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Abstract

Price-level determination requires co-ordination of monetary and �scal policy
to ensure a unique rational expectations equilibrium (REE). This paper derives
a number of implications for simple interest rate rules resulting from various
�scal strategies. We show that �scal choices under either the monetary theory
of the price-level (MTPL) and the �scal theory of the price-level (FTPL) can
challenge widely accepted principles of monetary policy. Speci�cally, we show
that a �scal rule that responds aggressively to output and in�ation may force the
monetary authorities to adopt signi�cantly more aggressive output and in�ation
stabilization policy than suggested by the Taylor Principle. We also show how
when monetary policy is severely constrained, the �scal policy maker can act to
stabilise the economy. Some policy conclusions in light of the lower zero bound for
monetary policy and debt stabilization are drawn.
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1. Introduction

This paper examines the mutual constraints operating on monetary and �scal

policy in a standard model with sticky prices and endogenous output variation. We

establish a number of propositions that will ensure a unique rational expectations

equilibrium (REE) for such a model. A number of contributions (e.g., Woodford,

2003) have emphasized a set of principles for monetary policy. Notably there is the

well-known proposition, linked to the name of John Taylor, which suggests that

anything more than an equiproportional increase in the short-term interest rate,

following an increase in in�ation, is su¢ cient to ensure a unique REE.1 We note

that this proposition is subject to the lacunae that fully characterized stabilization

policy requires consideration of both monetary and �scal policy. This insight is

of particular interest when monetary policy is constrained in some manner, for

example because of a zero lower bound or when �scal policy adopts a particularly

aggressive approach to output stabilization. Accordingly, in this paper we develop

versions of this proposition, extended to incorporate various roles for �scal policy.

The joint determination of monetary and �scal policies as a stabilization device

is well recognized.2 Recent work on simple policy rules has shown that an optimal

monetary and �scal policy should respond systematically to in�ation and output,

respectively, as this will stabilize the economy well.3 But as well as establishing

1The seminal contributions we have in mind are Taylor (1993) and (1999). In a number of
important contributions Benhabib, Schmitt-Grohé and Uribe (2001, 2002) and Schmitt-Grohé
and Uribe (2000) have criticized the universality of the �Taylor principle�both in terms of local
rather than global stability analysis, and the need to take account of structural non-linearities,
such as the zero bound on nominal interest rates when formulating optimal monetary policy.

2See Persson and Tabellini (1994) for an important collection of papers.
3See, for example, Chadha and Nolan (2007), where it is shown that optimal stabilization

policy involves an output stabilizing �scal rule and in�ation stabilizing interest rate rule. Such
policy is shown to provide a close approximation to recent experience in the US and the UK.
This is because the losses in expected utility are proportional to quadratic deviations in in�ation
and output from their full �ex-price level. We consider the joint e¤ort of monetary and �scal
policies, which may be used to pursue jointly the maximisation of representative household
utility. Note that in this set-up tensions between monetary and �scal policy do not result from
di¤erent stabilization objectives or horizons.
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principles for optimality, we would also wish to know more generally what mutual

constraints apply to these two branches of stabilization policy in order to establish

a unique REE. As a number of authors have noted, there is no guarantee that

actual monetary and �scal policy is conducted optimally. That being the case,

understanding the wider issues discussed in this paper appear important. There

are clear policy implications, for example, in both the Eurozone and in the UK,

monetary and �scal reform has tried to develop hand in glove with the joint aims

of achieving price and economic stability but in the Eurozone there remain many

question marks over how such coordination should proceed that may ultimately

undermine the monetary union.4 Furthermore if monetary policy is constrained

and cannot act in a manner consistent with the Taylor Principle, for example,

when facing the zero lower bound or within a monetary union, �scal policy may

be required to ensure stability. In this paper, we �nd that if �scal policy tries to

stabilize either or both of output or in�ation aggressively there are important

implications for the operating procedure of an interest rate setting authority,

speci�cally that a signi�cantly more active rule is required. Emerging economies

may also have the problem of dealing with an aggressive �scal policy maker and

so may have to design monetary policy to consider a more active rule than that

suggested by the Taylor Principle.

In a standard New Keynesian model, where both output and in�ation are

forward-looking, we �nd that there are tensions between the arms of stabilization

policy because of the nature of instruments employed. The interest rate operates

multiplicatively to tilt private output (consumption) whereas �scal policy acts

4In the UK, for example, a senior Finance ministry o¢ cial observes the deliberations of the
Bank of England�s Monetary Policy Committee and the Committee is itself kept closely informed
on �scal choices. The model of co-operation we explore in this paper closes mirrors current UK
practice. See House of Lords (2003) for a further analysis of the links between monetary and
�scal policy with concern on the Stability and Growth Pact uppermost. For the Eurozone, �scal
policy is conducted on a national, rather than supranational basis, and that complicates choices
over recent aspects of policy such as how to design operations to purchases government bonds
under so-called quantitative easing or, indeed, whether European wide stabilisation fund will
ever be su¢ cient to ensure �scal solvency.
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additively. Under a monetary theory of the price level (MTPL), the economy

can be well stabilized by the nominal interest rate which controls e¤ectively the

per period �ow of demand by setting intertemporal prices. On the other hand,

�scal policy a¤ects the overall level of current demand, scaling output up or down,

and is ultimately less e¤ective at stabilizing private sector welfare losses following

a shock. The implication of our analysis for monetary policy is that (i) more

attention should be paid to commitment devices for the �scal policy maker to

avoid aggressive acts of stabilization and that (ii) because of the possibility of

deleterious impact arising from an exuberant �scal policy maker, a monetary

policy maker should be somewhat concerned with output rather than simply

in�ation stabilization. The recent call for independent �scal councils by the OECD

(2010) and other policymaking institutes thus seems to be well judged.

We also clarify the role of monetary policy under the �scal theory of the price

level (FTPL), where the price level must adjust to alter the value of nominal

debt and ensure that it equals a given stream of �scal surpluses. Here in�ation

control is no longer the concern of the monetary authority with stabilization left

to the �scal policy. If we �nd this outcome unattractive and wish to maintain

MTPL then, as already argued, we need to call for ongoing �scal commitments to

stabilize the level of debt in expectation, which may imply the announcement of

plans consistent with this objective. Overall, it turns out that in order to maintain

a simple interest rate strategy to stabilize the economy there are a number of key

restrictions that need to be placed on the expected operation of �scal policy. On

the other hand if the MTPL cannot be maintained, for example if interest rates

have hit the zero lower bound, then we are able to ask ourselves what kind of

�scal policy rule is required to ensure determinacy. It turns out that unstable

debt levels and aggressive �scal policy may be required to stabilise an economy,

in which the interest rate is constrained, and this will complicate the transition

from MTPL to FTPL and back to MTPL again, or what has been termed the

exit strategy in policy circles.

