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1. Introduction 
Portfolio optimisation is concerned with implementing investment strategy and 
information technology to maximise the wealth of investors and manage the risk of an 
integrated portfolio over a fixed-term period. In the process of implementing an 
investment strategy, multi-asset class allocation is the most crucial decision required 
to achieve the investment goals of high returns and low risks (Kritzman, 1999; 
Gratcheva and Falk, 2003).  
 
In the past decades, many studies have shown that strategic asset allocation has more 
influence on the aggregate portfolio return than other investment decisions and 
usually explains most of its return variations over a long-term period (Brinson et al., 
1986; Hensel et al., 1991; Ibbotson and Kaplan, 2000). Asset allocation usually 
produces a set of portfolio weights for multiple asset classes such as stocks and bonds, 
and this diversification strategy is beneficial to both return enhancement and volatility 
reduction.  
 
As the basis of modern portfolio theory, the seminal Markowitz’s mean-variance 
model provides a useful theoretical framework to solve strategic asset allocation 
problem (Markowitz, 1952). It suggested that an investor should make a trade-off 
between return and risk in determining the allocation of assets. Among an infinite 
number of investment portfolios with a specific return objective, the investor should 
choose the portfolio that has the smallest variance or risk, and all other portfolios are 
“inefficient” because they have higher variance at a given level of return.  
 
Although Markowitz's optimisation model provides a parametric methodology for 
asset allocation and portfolio diversification, it has not been widely used in practice 
due to a number of practical and theoretical problems associated with it. In mean-
variance analysis, the assumption of normal distribution of returns may not be 
accurate under some scenarios, and it is difficult to measure the necessary inputs, 
namely expected returns, variances and co-variances of risky assets (Bawa, 1975; 
Jorion, 1991; Kan and Zhou, 2007). In addition, the original Markowitz model ignores 
environmental factors (e.g., tax and transaction cost) and assumes a single-period 



investment horizon. However, in reality, investments are usually multi-period, and 
optimal portfolio decisions, especially for long-term investors, depend on the details 
of the changing investment environment, such as the available financial assets, the 
taxation, and the expected returns and preferences of investors (Campbell and Viceira, 
2002). Furthermore, multi-period portfolio optimisation problem needs scenario 
simulation analysis to forecast expected returns (Markowitz and Perold, 1981; 
Koskosidis and Duarte, 1997). As such, a series of theoretical work has been 
conducted to improve portfolio optimisation models on the basis of mean-variance 
analysis (Black and Litterman, 1992; Tütüncü and Koenig, 2004; Ehrgott et al., 2004; 
Jacobs et al., 2005; Kim et al., 2005; Idzorek, 2006; Çelikyurta and Özekici, 2007). 
Simultaneously, various simulation techniques using historical data or Monte Carlo 
algorithm have been used to forecast the portfolios with nonlinear instruments such as 
options (RiskMetrics, 1999; 2004; Palmquist et al., 2001; Glasserman, 2004; Brandt 
et al., 2005). 
 
In allocating investment to a number of asset classes, the optimisation objective 
depends on investors’ financial needs and actual investment scales.  The relationship 
between the proportion of each asset class in a portfolio and the distribution of its 
return is highly nonlinear (Campbell and Viceira, 2002; RiskMetrics, 2004). To 
identify the optimal combination of asset classes in order to maximise returns and 
minimise risks, there is a need to develop a method which can model such a highly 
nonlinear relationship.  
 
This paper is dedicated to developing a novel portfolio modelling and optimisation 
method using a belief rule-based (BRB) system. The BRB system was developed on 
the basis of the concept of belief structures and the evidential reasoning (ER) 
approach (Yang and Singh, 1994; Yang et al., 2006; 2007). It has been widely applied 
in fields of nonlinear system identification and decision support systems (Xu et al, 
2007; Zhou et al., 2009; Chen et al., 2010). 
 
The rest of the paper is organised as follows: in the following section, the portfolio 
optimisation problem is modelled using a BRB system, and the detailed procedures 
are discussed. In Section 3, on the basis of the BRB system, two portfolio 
optimisation methods are presented to locate the optimal portfolio under different 
constraints. In Section 4, Numerical studies are conducted to demonstrate the 
effectiveness and efficiency of the developed BRB system to portfolio optimisation. 
The paper is concluded in Section 5. 
 

