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Multi-asset class portfolio optimisation using a belief rule-based
system

Yu-Wang Chen, Jian-Bo Yang, Dong-Ling Xu, Dongxuagf, Simon Acomb, Ser-Huang Poon

Manchester Business School, The University of Mastdr, Manchester M15 6PB, UK

Abstract. The purpose of this paper is to apply a belief-hdsed (BRB) system to
solve the multi-asset class portfolio optimisatipmoblems. The BRB system, was
developed on the basis of the concept of beliecaires and the evidential reasoning
(ER) approach, is a generic non-linear modellind isxfierence scheme. In this paper,
the procedures of implementing the BRB system RiskMetrics WealthBench to
portfolio optimisation are discussed in details.oldifferent ways are proposed to
locate the optimal portfolios under constraintsigal by the investors. Numerical
studies demonstrate the effectiveness and effigiehthe proposed methodology.

Keywords: Belief rule base, evidential reasoning, assesclaartfolio optimisation.

1. Introduction

Portfolio optimisation is concerned with implemeigti investment strategy and
information technology to maximise the wealth ofdators and manage the risk of an
integrated portfolio over a fixed-term period. Inetprocess of implementing an
investment strategy, multi-asset class allocatsothé most crucial decision required
to achieve the investment goals of high returns kovd risks Kritzman, 1999;
Gratcheva and Falk, 2003

In the past decades, many studies have showntthsggc asset allocation has more
influence on the aggregate portfolio return thaheotinvestment decisions and
usually explains most of its return variations oadong-term periodgrinson et al.,
1986; Hensel et al., 1991; Ibbotson and Kaplan,0R0OBsset allocation usually
produces a set of portfolio weights for multiplsetsclasses such as stocks and bonds,
and this diversification strategy is beneficiabtmth return enhancement and volatility
reduction.

As the basis of modern portfolio theory, the seiniM@arkowitz’s mean-variance
model provides a useful theoretical framework tdvescstrategic asset allocation
problem (Markowitz, 1952. It suggested that an investor should make a toffde-
between return and risk in determining the allaratbf assets. Among an infinite
number of investment portfolios with a specificuret objective, the investor should
choose the portfolio that has the smallest varianagsk, and all other portfolios are
“inefficient” because they have higher varianca given level of return.

Although Markowitz's optimisation model providesparametric methodology for
asset allocation and portfolio diversificationhéas not been widely used in practice
due to a number of practical and theoretical prollessociated with it. In mean-
variance analysis, the assumption of normal distidm of returns may not be
accurate under some scenarios, and it is diffitulineasure the necessary inputs,
namely expected returns, variances and co-variaotesky assetsBawa, 1975;
Jorion, 1991; Kan and Zhou, 200T addition, the original Markowitz model ignare
environmental factors (e.g., tax and transactiost)cand assumes a single-period



investment horizon. However, in reality, investngeare usually multi-period, and
optimal portfolio decisions, especially for longfteinvestors, depend on the details
of the changing investment environment, such asatfslable financial assets, the
taxation, and the expected returns and preferesfaesestors Campbell and Viceira,
2002. Furthermore, multi-period portfolio optimisatioproblem needs scenario
simulation analysis to forecast expected returlrkowitz and Perold, 1981,
Koskosidis and Duarte, 1997As such, a series of theoretical work has been
conducted to improve portfolio optimisation models the basis of mean-variance
analysis Black and Litterman, 1992; Tutinci and Koenig, 2dPdrgott et al., 2004;
Jacobs et al., 2005; Kim et al., 2005; Idzorek,@0Delikyurta and Ozekici, 2007
Simultaneously, various simulation techniques udirggorical data or Monte Carlo
algorithm have been used to forecast the portfalitis nonlinear instruments such as
options RiskMetrics, 1999; 2004; Palmquist et al., 2001asserman, 2004; Brandt
et al., 200%.

In allocating investment to a number of asset elasshe optimisation objective
depends on investors’ financial needs and actwalstment scales. The relationship
between the proportion of each asset class in @ioporand the distribution of its
return is highly nonlinearGampbell and Viceira, 2002; RiskMetrics, 20040
identify the optimal combination of asset classeider to maximise returns and
minimise risks, there is a need to develop a methbidh can model such a highly
nonlinear relationship.

This paper is dedicated to developing a novel pbotfmodelling and optimisation
method using a belief rule-based (BRB) system. BR8 system was developed on
the basis of the concept of belief structures amel ¢vidential reasoning (ER)
approachYang and Singh, 1994; Yang et al., 2006; 20@t/has been widely applied
in fields of nonlinear system identification andc#&on support systems<¢ et al,
2007; Zhou et al., 2009; Chen et al., 2010

The rest of the paper is organised as followsha following section, the portfolio
optimisation problem is modelled using a BRB systamd the detailed procedures
are discussed. In Section 3, on the basis of thé Bigstem, two portfolio
optimisation methods are presented to locate thanap portfolio under different
constraints. In Section 4, Numerical studies ar@dooted to demonstrate the
effectiveness and efficiency of the developed BRBtesm to portfolio optimisation.
The paper is concluded in Section 5.