Apart from analyzing Ricardian (which allows the MTPL) and non-Ricardian
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�scal policy (which leads to the FTPL), we also �nd it useful to partition �scal

policy into two separate zones: moderate and aggressive. The former (latter)

is characterized by the weight on output and in�ation in the �scal rule being

below (above) the reciprocal of the share of government expenditure in output.5

Consider �rst Ricardian �scal policy.6 It turns out that the standard (Taylor Rule)

case for monetary stabilization is a special case, where �scal policy is necessarily

moderate. But under an aggressive (but Ricardian) �scal policy we �nd that

the Taylor Principle is increasingly insu¢ cient to guarantee a unique REE and

some additional targeting of output by monetary policy is required. Under non-

Ricardian �scal policy, we �nd that the further characterization of �scal policy

as moderate or aggressive places additional restrictions on the feasible sequences

of interest rates; if �scal policy is non-Ricardian and aggressive then the in�ation

stabilization role of an interest rate rule will be irrelevant to the determination of

a unique REE. This result might be of some use in considering the appropriate

response of �scal policy under a lower zero bound, which might be to deliver highly

aggressive �scal policy.

In Section 2 we provide a short overview of some of the tensions that arise

between monetary and �scal policy via the public sector present value budget

constraint. Section 3 develops the model we use to characterize operational

monetary and �scal policy. Section 4 derives conditions for this model that ensure

the existence of a unique REE in each of four regions where �scal policy is either

moderate or aggressive and Ricardian or non-Ricardian. Section 5 concludes with

5For output the threshhold results from whether �scal policy acts to overcompensate for
booms or recessions by overstimulating demand to turn boom into recession and vice versa.
For in�ation, the result derives from the New Keynesian Phillips curve derived in Section 3.2
and stated in B4, which expresses in�ation as the current value of expected output gaps. If
these output gaps, via �scal policy are also a function of in�ation, then it turns out that the
appropriate discount rate to apply on future output gaps falls and hence in�ation becomes more
sensitive to output gaps, requiring a more aggressive interest rate rule. See Section 4.1.1, 4.1.2
and 4.3 for further details.

6Ricardian �scal policy is de�ned under Proposition 4.1 and involves a �scal commitment
to stabilise the nominal value of public liabilities. In the absence of such a commitment non-
Ricardian �scal policy occurs.
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some observations on policy. The Appendix explains the �scal set-up, the detailed

derivations of the model of section 3.

2. The Public Sector Present Value Budget Constraint

Traditionally economists have argued that the public sector faces a present-value

budget constraint (PVBC) similar to that of private agents. Given a quantity

(real value) of public liabilities, the government must plan for its expected stream

of discounted net surpluses to be just su¢ cient to meet these liabilities. In other

words, the government�s PVBC must hold identically for any feasible equilibrium

sequence of the economy�s other variables, notably the price-level and the interest

rate. In this section we set out the restriction implied by the PVBC for the interest

rate. This is a key illustration of the results we derive in Sections 3 and 4 for a

fully-�edged dynamic model. We show that a more (less) aggressive �scal policy

reduces (increases) the upper bound on the feasible sequence of interest rates. In

later sections we show that increasingly aggressive �scal policy, either towards

output or in�ation, correspondingly increases the need for o¤setting monetary

responses.

We can take the analysis further and, indeed, a recent literature due to Leeper

(1991), Sims (1994), Woodford (1997, 2001) and Cochrane (2001), relaxes the

requirement that the PVBC is an identity in all states of nature. Nevertheless,

the PVBC continues to be a relationship that is satis�ed in equilibrium. A

de�ning characteristic of this �scal theory of the price-level is a presumption that

�scal authorities do not typically coordinate their �actions�� speci�cally their

temporal (contingency) sequences for tax rates and government expenditure. We

also characterize the mutual restrictions on monetary and �scal policy in this case.

2.1. Some budgetary arithmetic

We outline the budgetary implications of the public sector PVBC in terms of the

interaction of monetary and �scal policy. Consider a deterministic economy, in
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which wealth takes one of two forms: money, which earns no interest, and one-

period nominal, riskless bonds, which do earn interest. The period public sector

�ow budget constraint is given by:7

Bt
(1 + it)

= Bt�1 + Pt(Gt � Tt)� (Mt �Mt�1); (2.1)

where Bt is the nominal quantity of debt maturing in t + 1, it is the nominal

interest rate between period t and t+ 1, Pt is the aggregate price level, (Gt � Tt)
is the real primary de�cit in period t, and (Mt �Mt�1) is seigniorage raised in

period t. A central assumption is that the monetary-�scal sequences avoid Ponzi

schemes, such that the sequence of nominal debt stocks have a zero value in the

limit,

lim
T!1

Bt+T

 
TY
j=0

(1 + it+j)

!�1
= 0: (2.2)

This condition ensures that the PVBC is satis�ed and, given the level of

outstanding liabilities at the start of any time period, the ensuing temporal

sequence of net surpluses plus seigniorage is able to meet those liabilities. Let

Tt denote the period t tax yield. We will analyze �scal rules (or regimes) of the

following form

Tt = �tGt �
(Mt �Mt�1)

Pt
+ 

Bt�1
Pt

: (2.3)

Fiscal policy is characterized by the sequence f(�t+s; t+s)gTs=0, that is by choices
on the size of de�cit, (1 � �)G, and on the extent to which outstanding debt
is retired, . Let 0 <  < 1, which corresponds to the portion of outstanding

debt carried over from the previous period. For simplicity, let us further assume

that seigniorage revenue is rebated lump sum to the private sector. The �scal

regime is now indexed simply by restrictions on the sequence f�t+sgTs=0 and this
is the key to understanding the implications of (2.2) for our class of �scal policy

rules. First, given , the �scal authority, looking forward from any time t, will

always do enough to repay the outstanding debt in existence at the start of time

7Annex A shows the steady-state implication of this contraint.
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t. Thus �scal solvency hinges on the present value of future surpluses and de�cits

in t+1; t+2; :::. So, we need to clarify the implications of (2.2) for that sequence.

It turns out that as time T !1 the fundamental requirement for �scal solvency

on any monetary-�scal program is that:

TX
s=0

24(s�1Y
j=0

(1 + it+j)

)�1
(1� )T�s(1� �t+s)Pt+sGt+s

35! 0: (2.4)

In other words, the discounted sum of net government liabilities must tend to

zero.