2. Modelling portfolio optimisation with a BRB system 
Portfolio optimisation is to build the allocation of asset classes which maximizes the 
return for a given level of risk or minimizes the risk for a given level of return 
(Bekkers et al., 2009). Generally, an asset class is a set of assets with some 
fundamental economic similarities (Greer, 1997). Portfolios are usually represented in 
terms of asset classes rather than assets because it is widely believed that the asset 
class returns can be forecasted more accurately than asset returns and asset returns 
tend to revert to asset class returns in the long-term simulation (RiskMetrics, 2004).  
 
Suppose there are M asset classes, we can model an asset class portfolio by a vector of 
non-negative weights ),...,,( 21 Mwww , where iw  represents the proportion of the total 



wealth to be invested in the ith asset class. In other word, if iv  represents the current 

market value of the total investment in the ith asset class, then )...( 1 Mii vvvw ++= . 

Thus, the portfolio optimisation problem is transformed to determining the optimal 
weights of asset classes.  
 
To apply a BRB system to model and solve the portfolio optimisation problem, we 
need to explain some basic theoretical concepts at first. Belief rules are the central 
constituents of BRB systems, and they usually are designed with an extended IF-
THEN scheme, in which each possible consequent is associated with a belief degree. 
In portfolio optimisation, formally, the kth belief rule ),...,1( KkRk =  can be defined 
as follows, 
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where Mwww ,...,, 21  denote the antecedent attributes in the kth rule. Each attribute 

takes values from { }MAAA ,...,1= , in which each of the element ),...,1( MiAi =  is 

defined by a set of referential values { }ijii NAjAA ,...,1;, == . In the kth rule, k
iA  

represents the referential value taken by the attribute iw , and { }iji
k
i NAjAA ,...,1;, =∈ . 

nk,β  is the belief degree associated with consequent nD  given the logical relationship 

of ) is (   ) is (  ) is ( 2211
k
MM

kk AwAwAw ∧∧∧ L . kθ  is the relative weight of the kth rule, 

and kMkk ,,2,1 ,...,, δδδ  are the relative weights of the M antecedent attributes in the  kth 

rule.   
 
In portfolio optimisation problem, the antecedent attributes iw  are the weights of 

asset classes, and the consequents are portfolio returns grouped by buckets (i.e., 
ranges of values). As such, we can use a BRB system to model and solve the 
optimisation problem with the following main steps: (1) constructing belief rules; (2) 
calculating activation weights; (3) generating new portfolios through BRB 
interpolation. Here, it is worth noting the BRB interpolated outputs are characterised 
by the belief distribution ),...,,( 21 Nβββ . 
 

2.1 Constructing belief rules with linear bounds and unity constraint 

In the portfolio optimisation problem, the decision variables are the weights of asset 
classes, which are usually subject to two types of constraints. First of all, the sum of 
all asset weights should be equal to 1 or 100%. Secondly, individual or institutional 
investors may also specify upper or lower boundaries of weights to some major asset 
classes for business reasons. For example, an investor may recommend portfolios 
with at least 20% wealth in large capital stocks, or wish that all portfolios have 
between 30% and 50% wealth invested in equities. Thus, we need to consider these 
bounds and unity constraints when constructing the initial belief rule base to model 
the portfolio optimisation problem.  



 

2.1.1 Generating referential rule points 

Let ilb  and iub  represent the lower and upper bound of the weight for the ith asset 

class respectively, and then the linear bounds and unity constraint can be represented 
as follows, 
    iii ubwlb ≤≤  (2) 
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Generally speaking, when constructing an initial belief rule base, it is necessary to 
sample some referential rule points in the feasible solution space. If the space is two 
or more dimensional, usually, we select a few referential values on each dimension, or 
equivalently, for each independent variable, and the referential rule points are 
generated by the combination of the referential values of all the independent variables. 
Those variables are input decision variables to the BRB system. 
 
In portfolio optimisation, using the unity constraint of equation (3), we can reduce the 
number of dimensions of the solution space by one, and the weight Mw  of the Mth 
asset class can be represented as,  

    ∑
−

=
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M
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That means the number of independent decision variables becomes 1−M .  
 
Furthermore, we check the conflicts among the bound constraints and adjust the initial 
lower and upper bounds for all asset classes. To illustrate the necessity of adjusting 
initial bounds, two examples are given below. 
 
Example 1. Suppose there are 2 asset classes, and the bound constraints are given as 
follows. 
    10 1 ≤≤ w  

    12.0 2 ≤≤ w  

We uniformly select three referential values from the feasible interval of 1w , and 

those are 0, 0.5 and 1. As shown in Fig.1(a), the referential value 11 =w  corresponds 

to the weight combination )0,1(),( 21 =ww , which is an infeasible referential point.  