2. Modelling portfolio optimisation with a BRB system

Portfolio optimisation is to build the allocatiom asset classes which maximizes the
return for a given level of risk or minimizes thiskr for a given level of return
(Bekkers et al., 2009 Generally, an asset class is a set of assets saie
fundamental economic similaritie& eer, 199Y. Portfolios are usually represented in
terms of asset classes rather than assets bedaaseidely believed that the asset
class returns can be forecasted more accuratefy ahset returns and asset returns
tend to revert to asset class returns in the leng-simulation RiskMetrics, 200%

Suppose there aM asset classes, we can model an asset class jgobiyah vector of
non-negative weightéw,,w,,...,w,,) , wherew represents the proportion of the total



wealth to be invested in thth asset class. In other word,vif represents the current
market value of the total investment in flile asset class, them =v./(v, +...+ V).

Thus, the portfolio optimisation problem is transfed to determining the optimal
weights of asset classes.

To apply a BRB system to model and solve the plotfoptimisation problem, we

need to explain some basic theoretical concepissat Belief rules are the central
constituents of BRB systems, and they usually asighed with an extended IF-
THEN scheme, in which each possible consequergssceated with a belief degree.

In portfolio optimisation, formally, théth belief ruleR (k =1,...,K )can be defined
as follows,

IF (w, is A) O(w, is A O--- O(w,, is A%,
THEN{D, 4,00, o) (O A} 3 B 51,

with rule weighté, ,

andattributeweightd,, , 3, .-,y . K O{L,....K}.
where w,,w,,...,w,, denote theantecedent attributes1 the kth rule. Each attribute
takes values fromA={A,...,A,}, in which each of the elemem(i =1...,.M) is
defined by a set ofeferential valuesA :{A'j;j :L...,NA}. In the kth rule, A
represents the referential value taken by thebatiw , and A D{A’j;j =l...,NA}.
B, . is thebelief degreeassociated witlkonsequenD, given the logical relationship
of (w,is A) O(w, is AY) O--- O(w,, is AY) - 6, is the relative weight of thkth rule,
andd,,,o,,.....0, , are the relative weights of thd antecedent attributes in thidh
rule.

(1)

In portfolio optimisation problem, the antecedetirilbutesw are the weights of

asset classes, and the consequents are portfalimsegrouped by buckets (i.e.,
ranges of values). As such, we can use a BRB systemmodel and solve the
optimisation problem with the following main stef§) constructing belief rules; (2)
calculating activation weights; (3) generating neportfolios through BRB
interpolation. Here, it is worth noting the BRBenpolated outputs are characterised
by the belief distribution(5,, 5,.....0y )

2.1 Constructing belief ruleswith linear bounds and unity constraint

In the portfolio optimisation problem, the decisieariables are the weights of asset
classes, which are usually subject to two typesoaistraints. First of all, the sum of
all asset weights should be equal to 1 or 100%o1&8#yg, individual or institutional
investors may also specify upper or lower boundapfeweights to some major asset
classes for business reasons. For example, antanve®y recommend portfolios
with at least 20% wealth in large capital stocks,wish that all portfolios have
between 30% and 50% wealth invested in equitiess,T¥we need to consider these
bounds and unity constraints when constructingiriteal belief rule base to model
the portfolio optimisation problem.



2.1.1 Generating referential rule points

Let Ib, andul represent the lower and upper bound of the welighthe ith asset
class respectively, and then the linear boundsuaiiig constraint can be represented
as follows,

b, <w <uh (2)

M

>w =1 ©)

i=1
Generally speaking, when constructing an initididbeule base, it is necessary to
sample someeferential rule pointsn the feasible solution space. If the space & tw
or more dimensional, usually, we select a few ezfgal values on each dimension, or
equivalently, for each independent variable, and thferential rule points are
generated by the combination of the referentialeslof all the independent variables.
Those variables are input decision variables tBfRB system.

In portfolio optimisation, using the unity constrabdf equation3), we can reduce the
number of dimensions of the solution space by ame, the weightw,, of the Mth
asset class can be represented as,
M-1
wy =1->" W 4
That means the number of independent decision Jasdiecomed —1.

Furthermore, we check the conflicts among the barorstraints and adjust the initial
lower and upper bounds for all asset classes. Ustiite the necessity of adjusting
initial bounds, two examples are given below.

Example 1. Suppose there are 2 asset classes, and the boasitaints are given as
follows.

