσµ
σS

(
B̂ + Ĉµt

)
.

The results shown above also nest the case of γ = 1, for which the preference parameter η when

γ = 1, ηγ→1, is given by

ηγ→1 = lim
γ→1

φ

W 1−γ exp
[
− 1−γ

1−ψ

(
Â+ B̂µt + Ĉ

2 µ
2
t

)] = φ.

One can show that the HJB equation (9) can be solved by the value function of the form

V (Wt, µt) = logW − 1
1− ψ

(
Â+ B̂µt +

Ĉ

2
µ2
t

)

together with a loglinear approximation. The optimal values of Â, B̂ and Ĉ can be solved by iterating
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the system of equations with γ = 1. The optimal portfolio rule is given by

αt =
µt − r

(1 + φ)σ2
S

+
1

1− ψ

φ

1 + φ

ρσµ
σS

(
B̂ + Ĉµt

)
.

The proof is complete.

Proof of Proposition 3

Proof. Because the parameter φ appears additively to γ everywhere in Equations (28), (29), (30),

(34), (35) and (36) and the optimal portfolio rules (16) and (18), it is clear that the optimal decision

rules for a robust investor with risk aversion γ̄ and uncertainty aversion φ̄ are identical to the optimal

decision rules of a non-robust investor with risk aversion γ̄ + φ̄.

B Proof of Proposition 4

Proof. According to the Feyman-Kac theorem, the conditional expectation in (22) can be charac-

terized as the solution to the following PDE

0 = DϕP (ω, t,N)

=
1
2
Ξ2

1,t

∂2ϕP
∂Ξ2

1,t

g>g +
1
2
∂2ϕP
∂µ2

t

σ2
µ−Ξ1,t

∂2ϕP
∂Ξ1,t∂µt

g>σ̂ +
∂ϕP
∂µt

κ (µ̄− µt) +
∂ϕP
∂t

(37)

subject to the boundary condition

ϕP (ω,N,N) = Ξiω1,N (38)

where σ̂ ≡
[
σµρ σµ

√
1− ρ2

]>
and the drift distortion vector g is given in (21).

Similarly, one can solve for the conditional expectation in (24) by solving the following PDE

0 = DϕQ (ω, t,N)

=
1
2
Ξ2

1,t

∂2ϕQ
∂Ξ2

1,t

g>g +
1
2
∂2ϕQ
∂µ2

t

σ2
µ−Ξ1,t

∂2ϕQ
∂Ξ1,t∂µt

g>σ̂ +
∂ϕQ
∂µt

κ (µ̄− µt) +
∂ϕQ
∂t

(39)

with the boundary condition

ϕQ (ω,N,N) = Ξiω+1
1,N . (40)

I first solve for the analytical solution to the PDE for ϕP (ω, t,N). The solution to the PDE for

ϕQ (ω, t,N) follows in a similar way.

I conjecture that the solution to ϕP (ω, t,N) is of the exponential-quadratic form (25) and then
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verify it indeed delivers an analytical solution. Substituting (25) into PDE (37) gives

0 = (E (t) + F (t)µt)
[
κ (µ̄− µt)− iωg>σ̂

]
+

1
2
iω (iω − 1) g>g

+
1
2

[
F (t) + (E (t) + F (t)µt)

2
]
σ2
µ +D

′ (t) + E′ (t)µt +
µ2
t

2
F ′ (t) .

Plugging vector g and collecting terms in µ2
t , µt and the constant delivers the following system of

first-order nonlinear ODEs with complex-valued coefficients:

0 = F ′ (t) + σ2
µF (t)2 + 2

[
iωφ

(
γ0
ρσµ
σS

+ σ2
µγ1Cj

)
− κ

]
F (t)

+iω (iω − 1)φ2

[
γ2

0

(
1
σ2
S

+
2ρσµCj
σS

)
+ σ2

µγ2C2
j

]
(41)

0 = E′ (t)−
[
iωφ

(
γ0r

ρσµ
σS

− σ2
µγ1Bj

)
− κµ̄

]
F (t) +

[
iωφ

(
γ0
ρσµ
σS

+ σ2
µγ1Cj

)
− κ

]
E (t)

+σ2
µE (t)F (t) + iω (iω − 1)φ2

[
γ2

0

(
ρσµ
σS

(Bj − rCj)−
r

σ2
S

)
+ σ2

µγ2BjCj
]

(42)

0 = D′ (t) +
1
2
iω (iω − 1)φ2

[
γ2

0

(
r2

σ2
S

− 2ρσµrBj
σS

)
+ σ2

µγ2B2
j

]
+

1
2
σ2
µ

[
E (t)2 + F (t)