Rewriting our solvency condition in real terms, and assuming that the net

de�cit is constant,

(1� �)G
TX
s=0

"(
s�1Y
j=0

(1 + �t+1+j)

(1 + it+j)

)
(1� )T�s

#
: (2.5)

We require, for solvency, that the expression in square braces tend to zero in the

limit. Expression (2.5) in turn can usefully be re-written as

(1� �)(1� )TG
TX
s=0

"(
s�1Y
j=0

(1 + �t+1+j)

(1 + it+j)

)�
1

1� 

�s#
: (2.6)

A su¢ cient condition for this expression to reach zero in the limit is simply

that the term in square braces is convergent, as opposed to having a zero limiting

value. It can then be shown that this will be the case as long as the following

requirement is met in�nitely often:

is � �s+1 <  8 s � T: (2.7)

This expression has a very obvious interpretation in that it requires that the

�scal authority must eventually repay a su¢ cient portion of the debt each period

so that the discounted sum of net public liabilities tends to zero.8 Alternatively, we

8Actually this expression is an approximation, since we ignore the cross term:
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may think of it as saying that the debt retirement schedule places an upper bound

on the feasible real interest rate sequence. That interpretation will be convenient

in what follows.

3. The Model

3.1. The Representative Agent

In this section we set out the key structure of the model. The equations

characterizing equilibrium choices are derived in detail in the appendix. The

utility function, V0, for a representative agent, j, is given by,

V0 =
1X
t=0

(�
1

1 + �

�t
E0U

 
Cjt ;

M j
t

Pt
; Ljt

!)
: (3.1)

Here � is the subjective discount rate and E0 is the expectation operator at time

0. The utility function is assumed to be concave and separable in its arguments,

C, consumption,M=P , real money balances, whereM is nominal money balances

and P is the aggregate price-level, L is leisure, which is equal to 1 � N , where
available time is normalized to unity and N is labor input. In practice we shall

assume log-separability, that is, U(�) �
h
logCjt + log

�
Mj
t

Pt

�
+ log(1�N j

t )
i
. The

representative agent maximizes expected utility subject to a sequence of per period

�ow constraints:

M j
t�1 +B

j
t�1 +WtNt

j +�t � Tt � PtCjt +M j
t +

Bjt
1 + it

; (3.2)

where, PtC
j
t =

1R
0

pt(z)c
j
t(z)dz, and where (3.2) holds for all t � 0, and in each

state of nature, M j
�1 and B

j
�1 given. Let z index goods in the economy. Then,

we have that cjt(z) denotes the representative agent�s consumption of good (z),

[(pt+1=pt)� 1] � : The expression (2.7) is closely mimicked by the term we derive from a
dynamic macro model in Section 4, equation 4.2 and equations 4.12, 4.13 and 4.14 for the
selection of Ricardian or non-Ricardian �scal policy, respectively. But in the latter case, note
that because the debt retirement rate is too low then monetary policy is further restricted.
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which costs pt(z). In addition, Wt denotes the nominal wage, �t denotes pro�ts

remitted from �rms where each agent receives essentially a pooled dividend, Tt
denotes lump sum taxes, Bt denotes the nominal stock of bonds held over at the

end of period t� 1 and it is the economy-wide period nominal interest rate. The
evolution of �nancial wealth, F , is given by

F jt =M
j
t�1 +B

j
t�1; 8t > 0: (3.3)

This sequence of equations together with the transversality condition,

limT!1E0
T�1Q
j=0

(1 + it+j)
�1W j

t+T ! 0 help ensure that the agent�s optimization

problem is well behaved. Consumption is de�ned over the Dixit-Stiglitz aggregator

function, where � is the elasticity of demand for good (z),

Cjt �

24 1Z
0

cjt(z)
��1
� dz

35
�

��1

; (3.4)

with the aggregate price-level de�ned accordingly as:

Pt �

24 1Z
0

pt(z)
1��dz

35
1

1��

: (3.5)

The derivation of the agent�s optimal supply and demand decisions are standard

and are relegated to Annex B.

3.2. The Representative Firm

We assume that there are a large number of in�nitely-lived monopolistically

competitive �rms, who use only labor in the production of their di¤erentiated

good. Each period these �rms receive a symmetric productivity shock. So for �rm

i the production function at time t is given by

Yi;t = AtN
�
i;t; (3.6)
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where 0 < � < 1, and At is the productivity innovation. We further assume that

�rms face Calvo-type restrictions in setting prices but that �rms meet demand

whether or not they have been able to change prices that period. The optimal

price is given by

s
pt =

�

(� � 1)

P1
k=0(��)

kEt(�t+kP
�
t+kY

d
t+k�t+k)P1

k=0(��)
kEt(�t+kP

��1
t+k Y

d
t+k)

: (3.7)

� is the rate of time preference, � denotes the probability of the �rm having to

charge the same price next period as it did the period before, �t is the marginal

utility of consumption, �t is real marginal cost and Y dt is an index of aggregate

demand. Equations (3.5) and (3.7) jointly imply the New Keynesian Phillips

curve. We make standard assumptions on �rms�involvement in the labour market.

Again, Annex B contains further details.

3.3. Monetary and Fiscal Policy

We turn now to consider our class of feedback policy rules. As is well understood

this sticky price system implies demand determined output which may di¤er from

its �exible price steady-state (see Woodford, 2003). We shall therefore consider

the setting of the per period nominal interest rate and the primary surplus in

order to stabilize this system, that is policy rules of the form:

it = �
m(Yt � Y �t ; �t � ��t ); (3.8)

and

st = �
f (Yt � Y �t ; �t � ��t ; Bt�1); (3.9)

where it is the nominal interest rate set in period t, Yt�Y �t is output gap, �t���t
is the di¤erence between in�ation and its target rate in period t,  is the rate at

which the stock of nominal debt, Bt�1, is retired and st is the per period level

of primary surplus. Monetary policy is modelled as the control over the short-

term (one-period) nominal interest rate. In the presence of (some) sticky prices

this implies some leverage over interest sensitive endogenous variables. We shall

11



assume that the �scal authority, as is standard, sets taxes in response to the level

of contemporaneous government expenditure (which we assume is exogenous),

that seigniorage is returned lump-sum to the private sector, and crucially that

taxes respond to the level of debt outstanding at the start of the period. It is the

response of taxes to a given expenditure stream and the evolution of endogenous

variables that sets the per period �scal surplus.