Osw <1

02=sw,<1
We uniformly select three referential values frohe feasible interval ofy,, and
those are 0, 0.5 and 1. As showrfFig.1(a),the referential valuey, = torresponds
to the weight combinatiofw,,w,) = (L0), which is an infeasible referential point.

AZA iA\ZA

1 ¢

0.2 0.2

»

0 0.5 1A 0 0.4 08 A
(a) (b)
Fig. 1 Two asset class example with upper boundsaaient




To make sure that the referential points are infélasible space, the upper bound of
w, should be adjusted to 0.8 as showirig 1(b) Three feasible referential values 0,

0.4 and 0.8 can be selected fgrafter the bound adjustment.

Example 2. Suppose there are 2 asset classes, and the bonsttlaints are given as
follows.

Osw <1

Osw,<02
If we also uniformly select three referential vaueom the feasible interval of,
two referential values 0 and 0.5 will be infeasia¢eshown irFig. 2 (a)

A A

0.2 0.2

0 0.5 1A 08091 A
(a) (b)
Fig. 2 Two asset class example with lower boundstdjent

Similarly, the lower bound ofy should be adjusted to 0.8, and three feasible
referential values of 0.8, 0.9 and 1 can be samgiédy. 2 (b)

For a multiple input system, or a portfolio with recthan two asset classes, it is
difficult to adjust the lower and upper bounds nmalhyu The following equations,

however, can be used systematically to produc@d;lumdsmi andub: for each asset
class so that the conflicts among bound constraensbe eliminated.

Ibi = max(b, 1- iubj) (5)
j=Lj#
ub =min(ub 1- ilbj) (6)

=1, j#i
Furthermore, if there are more than 2 asset clasgeseed to consider the unity
constraint, i.e.,zi“ilwi =1, when selecting referential values for the weightach

asset class in order to generate feasible refatgmtints. An illustrative example is
given as follows.

Example 3. Suppose there are 3 asset classes, the boundatatssiare without
conflicts and given as follows.

O<sw, <06

02<w,< 08

0l<sw,< 08



As discussed above, the weighf can be decided by the sum wf andw, using
equation 4). Therefore, we can use the combination of theregitial values ofy,
and w, to construct the initial belief rule base.

Assume the referential values wf are {0, 0.3, 0.6} and that of, are {0.2, 0.5, 0.8}.

Without the unity constraint, X3 referential points will be generated as showRim
3(a)

AA AA
0.9 03.08) (0.6,058) 09K (01,08
0.8 ¢ & ) 0.8 ¢--% o

(0.3, 0.6)
0.5 ¢ ¢ )(0.6,0.5) 05 ¢ A—

(84, 0.5)
(0.6, 0.3)
0.2« 0.2«
0 0.3 0.6 0.9 A.L 0 0.3 0.6 0.9 AI.

(a) (b)
Fig. 3 Three asset class example with projectivg mge points

However, some of the points, (0.3, 0.8), (0.6, @&J (0.6, 0.8) irFig. 3(a) are not
within the feasible solution space which is conetd by the following inequality
constraints,

> " w <1-Tbw @)
> " w1~ ubw 8)

If we delete the infeasible points directly, the BRhference accuracy near those
deleted referential points will decrease since feweferential belief rules are
available. As such, some new referential pointaighbe generated to replace them
as shown irrig. 3(b)

To replace the infeasible referential point (0.8)0two new referential points (0.1,

0.8) and (0.3, 0.6) are generated by projecting ihe boundary of the feasible space.
Similarly, two new referential points (0.4, 0.5)daf®.6, 0.3) are generated to replace
the infeasible referential point (0.6, 0.5). No neeferential points need to be

generated for the infeasible referential point (@), since it projects overlapped

referential points (0.1, 0.8) and (0.6, 0.3).

To a multi-asset class portfolio optimisation pesh| a generic method needs to be
proposed to generate new projected referentialtpdor replacing infeasible points
effectively. Here, it is worth noting that we needconsider the downward projection

onto the feasible boundar%?ﬁlﬂwi =1-lbw and the upward projection onto

Zi“il_lwi =1-ubw simultaneously in generating projected referemahts.

We first consider the downward projection off0" "w =1-Ibw . SupposeA, is
the referential value taken byv in an infeasible referential point with



ZiM:l_lAm >1-lbw , where An D{A’j;j =],...,NA}, andm(m = 1)is an integer
and denotes the order number in the vector of eafeal values. In Example 3, the
vector of referential values fox, is (0, 0.3, 0.6). For the referential point (0033),

m, is equal to 2 since the second referential val@astaken byw; .

With this definition ofm , we can generate new projected referential pointsplace
any infeasible referential point witEi“il_lAmi >1-lbw by reducing the weights of
the M -1 asset classes one by one. Fov , if m>1 and

An _1+2?’:¢i Am <1-Ibwu , a new referential point will be generated in whibe

. . . T M-1 . .
referential value ofn is projected to bé—lbw —ijlmAj,mj , otherwise, no new
referential point will be projected.