]
+iωφ

(
σ2
µγ1B − γ0r

ρσµ
σS

)
E (t) + κµ̄E (t) (43)

with

γ0 =
1

γ + φ

γ1 =
[
1 +

1− γ − φ

γ + φ
ρ2

]
γ2 =

[
1 +

1− (γ + φ)2

(γ + φ)2
ρ2

]

and the boundary condition

D(N) = E(N) = F (N) = 0

where j = {0, 1} with {B0 = B, C0 = C} for ψ = 1 and
{
B1 = − B̂

1−ψ , C1 = − Ĉ
1−ψ

}
for ψ 6= 1.
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The above system of ODEs permits an analytical solution. Define

β0 = iω (iω − 1)φ2

[
γ2

0

(
1
σ2
S

+
2ρσµCj
σS

)
+ σ2

µγ2C2
j

]
β1 = 2

[
iωφ

(
γ0
ρσµ
σS

+ σ2
µγ1Cj

)
− κ

]
β2 = σ2

µ

β3 = −iωφ
(
γ0r

ρσµ
σS

− σ2
µγ1Bj

)
+ κµ̄

β4 = iω (iω − 1)φ2

[
γ2

0

(
ρσµ
σS

(Bj − rCj)−
r

σ2
S

)
+ σ2

µγ2BjCj
]

and

λ =
√
β2

1 − 4β0β2.

The solution to F (t) is given by

F (t) =
2β0

(
1− e−λ(T−t))

2λ− (β1 + λ)
(
1− e−λ(T−t)

) .
To solve for E(t), I conjecture it has the following form

E(t) =
a0 + a1e

−λ(T−t)/2 + a2e
−λ(T−t)

λ
[
2λ− (β1 + λ)

(
1− e−λ(T−t)

)] . (44)

Substituting (44) back into ODE (42) and matching coefficients, I obtain

E(t) =
1

λ
[
2λ− (β1 + λ)

(
1− e−λ(T−t)

)] [(4β0β3 + 2β4 (λ− β1))

−4 (2β0β3 − β1β4) e−λ(T−t)/2 + (4β0β3 − 2β4 (β1 + λ)) e−λ(T−t)
]
.

The solution to D(t) is then

D(t) =
∫ T

t

{
−1

2
iω (iω − 1)φ2

[
γ2

0

(
r2

σ2
S

− 2ρσµ
σS

rBj
)

+ σ2
µγ2B2

j

]
−1

2
σ2
µ

[
E (τ)2 + F (τ)

]
− iωφ

(
σ2
µγ1Bj − γ0r

ρσµ
σS

)
E (τ)− κµ̄E (τ)

}
dτ.

Similarly, one can obtain the analytical solution to ϕQ (ω, t,N) of the form

ϕQ (ω, t,N) = Ξiω+1
1,t exp

[
G(t) +H(t)µt +

J(t)
2
µ2
t

]

27



with J(t),H(t) and G(t) satisfying the following system of ODEs

0 = J ′ (t) + σ2
µJ (t)2 + 2

[
(iω + 1)φ

(
γ0
ρσµ
σS

+ σ2
µγ1Cj

)
− κ

]
J (t)

+iω (iω + 1)φ2

[
γ2

0

(
1
σ2
S

+
2ρσµCj
σS

)
+ σ2

µγ2C2
j

]
0 = H ′ (t)−

[
(iω + 1)φ

(
γ0r

ρσµ
σS

− σ2
µγ1Bj

)
− κµ̄

]
J (t) +

[
(iω + 1)φ

(
γ0
ρσµ
σS

+ σ2
µγ1Cj

)
− κ

]
H (t)

+σ2
µH (t) J (t) + iω (iω + 1)φ2

[
γ2

0

(
ρσµ
σS

(Bj − rCj)−
r

σ2
S

)
+ σ2

µγ2BjCj
]

0 = G′ (t) +
1
2
iω (iω + 1)φ2

[
γ2

0

(
r2

σ2
S

− 2ρσµrBj
σS

)
+ σ2

µγ2B2
j

]
+

1
2
σ2
µ

[
H (t)2 + J (t)

]
+(iω + 1)φ

(
σ2
µγ1Bj − γ0r

ρσµ
σS

)
H (t) + κµ̄H (t) .

Define

β̃0 = iω (iω + 1)φ2

[
γ2

0

(
1
σ2
S

+
2ρσµCj
σS

)
+ σ2

µγ2C2
j

]
β̃1 = 2

[
(iω + 1)φ

(
γ0
ρσµ
σS

+ σ2
µγ1Cj

)
− κ

]
β̃2 = σ2

µ

β̃3 = −(iω + 1)φ
(
γ0r

ρσµ
σS

− σ2
µγ1Bj

)
+ κµ̄

β̃4 = iω (iω + 1)φ2

[
γ2

0

(
ρσµ
σS

(Bj − rCj)−
r

σ2
S

)
+ σ2

µγ2BjCj
]

and

λ̃ =
√
β̃2

1 − 4β̃0β̃2.