Fiscal policy has a number of channels through which it acts. The �rst is

the direct channel by a¤ecting aggregate demand, that is period output, in the

economy. When the �scal policy authority runs a procyclical surplus over the

business cycle, output will stay closer its �ex-price level.9 The second channel

operates by interacting with the monetary policy maker, who is acting to stabilize

in�ation. Because expected in�ation has output as an argument and output

is being somewhat tempered by �scal policy, the interest rate is better able to

stabilize in�ation because the �scal policy maker is also stabilizing output. Taylor

(1999b) has recently demonstrated that a relationship such as (3.9) can be used

to model the course of the surplus in US data.

4. Stability and Determinacy

In this section we analyze the local stability conditions to ensure a unique REE

for the model derived in Section 3. We have linearized that model and appendix B

sets out these linear relations in full for: consumption (B1); money demand (B2);

the evolution of wealth (B3); New Keynesian Phillips curve (B4); output (B5);

interest rate rule (B6); �scal rule (B7); and public sector budget constraint (B8).

Our analysis leads to a model with 8 endogenous variables and Annex B shows

how we reduce the dimensions of this system to three. This set of three stochastic

9We shall see that the stabilizing properties of this �rst channel are restricted because if
the �scal policy maker attempts to stabilize output or in�ation over some threshold there will
more work for monetary policy to do to stabilize this economy. Hence, we partition the �scal
policy response into moderate and aggressive. Note unlike Leeper (1991) aggressive (active in
Leeper�s terminology) �scal policy here is not about the stability of debt but about the �scal
policy maker�s propensity to stabilize the economy.
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di¤erence equations can then be written in compact form as:

Etzt+1 = Azt +Gxt 8t � 0; (4.1)

where the vector of endogenous variables, zt, is given by:

zt =

24 b̂t�1ĉt
�̂t

35 :
A is a 3�3matrix andG a 3�1matrix of coe¢ cients and xt represents the bounded
forcing process acting on bonds, consumption and in�ation, which is the transpose

of
h
f̂t; ĥt; x̂t

i
. The square matrix A will have 3 eigenvalues corresponding to each

endogenous variable. Standard analysis tells us that the existence of a unique

rational expectations solution for the vector, zt, depends upon the number of

eigenvalues of the square matrix, A, that lie outside the unit circle (see Blanchard

and Kahn, 1980), corresponding to the number of non-predetermined variables. In

this case a locally unique equilibrium depends on there being two eigenvalues that

lie outside the unit circle. These roots in the familiar Ricardian case are associated

with in�ation (forward-looking due to the Calvo speci�cation) and consumption,

as agents consume out of present-value income. However, these familiar root

conditions rely on a restriction in the government�s budget constraint that �ows

from the robustness of the debt repayment schedule. We enlarge on this point

below.

Because of the block triangular structure, the analysis of the roots of the model

is relatively straightforward. We note that the matrix A can be partitioned into

pre-determined and non-predetermined variables, with matrix B corresponding

to the pre-determined variable and the 2 � 2 matrix D corresponding to the

non-predetermined variables. Note that money simply does not matter for this

equilibrium as it is pinned down by the consumption and in�ation.10 What

actually matters is technical, in the sense of what provides the unstable root.

10See Chadha et al (2008) on this point.
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See Annex B for further details.

A =

�
B C
0 D

�
4.1. The Ricardian case

We can locate the MTPL or Ricardian case by analyzing the eigenvalue of matrix

B, which corresponds to the debt accumulation equation, and is simply given by

(1� )��1. Then we have that:

(1� )��1 < 1;

 > (1� �) : (4.2)

The similarity of this expression with (2.7) is clear. In the event that this root

does not lie in that space, then a stable root has to be recovered from matrix D

and we analyze this non-Ricardian (FTPL) case below.

Proposition 4.1. A Ricardian regime requires that the rate at which

government debt is retired, , is no less than one minus the rate of time

preference.

There is a clear intuition for the Ricardian case in that there is a commitment

to retire debt at a rate  more than the rate it is expanding, �= (1 + �) = (1� �).
Should this condition not be met then monetary policy will be directly constrained

as we make clear below under an FTPL. We shall consider the implications for

monetary policy when a Ricardian regime is in place, under MTPL, for Regions

1 and 2 and when Proposition 4.1 is violated when considering Regions 3 and 4,

that is a non-Ricardian regime.
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First, we concentrate on establishing the determinacy conditions for the

remaining 2 � 2 matrix describing the evolution of the two non-predetermined
variables of zt, that is ĉt and �̂t. We show that such a matrix will admit a number

of distinct parameter constellations under which both eigenvalues will lie outside

the unit circle. We will discover that the �rst case corresponds to �moderate�

�scal policy and the second to �aggressive��scal policy. Recall that aggressive

�scal policy is simply indexed by the extent to which the surplus responds to

endogenous state variables i.e., �fy and �
f
�.

4.1.1. Region 1: �Moderate��scal policy under MTPL

Once we have partitioned matrix A we can analyze the equation of motion for the

decoupled equations:

Et
_
zt+1 = D

_
zt +G

_
xt 8t � 0;

where �z0t = [ĉt �̂t], G is a parameter matrix and
_
xt is the vector of forcing variables

acting on consumption and in�ation, respectively. In Annex B we show that

matrix D is given by:

D =

0@ 1 +
�my �3

1��fy (1��3)
+ ��1��3

1��fy (1��3)
�my �

f
�

1��fy (1��3)
+ �m� � ��1 + ��1��f�

1��fy (1��3)

� ��1��3
1��fy (1��3)

��1 � ��1��f�
1��fy (1��3)

1A :
Assuming a Ricardian regime, we establish the threshold values for �fy and �

f
� such

that the �scal policy can be thought of as moderate and not acting with su¢ cient

force to alter standard prescriptions on the operation of interest rate rules. Our

�rst condition is standard and requires that:

(1� �)
�

�my + �
m
� > 1: (4.3)

In the absence of �scal policy, (�fy = �f� = 0; c = y), equation (4.37) is both

necessary and su¢ cient for a unique REE; this is the case analyzed in Woodford
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(2003, Chapter 4) and it corresponds to the Taylor Principle.11 Let us make

these conditions more general by considering what restrictions we must place on

�fy ; �
f
� 6= 0 such that a unique REE is attained.