In the above example, the referential point (0.8) s infeasible, since the sum of
referential  values is Zi“il_lAm =03+08=11 , which is larger than

1-lbw =1- 0.1=09. Therefore, we use the above-mentioned methodetergte

new projected referential points to replace it. R@r, we havem = 2and
Ama +Z?:¢i Am = 0+ 0.8= 0.8, which is less than 0.9. Its projected weight\fgr
M-1

can be calculated by~lbw =" " A

ic1js Aym =17 01-08=01, and a new referential

point (0.1, 0.8) can be generated from it. Fey , we have m,=3 and
Am_ﬁzM_l A . =05+ 03=08, which is less than 0.9. Its projected weight can

j=Ljz My
M-1

be calculated byl-Ibw =21 Am =1-01-03=05, and another new
referential point (0.3, 0.6) can be obtained. Assalt, two new referential points (0.1,

0.8) and (0.3, 0.6) are used to replace the inbaseferential point (0.3, 0.8).

Similarly, we can generate new projected referépiénts to replace any infeasible
referential point  with Ztl_lAm <l-ubw . For w , if m<NA and

Am+1+2?:¢i Am >1-ubw , a new referential point will be generated in whibe

referential value ofn is projected to bé - ubw —ZM_l A

j=1jzildm;

otherwise, no new
referential point will be projected.

With this method, it is obvious that the maximunmier of new projected referential
points for replacing each infeasible rule poinhégsmore tharM -1 (i.e., the number
of asset classes minus 1), and the minimum nunsb@r For example, in Fig(b),
the number of projected referential points for itifeasible referential points (0.3, 0.8)
and (0.6, 0.5) i8—-1=2, and that for the infeasible referential poin6(@.8) is 0.

2.1.2 Constructing belief degrees for referentiaitfolios

In applying BRB systems to portfolio optimisatiowe use belief distribution to
approximate the distribution of the consequent@tiplio returns. Belief degrees on



consequents can be obtained with historical andlsited data. In this paper, we use
RiskMetrics WealthBench (RM-WB) platfornR{skMetrics, 200% to simulate a set

of L =500 observed return&s,,| =1,...,L for the kth set of portfolio weights that
has the following mean and variance:

E(R) = L 2R ©
varRe) = £ Y (Rs )7 - (1 R ) (10

It is worth noting that this pair of mean and vada is not used in portfolio
optimisation apart from serving as a check for bueket distribution below. As
shown inFig. 4 we group the simulated portfolio returns intb—1 buckets of
consequents usindy referential valuedD,,D,,...,D,, within the range of portfolio
returns. Note that the buckets could be non-umifpdistributed.

A

J:‘
D] Dy .. D” Dy D,\'

Fig. 4 Belief distribution on buckets of consequent

For the kth belief rule, we can simply puR,.'f'I into the buckets and obtain the

probability of observed returns falling into eaalcket, which is further used to be
the belief degree on the corresponding bucketsoosequents. However, since the
actual value of observed returns in each bucketbadeen considered in this way,
the expected return can not be calculated accyrai¢h the belief distribution. As a

consequence, in this study we use the followingadqno to calculate the belief degree,

= ¥(D,.~RE,)AD,.~D,). n=1

0L,

ﬂk,n = i[ Z(RPE,IM - Dn—l)/(Dn - Dn—l) + Z(Dnﬂ - RE,IH)/(Dml - Dn)} 1<n<N (11)
1

> (R, -D.)/(D,-D,,), n=N

L IOl
whereD, < R5, <D,,,0l, 0L,. Obviously, we haVeZ.Lﬁk,n =1, and it is possible
that someg, ; = 0 Using the belief degrees, the mean and variaricexpected

returns represented by the belief distributionhiekth belief rule can be calculated as
follows,

E(R)=2.DuBn (12)

varR) = (0, —[Z Dnﬁk,nj (19



Combined with the equationll), we can conclude that the returns calculated in
equations ) and (2) will be equal, but the variances in equatiob@) @nd (3) will

not necessarily be equal. The deviation between dtagistical variance and
approximated variance depends heavily on the numibire buckets of consequents.
As such, we need make a trade-off between computdtcomplexity and inference
accuracy.

