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Abstract

This paper considers a formulation of the extended constant or time-varying
conditional correlation GARCH model which allows for volatility feedback of either
sign, i.e., positive or negative. In the previous literature, negative volatility spillovers
were ruled out by the assumption that all the coefficients of the model are non-
negative, which is a sufficient condition for ensuring the positive definiteness of
the conditional covariance matrix. In order to allow for negative feedback, we
show that the positive definiteness of the conditional covariance matrix can be
guaranteed even if some of the parameters are negative. Thus, we extend the results
of Nelson and Cao (1992) and Tsai and Chan (2008) to a multivariate setting. For
the bivariate case of order one we look into the consequences of adopting these
less severe restrictions and find that the flexibility of the process is substantially
increased. Our results are helpful for the model-builder, who can consider the
unrestricted formulation as a tool for testing various economic theories.
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1 Introduction

The availability of multivariate GARCH (MGARCH) models is essential for enhancing our
understanding of the relationships between the (co)volatilities of economic and financial
time series. For recent surveys on MGARCH specifications and their practical importance
in various areas such as asset pricing, portfolio selection and risk management see, e.g.,
Bauwens et al. (2006) and Silvennoinen and Teräsvirta (2007a). There are two major
problems in specifying a valid multivariate model. First, in many formulations the num-
ber of parameters increases quickly with the dimensionality of the model and hence there
is a need for parsimonious parameterizations. Second, multivariate specifications have
to be parameterized in a way that guarantees the positive definiteness of the conditional
covariance matrix almost surely at all points in time. In this article, our focus is on the
latter issue. In most of the currently available specifications the positive definiteness is
achieved by making rather restrictive assumptions. Either feedback between the condi-
tional variances is completely ruled out, or it is a priori assumed to be positive. For
a general class of MGARCH formulations, we derive the necessary and sufficient condi-
tions for the positive definiteness of the covariance matrix and show that these weaker
conditions allow for negative volatility feedback.

Bollerslev’s (1990) diagonal constant conditional correlation (DICCC) GARCH spec-
ification is among the most commonly employed multivariate models and serves as a
benchmark against which other formulations can be compared.1 The diagonal structure
implies that each variance behaves as a univariate GARCH process. Hence, the positivity
of each conditional variance can be achieved by simply assuming that the parameters of
each equation satisfy the conditions derived in Nelson and Cao (1992). However, the main
drawback of the diagonal specification is that it rules out potential volatility feedback by
assumption. As a consequence, the autocorrelation function of each of the squared ob-
servations of the multivariate formulation is no more flexible than that of a univariate
GARCH process.

A generalized version of the DICCC model is defined by Jeantheau (1998) and termed
extended CCC (ECCC)-GARCH by He and Teräsvirta (2004).2 In this new formulation
the off-diagonal elements of the matrices are allowed to take positive values (see also
Ling and McAleer, 2003). Clearly, under this assumption positive volatility feedback is
incorporated into the model. The results of He and Teräsvirta (2004) show that the
squared observations of the extended specification have a remarkably richer correlation
structure than those of the diagonal one and, hence, are more suited for replicating the
manifold features of empirical autocorrelation functions that are observed in practice. In
addition, Nakatani and Teräsvirta (2007) suggest a procedure for testing the hypothesis
of a diagonal structure against the hypothesis of volatility feedback within the extended
framework. Although their test does not place any restriction on the sign of the feedback

1Other multivariate GARCH models are the CCC-ARCH process that appears in Cecchetti et
al. (1988) or the VECH model of Bollerslev et al. (1988). A multivariate specification that can be
viewed as a restricted version of the VECH model is the BEKK formulation defined in Engle and Kroner
(1995). Scherrer and Ribaritis (2007) deal with issues of structure and parametrization of VECH and
BEKK models.

2For empirical applications of the extended version see Nakatani and Teräsvirta (2007).
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under the alternative, they impose the non-negativity constraints during the estimation
and, hence, test the null of no volatility spillovers against the alternative of positive
feedback. The assumption that only positive feedback is allowed for is tempting because
positive constants and parameter matrices with non-negative coefficients are a sufficient
condition for the positive definiteness of the conditional covariance matrix in the extended
formulation. Since Bollerslev (1988) was the first to impose the non-negativity restrictions
on the parameters of the univariate process, we will refer to the corresponding constraints
for the multivariate model as Bollerslev’s conditions. He and Teräsvirta (2004) point out
that despite the appealing theoretical properties of the extended formulation, more work
is needed to find out how useful it is in practice.