Note that for �fy <
�
1� c

y

��1
, i.e., our moderate �scal policy, Tr(D) will in

general be positive unless �f� breaches some bound. Hence, the �rst condition

for moderate �scal policy is simply that �scal policy does not try to push output

too strongly back to equilibrium. Note therefore that the determinacy conditions

under moderate �scal policy will also imply some restriction on �f�, as well as

those in the monetary reaction function. We therefore run through the relevant

conditions for Case 2i (see Annex B):

�my + ��
m
� >

(� � 1) +
�
1� c

y

� �
(1� �)�fy + ��f�

�
c=y

: (4.4)

Solving for �f�, we obtain:

c
y

�
�my + ��

m
�

�
+ (1� �)�

�
1� c

y

�
(1� �)�fy

�
�
1� c

y

� > �f�: (4.5)

The next condition requires:

c
y
�my + �

�1�
�
c
y
�
�
1� c

y

�
�f�

�
�
1� �fy

�
1� c

y

�� > ��: (4.6)

And solving for �f�, we obtain:

�
�
1� �fy

�
1� c

y

��
+ c

y

�
�my + �

�1�
�

��1�
�
1� c

y

� > �f�: (4.7)

11It is clear that it is not only the weight on in�ation in the interest rate rule that counts, but
the sum of the weights (i.e., the weight on in�ation plus the weight on output).
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Conditions (4.5) and (4.7) indicate there exists an upper bound on �scal policy

action towards in�ation, which we interpret, in conjunction with the limit on �fy ,

as the limit to �scal moderation. It is straightforward to see that (4.5) and (4.7)

collapse to an identical expression when restriction (4.3) holds with equality. So

the attainment of condition (4.7) as an inequality will relax the restrictiveness of

condition (4.5), where �m� is an argument, and so when condition (4.7) is satis�ed

so will condition (4.5).12

Therefore only if �scal policy does not observe the constraints derived here

will condition (4.3) be insu¢ cient to determine a unique REE. We discuss the

case of �fy >
�
1� c

y

��1
in Section 4.1.2 but discuss brie�y here why an in�ation

stabilizing �scal rule may require some further stabilization of in�ation and output

via the monetary rule. Mechanically this is because when in�ation is also targeted

by the �scal rule, the current period in�ation rate becomes more sensitive to a

given stream of expected in�ation and so will require more aggressive stabilization

by the interest rate rule. We can see this point quite easily by noting that when

the �scal surplus targets in�ation, output becomes a function of in�ation. When

we then substitute out for in�ation we then �nd that in�ation is more sensitive

to a given stream of expected output gaps i.e. the Phillips curve becomes more

vertical.

�t = Et

1X
i=0

�i
1

1� f(�f�)
�yt+i (4.8)

In e¤ect, even though in�ation continues to be pinned down by the expansion

of output, when the �scal policy maker also uses output to stabilize in�ation there

are reduced output e¤ects from any given stream of demand shocks meaning that

in�ation may respond instead. Note that in�ation may become more volatile

unless further more aggressive interest rate policy is adopted. Moderate and

12Note that that the optimal weights derived for in�ation and output stabilization in Chadha
and Nolan (2003) conform to stable region outlined by Proposition 4.2.

17



Ricardian �scal policy is thus a necessary pre-condition for the Taylor Principle

to e¤ect a determinate equilibrium.

Proposition 4.2. Under moderate �scal policy, de�ned by explicit limits on �fy
and �f�, a greater than equiproportional interest rate response to in�ation is

su¢ cient to ensure a unique REE.

4.1.2. Region 2: �Aggressive��scal policy under MTPL

It is possible for the �scal rule to locate an alternate stable region where matrix D

delivers two eigenvalues greater than j1j. When �scal policy remains Ricardian but
�fy and �

f
� are above the limits outlined in section 4.1.2, in order to ensure a unique

REE, the monetary authority itself will have to become more aggressive. This

aggression is speci�cally induced by the chosen �scal parameters but interest rate

policy can still determine a unique REE under MTPL. Following the conditions

for a local unique rational expectations equilibrium, following Case 2ii in Annex

B we �rst �nd that,

�my + ��
m
� >

� (� + 1) +
�
1� c

y

� �
(1 + �)�fy + ��

f
�

�
c=y

: (4.9)

We also �nd that:

1�
�
1� c

y

��
�fy + ��

f
�

�
+
c

y

�
�my + ��

m
�

�
� 2�F � ��F � � c

y
�my � �

�
c

y
�
�
1� c

y

�
�f�

�
> ��F;

And this expression turns out to be equivalent to Condition (4.3), so we move to

the next condition;

(1 + �)�my + ��
m
� >

� (2 (1 + �)) + (2 (1 + �))�fy
�
1� c

y

�
� � c

y
+ 2��f�

�
1� c

y

�
c=y

:

(4.10)
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In other words, we see that monetary responses are rising in �scal responses. We

can combine (4.9) and (4.10) to yield the key requirement for determinacy in this

system:

(2 + �)�my +2��
m
� >

� (3 (1 + �)) + (3 (1 + �))�fy
�
1� c

y

�
� � c

y
+ 3��f�

�
1� c

y

�
c=y

:

(4.11)

We note that condition (4.11) shows that aggressive �scal policy, in the spirit

of Section 2, per se raises the lower bound for the sequence of interest rates.

We also �nd that the extent to which the interest rate rule can stabilize the

economy by reacting to output is enhanced. Note that �my in this region is

premultiplied by a number near three rather than near zero (i:e:1� �), as in
Region 1. Recall that �scal policy acts through aggregate demand and aggression

towards output, as indexed by �fy and �
f
� leads, in general, to the need for a

substantially more aggressive interest rate rule than that suggested by (4.3) alone.

Unabated aggressive �scal policy will set out to drive output when it is above

(below) its �exible price level back below (above) its �exible price level and hence

will require more aggressive monetary policy, particularly towards output. But

note rather than ceding control over the determinacy of a unique REE, monetary

policy can act with some strength, particularly towards output, which has an

increasing fraction set by (aggressive) �scal policy. Unless such �scal policy can

be ruled out by commitment there is a strong case for monetary policy to act

strongly towards output as well as in�ation in order to determine a unique REE.