2.2 Calculating activation weights

On the basis of the constructed belief rule bdseptlief degrees embedded in belief
rules can be used to perform inference for new teygportfolios with new and
different set of weights in our case). In belieferj the ‘" connective is used to
represent the “and” logical relationship of antem#dattributes. This means the
consequents of a belief rule is not believed tdrbe unless all the antecedents of the
rule are matched with the input to some extent.rdaresent the matching degree
between a set of values of an input and the refiateralues of antecedent attributes
in thekth rule, the activation weight, need to be calculatedng et al., 2006

In portfolio optimisation problem, since some iaitireferential points violate the
constraints ) and @) as discussed iBection 2.1.1new projected referential points
are added to the rule base, which results in se@weraferential values for each asset
class. As shown in Fig(b), the infeasible rule points (0.3, 0.8), (0.6, Gabd (0.6,
0.8) are removed, and new referential rule poi@t%,(0.8), (0.3, 0.6), (0.4, 0.5) and
(0.6, 0.3) are added to the rule base. The refaterdlues for the two asset classes
have also been updated from (0, 0.3, 0.6) and (0%52,0.8) to (0, 0.1, 0.3, 0.4, 0.6)
and (0.2, 0.3, 0.5, 0.6, 0.8) respectively. As stioch method proposed by Yang et al.
(2009 is not suitable for the calculation of activatiaeighs in portfolio optimisation.

To a portfolioP with a set of Weight$wl,Wz,...,WM_l,l—Z?ﬁl—lwi ,)in the study, we

use the following normalized Euclidian distancadpresent the activation weight of
thekth belief rule.
M-1
> (w - Af
— i=1
G = (14)
> 2w -A)

10K p i=1
where Kp is the set of activated belief rules. After define set of referential rule

points in Section 2.1 the feasible solution space of asset weight coatlan is
separated into granular polyhedrons. Any new féasideight combination will fall
into a specific polyhedron and the referential poion the polyhedral vertex will be
activated. For example, in Example 3, if a new fptid has the asset weights (0.4,
0.3, 1-0.4-0.3), the five referential points (03), (0.3, 0.5), (0.4, 0.5), (0.6, 0.2) and
(0.6, 0.3) will be activated.

2.3 Generating new portfolios through BRB inter polation



Once the activations weights are obtained, theebrlie base established using belief
rules can then be summarized using a belief rybeession matrixYang et al., 200}
as show infable 1

Table 1. Belief rule expression matrix for the BREtem
Belief output

Input

D, D, .. D, .. Dy
Al(/]l) lgl,l 131,2 lBln IBLN
A2 (/]2) ﬁZ,l ﬂ2,2 ﬁZ,n ﬁZ,N
AN Ba B o Ba Bin

AK(/‘K) IBK,]. ﬁK,Z IBK,n ﬁK,N

In the matrix, A“ represent the packet antecedeg®s, A5,..., A ) . B, is the belief

degree on the consequents, aiyds the activation weight of tHeh rule as discussed

above. Based on the constructed belief rule exjressatrix, the ER approach can
then be used to combine activated rules and ihierbelief distribution of portfolio
returns. The ER approach is a generic evidencedbassti-criteria decision analysis
(MCDA) approach for dealing with problems havingtlbquantitative and qualitative
criteria (Yang and Singh, 1994 The kernel of the ER approach is a recursive
reasoning algorithm which is developed on the basiBempster-Shafer (D-S) theory
(Dempster, 1968; Shafer, 197@uzzy set theoryZadeh, 1965 and decision theory
(Yoon and Hwang, 1995; Giovanni and Lurdes, 2009

The implementing procedure of the ER approach mrsarized as follows. Firstly,
transform the basic belief degrgk  in the belief rule expression matrix into basic

probability massm, , which represents the degree to which ktte activated rule

supports the hypothesis th#&l, is the consequent. Leh , be the remaining

probability mass unassigned to any known consequent, and m , can be

calculated from the basic belief degrgg, as follows ¥ang and Xu, 2002
m.,=AB, nN=1L..N;k=1..K

N N
rnk,D :l_zrnk,n :1_/]k2ﬁk,n! k=1...,K
n=1 n=1

Decomposem, , into m,, andm,, as follows,

N
m,D :1—/‘k, r’fk,D:/‘k(l_zﬁk,n} k=1..K

n=1

Wlth Ifnk,D = m,D + r-ﬁr(,D'
Then, the final output distribution can be inferneging the analytical ER algorithm
(Wang et al., 2006

(D,}: mn=umm,n+m,n+®,D>—D<m,0+m>} n=1..N



{D}: mD:ﬂ|:Iil(mK,D+m<,D)_lj(mK,D):|
(D} mD:uUj(m,D)}

,U:{Z D (mk,i +m +m<,D)_(N _1)D (mk,D +ﬁk,a)}
{D}: A=, n=L..N

{D}: B, :i, n=1..N
- My

B, represents the combined belief degree to whiclothput is assessed @,, and
B, represents the remaining belief degree unassigmeshy known consequent. In

portfolio optimisation problem, we hayg, = due toZ::l,Bk'n =1.

