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The investor’s beliefs over investment opportunities are represented by a set of pri-

ors over the process governing the dynamics of the conditional estimates of the

unobservable state. The investor is assumed to have Chen and Epstein’s (2002)

recursive multiple priors utility preferences. Using the Malliavin calculus technique,

we characterize the optimal consumption and portfolio rules explicitly in terms of

the Malliavin derivatives and stochastic integrals. we find that continuous Bayesian

revisions under incomplete information can generate an ambiguity-driven hedging

demand that mitigates the intertemporal hedging demand for the risky asset. In

addition, ambiguity aversion magnifies the importance of the intertemporal hedging
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1 Introduction

Recently, a large body of literature has examined dynamic consumption and portfolio choice problems

in which investment opportunities are time-varying.1 Merton (1971) first shows that the intertempo-

ral hedging demand, which arises to hedge against stochastic variation in investment opportunities,

is important to portfolio decision-making. This bulk of works assumes that investment opportunities,

i.e., moments of distributions of returns, are fully observable to investors. In the real world, however,

these moments are often unobservable to investors and thus must be estimated from observed market

signals. Following this logic, a number of papers have examined dynamic portfolio choice and asset

prices in the context of incomplete information economies. Dothan and Feldman (1986) and Detem-

ple (1986) were the first to study asset prices under incomplete information in general equilibrium,

followed by David (1997), Veronesi (1999, 2000), Lundtofte(2008) and Ai (2009).2 Brennan (1998),

Lakner (1998), Xia (2001), Honda (2003) and others analyze portfolio choice and the intertemporal

hedging demand with continuous Bayesian revisions in partial equilibrium settings. Feldman (2007)

provides an elaborate review of this literature and related discussions. In a partially observable econ-

omy, investors form estimates of moments conditional on available information. In most cases, they

use recursive-filtering methods to construct stochastic processes describing the dynamics of the esti-

mated moments. One can treat the processes of conditional moments as perfectly known and then

solve for optimal consumption and portfolio decision rules and asset prices using techniques for solv-

ing complete information economies. These papers generally postulate that an investor’s beliefs are

represented by a subjective prior; that is, he completely trusts the probability model of conditional

moments obtained by applying the Bayes rule in continuous time. Following this assumption, optimal

consumption and portfolio decisions and asset prices in equilibrium can be derived in the expected

utility framework.

In this paper, we follow Honda (2003) and consider a continuous-time incomplete information

economy with two assets in which the expected return of a risky asset is unobservable to an investor

and follows a hidden Markov chain. For the sake of analytical convenience, we assume that the

hidden Markov chain is governed by two different regimes, as in Honda (2003). Based on the observed

asset prices, the investor updates his belief over the unobservable state as consistent with the Bayes

rule. However, different from the standard literature on incomplete information economies in the

expected utility framework, we employ Chen and Epstein’s (2002) recursive multiple priors utility

(hereafter RMPU) framework to incorporate ambiguity and ambiguity aversion into the partially

observable economy with regime switching mean returns and then analyze dynamic consumption and

portfolio choice in a partial equilibrium setting. Ambiguity and ambiguity aversion are concepts used
1 An incomplete list of those studies include Barberis (2000), Campbell and Viceira (1999), Chacko and Viceira (2005),

Kim and Omberg (1996) and Liu (2007).
2 David (1997) investigates portfolio choice and asset pricing when investment opportunities are unobservable and regime

switching. In a general equilibrium setting, Lundtofte (2008) analyzes expected life-time utility and hedging demands
in a partially observable economy in which the endowment process is allowed to have imperfect correlation with changes
in the unobservable growth rate of endowments.
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to describe a decision maker who is uncertain over which probability distribution describes the state

variables in an economy and is also averse to such uncertainty. In the incomplete information economy

considered here, the investor is ambiguous over which probability model governs the stochastic process

of the conditional estimates of the unobservable state.

Ambiguity and ambiguity aversion are embedded into the problem using Chen and Epstein’s

continuous-time formulation of RMPU.3 With RMPU preferences, the investor endogenously chooses

the worst-case alternative model among a set of candidate models that governs the dynamics of

the investor’s beliefs. Such an ambiguity-aversion specification features max-min decision-making.

In making consumption and portfolio decisions, the investor takes into account not only incomplete

information risk that results from time-varying precision of the conditional estimates of the unobserv-

able state but also ambiguity about the process that governs the dynamics of the filtered probabilities

of the underlying state. Thus, the specification employed here naturally implies that the effect of

ambiguity does not wear away as the investor engages continuous Bayesian revisions over time. This

approach of modeling ambiguity is similar to that in Cagetti et al. (2002) and builds on the work

of Miao (2001) in which a model with incomplete information and ambiguity is presented without

being specialized to a specific investment opportunity set. Honda (2003) examines optimal consump-

tion and portfolio choice in the expected utility framework, assuming that the expected return is

unobservable and regime switching. The RMPU preferences adopted here nest the expected utility

framework used in Honda (2003) as a special case in which there is no ambiguity.

The investor’s ambiguity toward his beliefs about the investment opportunity set stems from

uncertainty in estimating expected returns. Merton (1980) documents the difficulty in estimating

the expected return of stock prices and argues that a very long time period is required to efficiently

estimate the expected return, even when it is constant. When expected returns follow a regime-

switching process, it becomes much more difficult to obtain a precise estimate of the expected return

at each point in time.4 Due to this apparent difficulty, it is reasonable to argue that the processes

describing the dynamics of beliefs over investment opportunities are subject to a substantial degree of

uncertainty. This uncertainty makes it difficult to justify treating the probability model that underlies

belief dynamics as perfectly known and fixed. By allowing multiple priors over the probability model,

we can take into consideration investors’ lack of confidence due to concerns about model uncertainty.

Distinguishing ambiguity from risk also has a well-grounded theoretic basis. The Ellsberg Paradox

and related evidence have demonstrated that such a distinction is behaviorally meaningful. For these

reasons, it is both reasonable and desirable to introduce ambiguity over belief dynamics into an

incomplete information economy when studying dynamic consumption and portfolio decisions.

Using the Malliavin calculus technique and the Clark-Ocone formula, we show that the optimal
3 Gilboa and Schmeidler (1989) provide an axiomatic foundation for multiple priors utility. Epstein and Schneider (2003)

axiomatize the discrete-time version of recursive multiple priors utility. Epstein and Miao (2003) study asset pricing in
a general equilibrium exchange economy using Chen and Epstein’s RMPU.

4 Guidolin and Timmermann (2007) study a wide range of model specifications to characterize regime switching in
asset returns. They find that none of those models passes all specification tests that they consider. They then choose a
parsimonious four-state model with regime-dependent mean and covariance matrix and analyze asset allocation decisions.
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consumption and portfolio rules can be explicitly characterized in terms of the Malliavin derivatives

and stochastic integrals. The solutions derived here contrast with Honda’s (2003) study in which

the partial differential equation approach is employed but fails to deliver explicit solutions for gen-

eral coefficients of risk aversion. In this paper, we further distinguish incomplete information risk

from ambiguity and obtain explicit solutions to the optimal consumption and portfolio choice. Our

solutions are based on the martingale method of Cox and Huang (1989). Karatzas and Xue (1991)

consider the application of the martingale method to incomplete information economies; and Dybvig,

Rogers and Back (1999) use the method to examine consumption and portfolio decisions for stochas-

tic investment opportunity sets. The numerical calculations in this paper are implemented using the

Malliavin derivative Monte Carlo (MDMC) method developed by Detemple, Garcia and Rindisbacher

(2003).

In an incomplete information economy, the optimal allocation to the risky asset has a myopic

component that depends on the current risk-return trade-off as well as an intertemporal hedging

component that takes into account time variation in the conditional estimates of the unobservable

state. We find that continuous Bayesian revisions together with time-invariant ambiguity aversion

yield an ambiguity-driven hedging component that is state- and horizon- dependent. This component

does not wear off over the horizon because Bayesian updating does not resolve ambiguity and in

addition, the precision of the conditional estimates fluctuates stochastically throughout the horizon.

The impact of ambiguity on the intertemporal hedging demand is strong when the role incomplete

information risk becomes dominant. Furthermore, ambiguity magnifies the relative importance of the

intertemporal hedging demand in the optimal portfolio choice.

The problem analyzed here is different from the problems addressed by models on learning under

ambiguity in discrete time (Epstein and Schneider, 2007, 2008) and continuous time (Leippold, Tro-

jani and Vanini, 2008). These papers assume that information on fundamentals is ambiguous and

thus take into account the updating of beliefs through multiple priors and likelihoods. In the problem

analyzed in this paper, however, the investor treats the model of filtered probabilities as ambigu-

ous and has multiple beliefs with respect to the model resulting from continuous Bayesian revisions.

Schroder and Skiadas (2003) analyze optimal consumption and portfolio choice for generalized recur-

sive utility preferences that incorporate RMPU as a special case. They show that the solution can

be characterized up to the solution to a single constrained backward stochastic differential equation

(BSDE). But they did not consider the role of incomplete information. Sbuelz and Trojani (2008) ex-

amine asset prices in a continuous-time exchange equilibrium with locally-constrained-entropy RMPU

(LCE-RMPU). They exogenously posit that the local bound on the size of ambiguity is some func-

tion of state variables and thus is time-varying. Without deriving explicit solutions to the optimal

consumption and portfolio policies, Sbuelz and Trojani (2008) identify that the impact of ambiguity

on the optimal equity demand is state-dependent in a non-standard way. In this paper, we show that

even with a constant local bound on the size of ambiguity, the model can still generate some form of

non-standard state-dependence through endogenous Bayesian updating.
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This paper contributes to a limited but growing body of literature that examines the implications

of ambiguity for portfolio choice and asset pricing. Maenhout (2004) employs the robust control

approach developed by Anderson, Hansen and Sargent (2000) to derive optimal portfolio rules for

i.i.d. returns. Uppal and Wang (2003) extend the work of Maenhout (2004) to a multi-assets setting.

Maenhout (2006) assumes time-varying investment opportunities and derives closed-form solutions

for an investor maximizing expected power utility over terminal wealth. Gagliardini, Porchia, and

Trojani (2009) study the term structure of interest rates with ambiguity aversion. Trojani and Vanini

(2002, 2004) employ RMPU with time-invariant ambiguity aversion to study portfolio choice and

asset pricing in general equilibrium under complete information.