0     0.5            1

0.2
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2A

0.2

1A

2A

0 0.4  0.8

1 1

(a) (b)  
Fig. 1 Two asset class example with upper bound adjustment 

 



To make sure that the referential points are in the feasible space, the upper bound of 

1w  should be adjusted to 0.8 as shown in Fig. 1(b). Three feasible referential values 0, 

0.4 and 0.8 can be selected for 1w  after the bound adjustment. 
       
Example 2. Suppose there are 2 asset classes, and the bound constraints are given as 
follows. 
    10 1 ≤≤ w  

    2.00 2 ≤≤ w  

If we also uniformly select three referential values from the feasible interval of 1w , 
two referential values 0 and 0.5 will be infeasible as shown in Fig. 2 (a). 

0     0.5            1
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1A

2A

0.2

1A

2A

0.8 0.9 1

(a) (b)  
Fig. 2 Two asset class example with lower bound adjustment 

 
Similarly, the lower bound of 1w should be adjusted to 0.8, and three feasible 
referential values of 0.8, 0.9 and 1 can be sampled as Fig. 2 (b).  
 
For a multiple input system, or a portfolio with more than two asset classes, it is 
difficult to adjust the lower and upper bounds manually. The following equations, 

however, can be used systematically to produce the bounds ilb  and iub  for each asset 
class so that the conflicts among bound constraints can be eliminated. 
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Furthermore, if there are more than 2 asset classes, we need to consider the unity 

constraint, i.e., 1
1

=∑ =

M

i iw , when selecting referential values for the weight of each 

asset class in order to generate feasible referential points. An illustrative example is 
given as follows. 
 
Example 3. Suppose there are 3 asset classes, the bound constraints are without 
conflicts and given as follows. 
    6.00 1 ≤≤ w  

    8.02.0 2 ≤≤ w  

    8.01.0 3 ≤≤ w   



As discussed above, the weight 3w  can be decided by the sum of 1w  and 2w  using 

equation (4). Therefore, we can use the combination of the referential values of 1w  

and 2w  to construct the initial belief rule base.  
 
Assume the referential values of 1w  are {0, 0.3, 0.6} and that of 2w  are {0.2, 0.5, 0.8}. 
Without the unity constraint, 3×3 referential points will be generated as shown in Fig. 
3(a). 

1A

2A

1A

2A

 
Fig. 3 Three asset class example with projecting new rule points 

 
However, some of the points, (0.3, 0.8), (0.6, 0.5) and (0.6, 0.8) in Fig. 3(a), are not 
within the feasible solution space which is constrained by the following inequality 
constraints, 
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If we delete the infeasible points directly, the BRB inference accuracy near those 
deleted referential points will decrease since fewer referential belief rules are 
available. As such, some new referential points should be generated to replace them 
as shown in Fig. 3(b).  
 
To replace the infeasible referential point (0.3, 0.8), two new referential points (0.1, 
0.8) and (0.3, 0.6) are generated by projecting it to the boundary of the feasible space. 
Similarly, two new referential points (0.4, 0.5) and (0.6, 0.3) are generated to replace 
the infeasible referential point (0.6, 0.5). No new referential points need to be 
generated for the infeasible referential point (0.6, 0.8), since it projects overlapped 
referential points (0.1, 0.8) and (0.6, 0.3). 
 
To a multi-asset class portfolio optimisation problem, a generic method needs to be 
proposed to generate new projected referential points for replacing infeasible points 
effectively. Here, it is worth noting that we need to consider the downward projection 

onto the feasible boundary M
M

i i lbw −=∑
−

=
1

1

1
 and the upward projection onto 

M
M
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1
 simultaneously in generating projected referential points. 

 

We first consider the downward projection onto M
M
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−

=
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1
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imiA ,  is 

the referential value taken by iw  in an infeasible referential point with 
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and denotes the order number in the vector of referential values. In Example 3, the 
vector of referential values for 1w  is (0, 0.3, 0.6). For the referential point (0.3, 0.8), 

1m  is equal to 2 since the second referential value 0.3 is taken by 1w . 
 
With this definition of im , we can generate new projected referential points to replace 

any infeasible referential point with ∑
−

=
−>1
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M

i
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i
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the 1−M  asset classes one by one. For iw , if 1>im  and 
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M
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Alb ; otherwise, no new 

referential point will be projected. 
 