The analytical solutions to J(t),H(t) and G(t) are, respectively,

J (t) =
2β̃0

(
1− e−λ̃(T−t)

)
2λ̃−

(
β̃1 + λ̃

)(
1− e−λ̃(T−t)

)
H(t) =

1

λ̃
[
2λ̃−

(
β̃1 + λ̃

)(
1− e−λ̃(T−t)

)] [(4β̃0β̃3 + 2β̃4

(
λ̃− β̃1

))
−4
(
2β̃0β̃3 − β̃1β̃4

)
e−λ̃(T−t)/2 +

(
4β̃0β̃3 − 2β̃4

(
β̃1 + λ̃

))
e−λ̃(T−t)]

G(t) =
∫ T

t

{
−1

2
iω (iω + 1)φ2

[
γ2

0

(
r2

σ2
S

− 2ρσµ
σS

rBj
)

+ σ2
µγ2B2

j

]
−1

2
σ2
µ

[
H (τ)2 + J (τ)

]
− (iω + 1)φ

(
σ2
µγ1Bj − γ0r

ρσµ
σS

)
H (τ)− κµ̄H (τ)

}
dτ.

The proof is complete.
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Table 1: This table presents two sets of parameter estimates used in the calibration analysis. The first set of
estimates is drawn from Campbell et al. (2004) for the quarterly data from 1947:1–1995:4, and the second set
is based on the estimates in Barberis (2000) for the monthly data from 1986:1–1995:12. Campbell et al. (2004)
describes the details of recovering continuous-time estimates from discrete-time estimates.

Parameter description Parameter values
Panel A: quarterly sample (1947:1–1995:4)
Rate of time preference β 0.0153
Riskless interest rate r 0.0082
Volatility of stock return σ 0.0790
Volatility of expected return σµ 0.0057
Mean reversion parameter κ 0.0439
Unconditional mean of expected return µ̄ 0.0213
Correlation between stock return and expected return ρ -0.9626
Panel B: monthly sample (1986:1–1995:12)
Rate of time preference β 0.0051
Riskless interest rate r 0.0033
Volatility of stock return σ 0.0444
Volatility of expected return σµ 0.0017
Mean reversion parameter κ 0.0432
Unconditional mean of expected return µ̄ 0.0076
Correlation between stock return and expected return ρ -0.9280
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Table 2: This table reports the exponentiated mean optimal log consumption-wealth ratios in percentage

terms, which are calculated as exp {E [ct − wt]} = exp
{
ψ log β −

[
Â+ B̂µ̄+ Ĉ

2

(
µ̄2 + σ2

µ

2κ

)]}
times 100. The

ratios are calculated for different levels of relative risk aversion (γ), uncertainty aversion (φ) and elasticities
of intertemporal substitution (ψ). The results are based on the parameter estimates of Campbell, Chacko,
Rodriguez and Viceira (2004) for the sample period 1947:1–1995:4.

RRA(γ), AA(φ) � EIS (ψ) 1/0.75 1 1/1.5 1/2 1/4 1/10 1/20 1/40
γ = 0.75 φ=0 0.22 1.53 2.81 3.47 4.46 5.07 5.28 5.38

φ = γ/20 0.24 1.53 2.80 3.45 4.43 5.03 5.23 5.33
φ = γ/10 0.25 1.53 2.79 3.43 4.40 4.99 5.19 5.29
φ = γ/4 0.29 1.53 2.77 3.39 4.32 4.89 5.07 5.17
φ = γ/2 0.34 1.53 2.73 3.32 4.21 4.74 4.91 5.00
φ = γ 0.42 1.53 2.66 3.21 4.03 4.50 4.66 4.74

γ = 1 φ=0 0.31 1.53 2.75 3.36 4.28 4.83 5.02 5.11
φ = γ/20 0.32 1.53 2.74 3.35 4.25 4.79 4.97 5.06
φ = γ/10 0.33 1.53 2.73 3.33 4.22 4.75 4.93 5.02
φ = γ/4 0.37 1.53 2.70 3.28 4.14 4.65 4.82 4.90
φ = γ/2 0.42 1.53 2.66 3.21 4.03 4.50 4.66 4.74
φ = γ 0.50 1.53 2.59 3.10 3.85 4.27 4.41 4.48

γ = 1.5 φ=0 0.42 1.53 2.66 3.21 4.03 4.50 4.66 4.74
φ = γ/20 0.44 1.53 2.65 3.20 4.00 4.46 4.62 4.69
φ = γ/10 0.45 1.53 2.64 3.18 3.97 4.43 4.58 4.65
φ = γ/4 0.49 1.53 2.61 3.13 3.89 4.33 4.47 4.54
φ = γ/2 0.54 1.53 2.56 3.06 3.77 4.18 4.32 4.38
φ = γ 0.62 1.53 2.48 2.93 3.58 3.95 4.07 4.13