The rest of this paper is organized as follows: Section 2 presents the model and derives optimal

consumption and portfolio rules using the martingale method developed by Cox and Huang (1989);

Section 3 describes the numerical simulations and discusses the results. Finally, Section 4 concludes.

Proofs are collected in the Appendix.

2 The Model

In this section, we present the investment opportunity set with unobservable regime-switching mean

returns. The investor obtains the conditional estimates of the unobservable state by observing past

and current asset prices. In the benchmark case, the investor employs a non-linear recursive filter to

extract filtered probabilities that are updated according to the Bayes rule. This benchmark model of

conditional estimates serves to represent an approximate description of the investor’s beliefs. Using

the κ−ignorance specification in Chen and Epstein (2002), we consider a constrained set of alternative

models surrounding the reference model. This prescribed set of priors and RMPU reflect the investor’s

lack of confidence in the reference model and thus ambiguity and ambiguity aversion. Then we

describe the dynamic optimization problem for the ambiguity-averse investor. Finally, we solve for

the optimal consumption and portfolio rules using the martingale method.

2.1 The investment opportunity set

We assume that there are two assets available for investment, namely, a riskless short-term bond

paying an instantaneous return r and a risky asset with the following price dynamics:

dSt = Stµtdt + StσSdBt

where σS is a constant and the expected return µt follows a continuous-time Markov chain with two

states µH and µL. It is assumed that µH > µL, meaning that regime H represents the high-mean-

return regime. The infinitesimal generating matrix of µt is

Λ ≡
(
−λ0 λ0

λ1 −λ1

)
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where λ0, λ1 > 0. Suppose the prior distribution of the two regimes is as follows. At the initial time

t = 0, the economy is in the high-mean-return regime µH with probability π0; the probability of the

state being in the low-mean-return regime is then 1 − π0. Upon the arrival at state i (i = µH or

µL), the process µt remains there for an exponentially-distributed time duration, and then jumps to

state j (j 6= i). The transition density parameters λ0 and λ1 are the parameters of the exponential

density functions. The transition probabilities over any interval of time can be constructed from the

infinitesimal matrix via the exponential formula Ts = exp (sΛ).

We assume that the investor can observe neither the expected return µt nor the Brownian motion

B. Instead, he can only observe the asset prices S. The parameters µH , µL, λ0, λ1 and σS are

assumed to be known constants. Given an initial prior over the regimes, the investor estimates the

unobservable state, i.e., the probability of the current state being in the high-mean-return regime,

based on the observed asset prices. The investor updates his beliefs as more prices are observed.

As in previous works (e.g., Dothan and Feldman, 1986; Feldman, 1989), we can identify a σ-algebra

equivalent economy in which the state variable is the filtered probability of the underlying state.

This economy is a Markovian representation of the original economy.5 The optimal consumption

and portfolio rules obtained in this economy are also optimal in the original economy. Note that the

characterization of the investment opportunity set is similar to that in Honda (2003).

Define the filtered probability πt as the posterior probability that the current state is in the

high-mean-return regime, that is

πt = Pr
(
µt = µH | FS

t

)
with π0 given, where

{
FS

t

}
is the information filtration generated by the asset price process S. It

follows from Theorem 9.1 in Liptser and Shiryaev (2001) that π satisfies the stochastic differential

equation (SDE)

dπt = [λ0 − (λ0 + λ1) πt] dt + πt (1− πt)
µH − µL

σS
dB̂t (1)

where B̂ is a standard Brownian motion with respect to the price filtration
{
FS

t

}
and is defined by

B̂t =
∫ t

0

dSτ − Sτ µ̂τdτ

SτσS

with

µ̂τ = µHπτ + µL (1− πτ ) . (2)

That is, µ̂t is the conditional expected return with respect to
{
FS

t

}
. In the non-linear filtering

equation (1), the precision of the conditional estimates of the unobservable state depends on the

filtered probability and fluctuates stochastically. To explore more properties of (1), it is useful to

rewrite it in terms of the original standard Brownian motion.6 Suppose the investor knows that
5 See Feldman (2007) for a discussion of the irrelevance of the Separation Principle for solving the optimization problems

in dynamic incomplete information economies.
6 David (1997) also provides a detailed discussion of several properties of this filtering process.
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during some time interval [t1, t2], the true expected return is µt. Then π satisfies the following SDE

dπt =
[
λ0 − (λ0 + λ1) πt +

πt (µH − µ̂t) (µt − µ̂t)
σ2

S

]
dt +

πt (µH − µ̂t)
σS

dB. (3)

During [t1, t2], if the true expected return µt = µH , then the second term in the drift of (3) tends to

trend πt toward 1. When πt approaches 1, both the second term in the drift and the diffusion term

converge to zero, making the first term in the drift dominant. This term prevents πt from converging

to 1 and drives πt toward the inside of [0, 1]. If the true expected return µt = µL, then the second

term in the drift is negative and tends to trend πt toward 0. When πt approaches 0, the first term in

the drift becomes large in magnitude and drives πt back inside the interval [0, 1]. Thus, the drift term

in (1) has the effect of mean reversion. It is worth noting that a large λ1 implies a strong tendency to

trend πt away from 1 while a large λ0 implies a strong prevention of πt from converging to 0. In the

special case of non-switching regimes, that is λ0 = λ1 = 0, there is no mean-reverting effect, where

the precision of the estimate should increase as more returns are observed. This case is similar to

that considered in Brennan (1998).

The volatility term in (1) quantifies a risk arising in an incomplete information economy, which is

termed incomplete information risk7. This risk stems from time-varying precision of the conditional

estimates of the unobservable state. When πt takes values near the middle of the interval [0, 1], the

investor is barely confident about the current estimate, leading to a sizable incomplete information

risk. In this case, the investor put much weight on innovations in returns when updating beliefs.

When the investor is fairly confident about the current estimate, that is, when πt takes values near

the boundaries of the interval [0, 1], the magnitude of incomplete information risk is small. In this

case, innovations in returns have little effect on revisions in beliefs. In addition, if µH is significantly

different from µL , the signal-to-noise ratio (µH − µL)/σS is large. As a result, a small innovation

in returns can lead to a large revision in beliefs because much information can be revealed. A high

return volatility σS implies that signals are very noisy and hardly useful in updating beliefs. Thus,

the scope of incomplete information risk is limited.

2.2 Ambiguity and recursive multiple priors utility

2.2.1 The set of alternative models

Denote the planning horizon as T , the wealth process as {Wt}T
t=0 and the consumption process C as

{Ct}T
t=0. Given an initial wealth endowment W0 > 0, the wealth dynamics can be described by the

following SDE:

dWt = [Wt (r + αt (µ̂t − r))− Ct] dt + WtαtσSdB̂t (4)

where αt is the proportion of wealth invested in the risky asset and µ̂t is the mean return estimate given

in (2). The investor makes consumption and portfolio decisions based on the conditional estimates of

the unobservable state. Thus far, the original incomplete information economy has been converted
7 We thank David Feldman for suggesting this terminology.
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into a Markovian equivalent economy with state dynamics (1) and (4).

Denote the state vector Yt ≡ (Wt, πt). The reference model can be written as

dYt = µ (Yt) dt + σ (Yt) dB̂t (5)

where µ and σ have the appropriate functional forms inherited from SDEs (1) and (4). The reference

model serves as a benchmark model among all the models that the investor is willing to consider. The

investor has lack of confidence about the full usefulness of the reference model (5) and thus deems

the state vector dynamics (5) as only an approximation of his beliefs. He wishes to consider a family

of alternative models that are close to the reference model and are difficult to distinguish from it.

The set of alternative models on which RMPU is defined is constructed from
{
FS

t

}T

t=0
-adapted

density generators defined by θ ≡ {θt}T
t=0 ∈ Θ satisfying sup |θt| ≤ κ with κ ≥ 0. This specification

is referred to as κ-ignorance in Chen and Epstein (2002). Each density generator θ delivers a local

distortion to the reference model. Suppose P is the subjective probability measure under the reference

model, that is, the probability measure with respect to the Brownian motion B̂. Each density

generator θ generates a martingale zθ under P:

zθ
t = exp

(
−1

2

∫ t

0
θ2
sds−

∫ t

0
θsdB̂s

)
, 0 ≤ t ≤ T.

The set of alternative models P is specified in terms of the Radon-Nikodym derivatives of the alter-

native models with respect to the reference model:

P ≡
{

Qθ : θ ∈ Θ,
dQθ

dP
= zθ

T

}
.

Alternatively, the set P is also referred to as the set of priors. It is obvious that the size of the

ambiguity set increases with the parameter κ. A higher value of κ implies that more alternative

models would be considered by the investor and that he is less confident about the reference model.

In the special case of κ = 0, all alternative models coincide with the reference model, in which case

the ambiguity set collapses to a singleton P. The investor has complete confidence in the reference

model.

It follows from Girsanov’s theorem that the distorted law of motion of the state vector implied

by an alternative model Qθ is

dYt = µ (Yt) dt + σ (Yt)
(
dB̂Qθ

t − θtdt
)

(6)

where B̂Qθ
is the Brownian motion under Qθ. The interpretation is that the investor is ambiguous

about whether B̂ is a Brownian motion with respect to his information filtration. Thus, the investor

considers the alternative models that are absolutely continuous with respect to the reference model,

in which case ambiguity indeed concerns uncertainty about the drift functions of the state processes.

In particular, under the alternative model Qθ, the distorted law of motion of the estimate πt can be

7



explicitly written as 8

dπt = [λ0 − (λ0 + λ1) πt] dt + πt (1− πt)
µH − µL

σS

(
dB̂Qθ

t − θtdt
)

. (7)

It is worth noting that the distorted drift function in (7) depends on the term quantifying incomplete

information risk. When the precision of an estimate is low, which usually occurs when the estimation

of the expected return is difficult, the magnitude of the drift distortion is large, and thus, the investor

has low confidence in the estimate. As shown below, this drift distortion term can generate an

ambiguity-driven hedging demand.