Proposition 4.3. Under aggressive �scal policy, just greater than an

equiproportional response to in�ation is generally insu¢ cient to ensure a unique

REE, as more aggressive output stabilizing policy is generally required.
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4.2. The Non-Ricardian case

Recall from our discussion of Proposition 4.1 that should matrix B not yield a

(backward) stable root, then we have to recover such a root from matrix D. In

this case, the eigenvalue of matrix B will be given by:

 < ��: (4.12)

Hence, for our purposes, policy elasticities need to generate �saddlepath�behavior

from matrix D; where we require one root to lie outside the unit circle, and one

root to lie inside the unit circle. Again we are required to distinguish between

�moderate� and �aggressive� �scal responses. We note that in this case, the

government�s PVBC can only hold if the interest rate sequence does not react

much to in�ation, and so the stream of interest rates no longer meets condition

(4.3) . We will �nd, as well as this upper bound on the feasible interest rate

sequence, the FTPL also places restrictions on the lower bound for interest rates.13

4.2.1. Region 3: �Moderate��scal policy under FTPL

We employ Case 3 from Annex B to uncover the conditions under which the

D matrix will yield a saddlepath. It turns out that in this case necessary

and su¢ cient conditions on monetary policy to ensure determinacy in the non-

Ricardian regime are:

�1� 1 + �
�

�my �
2(1 + �)

�
[1� (1� c=y)]�fy < �m� < 1�

1� �
�

�my : (4.13)

The point here is that the interest rate rule ends up being severely restricted: it

is necessary for monetary policy to breach Condition (4.3) and move no less than

13In this sense the MTPL places lower bound restrictions on the interest rate sequence and
the FTPL places both lower and upper bound restrictions on the sequence.
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equiproportionally with in�ation.14 In this region, the �scal policy maker, who

has not committed to stabilize the debt stock requires in�ation to stabilize the

real value of public liabilities. In this case, the monetary policy maker must not

act to stabilize in�ation i.e. by raising real rates, because that will act to raise

the current value of government liabilities (see equation B8 in Annex B) because

the current value of future surpluses would be reduced by such action. Under

moderate �scal policy, the left hand side of the conditions are not particularly

restrictive as we note that for �my , �
f
y � 0 they are bounded above at -1. As

output stabilization by the interest rate rule has limited e¢ cacy in this set-up,

(since the rate of transformation from output to in�ation is relatively low i.e.

(1� �)=�), it is still possible for the interest rate rule to stabilize output to some
great extent, even under the FTPL.

Proposition 4.4. Under non-Ricardian but moderate �scal policy, monetary
policy cannot act su¢ ciently to stabilize in�ation and the Taylor Principle must

be violated.

4.2.2. Region 4: �Aggressive��scal policy under FTPL

Similarly, using Case 3 of Annex B, under aggressive �scal policy, we can write

the necessary and su¢ cient conditions to ensure determinacy in the non-Ricardian

regime. But note here that the left hand side of the conditions markedly reduce

the set of options for the monetary policy maker.

2
h�
1� c

y

�
��f� � (1 + �)

�
1� �fy

�
1� c

y

��i
(c=y)�

�
(1 + �)�my

�
�1 < �m� < 1�

1� �
�

�my :

(4.14)

We �nd a similar story under aggressive �scal policy to that under moderate.

There is an upper bound constraint on the interest rate sequence, once we

14A version of this result was originally exposited in Woodford (1996).
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introduce the FTPL, and some role for output stabilization by the interest rate

rule remains. But for su¢ ciently aggressive �scal stabilization of in�ation, we �nd

that the extent to which the interest rate stabilizes in�ation becomes irrelevant.

In this region the bounds on interest rate stabilization are likely to matter from

below and from above. In the next subsection we will illustrate these �ndings in

a little more detail.

Proposition 4.5. Under non-Ricardian and aggressive �scal policy, monetary
policy operates within a signi�cantly constrained parameter sub-space and can be

treated as being required to be �xed.

4.3. Illustration of Key Results

In this section, we illustrate some the key results outlined in Sections 4.1 and 4.2

with some simple plots of determinate zones under various monetary and �scal

strategies. Figure 1 plots, for standard parameter values (see Table 1), the zone of

determinacy (denoted by REE) in �my ��f� space for (4.4). The central (thick) line
shows, for �m� = 1 (loosely speaking when the Taylor Principle is just being met),

the rate at which the monetary authority must increase the weight on output

should the �scal rule stabilize in�ation to a signi�cant degree. Unless ruled out

by commitment to �scal moderation, more aggressive in�ation stabilization by

the interest rate rule would act to mitigate the impact of in�ation stabilization by

the �scal rule. The dotted line shows, for example, that when �m� = 2 the �scal

authority must place a weight of over 3 on in�ation before output stabilization by

the interest rate rule is strictly necessary.

Figure 2 illustrates the zone of determinacy for Condition (4.7) where the

interest rate rule is constrained to employ output stabilization alone. Note the

central (thick) line corresponds very closely to the central line for Figure 1. This is

because the two conditions collapse to an identical one when �m� �
(1��)
�
�my = 1. We

illustrate the limited implications for the interest rate rule that result from altering
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the extent of (moderate) �scal stabilization as the shifts in the curves partitioning

stability are relatively small. This is because there is little intertemporal shifting

of demand brought about by �scal surpluses stabilizing output in this set-

up. However, for signi�cantly large in�ation weights in the �scal rule, output

stabilization by the interest rate rule would become a requirement since in�ation

has a clear intertemporal price, as the rate at which expected in�ation is traded

for current output.

For Figure 3, we maintain the partition for Ricardian �scal policy, such that the

MTPL obtains, but illustrate the implications of allowing the �scal rule to place a

large weight on output stabilization. In each case we maintain an equiproportional

response on the interest rate rule to an in�ation shock, �m� = 1. We therefore

show the extent to which output must be targeted by the interest rate rule as

�aggressive��scal policy places an increasingly higher weight on output. Note also

that greater in�ation stabilization by the �scal rule also impacts directly on the

extent of required output stabilization by the interest rate rule.

Figure 4 illustrates the FTPL, in which �scal policy becomes non-Ricardian.

In this case, the two equations for output and in�ation must deliver a saddlepoint.

As a result, monetary policy is constrained to the converse of the Taylor Principle,

see (4.12) i.e., real rates should not rise in the face of an in�ation shock. This

might be interpreted as a what might happen under a zero bound, when policy

cannot fall to o¤set falling in�ation. The upper line in Figure 4 illustrates the

upper bound constraint on �m� and the lower line illustrates that a large set of

negative in�ation weights on the interest rate rule are possible and that the implicit

constraints on output in the monetary rule are somewhat attenuated.

Figure 5 illustrates the FTPL under the further supposition that �scal policy

is aggressive. Note that, in this case, the extent to which �scal policy stabilizes

in�ation acts to constrain further the feasible choices for in�ation stabilization

by the interest rate rule. In fact we show that for su¢ ciently large weights on

in�ation in the �scal rule, i.e., �f� > 3, it is not in�ation stabilization that matters

for the attainment of a unique REE but the weight the interest rate places on
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output.