γ = 2 φ=0 0.50 1.53 2.59 3.10 3.85 4.27 4.41 4.48
φ = γ/20 0.52 1.53 2.58 3.08 3.81 4.24 4.37 4.44
φ = γ/10 0.53 1.53 2.56 3.06 3.78 4.20 4.33 4.40
φ = γ/4 0.57 1.53 2.53 3.01 3.70 4.10 4.23 4.29
φ = γ/2 0.62 1.53 2.48 2.93 3.58 3.95 4.07 4.13
φ = γ 0.71 1.53 2.39 2.81 3.39 3.72 3.83 3.88

γ = 4 φ=0 0.71 1.53 2.39 2.81 3.39 3.72 3.83 3.88
φ = γ/20 0.72 1.53 2.38 2.78 3.36 3.69 3.79 3.84
φ = γ/10 0.74 1.53 2.36 2.76 3.33 3.65 3.75 3.80
φ = γ/4 0.78 1.53 2.32 2.70 3.24 3.54 3.64 3.69
φ = γ/2 0.84 1.53 2.26 2.61 3.11 3.39 3.48 3.53
φ = γ 0.93 1.53 2.16 2.46 2.90 3.15 3.22 3.26

γ = 10 φ=0 1.01 1.53 2.08 2.34 2.73 2.95 3.02 3.06
φ = γ/20 1.02 1.53 2.06 2.32 2.69 2.91 2.97 3.01
φ = γ/10 1.04 1.53 2.04 2.29 2.66 2.86 2.93 2.96
φ = γ/4 1.08 1.53 2.00 2.23 2.56 2.75 2.81 2.84
φ = γ/2 1.15 1.53 1.93 2.13 2.42 2.59 2.64 2.67
φ = γ 1.24 1.53 1.83 1.98 2.20 2.33 2.37 2.39

γ = 20 φ=0 1.24 1.53 1.83 1.98 2.20 2.33 2.37 2.39
φ = γ/20 1.26 1.53 1.81 1.95 2.16 2.29 2.33 2.35
φ = γ/10 1.27 1.53 1.80 1.93 2.13 2.25 2.29 2.31
φ = γ/4 1.31 1.53 1.76 1.87 2.04 2.14 2.17 2.19
φ = γ/2 1.36 1.53 1.70 1.79 1.91 1.99 2.02 2.03
φ = γ 1.44 1.53 1.62 1.67 1.74 1.78 1.79 1.80

γ = 40 φ=0 1.44 1.53 1.62 1.67 1.74 1.78 1.79 1.80
φ = γ/20 1.45 1.53 1.61 1.65 1.71 1.75 1.76 1.76
φ = γ/10 1.46 1.53 1.60 1.63 1.68 1.71 1.73 1.73
φ = γ/4 1.49 1.53 1.57 1.59 1.62 1.63 1.64 1.64
φ = γ/2 1.53 1.53 1.53 1.53 1.53 1.53 1.53 1.53
φ = γ 1.58 1.53 1.48 1.45 1.41 1.39 1.38 1.38
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Table 3: This table reports the mean optimal percentage allocation to equities, for different levels of relative
risk aversion (γ), uncertainty aversion (φ) and elasticities of intertemporal substitution (ψ). The mean optimal
equity share is calculated as αt = µt−r

(γ+φ)σ2
S

+ 1−γ−φ
γ+φ

ρσµ

σS
(Bj + Cjµt) , j = {0, 1} with {B0 = B, C0 = C} for

ψ = 1 and
{
B1 = − B̂

1−ψ , C1 = − Ĉ
1−ψ

}
for ψ 6= 1 where µt is at its long-run mean. The results are based on the

parameter estimates of Campbell, Chacko, Rodriguez and Viceira (2004) for the sample period 1947:1–1995:4.

RRA(γ), AA(φ) � EIS (ψ) 1/0.75 1 1/1.5 1/2 1/4 1/10 1/20 1/40
γ = 0.75 φ=0 174.88 197.34 211.00 216.19 222.65 225.94 226.95 227.45

φ = γ/20 181.63 199.69 210.83 215.07 220.33 223.00 223.83 224.23
φ = γ/10 187.74 201.86 210.67 214.02 218.18 220.29 220.94 221.26
φ = γ/4 203.02 207.37 210.18 211.25 212.58 213.25 213.45 213.55
φ = γ/2 221.11 214.09 209.34 207.51 205.27 204.14 203.79 203.62
φ = γ 241.56 221.83 207.47 201.92 195.08 191.66 190.62 190.11

γ = 1 φ=0 209.90 209.90 209.90 209.90 209.90 209.90 209.90 209.90
φ = γ/20 214.75 211.71 209.68 208.90 207.95 207.46 207.31 207.24
φ = γ/10 219.11 213.34 209.45 207.96 206.13 205.20 204.92 204.78
φ = γ/4 229.71 217.35 208.74 205.44 201.36 199.32 198.70 198.39
φ = γ/2 241.56 221.83 207.47 201.92 195.08 191.66 190.62 190.11
φ = γ 252.95 225.74 204.64 196.34 186.11 181.00 179.44 178.69