For time-invariant ambiguity, that is, θt = κ for all t ∈ [0, T ], one can write (6) as

dYt = µ (Yt) dt + σ (Yt)
(
dB̂Q

t − κdt
)

where for brevity Q denotes the alternative model with θ = κ. Indeed, we verify that time-invariant

ambiguity can be supported as an optimum in the optimization problem with RMPU described below.

2.2.2 The RMPU preferences

The investor has a time preference rate ρ and a constant relative risk aversion (CRRA) utility function

of the following form

u (C) =


C1−γ

1− γ
, γ > 0, 6= 1

log C, γ = 1

The investor’s objective is to choose consumption and portfolio policies to maximize the expected

utility under the worst-case alternative model. Among all those prescribed models induced by the

allowed set of priors, the worst-case alternative model delivers the minimum of expected utility given

a consumption process and terminal wealth. Put formally, the investor’s value function is given by

V0 (C,WT ) = max
Ct,αt

min
Qθ∈P

EQθ

[∫ T

0
e−ρtu (Ct) dt + e−ρT u (WT )

]
(8)

subject to the state dynamics (1) and (4), or compactly, the reference model (5). The minimization

operator in (8) captures the concern that an alternative model may have an adverse effect on the

continuation value. As a result, the investor would like to take into account the worst-case alternative

model. The worst-case model is to be endogenously selected from the set of priors P, which contains

a prescribed family of alternative models generated from locally distorting the reference model. The

multiplicity of the set of priors P represents the investor’s lack of confidence in the reference model,

and the minimization operator reflects his aversion to such ambiguity. Since each alternative proba-

bility measure Qθ is associated with a corresponding density generator θ, the minimization operator

is also taken with respect to the process θ.
8 Cagetti et al. (2002) consider a similar distorted law of motion to describe the dynamics of the estimates of a hidden

Markov chain in the robust control framework. They use the distorted state processes to derive asset pricing implications
in a production economy with uncertain growth rates.
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Chen and Epstein (2002) derive the following backward stochastic differential equation (BSDE)

representation of the utility process Vt

dVt =
[
−u (Ct) + ρVt + max

θ∈Θ
θtσ

V
t

]
dt + σV

t dB̂t, VT = u (WT ) .

where the volatility term σV
t is endogenous and is part of the complete solution to the above BSDE.9

For the κ-ignorance specification, Chen and Epstein (2002) show that the endogenous drift distortion

is given by

max
θ∈Θ

θtσ
V
t = θ∗t σ

V
t = κ|σV

t |, with θ∗t = κ× sgn
(
σV

t

)
(9)

where sgn
(
σV

t

)
= |σV

t |/σV
t if σV

t 6= 0 and sgn
(
σV

t

)
= 0 otherwise. The term κ|σV

t | is entirely

attributed to ambiguity aversion rather than risk aversion. The parameter κ is also interpreted as an

ambiguity aversion parameter. It is worth noting in (9) that the worst-case probability law associated

with the drift distortion θ∗ actually depends on the sign of the volatility of the utility process. The

volatility of Vt as a part of the complete solution to the problem (8) relies on the optimal consumption

path, which is in turn a function of the endogenous drift distortion θ∗ (see the proof of Proposition

1). Thus, unlike other studies (e.g., Gagliardini, Porchia and Trojani, 2008; Trojani and Vanini,

2002) in which one can first solve out the worst-case drift distortion explicitly and then tackle the

maximization problem under the resulting worst-case model, here in this paper the solutions to the

optimal consumption and portfolio policies together with the endogenous worst-case model must be

jointly determined from solving the optimization problem (8). In the analysis below, we employ the

guess-and-verify method to show that both conditions σV
t > 0 and θ∗t = κ for all t ∈ [0, T ] can be

supported together in the optimum. That is, the size of ambiguity or ambiguity aversion is time-

invariant throughout the horizon. As a result, the optimal consumption and portfolio policies can be

derived conditioning on time-invariant ambiguity θ∗ = κ.

2.3 Optimal consumption and portfolio choice

Define the conditional market price of risk ν̂t as

ν̂t =
µ̂t − r

σS
.

Since πt is progressively measurable and always bounded between 0 and 1, the conditional market price

of risk is also progressively measurable and bounded given that µH , µL and σS are all finite constants.

Because ν̂ is a bounded process, Novikov’s condition holds; that is, EP
(
exp

{
1
2

∫ T
0 ν̂2

t dt
})

< ∞. In

addition, the market is complete in the Markovian equivalent economy. Thus, there exists a unique
9 Chen and Epstein (2002) shows that the ambiguity set formulated by κ-ignorance satisfies a property called “rectangu-

larity”. Rectangularity together with other technical conditions ensures that the utility process under multiple priors
is indeed recursive, and hence, time consistent (in the sense of Johnsen and Donaldson 1985).

9



equivalent martingale measure P̃ given by dP̃ =ζT dP where

ζt = exp
(
−1

2

∫ t

0
ν̂2

sds−
∫ t

0
ν̂sdB̂s

)
with ζ0 = 1. Under P̃, the process B̃t = B̂t +

∫ t
0 ν̂sds is a Brownian motion. The state price density,

denoted as ξ, is given by

ξt = exp
(
−

∫ t

0
rds− 1

2

∫ t

0
ν̂2

sds−
∫ t

0
ν̂sdB̂s

)
.

The boundedness of the conditional market price of risk implies that all moments of the state price

density are finite, which is a sufficient condition that guarantees the applicability of the martingale

method for stochastic investment opportunity sets (Dybvig, Rogers and Back, 1999). This condition is

also referred to as the “DRB condition” in Korn and Kraft (2004). As a consequence, the optimization

problem is well-defined and the pitfalls raised by Korn and Kraft (2004) can be naturally avoided.

Hereafter, we assume that the lower bound of the conditional market price of risk adjusted for

ambiguity is nonnegative; namely,
µL − r

σS
− κ ≥ 0. (10)

This assumption guarantees that in all states of the economy, the conditional market price of risk

adjusted for ambiguity, or the effective conditional market price of risk, is strictly positive unless πt

exactly reaches 0. This assumption plays a key role in proving that time-invariant ambiguity indeed

obtains in the optimum (see the proof of Proposition 1 in the Appendix).

The static variational problem corresponding to the optimization problem (8) is formulated by

standard arguments as follows:

max
Ct,WT

min
Qθ∈P

EQθ

[∫ T

0
e−ρtu (Ct) dt + e−ρT u (WT )

]
(11)

s.t. W0 = EP
[∫ T

0
ξtCtdt + ξT WT

]
. (12)

Suppose the model Qθ∗ solves the inner minimization problem, then the Lagrangian of problem (11)

subject to (12) is given by

L = EQθ∗
[∫ T

0
e−ρtu (Ct) dt + e−ρT u (WT )

]
+ y

{
W0 − EP

[∫ T

0
ξtCtdt + ξT WT

]}
(13)

where θ∗ satisfies the condition (9) and y a scalar Lagrange multiplier. It is worth noting that

different from the standard martingale formulation with expected utility, the endogenous probability

law under which the expectation of discounted future utility is taken deviates from the probability law

governing the static budget constraint. The deviation reflects the investor’s distrust of the reference

model that dictates a particular consumption process in the martingale formulation. To solve the

static variational problem, a change of measure is applied to convert the worst probability measure

10



Qθ∗ to the reference measure P using the Radon-Nikodym derivative between the two measures. The

first-order conditions (shown in the Appendix) can then be derived under the reference measure. The

solutions to the optimal consumption and portfolio policies together with the endogenous probability

law Qθ∗ are given in the following proposition.

Proposition 1 Suppose γ 6= 1 and the following condition holds10:

EP̃
t

[∫ T

t
e−rsC∗

s

∫ s

t

(
Dtν̂τdB̃τ

)
ds + e−rT W ∗

T

∫ T

t
Dtν̂sdB̃s

]
> 0 for all t ∈ [0, T ] (14)

where C∗
s and W ∗

T are given in (ii). The following solutions characterize an optimum:
(i) The endogenous probability law is given by Qθ∗ with θ∗t = κ for all t ∈ [0, T ]
(ii) The optimal consumption C∗

t and terminal wealth W ∗
T are

C∗
t =

(
e−ρtzκ

t

yξt

) 1
γ

and W ∗
T =

(
e−ρT zκ

T

yξT

) 1
γ

(15)

where the Lagrange multiplier y satisfies

y =
(

EP
[∫ T

0
(ξt)

γ−1
γ (e−ρtzκ

t )
1
γ dt + (ξT )

γ−1
γ (e−ρT zκ

T )
1
γ

]
/W0

)γ

(16)

(iii) The optimal portfolio α∗t is

α∗t =
µ̂t − r

γσ2
S

− κ

γσS
+

1− γ

γ

ert

σSW ∗
t

EP̃
t

[∫ T

t
e−rsC∗

s

∫ s

t

(
Dtν̂τdB̃τ

)
ds + e−rT W ∗

T

∫ T

t
Dtν̂sdB̃s

]
(17)

where the conditional expectation is taken under the equivalent martingale measure P̃. The Malliavin
derivative of the conditional market price of risk Dtν̂s is given by Dtν̂s = (µH−µL)

σS
Dtπs in which the

Malliavin derivative of π, Dtπs, satisfies the following SDE:

d(Dtπs) = −(λ0 + λ1)Dtπsds +
µH − µL

σ
(1− 2πs)DtπsdB̂s

subject to the boundary condition lims→t Dtπs = πt (1− πt) µH−µL
σS

.

Proof. See Appendix.

Corollary 1 Suppose π0 > 0. The solutions in Proposition 1 nest the case of logarithmic utility with

γ = 1.

Proof. See Appendix.

In the Appendix, we show that both conditions (14) and (10) ensure that the time-invariant density

generator θ∗ = κ delivers the endogenous worst-case alternative model in Lagrangian (13). That is,

in the optimum, the density generator does not switch between different regimes.11 This implies that
10 Ideally, we would like to be able to show analytically that this condition holds for the solution in (ii). Unfortunately,

we have been unable to do so, since the condition involves the Malliavin derivatives and stochastic integrals, both of
which have to be computed numerically. Nevertheless, in the numerical simulations below, we have verified that this
condition does hold on a fine grid of the state variable π ∈ [0, 1] and time t ∈ [0, T ].