These Figures illustrate the main results of this paper: that stabilization policy

pursued jointly by monetary and �scal policy may well require some additional

weight on output in the monetary rule. Under moderate �scal policy that

additional weight may not be a requirement. But there are conditions when that

additional weight appears to be more substantial. Speci�cally, we show that if

�scal policy responds to any great extent to in�ation or output, monetary policy

needs to respond robustly towards output to be sure of bringing about a unique

REE. Finally, we have shown that under the FTPL interest rates cannot stabilize

in�ation but that output stabilization remains possible and under aggressive

�scal policy may be a requirement of a unique REE. Without well understood

restrictions on �scal policy, interest rates may need to respond more forcefully to

output.

5. Conclusions

In this paper we analyse a simple micro-founded model in which both monetary

and �scal policy may play a role in stabilization. By closing �scal policy down we

note that this model reverts to the set of in�ation and output equations employed

with such widescale e¤ect in the literature (see Woodford, 2003). This model turns

out to be a special case where �scal policy is �moderate�, non-in�ation stabilizing

and Ricardian. This is a key �nding, which implies that a policy maker looking

to implement standard policy prescriptions involving the Taylor Principle must

ensure �scal policy stabilizes debt and is not too aggressively stabilizing: simply

announcing an in�ation target is not going to be enough.

We studied the conditions for ensuring a unique REE for this model when

�scal policy can be Ricardian or non-Ricardian, and is also either moderate or

aggressive. Monetary policy invoking the �Taylor Principle�is su¢ cient to obtain

stability under non-aggressive �scal policy with the important proviso that �scal

policy does not act against in�ation to any great extent. But we also show that
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the Taylor Principle is palpably insu¢ cient to ensure stability when �scal policy

is aggressive and strictly ruled out when non-Ricardian.

In e¤ect there are two possible policy conclusions for the Ricardian (monetary

and) �scal policy maker to make. Option 1: In order to maintain a Taylor

Principle, commit �scal policy to be bounded by what we term non-aggressive

policy i.e. where the weight on output in the �scal rule is constrained and

where the �scal policy maker does not act to stabilize in�ation. We can note

such restrictions being placed on cyclical de�cits in the EMU under the Pact for

Stability and Growth or in attempts to pass balanced budget amendments in the

USA. Option 2: In the absence, or infeasibility, of such a �scal commitment, the

monetary authority will have to consider augmenting the Taylor Principle with

an output commitment or accept a higher lower bound constraint on the weight

on in�ation in the monetary rule than implied by the Taylor Principle. We note

that this restraint on �scal policy is typically implemented or suggested by the

IMF under Article IV consultations.

Finally it should not escape our attention that if the Taylor Principle cannot

be observed, perhaps because of the zero bound constraint or some such other

impediment to monetary policy, then non-Ricardian �scal policy may well be

required for the economy to obtain stability. The growth of public debt under

the current crisis thus seems to be relevant to note and any tendency to switch

regime, from MTPL to FTPL and then back again, will make statements about

any exit strategy pivotal.
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Annex A:
A1 The Budget Constraint
The period constraint is,

Bt
(1 + it)

= Bt�1 + Pt(Gt � Tt)� (Mt �Mt�1): (A.1)

We analyze �scal rules of the form,

Tt = �tGt �
�
Mt �Mt�1

Pt

�
+ 

Bt�1
Pt

: (A.2)

Let St � (1 � �t)Gt denote the per period net surplus. If we substitute A.2
into A.l, de�ate, we �nd in steady state that.

b = (1 + �)(1� )b+ (1� �)S: (A.3)

Annex B:
B1 The Solution
Using the model set out in Section 3 of the main paper and derived in detail

below, we con�ne ourselves to consider equilibria in which the vector of endogenous
variables, given the policy rules in place, remains close to the value it would take
in a stationary deterministic equilibrium.
The Model
The Representative Agent Optimality conditions
Let f�tg

1
t=0 be a (state-dependent) temporal sequence of Lagrange multipliers

associated with the �ow budget constraint of the agent. At each date and in each
state the following equations, (1.1)�(1.4) are amongst requirements for an interior
optimum;

1

PtCt
= �t; (5.1)

1

Mt

+

�
1

1 + �

�
Et�t+1 = �t; (5.2)

1

1�Nt
= �tWt; (5.3)

�t = (1 + it)

�
1

1 + �

�
Et�t+1: (5.4)
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Using equations (1.1) and (1.4) in (1.2) uncovers the money demand relation:

Mt

Pt
= Ct

�
1 + it
it

�
: (5.5)

(1.1) and (1.4) imply the consumption Euler equation:

EtPt+1Ct+1 =
1 + it
1 + �

PtCt: (5.6)

The labor supply function results from (1.1) and (1.3):

Nt = 1� Ct
�
Wt

Pt

��1
: (5.7)

The Representative Firm
It is well known that in our framework the demand for the ith product is given

by

ct(i) =

�
pt(i)

Pt

���
Y dt ; (5.8)

where Y dt denotes aggregate demand, the sum of private expenditure and
government expenditure. In the model we develop there will be an e¤ect directly
from government expenditure. A cost-minimizing �rm required to meet current
demand will hire labor according to the following optimality condition,

wt = �t(@Yi;t=@Ni;t); (5.9)

where �t measures real marginal cost. Total per-period pro�ts then are given by

�t(i) = pt(i)

�
pt(i)

Pt

���
Y dt � �t

�
pt(i)

Pt

���
Y dt : (5.10)

As regards price setting behavior we follow Calvo (1983) and many subsequent
analysts and assume that �rms which set prices in period t face a probability, �
(0 � � < 1) of having to live with the same decision next period. More generally,
we assume that a �rm which sets its price this period faces the probability �k of
having to charge the same price in k-periods time. The �rm now has to choose
its optimal price.15 The optimal price,

s
pt, is therefore given by:

s
pt =

�
P1

k=0(��)
kEt(�t+kP

�
t+kY

d
t+k�t+k)

(� � 1)
P1

k=0(��)
kEt(�t+kP

��1
t+k Y

d
t+k)

: (5.11)

15The details of this problem are well understood, and we leave them to an appendix, available
upon request.
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Here �t+k is marginal utility where the main impact on optimal prices is given by
the stream of current and expected real marginal costs.
The evolution of the aggregate price-level is given by a weighted average of

this period�s optimal price and last period aggregate price:

Pt = [(1� �)
s
p
1��
t + �P 1��t�1 ]

1=(1��): (5.12)

B2 State vector, zt

These linear approximations to the model�s key equations are straightforward
to derive and are given below:

ĉt = Etĉt+1 � {̂t + Et�̂t+1; (B1 Consumption Euler Equation)

m̂t = ĉt � (1=�)̂{t; (B2 Money Demand Equation)