After the substitute of intermediate variable, tlemmbined belief degree
B.(n=1,...,N) can be analytically represented as follows,

lj[Akﬁk,n +1-Akiﬂk,ij— ﬁ{l-Akiﬂk,ij
b= - v = e N|=1 ;
Z=1: u(/‘kﬂk,j +l_/1kz=1:'3k'ij_(N _1)D(1_Ak;ﬁk,ij_ I:l (1_/‘k)

The logic behind the approach is that, if #ik rule is activated by inputs and its
consequents includB, with S, , >0, then combined belief degrgg must be larger
than 0, and it value mainly depends 8y, and the activation weight, .

(15)

As a consequence, the distribution of the retumms the new portfolio can be
represented by the following belief distribution,

s(P)={(D,.B,),n=1...N} (16)
with below mean and variance,

E(P) =D, (P) a7

var(P) =3 (D,)* 5,(P) = (2, D.5,(P))* (18)

where D, is defined inSection 2.1.2and S,(P ) can be calculated from the equation
(15) above.

3. Portfolio optimisation methods

The above belief rule-based system can be usedlve she portfolio optimisation
problem in two different waysSection 3.1llocates the optimal portfolio by first
constructing the efficient frontier using the politbs generated by BRB interpolation
in Section 2.3and then searching along the efficient frontiemgsthe objective



function supplied by the investorSection 3.2finds the optimal portfolio directly
using the BRB models in conjunction with a non-éineptimiser.

3.1 Constructing efficient frontier from BRB inter polated portfolios

In Markowitz's mean-variance analysis, generallye tset of optimal or efficient
portfolios is plotted on two-dimensional graph edllefficient frontier or Markowitz
frontier in which the expected returns are plotigdinst their standard deviations as a
measure of their risks(itinct and Koenig, 2004Portfolios on the efficient frontier
have maximum return for a given level of risk dtematively, minimum risk for a
given level of return.

Undoubtedly, a rational investor will select a paib on the efficient frontier. To
determine the entire efficient frontier rangingnrahe portfolio with the smallest
variance to that with the highest expected retthra, parametric Markowitz’s mean-
variance model is used to the portfolio optimisati¢dowever, in practice, it is
difficult to obtain such an efficient frontier do#y for the following two reasons
(RiskMetrics, 200%

= The optimisation involves a high-dimensional spagkwhich dimensionality is
determined by the number of asset classes.

= The distribution of portfolio returns is obtaineg simulation with a given set of
portfolio weights under various environmental fastfe.g., taxes and cash flow
requirements) and constraints.

Thus, in this study we generate the efficient fientsing the referential portfolios
from Section 2.1and the portfolios generated through BRB interpamin Section
2.3. A portfolio P is called long-term efficient if there is no othaortfolio P' with
both higher mean and lower variance of returns thase of portfolioP . Under the
investor’s specified portfolio weight constrainige eliminate all inefficient portfolios,
and then we can obtain the set of efficient pafolfor constructing the efficient
frontier. Along the efficient frontier, the optimdtontier can be located once the
investor’s objective function is specified. Two cmimn objective functions are listed
below:

= Maximizing expected return — Since all the invesimeeights and case flow
constraints are already incorporated into portfeliaulation, the optimal portfolio
is the portfolio on the efficient frontier that héee highest return and satisfies the
risk tolerance constraint which is usually statedtérms of the variance of
expected return.

= Minimizing risk — Suppose there are two returnriisttions with the same mean,
but different variances. The distribution with leggiance has higher probability
of being close to or above the mean.

It is worth noting that the optimality of the satrt found along an efficient frontier
depends on the granularity of interpolation pointshe solution space. We can also
use large granularity to roughly locate the optipaltfolio and then apply small
granularity to further interpolate the target zoneorder to produce more accurate
solution.



3.2 Optimisation based on belief rules

Using the BRB system in equation$4) to (18), we can develop the following
portfolio optimisation procedures for different ebjive functions.

(1) Mean-variance efficient set of portfolios
For an investor who wishes to find the portfoRowith the highest expected return
under given objective function as,

Max E(P) subject tovar(P) <o (19)
From equations (17)-(18), the equation (19) catrdmeslated into

mwaxi D,5,(P)
st

lbi <w <ub
Zi“il_lwi <1-Ibw
> w2 1-ubw

3 (D) A,(P) - (L D,4,(PY <0

Alternatively, we can also formulate the model tomimize risk given the level of
expected return.

Min var(P) subject toE(P) =R (20)
which can be translated into

min >’ (0,7 3,(P)~(3. D4, (P))

S.t.

lbi <w <ub
Z:\il_lwi Sl—W)M
Z:\il_lw Zl—u_bM

Y'D,4,(P)2 R

(2) Models for optimising probability-based risk aseires

The probability level-based risk measures, suchahse-at-risk (VaR), risk of loss,

and shortfall risk, are important for risk managetrend risk regulationdaivoronski

and Pflug, 200p The optimisation models with such constraints lba formulated as,
Max E(P) subjectto prob(P<q)=p (21)

Again, using equations (17)-(18), the problem repréed by equation (21) can be

translated into,

N
max»_D,f3,(P)
i n=1
Ibi <w <ub
Sy <1- Ty



Zi’\il_lvvi >1-Uubw

Z(ﬁ’n(P)>< (D, <q)<p

whereq is the loss limit, and (D, <q )s equal to 1 ifD, <q and O otherwisep is
the probability in VaR which is usually set at 596k of loss, or shortfall risk.