11 In general, the case of switching density generator is intractable primarily due to two reasons. First, the worst-case
model jumps across different regimes, rendering a state vector solution difficult to obtain. Second, the volatility of the
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there are no sudden jumps in the drift distortion associated with the worst-case model. The investor’s

attitude toward multiple beliefs is therefore state-independent and exhibit stationarity. This simplified

result provides analytical convenience, namely, delivers explicit solutions to the optimal consumption

and portfolio policies conditioning on the time-invariant density generator.

In the optimal portfolio formula, the first term is the myopic demand for the risky asset, which

is instantaneously mean-variance efficient and depends on the current estimate of the unobservable

state. The second term reflects the effect of ambiguity on the myopic component, which relies on the

magnitude of ambiguity. Under the condition (10), a larger κ implies that the investor allocates a

smaller proportion of wealth to the risky asset when he behaves myopically by ignoring time variation

of the conditional estimates. Together, the first two terms are called ambiguity-adjusted myopic

demand hereafter. When returns are i.i.d. and expected returns are fully observable, the optimal

portfolio policy is given by the ambiguity-adjusted myopic component, as shown by Chen and Epstein

(2002). Their results hence give rise to a form of observational equivalence; i.e., with respect to the

effect on consumption and portfolio choice, an increase in the size of ambiguity is observationally

equivalent to a decline in the effective market price of risk. Under incomplete information, this

form of observational equivalence cannot be sustained because ambiguity also has an impact on the

intertemporal hedging demand in a non-standard way.

The third term quantifies the intertemporal hedging demand, which is induced to hedge against the

future time variation of the conditional estimates of the unobservable state. In the optimal portfolio

formula (17), the Malliavin derivative Dtπs captures the effect of an innovation in the Brownian

motion B̂ at time t on the state variable π at time s. A notable difference between the solution

derived here and those derived in the expected utility framework without ambiguity (Brennan, 1998;

Honda, 2003; Lundtofte, 2008) is that the intertemporal hedging demand is driven not only by

incomplete information risk but also by ambiguity. In particular, ambiguity affects hedging demand

through the intermediate consumption decisions, as seen in (17) and (15). The hedging term in (17)

can be further decomposed into two terms hedgeIIR and hedgeambiguity, and the optimal portfolio

rule can be rewritten as

α∗t =
µ̂t − r

γσ2
S

− κ

γσS
+ hedgeIIR + hedgeambiguity

where hedgeIIR is obtained from the hedging term in (17) by setting κ = 0, and hedgeambiguity

accounts for the difference between hedgeIIR and the hedging term. In this way, hedgeIIR is solely

attributed to the intertemporal hedging of incomplete information risk, while hedgeambiguity is purely

driven by ambiguity. The hedging term hedgeIIR exists in an expected utility model with incomplete

information, but hedgeambiguity does not. Although the effect of ambiguity on myopic demand does

not depend on the state variable, hedgeambiguity is state-dependent in a non-standard way. In the

utility process, which is the key determinant of the instantaneous regime of the density generator, is endogenous and
depends on the decision variables when investment opportunities are time-varying. This adds enormous difficulty in
solving the optimization problem in the presence of jumps in the density generator.
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special case of γ = 1, the investor is uninterested in hedging, and ambiguity only affects the myopic

demand for the risky asset.

3 Numerical Simulations and Results

In this section, we perform numerical simulations to further study the impacts of incomplete infor-

mation risk and ambiguity. The baseline parameter values for numerical simulations are:

µH = 0.20, µL = 0.06, σS = 0.10, r = 0.02, λ0 = 2.00, λ1 = 1.00, ρ = 0.05, T = 10.

We use the Malliavin derivative Monte Carlo (MDMC) method developed by Detemple, Garcia and

Rindisbacher (2003) to compute the optimal portfolios and the consumption-to-wealth ratios. As

shown by Detemple, Garcia and Rindisbacher (2003), simulating optimal portfolios that are in ex-

plicit forms can improve the efficiency and accuracy of numerical approximations relative to the

standard numerical stochastic programming with backward iterations (Barberis, 2000; Guidolin and

Timmermann, 2007). We run a random number generator to simulate a large number of sample

paths and numerically evaluate the stochastic integrals in the expressions of the optimal portfolio

and consumption-to-wealth ratio. The state variable π and its Malliavin derivative are simulated

using a variance-stabilizing transformation to minimize approximation error as suggested by Detem-

ple, Garcia and Rindisbacher (2003). The reformulation allows us to adopt a change of variables

that normalizes the volatility of the process of the filtered probabilities to a constant. This makes

the numerical calculation of the Malliavin derivative Dtπs of the same complexity as the numerical

solution of an ordinary differential equation (ODE).12 The number of Monte Carlo replications is set

to N = 20, 000. The initial wealth W0 is set to 1 such that the optimal consumption C∗
0 can be

interpreted as the consumption-to-wealth ratio.

Table 1 summarizes the solution to expected utility optimization problem with and without inter-

mediate consumption assuming no ambiguity. The ambiguity aversion parameter κ is set to 0. The

state variable π takes values ranging from 0 to 1.13 Our results based on the MDMC method stand

in contrast to the findings in Honda (2003) in the following respects. First, our results highlight the

importance of the intertemporal hedging demand arising due to incomplete information risk. For

example, in Table 1, when the coefficient of relative risk aversion γ is 8 and π is 0.5, the ratio of

hedging demand to the optimal demand for the risky asset is 20%.

[Insert Table 1 here]

Second, we find that the sign of the intertemporal hedging demand is negative for various coefficients

of risk aversion greater than 1, including very high coefficients (e.g., γ = 20), while Honda (2003)
12 See Detemple, Garcia and Rindisbacher (2003) for further details.
13 To implement the variance-stabilizing transformation in Detemple, Garcia and Rindisbacher (2003), we use a value of

π close to 0 (π = 0.002) to approximate π = 0 and a value of π close to 1 (π = 0.999) to approximate π = 1. We do
this because the transformation entails the calculation of the inverse function of the volatility term in the state process
πt, which is equal to 0 when π takes a value of either 0 or 1.
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finds that the sign of hedging demand turns out to be positive for high levels of risk aversion. Our

findings are in line with those in Brennan (1998) and Lundtofte (2008), though Lundtofte (2008) also

takes into account an additional hedging component due to the correlation between the endowment

process and changes in the unobservable growth rate. An investors who is more risk averse than a

logarithmic investor has the utility function with its shape unbounded from below and bounded from

above. As a result, he behaves more conservatively than the logarithmic investor and prefers to hold

a portfolio less risky than the myopic portfolio. In the context of the model, continuous Bayesian

revisions create a perfect positive correlation between innovations to asset returns and revisions in

the conditional mean return estimates. The risky asset tends to have low (high) returns when its

mean returns are expected to be low (high). Due to the investor’s desire to smooth utility across

states, a portfolio is deemed less risky if it can deliver wealth when investment opportunities are

poor or when the mean return estimates are low. Thus, an investor with high coefficients of relative

risk aversion (i.e., higher than 1) optimally decreases the investment in the risky asset, which implies

that the intertemporal hedging demand has a negative sign. For an investor maximizing utility over

consumption, the negative sign of hedging demand can also be explained by the desire to smooth

consumption across states. As shown in Table 2, the consumption-to-wealth ratio increases with the

state belief π when the coefficient of relative risk aversion is greater than 1. An increase in the state

belief causes the income effect and the substitution effect to arise. The income effect increases current

consumption because the investor can entertain a higher level of consumption for a given quantity

of wealth. The substitution effect decreases consumption because the investment opportunity set is

more attractive. When the intertemporal elasticity of substitution is less than 1, which implies that

γ > 1 for the CRRA utility, the income effect dominates over the substitution effect.14 To smooth

consumption across states, the investor desires a portfolio that can generate wealth when state beliefs

are bad, that is, a portfolio with negative hedging demand.

An investors who is less risk averse than a logarithmic investor has the utility function with its

shape bounded from below and unbounded from above. He therefore behaves more aggressively and

is willing to hold a more risky portfolio. As a result, hedging demand has a positive sign. The

consumption-to-wealth ratio decreases with the state belief because the elasticity of intertemporal

substitution is greater than 1 (that is, γ < 1) in which case the substitution effect dominates the

income effect.

[Insert Table 2 here]

Third, the size of hedging demand is non-monotonic in risk aversion. As shown in Table 1, when

an investor maximizes utility over consumption, the magnitude of hedging demand increases and then

decreases relative to risk aversion. This result is similar to the findings of Campbell and Viceira (1999)
14 For the CRRA utility function, the elasticity of intertemporal substitution and the coefficient of relative risk aversion

are inversely related. Due to this relationship, the consumption-to-wealth ratio first increases and then decreases with
risk aversion. See Campbell and Viceira (1999) for a related discussion.
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but contrasts with those of Honda (2003), who finds that the hedging component against incomplete

information risk is monotonically decreasing in risk aversion. When an investor becomes more risk

averse, he has a stronger desire to smooth utility and/or consumption, which calls for a less risky

portfolio and a larger size of hedging demand. When the level of risk aversion further increases, the

investor wants to limit his exposure to the risky asset in all states of his beliefs about the underlying

state, in which case the hedging motives wear off.

Table 1 also shows that the presence of intermediate consumption mainly reduces the impact

of incomplete information risk on hedging demand for a given investment horizon. This effect is

especially strong for investors with γ > 1. Suppose there is a negative shock to returns, this implies

that the future estimates of the unobservable state are low, and thus, expected future returns are

low. An investor maximizing utility over consumption can adjust both his consumption and portfolio

decisions, while an investor with utility over terminal wealth can only adapt his portfolio decisions.

Thus, the latter investor has to allocate a large proportion of his wealth to hedge against incomplete

information risk. It is also interesting to note that in the case of utility over terminal wealth, the

size of hedging demand increases with risk aversion for relatively low state beliefs. This is because

an investor possessing those bad beliefs worries about the occurrences of even worse states and thus

has very strong hedging motives, especially when he is highly risk averse.

Turning to the effect of ambiguity, Table 3 summarizes the consumption-to-wealth ratio for var-

ious values of the ambiguity-aversion parameter κ. An ambiguity-averse investor believes that the

investment opportunity set is represented by the worst-case alternative model, under which the mean

return estimates are perceived to be lower than those under the reference model; see Equation (6).