In summary, the currently available specifications are somewhat extreme. That is, at
the one extreme, the diagonal model assumes that there is no causal link between the
volatilities, whereas, at the other extreme, the extended version (in which the parame-
ters are restricted to being non-negative) only allows for a positive variance relationship.
Leboit et al. (2003) point out that “although it can be useful to impose sensible restric-
tions for forecasting purposes, there is also the danger of employing restrictions that are
strongly violated by the data”.

At this point one alternative process suggests itself. That is, we consider a formulation
of the extended model which allows for feedback effects between the volatilities, which
can be of either sign, positive or negative. We will term this specification the unrestricted
ECCC (UECCC)-GARCH. A crucial problem concerns the identification of necessary
and sufficient conditions for the unrestricted model to have positive definite conditional
covariance matrix.

Nelson and Cao (1992) derived necessary and sufficient conditions for the positivity of
the conditional variance of a univariate GARCH(p, q) model with p ≤ 2 and a sufficient one
when p > 2. Recently, Tsai and Chan (2008) have shown that the latter condition is also
necessary.3 In this paper we show that the methodologies developed in Nelson and Cao
(1992) and Tsai and Chan (2008) can be applied to the N -dimensional UECCC-GARCH.
We do so by expressing each of the N conditional variances as a ‘univariate’ ARCH(∞)
specification. That is, each variance admits an infinite moving-average representation in
terms of the N convolutions of the GARCH kernels and the corresponding squared errors.
Hence all the N conditional variances are always non-negative if all the N2 kernels are
non-negative. For practical implementation we suggest estimating first the unrestricted
model and, in case some of the estimated parameters are negative, validating the necessary
and sufficient conditions ex-post.4

He and Teräsvirta (2004) investigate the properties of the auto- and cross-correlations
of the squared errors in the extended model of order (2, 2) under the assumption that
all the parameters are constrained to be positive. The results in this research suggest
that relaxing these constraints allows for more flexibility in the shape of the correlation

3Non-negativity conditions for the fractionally integrated GARCH (FIGARCH) and the hyperbolic
GARCH model can be found in Conrad and Haag (2006) and Conrad (2007) respectively. Finally, non-
negativity conditions for ARMA processes are provided by Tsai and Chan (2006).

4In a recent article, Gourieroux (2007) also deals with the problem of deriving positivity conditions
for multivariate volatility processes. However, his results apply to bivariate autoregressive volatility
specifications only.
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functions. It thus appears that the unrestricted model (the one with possibly negative
parameters) may characterize some features of the series that are not adequately captured
by the restricted one.5

While empirical violations of the Bollerslev constraints might be thought of as resulting
either from sampling error or model misspecification, we show that this is not necessarily
the case. Interestingly, they may be in line with economic theory. For example, several
theories predict either a positive or a negative association between the variability of infla-
tion and output growth uncertainty (for more details and a review of the literature, see,
Fountas et al., 2006).6 Similarly, Caporin (2007) argues that an increase in stock return
volatility may lead to a reduction in the variance of volume.7

The outline of the paper is as follows. Section 2 summarizes some basics concerning
the notation used throughout the paper and introduces the unrestricted specification.
The main results are stated in Section 3. Section 4 contains two empirical examples and
the conclusions can be found in Section 5. Appendix A briefly discusses the second and
fourth moment structure of the model, while Appendix B contains all the proofs.

2 The Model

2.1 Notation

Throughout the paper we will adhere to the following conventions. In order to distinguish
matrices(vectors) from scalars the former are denoted by upper(lower)-case boldface sym-
bols. X(L) = [Xij(L)]i,j=1,...,N denotes an N × N matrix polynomial in the lag operator
L, i.e., with ijth element Xij(L) being a polynomial of order p. Using standard notation
det[X(L)] denotes the determinant, Xji(L) the X(L) matrix without its jth row and ith

column, and adj[X(L)] = [X
{a}
ij (L)]i,j=1,...,N denotes the adjoint of the X(L) matrix. That

is, X
{a}
ij (L) = (−1)i+jdet[Xji(L)] is a scalar polynomial of order (N − 1)× p.