γ = 1.5 φ=0 241.56 221.83 207.47 201.92 195.08 191.66 190.62 190.11
φ = γ/20 244.11 222.77 207.07 200.98 193.49 189.74 188.60 188.04
φ = γ/10 246.30 223.56 206.66 200.09 192.00 187.96 186.72 186.12
φ = γ/4 251.14 225.21 205.38 197.61 188.04 183.26 181.80 181.10
φ = γ/2 255.18 226.17 203.12 193.97 182.68 177.04 175.32 174.48
φ = γ 255.10 224.20 198.26 187.72 174.61 168.03 166.03 165.05

γ = 2 φ=0 252.95 225.74 204.64 196.34 186.11 181.00 179.44 178.69
φ = γ/20 254.04 226.01 204.04 195.37 184.67 179.34 177.71 176.92
φ = γ/10 254.86 226.14 203.43 194.43 183.32 177.78 176.09 175.27
φ = γ/4 256.04 225.95 201.53 191.77 179.68 173.64 171.80 170.91
φ = γ/2 255.10 224.20 198.26 187.72 174.61 168.03 166.03 165.05
φ = γ 247.79 217.85 191.51 180.51 166.62 159.61 157.46 156.41

γ = 4 φ=0 247.79 217.85 191.51 180.51 166.62 159.61 157.46 156.41
φ = γ/20 245.90 216.34 190.15 179.16 165.25 158.20 156.04 154.99
φ = γ/10 243.93 214.79 188.80 177.83 163.92 156.86 154.69 153.64
φ = γ/4 237.74 209.97 184.77 174.00 160.21 153.17 151.00 149.95
φ = γ/2 227.07 201.73 178.22 167.97 154.67 147.81 145.68 144.65
φ = γ 206.64 185.84 165.99 157.06 145.17 138.91 136.95 136.00

γ = 10 φ=0 188.61 171.56 155.00 147.37 137.01 131.44 129.69 128.83
φ = γ/20 184.50 168.26 152.44 145.12 135.12 129.73 128.02 127.19
φ = γ/10 180.54 165.07 149.96 142.93 133.29 128.06 126.41 125.61
φ = γ/4 169.51 156.11 142.92 136.71 128.09 123.35 121.85 121.11
φ = γ/2 153.65 143.00 132.43 127.38 120.24 116.26 114.98 114.36
φ = γ 129.10 122.20 115.29 111.91 107.03 104.23 103.32 102.87

γ = 20 φ=0 129.10 122.20 115.29 111.91 107.03 104.23 103.32 102.87
φ = γ/20 125.07 118.73 112.36 109.24 104.71 102.10 101.25 100.83
φ = γ/10 121.28 115.44 109.56 106.68 102.48 100.05 99.26 98.87
φ = γ/4 111.14 106.56 101.94 99.66 96.31 94.35 93.71 93.39
φ = γ/2 97.50 94.42 91.31 89.76 87.46 86.10 85.65 85.43
φ = γ 78.21 76.85 75.48 74.79 73.75 73.13 72.92 72.82

γ = 40 φ=0 78.21 76.85 75.48 74.79 73.75 73.13 72.92 72.82
φ = γ/20 75.22 74.09 72.94 72.36 71.49 70.97 70.80 70.71
φ = γ/10 72.45 71.52 70.57 70.09 69.37 68.94 68.79 68.72
φ = γ/4 65.25 64.77 64.29 64.04 63.67 63.45 63.38 63.34
φ = γ/2 55.96 55.96 55.97 55.97 55.98 55.98 55.98 55.98
φ = γ 43.54 43.99 44.45 44.68 45.03 45.25 45.32 45.35

35



Table 4: This table reports the mean proportion of wealth allocated to equities due to the intertemporal
hedging demand for different levels of relative risk aversion (γ), uncertainty aversion (φ) and elasticities of
intertemporal substitution (ψ). The mean optimal hedging allocation to equities is calculated as αhedge =
1−γ−φ
γ+φ

ρσµ

σS
(Bj + Cjµt) , j = {0, 1} with {B0 = B, C0 = C} for ψ = 1 and

{
B1 = − B̂

1−ψ , C1 = − Ĉ
1−ψ

}
for ψ 6= 1

where µt is at its long-run mean. The results are based on the parameter estimates of Campbell, Chacko,
Rodriguez and Viceira (2004) for the sample period 1947:1–1995:4.