Two competing effects arise in the presence of the worst-case alternative model. On the one hand, the

investor lowers consumption because a given level of wealth can deliver a smaller flow of consumption

due to perceived deterioration in investment opportunities. On the other hand, the investor is less

interested in investing in the risky asset and tends to increase consumption. When γ > 1, the former

effect dominates, and ambiguity aversion decreases the consumption-to-wealth ratio. When γ < 1,

the latter effect becomes significant, and ambiguity aversion increases the ratio.

For γ > 1, Table 3 shows that when the current mean return estimate rises (i.e., π is higher), an

ambiguity-averse investor increases the consumption-to-wealth ratio less sharply than an expected-

utility investor without ambiguity. This result can be attributed to the precautionary savings effect,

which strengthens the relative importance of the substitution effect associated with a change in the

investment opportunity set. Filtering the unobservable state under incomplete information creates

a second channel for ambiguity to unfavorably affect how an ambiguity-averse investor perceives the

investment opportunity set apart from its effect on price dynamics. Given an increase in the current

mean return estimate, the investor still fears the adverse impact of ambiguity on the future variation of

the mean return estimates and thus responds conservatively by increasing consumption less notably.

This stands in contrast to an investor with expected utility who is not ambiguity-averse and has

complete confidence in the reference model. Similarly, due to the precautionary savings effect, an

15



ambiguity-averse investor with γ < 1 reduces the consumption-to-wealth ratio more significantly in

response to an increase in the state belief.

[Insert Table 3 here]

Table 4 examines the intertemporal hedging demand and the ambiguity-adjusted myopic demand

at different magnitudes of ambiguity. An ambiguity-averse investor not only decreases myopic demand

but also shrinks hedging demand. Along with the change in the optimal consumption-to-wealth ratio

in response to ambiguity, the incentive to hold a less risky portfolio and that to hold a more risky

portfolio are mitigated, respectively, for investors with γ > 1 and those with γ < 1. Figure 1

plots the proportion of wealth allocated to hedge against incomplete information risk (hedgeIIR) and

the proportion of wealth allocated to hedge against ambiguity (hedgeambiguity) as functions of the

current estimate of the unobservable state π. When the investor becomes more ambiguity-averse, the

size of hedgeambiguity increases. In addition, hedgeambiguity is non-monotonic and displays a mildly

humped, that is, increasing-decreasing, shape with respect to the estimate of the unobservable state.

This non-standard non-monotonic dependence can be explained by the drift distortion term in the

worst-case alternative model governing the dynamics of the conditional estimates; see equation (7).

The drift distortion in state dynamics implied by the worst-case prior indeed drives the the hedging

component against ambiguity. The magnitude of this distortion term is large when π takes values

near 1/2, that is, when incomplete information risk becomes sizable. This term imputes a negative

drift distortion that tends to trend the estimate π away from 1. As a result, the hedging motive

against stochastic variation in the estimates shrinks. This can also explain the effect of ambiguity

on hedging demand when utility is defined over terminal wealth. A comparison between Panel B

and Panel C shows that the impact of ambiguity turns out to be stronger in the case of utility over

intermediate consumption than in the case of utility over terminal wealth. This is because ambiguity

influences the intertemporal hedging demand mainly through intermediate consumption, as shown in

the optimal portfolio formula (17). Interestingly, for a highly risk-averse investor with utility over

terminal wealth, ambiguity slightly increases hedging demand when π is very low. As discussed above,

a highly risk-averse investor fears even worse states when the current estimate of the unobservable

state is already low. Ambiguity further strengthens this concern and thus enhances the hedging

motives.

[Insert Table 4 here]

Table 5 reports the fraction of the optimal allocation to the risky asset due to hedging concerns.

Obviously, ambiguity increases the relative importance of the intertemporal hedging demand. For

example, the ratio of hedging demand to the optimal demand rises from 15% to 20% for γ = 5

and π = 0.5 when utility is defined over terminal wealth and from 26% to 42% when utility is over

consumption. Within the ambiguity-adjusted myopic component, the ambiguity aversion parameter

appears additively to the conditional estimate of the market price of risk. This implies a first-order
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effect of ambiguity on myopic demand. The effect on hedging demand, however, is of second order as

indicated in both Table 4 and Figure 1. As a result, an ambiguity-averse investor steers his portfolio

composition toward the intertemporal hedging component while away from the myopic component.

[Insert Table 5 here]

Figure 2 summarizes the horizon dependence of the optimal allocation to the risky asset for various

estimates of the unobservable state. The coefficient of relative risk aversion is 5. In each graph, the

cases of both utility over consumption and utility over terminal wealth are plotted for the horizon T

ranging from 1 to 20. Furthermore, the optimal demand for the risky asset for an expected utility

investor without ambiguity and that for an ambiguity-averse investor with κ = 0.4 are also plotted in

each graph. Figure 2 shows that the horizon effect largely relies on the unobservable-state estimate.

When the current estimate approaches the boundaries of the interval [0, 1], the optimal allocation

to the risky asset varies less in response to changes in the horizon. The reason is that investors are

fairly sure about the unobservable-state estimate and thus are reluctant to engage in hedging even

with long horizons. When the estimate is near the middle of the interval [0, 1], the horizon effect is

sizable because the role of incomplete information risk becomes significant. As the horizon increases,

the investor allocates significantly more of his wealth to hedge against stochastic variation in the

estimates of the unobservable state. The horizon profile is flatter for utility over consumption than

for utility over terminal wealth. This is because when the horizon increases, an investor maximizing

utility over consumption can adjust consumption decisions in response to an increase in the amount

of remaining fluctuations in the investment opportunity set. As a result, hedging demand responds

less drastically to changes in the horizon. Relative to the expected-utility investor without ambiguity,

the ambiguity-averse investor has a similar pattern of horizon dependence, except that the total

allocations to the risky asset decline to lower levels.

[Insert Figure 2 here]

Finally, Table 6 and Table 7 summarize the impacts of parameters µH , µL and σS , where the

coefficient of risk aversion is 5. Table 6 shows that as the disparity between the low-regime mean

return and the high-regime mean return shrinks, both the size of hedging demand and its relative

importance decrease. The reason is that an innovation in returns yields less useful information about

the unobservable state when the low regime and the high regime become more difficult to distinguish

from each other, that is, when the signal-to-noise ratio declines. As a consequence, the scope of

incomplete information risk is limited, resulting in lower hedging demand. In addition, an increase in

the return volatility parameter leads to a smaller size of hedging demand and also lowers its relative

importance. A high σS implies that information quality is poor. In this case, an investor relies less

on innovations in returns when updating beliefs because the signals are noisy. The role of incomplete

information risk is therefore underplayed. The mean-reverting effect in filtering the unobservable

state then becomes dominant, thereby dampening hedging demand. Nevertheless, none of those
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effects is comparable to the effect of ambiguity on a similar basis. The parameters µH , µL and σS

affect the intertemporal hedging demand by altering the magnitude of incomplete information risk,

while ambiguity influences hedging demand by changing the probability law governing the dynamics

of the unobservable-state estimates. This also constitutes an important difference from the i.i.d.

setting in which the observational equivalence holds and the effect of ambiguity is similar to that of

changing the mean return and/or return volatility.

[Insert Table 6 and Table 7 here]

4 Conclusion

In this paper, we have examined a continuous-time intertemporal consumption and portfolio choice

problem for an ambiguity-averse investor when the expected returns of a risky asset are unobservable

and follow a continuous-time Markov chain. The investor lacks confidence in the reference model that

characterizes a Markovian representation of the original incomplete information economy. Facing an

optimization problem with RMPU preferences, the investor considers the worst-case model among a

family of alternative models surrounding the reference model. We find that ambiguity with respect to

the reference model lowers the optimal demand for the risky asset and also generates an ambiguity-

driven hedging demand that acts in the opposite direction relative to the hedging component against

incomplete information risk. Although the intertemporal hedging demand is mitigated, its relative

importance in the optimal portfolio increases.

There are several ways to extend this paper. For example, future research can take into account

return predictability and study dynamic asset allocation problems in which an ambiguity-averse

investor learns about regime switching predictability. In addition, future works can also examine

the implications of ambiguity in incomplete information economies with the recursive preferences in

Epstein and Zin (1989) and Duffie and Esptein (1992) that further allow for the separation between

risk aversion and intertemporal substitution.
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Appendix

The Clark-Ocone Formula The space of random variables for which Malliavin derivatives are

defined is called D1,2.15 Any random variable F ∈ D1,2 can be decomposed as

F = E (F ) +
∫ T

t
E [DtF | Ft] dBt

where Ft represents the information filtration generated by the Brownian motion B up to time t.

Proof of Proposition 1 The proof employs the guess-and-verify method to show that in the opti-

mum, the density generator θ is given by θ∗t = κ for all t ∈ [0, T ] and to derive the optimal consumption

and portfolio rules. First, we conjecture θ∗t = κ for all t ∈ [0, T ] and proceed to derive the solution

to the volatility of the utility process σV
t . Then we verify that σV

t > 0 holds for all t ∈ [0, T ], which

is also a verification of θ∗t = κ for all t ∈ [0, T ], in accordance with (9). The explicit solutions to the

optimal consumption and portfolio choice conditioning on θ∗ = κ follow naturally.

The first-order conditions of the Lagrangian problem (13) are

e−ρtzκ
t (C∗

t )−γ = yξt and e−ρtzκ
t (W ∗

T )−γ = yξT (18)

where zκ
t is given by

zκ
t = exp

(
−1

2

∫ t

0
κ2ds−

∫ t

0
κdB̂s

)
.

The optimal consumption and terminal wealth in (15) can be obtained from the first-order conditions.

Substituting (18) into the budget constraint (12) yields the Lagrange multiplier y in (16).

Applying Ito’s lemma to the optimal consumption in (15) yields the following dynamics of the

consumption process
dC∗

t

C∗
t

= µC
t dt + σC

t dB̂t

where

µC
t =

1
γ

(r − ρ) +
1
2

(1 + γ)
(
σC

t

)2
+ σC

t κ

σC
t =

1
γ

(ν̂t − κ) .