Furthermore, for square matrices X = [xij]i,j=1,...,N ∈ RN×N we define vec(X) as the

N2×1 vector in which the columns of the square matrix X are stacked one underneath the
other. The symbols ¯ and ⊗ denote the Hadamard and Kronecker products respectively.

Moreover, IN denotes the N × N identity matrix. The transpose and inverse of a
matrix are denoted by X′ and X−1 respectively. Column vectors will be denoted by lower-
case letters, i.e., x = [xi]i=1,...,N (unless otherwise indicated) and a diagonal matrix with
elements {x1, . . . , xN} will be denoted by diag{x}. Also let ∧ and E denote the elementwise
exponentiation and expectation operator respectively. That is, X∧k = [xk

ij]i,j=1,...,N , and
E(X) = [E(xij)]i,j=1,...,N . Finally, the matrix (vector) inequality sign X > 0 (x > 0)
represents element-by-element inequality.

5Similar results were obtained by He and Teräsvirta (1999) and Conrad and Haag (2006) for the
univariate GARCH and FIGARCH models respectively. Both show that the potential shapes of the
autocorrelation functions are considerably more flexible under the necessary and sufficient conditions
than under the ones which impose non-negative parameters.

6We will use the terms variance, variability, uncertainty and volatility interchangeably in the remainder
of the text.

7Caporin (2007) suggests the exponential causality GARCH model, which allows for negative volatility
feedback.
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2.2 Conditional Variances

In this section we introduce the UECCC-GARCH(p, q) model. Consider the N -dimensional
weakly stationary vector process:

yt = E(yt|Ft−1) + εt, (1)

where Ft−1 = σ(yt−1,yt−2, . . .) is the filtration generated by all the available information
up through time t− 1.

We assume that the noise vector εt is characterized by the relation:

εt = zt ¯ h
∧1/2
t , (2)

where ht = [hit]i=1,...,N is Ft−1 measurable and the stochastic vector zt = [zit]i=1,...,N is
independent and identically distributed (i.i.d.) with mean zero, finite second moments,
and correlation matrix R = [ρij]i,j=1,...,N such that ρij = 1 for i = j, and |ρij| < 1 for
i 6= j. From the above equation it follows that E(εt|Ft−1) = 0 and Ht = E(εtε

′
t|Ft−1) =

diag
{
h
∧1/2
t

}
Rdiag

{
h
∧1/2
t

}
.

A major problem in specifying a valid multivariate process lies in choosing appropriate
parametric specifications for ht such that Ht is positive definite almost surely for all t.
Positive definiteness of Ht follows if, in addition to the correlation matrix R being positive
definite, the conditional variances hit, i = 1, . . . , N , are positive as well.

Next, we specify the parametric structure of ht. Let µ = [µi]i=1,...,N
be a column vector

with finite elements, B(L) = IN − ∑p
l=1 B(l)Ll with B(l) = [b

(l)
ij ]i,j=1,...,N and A(L) =∑q

r=1 A(r)Lr with A(r) = [a
(r)
ij ]i,j=1,...,N .8

We define the vector GARCH (p, q) process as follows:

B(L)ht = µ + A(L)ε∧2
t . (3)

Obviously, the above process nests Bollerslev’s diagonal specification as a special case if
we assume that A(L) and B(L) are diagonal matrices. Moreover, if it is assumed that
all the parameters in expression (3) are positive, then the process corresponds to the
ECCC-GARCH model. This assumption guarantees that the conditional variances hit,
i = 1, . . . , N , are positive almost surely for all t. Although this condition is sufficient
for ensuring the positivity of all the conditional variances, the results of Nelson and
Cao (1992) and Tsai and Chan (2008) suggest that it is not necessary. In the following
we will investigate whether it is possible to relax this condition by allowing some of
the parameters in equation (3) to take negative values while the positivity of all the
conditional variances is still ensured. As mentioned in the introduction, the resulting
process is termed UECCC-GARCH.

Remark 1 Although in what follows we will focus our attention on the CCC process, our
results hold for the time varying CC specification as well. This model (termed TVCC)
differs only in allowing the correlation matrix to be time varying: Rt = [ρij,t]i,j=1,...,N . For
examples of such specifications see Engle (2002), Tse and Tsui (2002), Silvennoinen and
Teräsvirta (2007b) and Bai and Chen (2008).