RRA(γ), AA(φ) � EIS (ψ) 1/0.75 1 1/1.5 1/2 1/4 1/10 1/20 1/40
γ = 0.75 φ=0 -104.99 -82.53 -68.87 -63.68 -57.22 -53.93 -52.92 -52.42

φ = γ/20 -84.92 -66.85 -55.71 -51.47 -46.21 -43.54 -42.71 -42.31
φ = γ/10 -66.68 -52.57 -43.76 -40.41 -36.25 -34.13 -33.48 -33.17
φ = γ/4 -20.88 -16.53 -13.72 -12.65 -11.32 -10.65 -10.44 -10.34
φ = γ/2 34.53 27.51 22.76 20.93 18.69 17.56 17.21 17.04
φ = γ 101.63 81.89 67.54 61.98 55.15 51.73 50.68 50.17

γ = 1 φ=0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
φ = γ/20 14.85 11.80 9.77 9.00 8.04 7.56 7.41 7.34
φ = γ/10 28.29 22.52 18.63 17.14 15.31 14.38 14.10 13.96
φ = γ/4 61.79 49.43 40.82 37.51 33.44 31.40 30.77 30.47
φ = γ/2 101.63 81.89 67.54 61.98 55.15 51.73 50.68 50.17
φ = γ 148.00 120.79 99.69 91.39 81.16 76.05 74.49 73.74

γ = 1.5 φ=0 101.63 81.89 67.54 61.98 55.15 51.73 50.68 50.17
φ = γ/20 110.84 89.50 73.80 67.71 60.22 56.47 55.32 54.77
φ = γ/10 119.08 96.35 79.45 72.87 64.78 60.74 59.51 58.91
φ = γ/4 139.19 113.27 93.44 85.66 76.09 71.32 69.86 69.15
φ = γ/2 161.89 132.88 109.83 100.68 89.39 83.75 82.03 81.19
φ = γ 185.13 154.23 128.29 117.76 104.64 98.07 96.06 95.09

γ = 2 φ=0 148.00 120.79 99.69 91.39 81.16 76.05 74.49 73.74
φ = γ/20 154.08 126.05 104.09 95.41 84.72 79.38 77.75 76.96
φ = γ/10 159.45 130.73 108.02 99.02 87.91 82.37 80.68 79.86
φ = γ/4 172.07 141.99 117.57 107.81 95.72 89.68 87.84 86.94
φ = γ/2 185.13 154.23 128.29 117.76 104.64 98.07 96.06 95.09
φ = γ 195.32 165.37 139.03 128.03 114.15 107.13 104.98 103.94

γ = 4 φ=0 195.32 165.37 139.03 128.03 114.15 107.13 104.98 103.94
φ = γ/20 195.92 166.37 140.17 129.18 115.27 108.22 106.06 105.02
φ = γ/10 196.23 167.09 141.09 130.13 116.22 109.16 106.99 105.94
φ = γ/4 195.76 167.99 142.79 132.02 118.23 111.19 109.02 107.97
φ = γ/2 192.08 166.74 143.24 132.99 119.69 112.82 110.70 109.67
φ = γ 180.40 159.60 139.75 130.82 118.94 112.67 110.71 109.76

γ = 10 φ=0 167.62 150.57 134.01 126.38 116.02 110.45 108.70 107.84
φ = γ/20 164.51 148.27 132.45 125.13 115.13 109.73 108.03 107.20
φ = γ/10 161.46 145.99 130.88 123.85 114.21 108.98 107.33 106.52
φ = γ/4 152.72 139.31 126.12 119.91 111.29 106.56 105.06 104.32
φ = γ/2 139.65 129.01 118.44 113.39 106.25 102.27 100.99 100.36
φ = γ 118.60 111.71 104.79 101.41 96.53 93.73 92.82 92.38

γ = 20 φ=0 118.60 111.71 104.79 101.41 96.53 93.73 92.82 92.38
φ = γ/20 115.08 108.73 102.36 99.24 94.71 92.11 91.26 90.84
φ = γ/10 111.74 105.90 100.02 97.14 92.94 90.51 89.72 89.33
φ = γ/4 102.75 98.17 93.55 91.27 87.91 85.96 85.32 85.00
φ = γ/2 90.50 87.43 84.31 82.76 80.46 79.10 78.65 78.43
φ = γ 72.96 71.60 70.23 69.54 68.50 67.88 67.68 67.57

γ = 40 φ=0 72.96 71.60 70.23 69.54 68.50 67.88 67.68 67.57
φ = γ/20 70.22 69.09 67.94 67.37 66.50 65.98 65.80 65.71
φ = γ/10 67.68 66.75 65.80 65.32 64.60 64.17 64.02 63.95
φ = γ/4 61.05 60.57 60.09 59.84 59.47 59.25 59.18 59.14
φ = γ/2 52.46 52.47 52.47 52.47 52.48 52.48 52.48 52.48
φ = γ 40.92 41.37 41.82 42.05 42.41 42.62 42.69 42.73

36



Table 5: This table reports the fraction of the mean optimal allocation due to the intertemporal hedging
demand. The ratio is calculated as αhedge

α , where αt = µt−r
(γ+φ)σ2

S
+ 1−γ−φ

γ+φ
ρσµ

σS
(Bj + Cjµt) , and αhedge =

1−γ−φ
γ+φ

ρσµ

σS
(Bj + Cjµt) , with {B0 = B, C0 = C} for ψ = 1 and

{
B1 = − B̂

1−ψ , C1 = − Ĉ
1−ψ

}
for ψ 6= 1, and µt is

at its long-run mean. The results are based on the parameter estimates of Campbell, Chacko, Rodriguez and
Viceira (2004) for the sample period 1947:1–1995:4.