By homogeneity, we conjecture that the utility process along the optimal path has the following form

Vt =
(C∗

t )1−γ

1− γ
At

with VT = (W ∗
T )1−γ

1−γ AT , where At satisfies the BSDE:

dAt

At
= µA

t dt + σA
t dB̂t, AT = 1.

15 Oksendal(1997) provides a concise introduction to Malliavin calculus. Interested readers can also refer to Nualart (1995)
for a full treatment.
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It follows from Ito’s lemma that Vt satisfies the BSDE:

dVt = µV
t dt + σV

t dB̂t, VT =
(W ∗

T )1−γ

1− γ

with σV
t = Vt

[
(1− γ) σC

t + σA
t

]
. The derivation of µV

t is irrelevant to the proof and thus omitted. To

obtain σV
t and σA

t in explicit forms, we first derive the optimal portfolio rule α∗t as a function of both

σC
t and σA

t and then characterize α∗t in terms of the Malliavin derivatives and stochastic integrals.

The explicit expression of σA
t can be immediately obtained. Then, σV

t can be solved explicitly, and

its sign can be readily determined.

Multiply both sides of the first-order condition for consumption in (18) by C∗
t and integrate over

the product space dt⊗ dP to obtain

EP
[∫ T

0
e−ρt (C∗

t )1−γ zκ
t dt

]
= yEP

[∫ T

0
ξtC

∗
t dt

]
.

Similarly, one can obtain EP
[
e−ρT (W ∗

T )1−γ zκ
T

]
= yEP [ξT W ∗

T ]. It follows from the complementary

slackness condition (12), the equality y = (C∗
0 )−γ and the definition of RMPU (8) that the following

equality holds

W0 = (1− γ) (C∗
0 )−γ V0.

In the same way, one can deduce for all t ∈ [0, T ]

W ∗
t = (1− γ) (C∗

t )−γ Vt. (19)

Applying Ito’s Lemma to (19) and matching the volatility term with that in the budget constraint

(4) yield an expression for the optimal portfolio α∗t

α∗t =
σC

t + σA
t

σS

=
µ̂t − r

γσ2
S

− 1
γ

κ

σS
+

σA
t

σS
. (20)

The martingale representation theorem implies that wealth at time t, Wt, is given by

ξtW
∗
t = EP

t

[∫ T

t
ξsC

∗
s ds + ξT W ∗

T

]
. (21)

By Ito’s lemma, the volatility of the left-hand side of (21) is −ξtW
∗
t ν̂t + ξtW

∗
t α∗t σS . By the Clark-

Ocone formula, the volatility of the right-hand side is given by EP
t

[
Dt

(∫ T
t ξsC

∗
s ds + ξT W ∗

T

)]
. The

two volatilities must be equal, leading to the following equality

ξtW
∗
t α∗t =

1
σS

ξtW
∗
t ν̂t +

1
σS

EP
t

[
Dt

(∫ T

t
ξsC

∗
s ds + ξT W ∗

T

)]
. (22)

In (22), the Malliavin derivative Dt

(∫ T
t ξsC

∗
s ds + ξT W ∗

T

)
can be computed as follows. First, by

linearity and exchangeability between the Malliavin derivative and the ordinary Lebesgue integral,
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we have

Dt

(∫ T

t
ξsC

∗
s ds + ξT W ∗

T

)
=

∫ T

t
Dt (ξsC

∗
s ) ds + Dt (ξT W ∗

T ) . (23)

The second term on the right-hand side of (23) can be written as Dt (ξT W ∗
T ) = W ∗

T DtξT + ξT DtW
∗
T

where DtW
∗
T is computed by the chain rule of Malliavin calculus:

DtW
∗
T =

W ∗
T

γ

(
zκ
T

ξT

)−1

Dt

(
zκ
T

ξT

)
=

W ∗
T

γ

(
zκ
T

ξT

)−1 (
1
ξT

Dtz
κ
T −

zκ
T

ξ2
T

DtξT

)
.

The term Dtz
κ
T is further computed as

Dtz
κ
T = Dt exp

(
−1

2

∫ T

0
κ2ds−

∫ T

0
κdB̂s

)
= zκ

T Dt

(
−1

2

∫ T

0
κ2ds−

∫ T

0
κdB̂s

)
= −κzκ

T 1t≤T

where 1t≤T is an indicator function. Rearranging the terms and assuming t ≤ T yield

Dt (ξT W ∗
T ) = −κ

γ
ξT W ∗

T +
γ − 1

γ
W ∗

T DtξT . (24)

Similarly, for t ≤ s, one can derive

Dt (ξsC
∗
s ) = −κ

γ
ξsC

∗
s +

γ − 1
γ

W ∗
s Dtξs. (25)

Substituting (25) and (24) into (23), rearranging terms and applying the equality (22) give us

α∗t =
ν̂t

σS
− κ

γσS
+

γ − 1
γ

1
σSW ∗

t

EP
t

[∫ T

t
C∗

s

Dtξs

ξt
ds + W ∗

T

DtξT

ξt

]
where Dtξs, t ≤ s is computed as

Dtξs = −ξs

(
ν̂t +

∫ s

t

(
dB̂τ + ν̂τdτ

)
Dtν̂τ

)
.

The optimal portfolio α∗t is given by

α∗t =
ν̂t − κ

γσS

+
1− γ

γ

1
σSX∗

t

EP
t

[∫ T

t

ξs

ξt
C∗

s

(∫ s

t
Dtν̂τ

(
dB̂τ + ν̂τdτ

))
ds +

ξT

ξt
W ∗

T

∫ T

t

(
dB̂s + ν̂sds

)
Dtν̂s

]
which can be rewritten using the equivalent martingale measure P̃ as

α∗t =
µ̂t − r

γσ2
S

− κ

γσS
+

1− γ

γ

ert

σSW ∗
t

EP̃
t

[∫ T

t
e−rsC∗

s

∫ s

t

(
Dtν̂τdB̃τ

)
ds + e−rT W ∗

T

∫ T

t
Dtν̂sdB̃s

]
(26)

where B̃t = B̂t +
∫ t
0 ν̂sds. Comparing (26) to (20), we have

σA
t =

1− γ

γ

ert

W ∗
t

EP̃
t

[∫ T

t
e−rsC∗

s

∫ s

t

(
Dtν̂τdB̃τ

)
ds + e−rT W ∗

T

∫ T

t
Dtν̂sdB̃s

]
.
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Thus, σV
t is given by

σV
t =

(1− γ) Vt

γ

[
(ν̂t − κ) +

ert

W ∗
t

EP̃
t

[∫ T

t
e−rsC∗

s

∫ s

t

(
Dtν̂τdB̃τ

)
ds + e−rT W ∗

T

∫ T

t
Dtν̂sdB̃s

]]
.

Because EP̃
t

[∫ T
t e−rsC∗

s

∫ s
t

(
Dtν̂τdB̃τ

)
ds + e−rT W ∗

T

∫ T
t Dtν̂sdB̃s

]
> 0 and W ∗

t > 0 for all t ∈ [0, T ]

and the condition (10) implies that νt−κ ≥ 0 always holds true, σV
t is strictly positive for all t ∈ [0, T ]

when either γ > 1 or 0 < γ < 1 holds. As a result, one can verify by (9) that θ∗t = κ for all t ∈ [0, T ]

and the optimal consumption and portfolio choice are given by (15) and (17). This completes the

proof. �

Proof of Corollary 1 For γ = 1, the utility process along the optimal path has the form Vt =

log C∗
t + log At. By Ito’s lemma, σV

t is given by σV
t = σC

t + σA
t , where σC

t = ν̂t − κ. The optimal

portfolio α∗t can be expressed as

α∗t =
µ̂t − r

σ2
S

− κ

σS
+

σA
t

σS
.

It follows from γ = 1 that

Dt (ξT W ∗
T ) = −κξT W ∗

T and Dt (ξsC
∗
s ) = −κξsC

∗
s

and that the optimal portfolio α∗t is given by

α∗t =
µ̂t − r

σ2
S

− κ

σS
.

Thus, σA
t = 0 and σV

t = ν̂t − κ. Since Pr (πt > 0) = 1 for 0 ≤ t ≤ T under the condition π0 > 0 (see

Lemma 9.3, Liptser and Shiryaev 2001), it follows that σV
t > 0 for 0 ≤ t ≤ T . Thus, θ∗t = κ for all

t ∈ [0, T ] and the optimal consumption and portfolio rules are those given in (15) and (17) by setting

γ = 1. This completes the proof. �
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Figure 1: This figure plots the hedging allocation to the risky asset against incomplete information risk,
hedgeIIR, and the hedging allocation against ambiguity, hedgeambiguity, as functions of the state belief π,
which is the probability of the current state being in the regime with mean return µH . hedgeIIR is calculated
from the hedging term in the optimal portfolio formula by assuming κ = 0. hedgeambiguity is calculated by
applying the optimal portfolio formula with a value of κ and then subtracting hedgeIIR from the hedging term
in the formula. The investment horizon T is 10. The coefficients of risk aversion γ are 0.75 (the left panel) and
5 (the right panel). Other parameters are µH = 0.20, µL = 0.06, σS = 0.10, r = 0.02, λ0 = 2.00, λ1 = 1.00 and
ρ = 0.05.