8For simplicity and without loss of generality, we assume that b
(p)
ij 6= 0 and a

(q)
ij 6= 0 for i, j = 1, . . . , N .
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Assumption 1 (Identifiability) The formulation of the N-dimensional vector UECCC-
GARCH(p, q) model at the true values of the parameters is minimal if A(L) and B(L)
satisfy the following conditions:

1. det[A(L)] 6= 0 and det[B(L)] 6= 0.

2. A(L) and B(L) are coprime. That is, any of the greatest common left divisors of
A(L) and B(L) are unimodular.

3. A(L) or B(L) is column reduced. That is, det[A(q)] 6= 0 or det[B(p)] 6= 0.

Assumption (1) guarantees that the model in equation (3) is identifiable (see Propo-
sition 3.4 in Jeantheau, 1998).

In Appendix A we i) state the covariance stationarity assumption, ii) present expres-
sions for the unconditional second moment of the squared errors and iii) review the main
theoretical results of He and Teräsvirta (2004) on the fourth-moment structure of the
bivariate GARCH(1, 1) process. However, the stationarity assumption is not needed in
the following theoretical development.

3 Non-negativity Constraints

We now derive the necessary and sufficient conditions for the positivity of the conditional
variances in the N -dimensional UECCC-GARCH(p, q) model. In the first step, we show
that each variance admits a ‘univariate’ representation. From this formulation, we ob-
tain an ARCH(∞) expansion of each conditional variance in terms of convolutions of
GARCH kernels and corresponding squared errors. The non-negativity of the variances
is guaranteed if and only if all the kernels are non-negative, i.e., if the infinite number of
coefficients in the ARCH(∞) expansions of the N2 kernels are non-negative. For this, we
express these coefficients as functions of the parameters of the original process. It is then
shown that checking a finite number of inequality constraints on these parameters ensures
the non-negativity of all GARCH kernels. Special attention is given to the bivariate case,
which is most relevant for empirical applications.

3.1 ‘Univariate’ Representations

In order to simplify the description of our analysis we will introduce the following notation.
Set β(L) = 1 −∑N×p

l=1 βlL
l = det[B(L)]. Recall, that we have assumed βN×p 6= 0, hence

β(L) is a scalar polynomial of order N × p. Moreover, denote by φn, n = 1, . . . , N × p,
the inverse of the roots of β(z). Define ω = [ωi]i=1,...,N = adj[B(L)]µ and α(L) =∑(N−1)×p+q

r=1 α(r)Lr = adj[B(L)]A(L) with α(r) = [α
(r)
ij ]i,j=1,...,N , i.e., α(L) is a square

matrix polynomial. We can also express it as α(L) = [αij(L)]i,j=1,...,N with αij(L) =∑(N−1)×p+q
r=1 α

(r)
ij Lr. Since we have assumed that α

(N−1)×p+q
ij 6= 0 for all i, j = 1, . . . , N ,

the scalar polynomials αij(L) are of the order (N − 1)× p + q.

Assumption 2 (Invertibility) The inverse roots φn, n = 1, . . . , N×p, of β(z) lie inside
the unit circle and without loss of generality are ordered as follows: |φ1| ≥ |φ2| ≥ · · · ≥
|φN×p|.
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Lemma 1 Under Assumptions (A1) and (A2) the ‘univariate’ representation of the N-
dimensional vector UECCC-GARCH (p, q) process ht is given by

β(L)ht = ω + α(L)ε∧2
t . (4)

Lemma 1 states that we can write each conditional variance hit, i = 1, . . . , N , as
being linear in a constant ωi, its own lags hit−l, l = 1, . . . , N × p, its own lagged squared
residuals ε2

it−r as well as the lagged squared errors ε2
jt−r from the other equations, j 6= i,

r = 1, . . . , (N − 1) × p + q. Most importantly, in the ‘univariate’ representation hit no
longer depends on lagged values of hjt.