The non-linear optimisation can be solved usingligmat-based search methods or
nonlinear optimization software packages, such tes finincon function in the
Optimization Toolbox of MatlabGoleman et al., 1999

4. Numerical studies

To illustrate the procedure of using the BRB systensolve portfolio optimisation
problems and validate the effectiveness of thertiecies under study in this paper, in
this section, two numerical studies are conducted.

4.1 Three-asset-class example

Suppose that we select three-asset-class exarple3)from the RM-WB platform
(RiskMetrics, 2004 namely,US large cap growthUsS large cap valueandUS small
cap. The lower boundllf) and upper boundif) are given inTable 2

Table 2. Lower and upper bounds of 3 asset classes

US large cap growth  US large cap value US small cap

Ib 0 0 0.176852
ub 0.139737 0.683412 1

As discussed irBection 2 we first check whether there is any conflict agdhe
bound constraints, and then select a few refelevdiaes from the feasible intervals
of US large cap growtlandUS large cap valueWe set the portfolio weights for the
three asset classeswas w, and1-w, —w, respectively.

In this example, here is no conflict among boundst@ints. Suppose 5 referential
values are uniformly selected for the two assetghtsiw, andw,, we then have
K =5x5=25asset weight combinations or referential belieé npbints, and none of
them violates the inequality constraints given Quations 7) and @). It means that
we do not need to generate projection rules indage. The number of buckets used
to group the consequential portfolio returngNis= @00

To generate the portfolio efficient frontier, wdesg 21 points uniformly from each
feasible interval ofw, andw,. This leads toK™ =21x21=441 sets of new asset
weight combinations. Using those points as the tinputhe BRB model of the
problem, we can infer the return distribution faick of the 441 portfolios. To check
the accuracy of the BRB interpolation results, wee (RM-WB to simulate the
distribution for these 441 portfolios. The resalte presented iRig. 5
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Fig. 5 Comparison between RM-WB and BRB with 3-as&#ss portfolios

As shown in Fig. 5, the BRB system can closelyicapé the non-linear relationship
between asset weight combination and the mean iakdodf portfolio returns. The
maximum absolute deviation between RM-WB and BRBouts is less than 0.2%.
Using these interpolation points, we can get thpr@pmated efficient frontier as
shown in Fig. 6.
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Fig. 6 BRB Efficient frontier for 3-asse-class exae

Along the efficient frontier, the optimal portfolican easily be found with a given
level of expected return or risk. In this examples computational time (seconds) is
given inTable 3

Table 3. Computational time for 3-asset-cldds3) example
Portfolio optimisation using BRB

. _ Rule base generation using RM-WB3RB interpolation

(K =441 (K =25) (K™ =441)

17 minutes 60 seconds 15 seconds 75 seconds

RM-WB Simulation
BRB in total




It is obvious that the BRB system studied in trapgr is quite efficient for generating
the efficient frontier.

4.2 Nine-asset-class application

This section solves 9-asset-class set which insliderld equity (ex USJUS large
cap growth US large cap valudUS midcapUS smallcapCash US bondsUS muni
bonds World bonds (ex USYhe bounds are given irable 4

Table 4. Lower and upper bounds of 9 asset classes

World USlarge USlarge US us US us World
equity cap cap mid small Cash bonds muni bonds
ex growt value cap cap onds (ex
us h I bond us
Ib 0 0.15 0 0 0.05 0 0.1 0 0.15
ub 0.2 0.45 0.21 0.17 0.25 0.9 0.25 0.2 0.45

In this case, the upper bound Gashis updated to 0.55 at first according to the
equations §) and 6). The numbers of referential values for the fivkt-1=8 asset
classes are 2, 3, 2, 2, 2, 5, 2 and 2 respectiVdyerential values are positioned
evenly in the feasible interval of each asset weighis leads to 960 initial weight
combinations. As there are 874 points in infeasfigace, 418 projected rule points
are generated to construct an initial belief rudsedwithK =960-874+418=504
referential rule points in total. The number of kets used to group the consequential
returns isN =100.