27



0 2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Horizon (T)

O
p

ti
m

a
l 
e

q
u

it
y
 a

ll
o

c
a

ti
o

n

π≈0

0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1

1.5

Horizon (T)

O
p

ti
m

a
l 
e

q
u

it
y
 a

ll
o

c
a

ti
o

n

π=0.2

0 2 4 6 8 10 12 14 16 18 20
0.5

1

1.5

2

2.5

Horizon (T)

O
p

ti
m

a
l 
e

q
u

it
y
 a

ll
o

c
a

ti
o

n

π=0.6

0 5 10 15 20
2

2.2

2.4

2.6

2.8

3

3.2

3.4

Horizon (T)

O
p

ti
m

a
l 
e

q
u

it
y
 a

ll
o

c
a

ti
o

n

π=0.9

Figure 2: This figure plots the optimal proportion of wealth allocated to the risky asset for horizons ranging
from T = 1 to T = 20. The coefficient of risk aversion is 5. Four cases are plotted: π ≈ 0, π = 0.2, π = 0.6
and π = 0.9. Figure legend: interim consumption and κ = 0: solid line; terminal wealth and κ = 0: dash-dot
line; interim consumption and κ = 0.4: dashed line; terminal wealth and κ = 0.4: dotted line.
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Table 1: This table summarizes myopic demand for the risky asset, hedging demand with interim con-
sumption and hedging demand with terminal wealth for various coefficients of relative risk aversion when
the ambiguity aversion parameter κ is set equal to 0. The results are shown for different values of π
ranging from 0 to 1, where π ≈ 0 is approximated with π = 0.002 and π ≈ 1 is approximated with
π = 0.999. The investment horizon T is 10. The values of other parameters are µH = 0.20, µL = 0.06, σS =
0.10, r = 0.02, λ0 = 2.00, λ1 = 1.00 and ρ = 0.05. The myopic demand for the risky asset is defined by
α∗myopic = µ̂−r

γσ2
S
− κ

γσS
where µ̂ = µHπ + µL(1 − π). Hedging demand with interim consumption is given by

α∗hedge = 1−γ
γ

1
σSW∗

0
EP̃

[∫ T

0
e−rsC∗

s

∫ s

0

(
D0ν̂τdB̃τ

)
ds + e−rT W ∗

T

∫ T

0
D0ν̂sdB̃s

]
, and hedging demand with termi-

nal wealth is given by α∗hedge = 1−γ
γ

1
σSW∗

0
EP̃

[
e−rT W ∗

T

∫ T

0
D0ν̂sdB̃s

]
where W0 = 1. The results are calculated

based on the MDMC method with the number of simulations N = 20, 000.

πH� γ = 0.75 γ = 1 γ = 1.5 γ = 2 γ = 5 γ = 8 γ = 20
Panel A: Myopic demand
≈ 0 5.371 4.028 2.685 2.014 0.806 0.504 0.201
0.1 7.200 5.400 3.600 2.700 1.080 0.675 0.270
0.2 9.067 6.800 4.533 3.400 1.360 0.850 0.340
0.3 10.933 8.200 5.467 4.100 1.640 1.025 0.410
0.4 12.800 9.600 6.400 4.800 1.920 1.200 0.480
0.5 14.667 11.000 7.333 5.500 2.200 1.375 0.550
0.6 16.533 12.400 8.267 6.200 2.480 1.550 0.620
0.7 18.400 13.800 9.200 6.900 2.760 1.725 0.690
0.8 20.267 15.200 10.133 7.600 3.040 1.900 0.760
0.9 22.133 16.600 11.067 8.300 3.320 2.075 0.830
≈ 1 23.981 17.986 11.991 8.993 3.597 2.248 0.899
Panel B: Hedging demand (interim consumption)
≈ 0 0.047 0.000 -0.019 -0.020 -0.014 -0.011 -0.008
0.1 0.288 0.000 -0.108 -0.116 -0.079 -0.064 -0.051
0.2 0.527 0.000 -0.204 -0.220 -0.151 -0.124 -0.097
0.3 0.717 0.000 -0.287 -0.312 -0.215 -0.175 -0.134
0.4 0.847 0.000 -0.352 -0.384 -0.267 -0.214 -0.159
0.5 0.907 0.000 -0.393 -0.433 -0.302 -0.241 -0.174
0.6 0.893 0.000 -0.406 -0.451 -0.318 -0.252 -0.179
0.7 0.798 0.000 -0.382 -0.429 -0.309 -0.246 -0.175
0.8 0.620 0.000 -0.315 -0.359 -0.267 -0.216 -0.157
0.9 0.357 0.000 -0.193 -0.224 -0.175 -0.145 -0.111
≈ 1 0.035 0.000 -0.019 -0.022 -0.017 -0.014 -0.010
Panel C: Hedging demand (terminal wealth)
≈ 0 0.047 0.000 -0.021 -0.024 -0.026 -0.026 -0.026
0.1 0.288 0.000 -0.121 -0.143 -0.184 -0.204 -0.230
0.2 0.527 0.000 -0.228 -0.268 -0.322 -0.346 -0.376
0.3 0.717 0.000 -0.319 -0.374 -0.410 -0.421 -0.436
0.4 0.847 0.000 -0.390 -0.455 -0.452 -0.438 -0.424
0.5 0.908 0.000 -0.435 -0.506 -0.457 -0.416 -0.369
0.6 0.893 0.000 -0.447 -0.520 -0.436 -0.375 -0.304
0.7 0.799 0.000 -0.420 -0.491 -0.395 -0.330 -0.252
0.8 0.621 0.000 -0.345 -0.407 -0.332 -0.278 -0.215
0.9 0.358 0.000 -0.212 -0.254 -0.220 -0.192 -0.160
≈ 1 0.035 0.000 -0.021 -0.025 -0.019 -0.015 -0.010
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Table 2: This table summarizes the consumption-to-wealth ratio for various coefficients of relative risk aversion
when the ambiguity aversion parameter κ is set equal to 0. The results are shown for different values of π
ranging from 0 to 1. The investment horizon T is 10 and initial wealth is W0 = 1. Other parameters are
µH = 0.20, µL = 0.06, σS = 0.10, r = 0.02, λ0 = 2.00, λ1 = 1.00 and ρ = 0.05. The optimal consumption C∗

t is

given by C∗
t =

(
e−ρtzκ

t

yξt

) 1
γ

where y is the Lagrange multiplier. The results are calculated based on the MDMC
method with the number of simulations N = 20, 000.

πH� γ = 0.75 γ = 1 γ = 1.5 γ = 2 γ = 5 γ = 8 γ = 20
≈ 0 0.007 0.118 0.236 0.243 0.178 0.151 0.124
0.1 0.007 0.118 0.233 0.240 0.176 0.150 0.123
0.2 0.007 0.118 0.235 0.242 0.177 0.151 0.124
0.3 0.007 0.118 0.237 0.245 0.179 0.152 0.124
0.4 0.007 0.118 0.240 0.248 0.180 0.153 0.125
0.5 0.007 0.118 0.242 0.251 0.181 0.154 0.125
0.6 0.006 0.118 0.245 0.254 0.183 0.155 0.126
0.7 0.006 0.118 0.248 0.257 0.185 0.156 0.127
0.8 0.006 0.118 0.252 0.261 0.187 0.157 0.127
0.9 0.006 0.118 0.255 0.266 0.189 0.159 0.128
≈ 1 0.006 0.118 0.254 0.265 0.189 0.159 0.128

Table 3: This table summarizes the consumption-to-wealth ratio for various coefficients of relative risk aversion
and various values of the ambiguity aversion parameter κ. The investment horizon T is 10, and initial wealth
is W0 = 1. Other parameters are µH = 0.20, µL = 0.06, σS = 0.10, r = 0.02, λ0 = 2.00, λ1 = 1.00 and ρ = 0.05.
The results are calculated based on the MDMC method with the number of simulations N = 20, 000.

γ = 0.75 γ = 2 γ = 5
πH�κ 0 0.2 0.4 0 0.2 0.4 0 0.2 0.4
≈ 0 0.007 0.020 0.043 0.243 0.197 0.163 0.178 0.154 0.136
0.1 0.007 0.020 0.043 0.240 0.195 0.162 0.176 0.153 0.135
0.2 0.007 0.020 0.043 0.242 0.197 0.163 0.177 0.153 0.136
0.3 0.007 0.020 0.042 0.245 0.198 0.164 0.179 0.154 0.136
0.4 0.007 0.019 0.042 0.248 0.200 0.165 0.180 0.155 0.137
0.5 0.007 0.019 0.041 0.251 0.202 0.166 0.181 0.157 0.138
0.6 0.006 0.018 0.040 0.254 0.204 0.168 0.183 0.158 0.139
0.7 0.006 0.018 0.039 0.257 0.207 0.170 0.185 0.159 0.140
0.8 0.006 0.018 0.039 0.261 0.210 0.172 0.187 0.161 0.141
0.9 0.006 0.017 0.038 0.266 0.213 0.174 0.189 0.163 0.143
≈ 1 0.006 0.017 0.038 0.265 0.212 0.173 0.189 0.162 0.143
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Table 4: This table summarizes myopic demand for the risky asset, hedging demand with interim consumption
and hedging demand with terminal wealth for various coefficients of relative risk aversion and various values of
the ambiguity aversion parameter κ. The investment horizon T is 10. Other parameters are µH = 0.20, µL =
0.06, σS = 0.10, r = 0.02, λ0 = 2.00, λ1 = 1.00 and ρ = 0.05. The results are calculated based on the MDMC
method with the number of simulations N = 20, 000.