In the above example, the referential point (0.3, 0.8) is infeasible, since the sum of 

referential values is ∑
−

=
=+=1

1 , 1.18.03.0
M

i mi i
A , which is larger than 

9.01.011 =−=− Mlb . Therefore, we use the above-mentioned method to generate 
new projected referential points to replace it. For 1w , we have 21 =m  and 

8.08.00
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point (0.1, 0.8) can be generated from it. For 2w , we have 32 =m  and 
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be calculated by 5.03.01.011
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Alb , and another new 

referential point (0.3, 0.6) can be obtained. As a result, two new referential points (0.1, 
0.8) and (0.3, 0.6) are used to replace the infeasible referential point (0.3, 0.8).  
     
Similarly, we can generate new projected referential points to replace any infeasible 

referential point with ∑
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With this method, it is obvious that the maximum number of new projected referential 
points for replacing each infeasible rule point is no more than 1−M  (i.e., the number 
of asset classes minus 1), and the minimum number is 0. For example, in Fig. 3(b), 
the number of projected referential points for the infeasible referential points (0.3, 0.8) 
and (0.6, 0.5) is 213 =− , and that for the infeasible referential point (0.6, 0.8) is 0. 
 

2.1.2 Constructing belief degrees for referential portfolios 

In applying BRB systems to portfolio optimisation, we use belief distribution to 
approximate the distribution of the consequential portfolio returns. Belief degrees on 



consequents can be obtained with historical and simulated data. In this paper, we use 
RiskMetrics WealthBench (RM-WB) platform (RiskMetrics, 2004) to simulate a set 
of 500=L  observed returns LlRk

lP ,...,1,, =  for the kth set of portfolio weights that 

has the following mean and variance: 
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It is worth noting that this pair of mean and variance is not used in portfolio 
optimisation apart from serving as a check for the bucket distribution below. As 
shown in Fig. 4, we group the simulated portfolio returns into 1−N  buckets of 
consequents using N referential values NDDD ,...,, 21  within the range of portfolio 

returns.  Note that the buckets could be non-uniformly distributed. 

 
Fig. 4 Belief distribution on buckets of consequents 

 
For the kth belief rule, we can simply put k lPR ,  into the buckets and obtain the 

probability of observed returns falling into each bucket, which is further used to be 
the belief degree on the corresponding buckets of consequents. However, since the 
actual value of observed returns in each bucket has not been considered in this way, 
the expected return can not be calculated accurately with the belief distribution. As a 
consequence, in this study we use the following equation to calculate the belief degree, 
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where nnn
k

lPn LlDRD
n

∈∀<≤ + ,1, . Obviously, we have 1
1 , =∑ =

N

n nkβ , and it is possible 

that some 0, =jkβ . Using the belief degrees, the mean and variance of expected 

returns represented by the belief distribution in the kth belief rule can be calculated as 
follows, 
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Combined with the equation (11), we can conclude that the returns calculated in 
equations (9) and (12) will be equal, but the variances in equations (10) and (13) will 
not necessarily be equal. The deviation between the statistical variance and 
approximated variance depends heavily on the number of the buckets of consequents. 
As such, we need make a trade-off between computational complexity and inference 
accuracy. 
 

2.2 Calculating activation weights 

On the basis of the constructed belief rule base, the belief degrees embedded in belief 
rules can be used to perform inference for new inputs (portfolios with new and 
different set of weights in our case). In belief rules, the “∧ ” connective is used to 
represent the “and” logical relationship of antecedent attributes. This means the 
consequents of a belief rule is not believed to be true unless all the antecedents of the 
rule are matched with the input to some extent. To represent the matching degree 
between a set of values of an input and the referential values of antecedent attributes 
in the kth rule, the activation weight kλ  need to be calculated (Yang et al., 2006).  
 
In portfolio optimisation problem, since some initial referential points violate the 
constraints (7) and (8) as discussed in Section 2.1.1, new projected referential points 
are added to the rule base, which results in some new referential values for each asset 
class. As shown in Fig. 3(b), the infeasible rule points (0.3, 0.8), (0.6, 0.5) and (0.6, 
0.8) are removed, and new referential rule points (0.1, 0.8), (0.3, 0.6), (0.4, 0.5) and 
(0.6, 0.3) are added to the rule base. The referential values for the two asset classes 
have also been updated from (0, 0.3, 0.6) and (0.2, 0.5, 0.8) to (0, 0.1, 0.3, 0.4, 0.6) 
and (0.2, 0.3, 0.5, 0.6, 0.8) respectively. As such, the method proposed by Yang et al. 
(2006) is not suitable for the calculation of activation weighs in portfolio optimisation.  
 