RRA(γ), AA(φ) � EIS (ψ) 1/0.75 1 1/1.5 1/2 1/4 1/10 1/20 1/40
γ = 0.75 φ=0 -60.04% -41.82% -32.64% -29.45% -25.7% -23.87% -23.32% -23.05%

φ = γ/20 -46.75% -33.48% -26.42% -23.93% -20.97% -19.52% -19.08% -18.87%
φ = γ/10 -35.52% -26.04% -20.77% -18.88% -16.61% -15.5% -15.15% -14.99%
φ = γ/4 -10.28% -7.97% -6.53% -5.99% -5.32% -4.99% -4.89% -4.84%
φ = γ/2 15.62% 12.85% 10.87% 10.09% 9.1% 8.6% 8.45% 8.37%
φ = γ 42.07% 36.92% 32.55% 30.7% 28.27% 26.99% 26.59% 26.39%

γ = 1 φ=0 0% 0% 0% 0% 0% 0% 0% 0%
φ = γ/20 6.91% 5.57% 4.66% 4.31% 3.87% 3.64% 3.57% 3.54%
φ = γ/10 12.91% 10.55% 8.89% 8.24% 7.43% 7.01% 6.88% 6.82%
φ = γ/4 26.9% 22.74% 19.56% 18.26% 16.61% 15.75% 15.49% 15.36%
φ = γ/2 42.07% 36.92% 32.55% 30.7% 28.27% 26.99% 26.59% 26.39%
φ = γ 58.51% 53.51% 48.72% 46.55% 43.61% 42.02% 41.51% 41.27%

γ = 1.5 φ=0 42.07% 36.92% 32.55% 30.7% 28.27% 26.99% 26.59% 26.39%
φ = γ/20 45.4% 40.18% 35.64% 33.69% 31.12% 29.76% 29.33% 29.13%
φ = γ/10 48.35% 43.1% 38.44% 36.42% 33.74% 32.32% 31.87% 31.65%
φ = γ/4 55.42% 50.29% 45.49% 43.35% 40.47% 38.91% 38.42% 38.18%
φ = γ/2 63.44% 58.75% 54.07% 51.9% 48.93% 47.3% 46.79% 46.53%
φ = γ 72.57% 68.79% 64.71% 62.73% 59.93% 58.36% 57.86% 57.61%

γ = 2 φ=0 58.51% 53.51% 48.72% 46.55% 43.61% 42.02% 41.51% 41.27%
φ = γ/20 60.65% 55.77% 51.01% 48.84% 45.88% 44.26% 43.75% 43.5%
φ = γ/10 62.56% 57.81% 53.1% 50.93% 47.96% 46.33% 45.82% 45.56%
φ = γ/4 67.21% 62.84% 58.34% 56.22% 53.27% 51.65% 51.13% 50.87%
φ = γ/2 72.57% 68.79% 64.71% 62.73% 59.93% 58.36% 57.86% 57.61%
φ = γ 78.82% 75.91% 72.6% 70.93% 68.51% 67.12% 66.67% 66.45%

γ = 4 φ=0 78.82% 75.91% 72.6% 70.93% 68.51% 67.12% 66.67% 66.45%
φ = γ/20 79.68% 76.9% 73.72% 72.1% 69.76% 68.41% 67.97% 67.76%
φ = γ/10 80.44% 77.79% 74.73% 73.17% 70.9% 69.59% 69.16% 68.95%
φ = γ/4 82.34% 80.01% 77.28% 75.87% 73.8% 72.59% 72.2% 72%
φ = γ/2 84.59% 82.66% 80.37% 79.17% 77.38% 76.33% 75.99% 75.82%
φ = γ 87.3% 85.88% 84.19% 83.29% 81.93% 81.11% 80.84% 80.71%

γ = 10 φ=0 88.87% 87.76% 86.46% 85.76% 84.68% 84.03% 83.81% 83.71%
φ = γ/20 89.16% 88.12% 86.89% 86.22% 85.21% 84.59% 84.39% 84.28%
φ = γ/10 89.43% 88.44% 87.28% 86.65% 85.68% 85.1% 84.91% 84.81%
φ = γ/4 90.09% 89.24% 88.25% 87.72% 86.89% 86.39% 86.22% 86.14%
φ = γ/2 90.89% 90.21% 89.43% 89.01% 88.36% 87.96% 87.83% 87.76%
φ = γ 91.87% 91.41% 90.9% 90.62% 90.19% 89.93% 89.84% 89.8%