Before presenting the general results, we will discuss a specific model in order to make
our analysis more concise. Consider the bivariate process of order (1, 1):

[(
1 0
0 1

)
−

(
b11 b12

b21 b22

)
L

] (
h1t

h2t

)
=

(
µ1

µ2

)
+

(
a11 a12

a21 a22

)
L

(
ε2
1t

ε2
2t

)
, (5)

where for typographical convenience we have set bij = b
(1)
ij , aij = a

(1)
ij , i, j = 1, 2 and

ρ12 = ρ. In matrix form we have (I2 − BL)ht = µ + ALε2
t with A = [aij]i,j=1,2 and

B = [bij]i,j=1,2.

Corollary 1 The ‘univariate’ representation of the bivariate UECCC-GARCH(1, 1) pro-
cess is given by

(1− β1L− β2L
2)

(
h1t

h2t

)
=

(
ω1

ω2

)
+

[(
α

(1)
11 α

(1)
12

α
(1)
21 α

(1)
22

)
L

+

(
α

(2)
11 α

(2)
12

α
(2)
21 α

(2)
22

)
L2

](
ε2
1t

ε2
2t

)
, (6)

with β1 = b11 + b22, β2 = b12b21 − b11b22,

ω =

(
(1− b22)µ1 + b12µ2

(1− b11)µ2 + b21µ1

)
, α(1) =

(
a11 a12

a21 a22

)

and α(2) =

(
a21b12 − a11b22 a22b12 − a12b22

a11b21 − a21b11 a12b21 − a22b11

)
.

3.2 The N-dimensional Process

Recall that Jeantheau (1998) assumes that all the coefficients of the A(r) and B(l), (r =
1, . . . , q, l = 1, . . . , p) matrices are positive. He and Teräsvirta (2004) point out that
a sufficient condition for ht > 0 for all t is that all elements in µ are positive and all
elements in the A(r) and B(l) matrices are non-negative for each r and l. In addition, by
referring to the results of Nelson and Cao (1992), they conjecture that this condition is not
necessary, at least not if p > 1 and/or q > 1 (see Remark 1 in He and Teräsvirta, 2004).
By investigating the ARCH(∞) representation of the univariate GARCH(p, q) process,
Nelson and Cao (1992) derive necessary and sufficient conditions for the non-negativity
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of the conditional variances which is ensured if and only if all the ARCH(∞) coefficients
are non-negative. This, however, does not necessarily mean that all the parameters of
the process have to be positive. Next, we derive the ARCH(∞) expansion of the vector
UECCC-GARCH(p, q) model.

Lemma 2 Let Assumptions (A1) and (A2) be satisfied. Then, equation (4) can be rewrit-
ten in the ARCH(∞) form:

ht = ω/β(1) + Ψ(L)ε∧2
t , (7)

where Ψ(L) = [Ψij(L)]i,j=1,...,N = α(L)/β(L) with Ψij(L) = Σ∞
k=1ψ

(k)
ij Lk = αij(L)/β(L).

Here, each Ψij(L) can be thought of as an ARCH(∞) kernel of a GARCH model of
the order (N × p, (N − 1)× p + q).

For illustrative purposes, consider again the bivariate process of order (1, 1). If As-
sumptions (A1) and (A2) hold, then from equation (6) it follows that the ARCH(∞)
representation of the process exists and is given by

(
h1t

h2t

)
=

(
ω1/(1− β1 − β2)
ω2/(1− β1 − β2)

)
+

(
Ψ11(L) Ψ12(L)
Ψ21(L) Ψ22(L)

)(
ε2
1t

ε2
2t

)
, (8)

where each of the four kernels Ψij(L) corresponds to an ARCH(∞) kernel of a univariate
GARCH(2, 2) process:

Ψij(L) =
α

(1)
ij L + α

(2)
ij L2

(1− β1L− β2L
2)

=
∞∑

k=0

ψ
(k)
ij Lk for i, j = 1, 2.

Following the proof of Proposition 1 in Conrad and Haag (2006), we can recursively

express each ψ
(k)
ij sequence as

ψ
(k)
ij = β1ψ

(k−1)
ij + β2ψ

(k−2)
ij for k ≥ 3,

where ψ
(1)
ij = α

(1)
ij and ψ

(2)
ij = β1α

(1)
ij + α

(2)
ij . Obviously, the ψ

(k)
ij ’s can now be expressed

in terms of the a’s and b’s using Corollary 1. For example, ψ
(1)
11 = a11 and ψ

(2)
11 =

a11b11 + a21b12.
Clearly, for the N -dimensional process in equation (3) to be well-defined and the N

conditional variances to be positive almost surely for all t, all the constants ωi must be
positive and all the ψ

(k)
ij coefficients in the ARCH(∞) representation, that is equation (7),

must be non-negative: ψ
(k)
ij ≥ 0, i, j = 1, . . . , N , for k = 1, 2, . . ..