γ = 0.75 γ = 2 γ = 5
πH�κ 0 0.2 0.4 0 0.2 0.4 0 0.2 0.4
Panel A: Myopic demand
≈ 0 5.371 2.704 0.037 2.014 1.014 0.014 0.806 0.406 0.006
0.1 7.200 4.533 1.867 2.700 1.700 0.700 1.080 0.680 0.280
0.2 9.067 6.400 3.733 3.400 2.400 1.400 1.360 0.960 0.560
0.3 10.933 8.267 5.600 4.100 3.100 2.100 1.640 1.240 0.840
0.4 12.800 10.133 7.467 4.800 3.800 2.800 1.920 1.520 1.120
0.5 14.667 12.000 9.333 5.500 4.500 3.500 2.200 1.800 1.400
0.6 16.533 13.867 11.200 6.200 5.200 4.200 2.480 2.080 1.680
0.7 18.400 15.733 13.067 6.900 5.900 4.900 2.760 2.360 1.960
0.8 20.267 17.600 14.933 7.600 6.600 5.600 3.040 2.640 2.240
0.9 22.133 19.467 16.800 8.300 7.300 6.300 3.320 2.920 2.520
≈ 1 23.981 21.315 18.648 8.993 7.993 6.993 3.597 3.197 2.797
Panel B: Hedging demand (interim consumption)
≈ 0 0.047 0.037 0.027 -0.020 -0.016 -0.012 -0.014 -0.012 -0.010
0.1 0.288 0.215 0.149 -0.116 -0.091 -0.067 -0.079 -0.067 -0.056
0.2 0.527 0.408 0.296 -0.220 -0.177 -0.135 -0.151 -0.131 -0.112
0.3 0.717 0.573 0.431 -0.312 -0.256 -0.201 -0.215 -0.189 -0.163
0.4 0.847 0.696 0.541 -0.384 -0.321 -0.258 -0.267 -0.235 -0.205
0.5 0.907 0.764 0.613 -0.433 -0.367 -0.301 -0.302 -0.268 -0.234
0.6 0.893 0.769 0.633 -0.451 -0.388 -0.323 -0.318 -0.284 -0.250
0.7 0.798 0.702 0.593 -0.429 -0.374 -0.317 -0.309 -0.278 -0.247
0.8 0.620 0.556 0.481 -0.359 -0.317 -0.273 -0.267 -0.242 -0.218
0.9 0.357 0.326 0.288 -0.224 -0.201 -0.176 -0.175 -0.161 -0.147
≈ 1 0.035 0.032 0.028 -0.022 -0.020 -0.017 -0.017 -0.015 -0.014
Panel C: Hedging demand (terminal wealth)
≈ 0 0.047 0.037 0.028 -0.024 -0.021 -0.019 -0.026 -0.025 -0.025
0.1 0.288 0.216 0.152 -0.143 -0.125 -0.112 -0.184 -0.184 -0.186
0.2 0.527 0.411 0.301 -0.268 -0.235 -0.212 -0.322 -0.320 -0.321
0.3 0.717 0.577 0.439 -0.374 -0.329 -0.296 -0.410 -0.403 -0.400
0.4 0.847 0.700 0.550 -0.455 -0.401 -0.358 -0.452 -0.437 -0.427
0.5 0.908 0.769 0.622 -0.506 -0.446 -0.396 -0.457 -0.434 -0.417
0.6 0.893 0.774 0.643 -0.520 -0.459 -0.406 -0.436 -0.408 -0.385
0.7 0.799 0.706 0.601 -0.491 -0.435 -0.385 -0.395 -0.368 -0.343
0.8 0.621 0.559 0.487 -0.407 -0.364 -0.324 -0.332 -0.309 -0.288
0.9 0.358 0.328 0.292 -0.254 -0.230 -0.207 -0.220 -0.207 -0.195
≈ 1 0.035 0.032 0.029 -0.025 -0.022 -0.020 -0.019 -0.017 -0.016
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Table 5: This table summarizes the ratios of hedging demand with utility over interim consumption and
hedging demand with utility over terminal wealth to the optimal proportion of wealth allocated to the risky
asset for various coefficients of relative risk aversion and various values of the ambiguity aversion parameter
κ. The investment horizon T is 10. Other parameters are µH = 0.20, µL = 0.06, σS = 0.10, r = 0.02, λ0 =
2.00, λ1 = 1.00 and ρ = 0.05. The ratio is defined by α∗hedge/

(
α∗myopic + α∗hedge

)
where α∗hedge represents

hedging demand with utility defined either over interim consumption or over terminal wealth. The results are
calculated based on the MDMC method with the number of simulations N = 20, 000.

γ = 0.75 γ = 2 γ = 5
πH�κ 0 0.2 0.4 0 0.2 0.4 0 0.2 0.4
Panel A: Ratio of hedging demand (interim consumption) to optimal demand (%)
≈ 0 0.88 1.35 42.10 -1.00 -1.60 -600.00 -1.77 -3.05 250.00
0.1 3.84 4.52 7.38 -4.49 -5.66 -10.58 -7.89 -10.93 -25.00
0.2 5.49 5.99 7.34 -6.92 -7.96 -10.67 -12.49 -15.80 -25.00
0.3 6.16 6.48 7.15 -8.24 -9.00 -10.58 -15.09 -17.98 -24.08
0.4 6.20 6.42 6.76 -8.70 -9.23 -10.15 -16.15 -18.29 -22.40
0.5 5.83 5.99 6.16 -8.55 -8.88 -9.41 -15.91 -17.49 -20.07
0.6 5.12 5.26 5.35 -7.84 -8.06 -8.33 -14.71 -15.81 -17.48
0.7 4.16 4.27 4.34 -6.63 -6.77 -6.92 -12.61 -13.35 -14.42
0.8 2.97 3.06 3.12 -4.96 -5.05 -5.12 -9.63 -10.09 -10.78
0.9 1.59 1.65 1.69 -2.77 -2.83 -2.87 -5.56 -5.84 -6.19
≈ 1 0.15 0.15 0.15 -0.25 -0.25 -0.24 -0.47 -0.47 -0.50
Panel B: Ratio of hedging demand (terminal wealth) to optimal demand (%)
≈ 0 0.88 1.36 42.55 -1.21 -2.11 380.00 -3.33 -6.56 131.58
0.1 3.84 4.55 7.52 -5.59 -7.94 -19.05 -20.54 -37.10 -197.87
0.2 5.49 6.03 7.46 -8.56 -10.85 -17.85 -31.02 -50.00 -134.31
0.3 6.16 6.52 7.27 -10.04 -11.87 -16.41 -33.33 -48.15 -90.91
0.4 6.21 6.46 6.86 -10.47 -11.80 -14.66 -30.79 -40.35 -61.62
0.5 5.83 6.02 6.25 -10.13 -11.00 -12.76 -26.22 -31.77 -42.42
0.6 5.13 5.28 5.43 -9.15 -9.68 -10.70 -21.33 -24.40 -29.73
0.7 4.16 4.30 4.40 -7.66 -7.96 -8.53 -16.70 -18.47 -21.21
0.8 2.97 3.08 3.16 -5.66 -5.84 -6.14 -12.26 -13.26 -14.75
0.9 1.59 1.66 1.71 -3.16 -3.25 -3.40 -7.10 -7.63 -8.39
≈ 1 0.15 0.15 0.15 -0.28 -0.28 -0.29 -0.53 -0.53 -0.58
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Table 6: This table summarizes myopic demand for the risky asset, hedging demand and the ratio of hedging
demand with utility over interim consumption to the optimal proportion of wealth allocated to the risky asset
for various mean returns of the two regimes. The risk aversion coefficient γ is 5 and the ambiguity aversion
parameter κ is set equal to 0. The investment horizon T is 10. Other parameters are σS = 0.10, r = 0.02, λ0 =
2.00, λ1 = 1.00 and ρ = 0.05. The results are calculated based on the MDMC method with the number of
simulations N = 20, 000.

πH� µH = 0.20, µL = 0.03 µH = 0.20, µL = 0.06 µH = 0.15, µL = 0.06

Panel A: Myopic demand
≈ 0 0.207 0.806 0.804
0.1 0.540 1.080 0.980
0.2 0.880 1.360 1.160
0.3 1.220 1.640 1.340
0.4 1.560 1.920 1.520
0.5 1.900 2.200 1.700
0.6 2.240 2.480 1.880
0.7 2.580 2.760 2.060
0.8 2.920 3.040 2.240
0.9 3.260 3.320 2.420
≈ 1 3.597 3.597 2.598
Panel B: Hedging demand
≈ 0 -0.015 -0.014 -0.005
0.1 -0.084 -0.079 -0.029
0.2 -0.169 -0.151 -0.054
0.3 -0.248 -0.215 -0.075
0.4 -0.314 -0.267 -0.092
0.5 -0.361 -0.302 -0.103
0.6 -0.385 -0.318 -0.106
0.7 -0.380 -0.309 -0.099
0.8 -0.336 -0.267 -0.082
0.9 -0.230 -0.175 -0.051
≈ 1 -0.022 -0.017 -0.005
Panel C: Ratio of hedging demand to optimal demand (%)
≈ 0 -7.99 -1.72 -0.61
0.1 -18.52 -7.87 -3.02
0.2 -23.80 -12.52 -4.88
0.3 -25.54 -15.12 -5.97
0.4 -25.20 -16.14 -6.45
0.5 -23.46 -15.93 -6.43
0.6 -20.75 -14.71 -5.95
0.7 -17.28 -12.61 -5.07
0.8 -13.01 -9.62 -3.80
0.9 -7.58 -5.57 -2.13
≈ 1 -0.61 -0.47 -0.19
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Table 7: This table summarizes the myopic demand for the risky asset, hedging demand and the ratio of
hedging demand with utility over interim consumption to the optimal proportion of wealth allocated to the
risky asset for different values of the return volatility parameter σS . The risk aversion coefficient γ is 5 and
the ambiguity aversion parameter κ is set equal to 0. The investment horizon T is 10. Other parameters are
µH = 0.20, µL = 0.06, r = 0.02, λ0 = 2.00, λ1 = 1.00 and ρ = 0.05. The results are calculated based on the
MDMC method with the number of simulations N = 20, 000.

πH� σ = 0.05 σ = 0.10 σ = 0.20
Panel A: Myopic demand
≈ 0 3.222 0.806 0.201
0.1 4.320 1.080 0.270
0.2 5.440 1.360 0.340
0.3 6.560 1.640 0.410
0.4 7.680 1.920 0.480
0.5 8.800 2.200 0.550
0.6 9.920 2.480 0.620
0.7 11.040 2.760 0.690
0.8 12.160 3.040 0.760
0.9 13.280 3.320 0.830
≈ 1 14.389 3.597 0.899
Panel B: Hedging demand
≈ 0 -0.128 -0.014 -0.001
0.1 -0.769 -0.079 -0.006
0.2 -1.562 -0.151 -0.011
0.3 -2.313 -0.215 -0.015
0.4 -2.978 -0.267 -0.019
0.5 -3.562 -0.302 -0.021
0.6 -4.084 -0.318 -0.022
0.7 -4.545 -0.309 -0.020
0.8 -4.759 -0.267 -0.016
0.9 -3.859 -0.175 -0.010
≈ 1 -0.342 -0.017 -0.001
Panel C: Ratio of hedging demand to optimal demand (%)
≈ 0 -4.14 -1.72 -0.50
0.1 -21.66 -7.87 -2.20
0.2 -40.28 -12.52 -3.33
0.3 -54.46 -15.12 -3.90
0.4 -63.33 -16.14 -4.08
0.5 -67.99 -15.93 -3.97
0.6 -69.98 -14.71 -3.60
0.7 -69.97 -12.61 -3.01
0.8 -64.31 -9.62 -2.21
0.9 -40.96 -5.57 -1.22
≈ 1 -2.43 -0.47 -0.11
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