γ = 20 φ=0 91.87% 91.41% 90.9% 90.62% 90.19% 89.93% 89.84% 89.8%
φ = γ/20 92.01% 91.58% 91.1% 90.85% 90.45% 90.21% 90.13% 90.09%
φ = γ/10 92.13% 91.73% 91.29% 91.06% 90.69% 90.46% 90.39% 90.35%
φ = γ/4 92.45% 92.12% 91.76% 91.58% 91.28% 91.1% 91.04% 91.01%
φ = γ/2 92.82% 92.59% 92.34% 92.21% 92% 91.87% 91.83% 91.81%
φ = γ 93.29% 93.17% 93.05% 92.98% 92.88% 92.82% 92.8% 92.79%

γ = 40 φ=0 93.29% 93.17% 93.05% 92.98% 92.88% 92.82% 92.8% 92.79%
φ = γ/20 93.36% 93.25% 93.15% 93.09% 93.01% 92.96% 92.94% 92.93%
φ = γ/10 93.42% 93.33% 93.24% 93.19% 93.12% 93.08% 93.07% 93.06%
φ = γ/4 93.57% 93.52% 93.47% 93.44% 93.41% 93.38% 93.38% 93.37%
φ = γ/2 93.75% 93.75% 93.75% 93.75% 93.75% 93.75% 93.75% 93.75%
φ = γ 93.97% 94.04% 94.1% 94.13% 94.17% 94.2% 94.21% 94.21%
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Figure 1: This figure plots the optimal consumption-wealth ratio against µt over the interval [µ̄− 2σµ,µ̄+ 2σµ]
for different levels of risk aversion γ and uncertainty aversion φ. The top panels are for ψ = 1/0.75 and the
bottom panels are for ψ = 1/4. The results are based on the parameter estimates of Campbell et al. (2004).

40



0.01 0.015 0.02 0.025 0.03
0

0.5

1

1.5

2

2.5

3

3.5

4

Expected return (μ
t
)

O
p
ti
m

a
l 
e
q
u
it
y
 a

llo
c
a
ti
o
n
 (

×1
0
0
%

)

EIS (ψ)=1/0.75

 

 

0.01 0.015 0.02 0.025 0.03
0

0.5

1

1.5

2

2.5

Expected return (μ
t
)

O
p
ti
m

a
l 
h
e
d
g
in

g
 a

llo
c
a
ti
o
n
 (

× 
1
0
0
%

)

EIS (ψ)=1/0.75

 

 

0.01 0.015 0.02 0.025 0.03
0

0.5

1

1.5

2

2.5

3

3.5

4

Expected return (μ
t
)

O
p
ti
m

a
l 
e
q
u
it
y
 a

llo
c
a
ti
o
n
 (

×1
0
0
%

)

EIS (ψ)=1/0.75

 

 

0.01 0.015 0.02 0.025 0.03
0.5

1

1.5

2

2.5

3

Expected return (μ
t
)

O
p
ti
m

a
l 
h
e
d
g
in

g
 a

llo
c
a
ti
o
n
 (

×1
0
0
%

)

EIS (ψ)=1/0.75

 

 

γ=1, φ=0
γ=1, φ=γ/2
γ=1, φ=γ

γ=4, φ=0
γ=4, φ=γ/2
γ=4, φ=γ

γ=1, φ=0
γ=1, φ=γ/2
γ=1, φ=γ

γ=4, φ=0
γ=4, φ=γ/2
γ=4, φ=γ

Figure 2: This figure plots the optimal proportion of wealth allocated to equities and the proportion due
to hedging demand against µt over the interval [µ̄− 2σµ,µ̄+ 2σµ] for different levels of risk aversion γ and
uncertainty aversion φ. The leftmost panels show the optimal equity allocation and the rightmost panels show
the optimal hedging allocation The elasticity of intertemproal substitution ψ is equal to 1/0.75. The results
are based on the parameter estimates of Campbell et al. (2004).
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Figure 3: This figure plots the optimal proportion of wealth allocated to equities and the proportion due
to hedging demand against µt over the interval [µ̄− 2σµ,µ̄+ 2σµ] for different levels of risk aversion γ and
uncertainty aversion φ. The leftmost panels show the optimal equity allocation and the rightmost panels show
the optimal hedging allocation The elasticity of intertemproal substitution ψ is equal to 1/4. The results are
based on the parameter estimates of Campbell et al. (2004).
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Figure 4: This figure plots the optimal proportion of wealth allocated to equities and the proportion due
to hedging demand against µt over the interval [µ̄− 2σµ,µ̄+ 2σµ] for different levels of risk aversion γ and
uncertainty aversion φ. The leftmost panels show the optimal equity allocation and the rightmost panels show
the optimal hedging allocation The elasticity of intertemproal substitution ψ is equal to 1. The results are
based on the parameter estimates of Campbell et al. (2004).
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