In practice, given a particular set of parameters, checking the non-negativity of {ψ(k)
ij }∞k=1,

i, j = 1, . . . , N , may be a numerically infeasible task. In the following theorem we show

that under some conditions, the non-negativity of {ψ(k)
ij }

k∗ij
k=1 for some tractable integers

k∗ij is necessary and sufficient for the non-negativity of {ψ(k)
ij }∞k=1.

Theorem 1 Consider the N-dimensional vector UECCC-GARCH(p, q) model in equa-
tion (3) and let Assumptions (A1), (A2) be satisfied and all the inverse roots be distinct.
Then, the following conditions are necessary and sufficient for hit > 0, i = 1, . . . , N , for
all t:

8



(a) ωi > 0 for all i = 1, . . . , N .

(b) φ1 is real, and φ1 > 0, (C1)

αij(φ
−1
1 ) > 0, for i, j = 1, . . . , N, (C2)

ψ
(k)
ij ≥ 0, for i, j = 1, . . . , N and k = 1, . . . , k∗ij, (C3)

where k∗ij is the smallest integer greater than or equal to max{0, ϕ} with

ϕ = {log(η
(1)
ij )− log(Np− 1)η∗ij)}/{log(|φ2|)− log(φ1)},

η∗ij = max
2≤n≤N×p

|η(n)
ij |, and η

(n)
ij = −αij(φ

−1
n )

β′(φ−1
n )

, 1 ≤ n ≤ N × p,

where β′(z) denotes the first derivative of β(z).

The proof of Theorem 1 relies on the observation that the results of Tsai and Chan
(2008) can be applied separately to each of the N2 GARCH kernels Ψij(L). Hence, we
reduce an infinite number of inequality constraints on the ARCH(∞) coefficients to a
finite number of conditions on the parameters of the process.

As mentioned in Remark 1, the results for the UECCC model hold also for any
parametrization of the UETVCC formulation. In addition, it can be shown that they
hold for the asymmetric power version of it as well.

3.3 The Bivariate Process of Order (1,1)

Because the bivariate model of order (1, 1) is definitely the most often applied specification,
we intensively discuss the corresponding inequalities and their interpretation.

Proposition 1 Let Assumptions (A1), (A2) be satisfied and φ1 6= φ2. The following
conditions are necessary and sufficient for hit > 0, i = 1, 2, for all t in the bivariate
UECCC-GARCH(1, 1) model:

(a) For the two constants we require

ω1 = (1− b22)µ1 + b12µ2 > 0, and ω2 = (1− b11)µ2 + b21µ1 > 0. (9)

(b) Condition (C1) in Theorem 1 which reduces to

(b11 − b22)
2 > −4b12b21, and φ1 > 0. (C1′)

Condition (C2) which becomes

α11(φ
−1
1 ) = (b11 − φ2)a11 + b12a21 > 0, α12(φ

−1
1 ) = (b11 − φ2)a12 + b12a22 > 0,

α21(φ
−1
1 ) = b21a11 + (b22 − φ2)a21 > 0, α22(φ

−1
1 ) = b21a12 + (b22 − φ2)a22 > 0.

(C2′)
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Condition (C3) which, since k∗ij = 2, amounts to

ψ
(1)
11 = a11 ≥ 0, ψ

(1)
12 = a12 ≥ 0,

ψ
(1)
21 = a21 ≥ 0, ψ

(1)
22 = a22 ≥ 0,

(C3′a)

and
ψ

(2)
11 = b11a11 + b12a21 ≥ 0, ψ

(2)
12 = b11a12 + b12a22 ≥ 0,

ψ
(2)
21 = b21a11 + b22a21 ≥ 0, ψ

(2)
22 = b21a12 + b22a22 ≥ 0.