To a portfolio P with a set of weights )1,,...,,(
1
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i iM wwww , in the study, we 

use the following normalized Euclidian distance to represent the activation weight of 
the kth belief rule.  
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where pK  is the set of activated belief rules. After defined a set of referential rule 

points in Section 2.1, the feasible solution space of asset weight combination is 
separated into granular polyhedrons. Any new feasible weight combination will fall 
into a specific polyhedron and the referential points on the polyhedral vertex will be 
activated. For example, in Example 3, if a new portfolio has the asset weights (0.4, 
0.3, 1-0.4-0.3), the five referential points (0.3, 0.2), (0.3, 0.5), (0.4, 0.5), (0.6, 0.2) and 
(0.6, 0.3) will be activated. 
 

2.3 Generating new portfolios through BRB interpolation 



Once the activations weights are obtained, the belief rule base established using belief 
rules can then be summarized using a belief rule expression matrix (Yang et al., 2007), 
as show in Table 1. 
 

Table 1. Belief rule expression matrix for the BRB system 
Belief output 

Input 
1D  

2D  … 
nD  … 

ND  

)( 1
1 λA  

1,1β  
2,1β  … n,1β   N,1β  

)( 2
2 λA  1,2β  

2,2β  … n,2β   N,2β  

…
       

)( k
kA λ  1,kβ  

2,kβ  … nk ,β   Nk,β  

…
 

      

)( K
KA λ  1,Kβ  

2,Kβ  … nK ,β   NK ,β  

 
In the matrix, kA  represent the packet antecedents ),...,,( 21

k
M

kk AAA . nk,β  is the belief 

degree on the consequents, and kλ  is the activation weight of the kth rule as discussed 

above. Based on the constructed belief rule expression matrix, the ER approach can 
then be used to combine activated rules and infer the belief distribution of portfolio 
returns. The ER approach is a generic evidence-based multi-criteria decision analysis 
(MCDA) approach for dealing with problems having both quantitative and qualitative 
criteria (Yang and Singh, 1994). The kernel of the ER approach is a recursive 
reasoning algorithm which is developed on the basis of Dempster-Shafer (D-S) theory 
(Dempster, 1968; Shafer, 1976), fuzzy set theory (Zadeh, 1965), and decision theory 
(Yoon and Hwang, 1995; Giovanni and Lurdes, 2009). 
 
The implementing procedure of the ER approach is summarized as follows. Firstly, 
transform the basic belief degree nk,β  in the belief rule expression matrix into basic 

probability mass nkm , , which represents the degree to which the kth activated rule 

supports the hypothesis that nD  is the consequent. Let Dkm ,  be the remaining 

probability mass unassigned to any known consequents. nkm ,  and Dkm ,  can be 

calculated from the basic belief degree nk ,β  as follows (Yang and Xu, 2002), 
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Decompose Dkm ,  into Dkm ,  and Dkm ,
~  as follows, 
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Then, the final output distribution can be inferred using the analytical ER algorithm 
(Wang et al., 2006), 
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nβ  represents the combined belief degree to which the output is assessed to nD , and 

Dβ  represents the remaining belief degree unassigned to any known consequent. In 

portfolio optimisation problem, we have 0=Dβ  due to 1
1 , =∑ =

N

n nkβ .    

 
After the substitute of intermediate variable, the combined belief degree  

),...,1( Nnn =β  can be analytically represented as follows, 
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The logic behind the approach is that, if the kth rule is activated by inputs and its 
consequents include nD  with 0, >nkβ , then combined belief degree nβ  must be larger 

than 0, and it value mainly depends on nk ,β  and the activation weight kλ . 

 
As a consequence, the distribution of the returns for the new portfolio can be 
represented by the following belief distribution, 
    { }NnDPS nn ,...,1),,()( == β  (16) 

with below mean and variance, 
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where nD  is defined in Section 2.1.2, and )(Pnβ  can be calculated from the equation 

(15) above.  
 