ŵt+1 = (b=w) b̂t + (1� b=w) m̂t; (B3 Evolution of Wealth)

�̂t = �Et�̂t+1 + �ŷt; (B4 New Keynesian Phillips Curve)

ŷt = (c=y)ĉt + (1� c=y)ŝt; (B5 Output)

{̂t = �
m
y ŷt + �

m
� �̂t; (B6 Interest Rate Rule)

ŝt = �
f

y ŷt + �
f

��̂t; (B7 Fiscal Rule)

b̂t = (1� )��1b̂t�1 + [(1� )��1 � 1]ŝt + {̂t �Et�̂t+1: (B8 Debt Accumulation)

In a series of simple steps we substitute out the following endogenous state
variables: {̂t, m̂t, ŵt+1, ŷt, ŝt. Note �rst that we can substitute output as it is
simply a weighted average of consumption and the choices on the �scal rule, B7.
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ŷt =

c
y
ĉt + (1� c

y
)�f�

1� (1� c
y
)�fy

� F (�) : (B5�)

We normalize the natural rate to zero. Substitution of the interest rate rule, A6,

and the New Keynesian Phillips curve, B4, solved for �̂t+1, allows us to re-write
the consumption Euler equation in terms of consumption and in�ation alone. In
the representative agent set-up here government debt is part of �nancial wealth
and so is uniquely pre-determined for the next period as a weighted average of
debt and money holdings, it does not need to enter the state vector. Similarly and
�nally, we note that the quantity of money is this model is simply pinned down
by period consumption and interest rate choices we do not need to specify money
as a separate variable within the state vector.

B3 Jacobian Matrix

There is a well developed theory for the existence of a unique rational
expectations solution for a system of linear di¤erence equations. The resulting
system of di¤erence equations can be written in compact form as:

Etzt+1 = Azt 8t � 0; (B9)

where the vector of state variables, zt 2 <n and is given by:

zt =

24 b̂t�1ĉt
�̂t

35 ;
where n = 3 and the n � n matrix A has constant coe¢ cients and is given by:
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B4 Eigenvalues

The solution of this system is zt = Atz0 and hence the dynamic behaviour of
the system depends upon the stability, or otherwise, of the square matrix, A. The
stability of which will in turn depend upon the values of roots of the characteristic
polynomial, speci�cally whether their moduli is either less than or equal to or
greater than unity. The roots of A are given by the solutions to the characteristic
polynomial, where, � represent the roots and I is the identity matrix:

det (A� �I) = 0 (B10)

The square matrix A will have n eigenvalues corresponding to each state
variable. One way to arrive at the eigenvalues is through use of the Jordan
canonical decomposition which requires that there also exists a nonsingular n � n
matrix, B, such that :

A = B�1�B

where � represents a diagonal matrix in which each entry �ii contains one of
n distinct eigenvalues of A, �n, ordered by increasing absolute value. This matrix
� can thus further be decomposed into the following form:
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� =

�
�1 0
0 �2

�
:

Such that the m eigenvalues of �1 lie inside the unit circle and the n � m
eigenvalues of �2 lie outside the unit circle. Standard analysis tells us that the
existence of a unique bounded rational expectations solution for the vector, zt,
depends upon the number of eigenvalues of the square matrix, A, that lie inside
the unit circle (see Blanchard and Kahn, 1980), �m, corresponding exactly to the
number of non-predetermined state variables, m, which will, of course, imply that
the number of eigenvalues on or outside the unit circle, �n�m. For our model,
n�m = 2.
But because of the block triangular structure of the matrix, A is decomposable

or reducible such that we note that the matrix A can be partitioned into pre-
determined and non-predetermined variables, with 2 x 2 matrix D corresponding
to the Jacobian for the non-predetermined variables, and B corresponding to the
Jacobian for the pre-determined variable(s).

A =

�
B C
0 D

�

The canonical decomposition can then be undertaken on matrices B and D
separately from the eigenvalues can be obtained. First, we consider the case of
B which will deliver a stable eigenvalue if its diagonal element is less than one
in which case we will require the matrix D to deliver two unstable eigenvalues
in order for the sequence fzg1t=0 to be bounded to a unique rational expectations
equilibrium. Secondly, we consider the case in which B does not deliver a stable
eigenvalue and then in which case the matrix D will be required to deliver one
stable and one unstable eigenvalue. It is thus the choice on the diagonal of the B
matrix that determines how monetary and �scal policy should operate in order to
ensure a unique rational expectations equilibrium.
Let us concentrate on the matrix D for which we outline the conditions under

which the roots, �1 and �2 lie inside or outside the unit circle. First, we factor
the characteristic polynomial and examine whether the roots fall outside the unit
circle, p (1).
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det (A� �I) = p (�) = (�� �1) (�� �2) (B11)

p (1) = (1� �1) (1� �2) = 1� (�1 + �2) + �1�2 (B12)

Clearly in the case where both roots lie inside or outside the unit circle the
p(1) > 0 but in the case of positive roots either side of the unit circle A9 will be
negative.

Case 1 - �1;2 < j1j ; p (1) > 0:

For �1;2 < j1j, then �1�2 < 1 and �1 + �2 < 2.

Case 2 - �1;2 > j1j ; p (1) > 0:

For �1;2 > j1j, then �1�2 > j1j and �1 + �2 > j2j.

Case 3 - �1 < j1j and �2 > j1j ; p (1) < 0:

For �1 + �2 > 0, �1�2 � (�1 + �2) < �1 and �1�2 + (�1 + �2) > �1;
For �1 + �2 < 0, �1�2 � (�1 + �2) > �1 and �1�2 + (�1 + �2) < �1.

Clearly for the MTPL, Case 2 applies and for the FTPL Case 3 applies. We
then must examine the parameters of theD matrix and determine whether subject
to the eigenvalue from the B matrix whether one or two unstable eigenvalues are
required to ensure the satisfaction of a unique rational expectations equilibrium
for the state vector zt.
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Figure 5.1: Boundary Conditions for 4.4

Table 1: Table of Parameters
Symbol Value Description
r 0.05 Real interest rate
� 0.95 Subjective discount factor
� 0.053 Subjective discount rate
 0.06 Rate of debt retirement
c
y

0.6 Steady-state consumption-output ratio
m
w

0.1 Steady-state money-wealth ratio
� 0.5 Phillips curve slope
w
c

0.7 Steady-state wealth-consumption ratio
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Figure 5.2: Boundary Condition for 4.7
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Figure 5.3: Boundary Conditions for 4.11
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Figure 5.4: Boundary Condition for 4.13
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Figure 5.5: Boundary Condition for 4.14

37