Further, we uniformly select 3, 3, 3, 2, 2, 7, 2 &points from the feasible intervals
of asset classes. Using the similar process of taarisig rule points above,
K" =1775 new portfolios can be generated for the purposecafstructing the
efficient frontier. Fig. 7 compares the mean amohdard deviation associated with the
1775 portfolios produced from RM-WB simulation aBRB interpolation.
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Fig. 7 Comparison between RM-WB and BRB with 9-as$&ss portfolios




In Fig. 7, the maximum absolute deviation betwe®&h\RB and BRB outputs is less
than 7%. The corresponding efficient frontier iswh in Fig. 8.
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Fig. 8 BRB efficient frontier for 9-asset-class hgtion

Along the efficient frontier, we can search for thptimal portfolios under given
return or risk levels. Table 5 lists the computadictime for RM-WB simulation and
BRB interpolation for this 9-asset-class applicatio

Table 5. Computational time for 9-asset-clddsq) application
Portfolio optimisation using BRB

. Rule base generation using RM-WHB3RB interpolation
(K =1775) (K =504) (K' =1775)

59 minutes 1010 seconds 80 seconds 18 minutes

RM-WB Simulation

BRB in total

It demonstrates that the BRB system is efficierdug for solving the 9-asset-class
investment problem.

4.3 Optimal portfolio weights

For a given level of risk, we can locate the pdidfthat generated the highest amount
of return from the set of 1775 portfolios produgedSection 4.2 Alternatively, we
can also use equatiohd) in Section 3.2ogether with a nonlinear optimiser to find
the optimum weights. The initial condition can la@domly generated or taken from
the optimum portfolio fromSection 4.2 Fig. 9 shows the found optimal portfolios
under different risk levels.



3.2

Efficient frontier

| |
| |
3l Y Optimal portfolios | | i
| |
| A
|
|

2.8+
'

2.6

Return

2.4+

2.2

|
|
|
|
|
|
|
|
|
43
al
|
|
|
|
|
|
|
|
|
|
|
|
|
1

0.2 0.8 1.2 1.8

x 10°
Fig. 9 Optimal portfolios under different risk ldse

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
S

Risk

Under the risk levelL0x10°, the optimal portfolio is (0.2, 0.15, 0, 0.17, &47, 0,
0.25, 0, 0.1653). The time spent on the nonlingéimasation is about 135 seconds.

Since the relationship between the portfolio retana asset weight combination is
highly non-linear along the efficient frontier, thecal linearization and perturbation
methods have been used to approximate the optiartbjio (Speranza, 1993; Judd,
1996; RiskMetrics, 2004 Here, we pick up 10 portfolios from the intergield

efficient frontier at around the risk lev&l0x10°. The weights of asset classes and
the return and risk of RM-WB and BRB outputs arevem in Table 6.

Table 6. 10 portfolios nearest to the optimal sohut

Asset class RM-WB BRB
World us us World
equity large large us us us us . bonds . .

. small Cash muni Return Risk Return Risk

(ex cap cap  midcap cap bonds bonds (ex

us) growth  value us)
0.2 0.15 0 0.17 0.05 0 0.1 0 0.33 273912 100524 9273 100605
0.2 0.15 0.21 0 0.05 0 0.24 0 0.15 274320 98634 3204 98715
0.2 0.15 0.03 0.17 0.05 0 0.25 0 0.15 277485 1010247485 101099
0.1 0.15 0.13 0.17 0.05 0 0.25 0 0.15 279392 1046261595 99824
0.095 0.15 0.105 0 0.25 0 0.25 0 0.15 282176 1053@81415 98341
0.2 0.15 0 0 0.25 0.092 0.158 0 0.15 272527 99947228 100359
0.2 0.15 0.21 0 0.05 0 0.1 0.1 0.19 273350 991572467 98081
0.2 0.15 0 0 0.25 0.05 0.1 0.1 0.15 274620 10090748721 101586
0.2 0.15 0 0 0.25 0.092 0.1 0.058 0.15 271747 996231918 100176
0.2 0.15 0.21 0 0.05 0 0.14 0.1 0.15 272992 978672885 98578

The stacked area graph in Fig. 10 shows that th@dtf@iolios are quite different
although they are close on the expected returrriakd
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Fig. 10 Investment weights of 10 portfolios clogesthe optimal solution

Given that the asset weights surrounding the optamlaition are highly nonlinear, the
BRB search routine might be a better method thatltital linearization method
commonly used in practice.

5. Concluding remarks

The study is dedicated to apply a BRB system to eha@ohd solve the portfolio

optimisation problem. The procedures of implemantine BRB system to portfolio

optimisation are discussed in details, and two outhare proposed to locate the

optimal portfolios under different constraints. Tadvantages of the BRB system to

portfolio optimisation are that it can:

= Represent the non-linear relationship between ati+@sget class portfolio
(represented by asset weights) and the mean akd(indicated by standard
deviation) of portfolio returns;

= Construct efficient frontier for long-term investnteising BRB interpolation; and

= Search for the optimal portfolios with analyticahthematical model;
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