3. Portfolio optimisation methods  
The above belief rule-based system can be used to solve the portfolio optimisation 
problem in two different ways. Section 3.1 locates the optimal portfolio by first 
constructing the efficient frontier using the portfolios generated by BRB interpolation 
in Section 2.3 and then searching along the efficient frontier using the objective 



function supplied by the investors. Section 3.2 finds the optimal portfolio directly 
using the BRB models in conjunction with a non-linear optimiser. 
 

3.1 Constructing efficient frontier from BRB interpolated portfolios  

In Markowitz’s mean-variance analysis, generally, the set of optimal or efficient 
portfolios is plotted on two-dimensional graph called efficient frontier or Markowitz 
frontier in which the expected returns are plotted against their standard deviations as a 
measure of their risks (Tütüncü and Koenig, 2004). Portfolios on the efficient frontier 
have maximum return for a given level of risk or, alternatively, minimum risk for a 
given level of return. 
 
Undoubtedly, a rational investor will select a portfolio on the efficient frontier. To 
determine the entire efficient frontier ranging from the portfolio with the smallest 
variance to that with the highest expected return, the parametric Markowitz’s mean-
variance model is used to the portfolio optimisation. However, in practice, it is 
difficult to obtain such an efficient frontier directly for the following two reasons 
(RiskMetrics, 2004): 
 
� The optimisation involves a high-dimensional spaces of which dimensionality is 

determined by the number of asset classes. 
� The distribution of portfolio returns is obtained by simulation with a given set of 

portfolio weights under various environmental factors (e.g., taxes and cash flow 
requirements) and constraints. 

 
Thus, in this study we generate the efficient frontier using the referential portfolios 
from Section 2.1 and the portfolios generated through BRB interpolation in Section 
2.3. A portfolio P  is called long-term efficient if there is no other portfolio 'P  with 
both higher mean and lower variance of returns than those of portfolio P . Under the 
investor’s specified portfolio weight constraints, we eliminate all inefficient portfolios, 
and then we can obtain the set of efficient portfolios for constructing the efficient 
frontier. Along the efficient frontier, the optimal frontier can be located once the 
investor’s objective function is specified. Two common objective functions are listed 
below: 
 
� Maximizing expected return – Since all the investment weights and case flow 

constraints are already incorporated into portfolio simulation, the optimal portfolio 
is the portfolio on the efficient frontier that has the highest return and satisfies the 
risk tolerance constraint which is usually stated in terms of the variance of 
expected return. 

� Minimizing risk – Suppose there are two return distributions with the same mean, 
but different variances. The distribution with less variance has higher probability 
of being close to or above the mean.      

 
It is worth noting that the optimality of the solution found along an efficient frontier 
depends on the granularity of interpolation points in the solution space. We can also 
use large granularity to roughly locate the optimal portfolio and then apply small 
granularity to further interpolate the target zone in order to produce more accurate 
solution.  
 



3.2 Optimisation based on belief rules 

Using the BRB system in equations (14) to (18), we can develop the following 
portfolio optimisation procedures for different objective functions. 
 
(1) Mean-variance efficient set of portfolios 
For an investor who wishes to find the portfolio P with the highest expected return 
under given objective function as, 
    Max )(PE   subject to σ≤)var(P   (19) 
From equations (17)-(18), the equation (19) can be translated into 
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Alternatively, we can also formulate the model to minimize risk given the level of 
expected return.  
    Min )var(P    subject to RPE ≥)(  (20) 
which can be translated into 
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(2) Models for optimising probability-based risk measures 
The probability level-based risk measures, such as value-at-risk (VaR), risk of loss, 
and shortfall risk, are important for risk management and risk regulation (Gaivoronski 
and Pflug, 2005). The optimisation models with such constraints can be formulated as, 
    Max )(PE   subject to  pqPprob =< )(  (21) 
Again, using equations (17)-(18), the problem represented by equation (21) can be 
translated into, 
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where q is the loss limit, and )( qDI n <  is equal to 1 if qDn <  and 0 otherwise. p is 
the probability in VaR which is usually set at 5%, risk of loss, or shortfall risk.  
 
The non-linear optimisation can be solved using gradient-based search methods or 
nonlinear optimization software packages, such as the fmincon function in the 
Optimization Toolbox of Matlab (Coleman et al., 1999).   
 

4. Numerical studies 
To illustrate the procedure of using the BRB system to solve portfolio optimisation 
problems and validate the effectiveness of the techniques under study in this paper, in 
this section, two numerical studies are conducted. 
 

4.1 Three-asset-class example  

Suppose that we select three-asset-class example (3=M )from the RM-WB platform 
(RiskMetrics, 2004), namely, US large cap growth, US large cap value, and US small 
cap. The lower bound (lb) and upper bound (ub) are given in Table 2.  
 

Table 2. Lower and upper bounds of 3 asset classes 
 US large cap growth US large cap value US small cap 

lb 0 0 0.176852 
ub 0.139737 0.683412 1 

 
As discussed in Section 2, we first check whether there is any conflict among the 
bound constraints, and then select a few referential values from the feasible intervals 
of US large cap growth and US large cap value. We set the portfolio weights for the 
three asset classes as 1w , 2w  and 211 ww −−  respectively. 
 
In this example, here is no conflict among bound constraints. Suppose 5 referential 
values are uniformly selected for the two asset weights 1w  and 2w , we then have 

2555 =×=K asset weight combinations or referential belief rule points, and none of 
them violates the inequality constraints given by equations (7) and (8). It means that 
we do not need to generate projection rules in this case. The number of buckets used 
to group the consequential portfolio returns is 1000=N . 
 
To generate the portfolio efficient frontier, we select 21 points uniformly from each 
feasible interval of 1w  and 2w . This leads to 4412121* =×=K  sets of new asset 
weight combinations. Using those points as the input to the BRB model of the 
problem, we can infer the return distribution for each of the 441 portfolios. To check 
the accuracy of the BRB interpolation results, we use RM-WB to simulate the 
distribution for these 441 portfolios. The results are presented in Fig. 5.  
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Fig. 5 Comparison between RM-WB and BRB with 3-asset-class portfolios 

 
As shown in Fig. 5, the BRB system can closely replicate the non-linear relationship 
between asset weight combination and the mean and risk of portfolio returns. The 
maximum absolute deviation between RM-WB and BRB outputs is less than 0.2%. 
Using these interpolation points, we can get the approximated efficient frontier as 
shown in Fig. 6. 
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Fig. 6 BRB Efficient frontier for 3-asse-class example 

 
Along the efficient frontier, the optimal portfolio can easily be found with a given 
level of expected return or risk. In this example, the computational time (seconds) is 
given in Table 3.  
   

Table 3. Computational time for 3-asset-class (M=3) example 
Portfolio optimisation using BRB RM-WB Simulation 

( 441* =K ) 
Rule base generation using RM-WB 

( 25=K ) 

BRB interpolation 

( 441* =K ) 
BRB in total 

17 minutes 60 seconds 15 seconds 75 seconds 



 
It is obvious that the BRB system studied in this paper is quite efficient for generating 
the efficient frontier. 
 

4.2 Nine-asset-class application 

This section solves 9-asset-class set which includes World equity (ex US), US large 
cap growth, US large cap value, US midcap, US smallcap, Cash, US bonds, US muni 
bonds, World bonds (ex US). The bounds are given in Table 4. 
 

Table 4. Lower and upper bounds of 9 asset classes 

 
World 
equity 

(ex US) 

US large 
cap 

growth 

US large 
cap 

value 

US 
mid 
cap 

US 
small 
cap 

Cash 
US 

bonds 

US 
muni 
bonds 

World 
bonds 

(ex US) 
lb 0 0.15 0 0 0.05 0 0.1 0 0.15 
ub 0.2 0.45 0.21 0.17 0.25 0.9 0.25 0.2 0.45 

 
In this case, the upper bound of Cash is updated to 0.55 at first according to the 
equations (5) and (6). The numbers of referential values for the first 81=−M  asset 
classes are 2, 3, 2, 2, 2, 5, 2 and 2 respectively. Referential values are positioned 
evenly in the feasible interval of each asset weight. This leads to 960 initial weight 
combinations. As there are 874 points in infeasible space, 418 projected rule points 
are generated to construct an initial belief rule base with 504418874960 =+−=K  
referential rule points in total. The number of buckets used to group the consequential 
returns is 100=N . 
 
Further, we uniformly select 3, 3, 3, 2, 2, 7, 2 and 3 points from the feasible intervals 
of asset classes. Using the similar process of constructing rule points above, 

1775* =K  new portfolios can be generated for the purpose of constructing the 
efficient frontier. Fig. 7 compares the mean and standard deviation associated with the 
1775 portfolios produced from RM-WB simulation and BRB interpolation. 
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Fig. 7 Comparison between RM-WB and BRB with 9-asset-class portfolios 

 



In Fig. 7, the maximum absolute deviation between RM-WB and BRB outputs is less 
than 7%. The corresponding efficient frontier is shown in Fig. 8. 
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Fig. 8 BRB efficient frontier for 9-asset-class application 

 
Along the efficient frontier, we can search for the optimal portfolios under given 
return or risk levels. Table 5 lists the computational time for RM-WB simulation and 
BRB interpolation for this 9-asset-class application. 
 

Table 5. Computational time for 9-asset-class (M=9) application 
Portfolio optimisation using BRB RM-WB Simulation 

( 1775* =K ) 
Rule base generation using RM-WB 

( 504=K ) 

BRB interpolation 

( 1775* =K ) 
BRB in total 

59 minutes 1010 seconds 80 seconds 18 minutes 

 
It demonstrates that the BRB system is efficient enough for solving the 9-asset-class 
investment problem. 
 

4.3 Optimal portfolio weights 

For a given level of risk, we can locate the portfolio that generated the highest amount 
of return from the set of 1775 portfolios produced in Section 4.2. Alternatively, we 
can also use equation (19) in Section 3.2 together with a nonlinear optimiser to find 
the optimum weights. The initial condition can be randomly generated or taken from 
the optimum portfolio from Section 4.2. Fig. 9 shows the found optimal portfolios 
under different risk levels.   
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Fig. 9 Optimal portfolios under different risk levels 

 
Under the risk level 5100.1 × , the optimal portfolio is (0.2, 0.15, 0, 0.17, 0.0647, 0, 
0.25, 0, 0.1653). The time spent on the nonlinear optimisation is about 135 seconds.  
 
Since the relationship between the portfolio return and asset weight combination is 
highly non-linear along the efficient frontier, the local linearization and perturbation 
methods have been used to approximate the optimal portfolio (Speranza, 1993; Judd, 
1996; RiskMetrics, 2004). Here, we pick up 10 portfolios from the interpolated 
efficient frontier at around the risk level 5100.1 × . The weights of asset classes and 
the return and risk of RM-WB and BRB outputs are shown in Table 6. 
       

Table 6. 10 portfolios nearest to the optimal solution 
Asset class RM-WB BRB 

World 
equity 

(ex 
US) 

US 
large 
cap 

growth 

US 
large 
cap 

value 

US 
midcap 

US 
small 
cap 

Cash 
US 

bonds 

US 
muni 
bonds 

World 
bonds 

(ex 
US) 

Return Risk Return Risk 

0.2 0.15 0 0.17 0.05 0 0.1 0 0.33 273912 100524 273912 100605 
0.2 0.15 0.21 0 0.05 0 0.24 0 0.15 274320 98634 274320 98715 
0.2 0.15 0.03 0.17 0.05 0 0.25 0 0.15 277485 101024 277485 101099 
0.1 0.15 0.13 0.17 0.05 0 0.25 0 0.15 279392 104636 271595 99824 

0.095 0.15 0.105 0 0.25 0 0.25 0 0.15 282176 105308 271415 98341 
0.2 0.15 0 0 0.25 0.092 0.158 0 0.15 272527 99942 272280 100359 
0.2 0.15 0.21 0 0.05 0 0.1 0.1 0.19 273350 99157 272462 98081 
0.2 0.15 0 0 0.25 0.05 0.1 0.1 0.15 274620 100901 274871 101586 
0.2 0.15 0 0 0.25 0.092 0.1 0.058 0.15 271747 99603 271918 100176 
0.2 0.15 0.21 0 0.05 0 0.14 0.1 0.15 272992 97867 272845 98578 

 
The stacked area graph in Fig. 10 shows that the 10 portfolios are quite different 
although they are close on the expected return and risk. 
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Fig. 10 Investment weights of 10 portfolios closest to the optimal solution  

 
Given that the asset weights surrounding the optimal solution are highly nonlinear, the 
BRB search routine might be a better method that the local linearization method 
commonly used in practice. 
 

5. Concluding remarks 
The study is dedicated to apply a BRB system to model and solve the portfolio 
optimisation problem. The procedures of implementing the BRB system to portfolio 
optimisation are discussed in details, and two methods are proposed to locate the 
optimal portfolios under different constraints. The advantages of the BRB system to 
portfolio optimisation are that it can: 
� Represent the non-linear relationship between a multi-asset class portfolio 

(represented by asset weights) and the mean and risk (indicated by standard 
deviation) of portfolio returns; 

� Construct efficient frontier for long-term investment using BRB interpolation; and 
� Search for the optimal portfolios with analytical mathematical model;  
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