(C3′b)

Note that if φ2 > 0 then αij(φ
−1
1 ) > 0, that is condition (C2′), directly implies

ψ
(2)
ij ≥ 0, that is condition (C3′b), and vice versa if φ2 < 0.

In the bivariate model both conditional variances are always positive if the two con-
stants ω1 and ω2 are positive and all four GARCH(2, 2) kernels are non-negative. Note
that the conditions which Proposition 1 places on each of the four kernels are equivalent
to the ones derived in Nelson and Cao (1992) and He and Teräsvirta (1999) (see As-
sumption (A23) in their paper) for the univariate GARCH(2, 2) model. However, the four
kernels are functions of the same underlying parameters of the bivariate process and the
conditions on the four kernels have to be satisfied simultaneously. It is clearly apparent
that the conditions of Proposition 1 are satisfied if all parameters are assumed to be pos-
itive. Finally, it should be noted that conditions (C2′), (C3′a) and (C3′b) can be written
compactly in a matrix form as: (B− φ2I2)A > 0,A ≥ 0 and BA ≥ 0 respectively.

Remark 2 Nakatani and Teräsvirta (2006) mention that for the conditional variances in
the bivariate GARCH(1, 1) process to be positive almost surely for all t, all the GARCH
kernels Ψij(L) in the ARCH(∞) representation must be non-negative and the vector of
constants must be positive. The authors, however, do not elaborate on how to obtain
necessary and sufficient conditions for the positivity of ht.

Nelson and Cao (1992) have shown that under the necessary and sufficient conditions
for the univariate GARCH(2, 2) process with parameters ω, α1, α2, β1 and β2, at most two
out of the five parameters may be negative. These are the second order coefficients, i.e., α2

and β2. With the following corollaries we will investigate which restrictions Proposition 1
imposes on the parameters of the bivariate model.

First, note from Condition (C3′a) that all four elements in A must be non-negative.
This is not surprising, since the coefficients of A are the first order ARCH parameters,
α

(1)
ij , of the GARCH(2, 2) kernels in the ‘univariate’ representations (see Corollary 1) and,

as proved in Nelson and Cao (1992), those should be non-negative. Hence, only coefficients
in µ and B may be allowed to be negative.

Corollary 2 In the bivariate UECCC-GARCH(1, 1) model both diagonal elements of B
cannot be negative simultaneously.

Again, Corollary 2 does not come as a surprise, because β1 = b11 +b22 is the first order
GARCH parameter of the four kernels in the univariate representations and according to
Nelson and Cao (1992) has to be non-negative.

It is worth noting that while a negative value of, say, b11 might suggest that the higher
h1t−1 the lower h1t, this, however, is only a ‘partial effect’. The ‘univariate’ representation
implies β1 = b11 + b22 > 0 and hence a ‘overall’ positive relation between h1t−1 and h1t.
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Corollary 3 In the bivariate UECCC-GARCH(1, 1) process both elements of one row of
B cannot be negative simultaneously.

Corollary 4 In the bivariate UECCC-GARCH(1, 1) specification negative volatility feed-
back in both directions (b12 < 0 and b21 < 0) is ruled out.

Corollary 4 states an important result, because it shows the model’s limitations: eco-
nomic theories which imply negative volatility spillovers in both equations can not be
tested within the bivariate framework.

Example 1 Tsay (2002, p. 369) applied the model in equation (5) to monthly returns of
the IBM stock and the S&P 500 index from January 1926 to December 1999. He obtained
the following estimates for the entries of the B matrix: b11 = 0.873, b12 = −0.031,
b21 = −0.066 and b22 = 0.913. Since both off-diagonal elements are negative, the estimated
model does not guarantee the positive definiteness of Ht.

Suppose b12 and b21 were negative, while b11 and b22 as well as the elements in A
are positive. Such a constellation would imply that all second order ARCH coefficients
in the four GARCH(2, 2) kernels are negative, that is α(2) < 0 in Corollary 1, but it is
ruled out by Corollary 4. However, the case that all four second order ARCH coefficients
are negative simultaneously is not ruled out in general, because it can arise even if all
parameters are positive.

Corollary 5 In the bivariate UECCC-GARCH(1, 1) model at most two elements of B
can be negative, if and only if they belong to the same column.

More specifically, and without loss of generality, let b11, b21 > 0 and one or both
elements in the second column of the B matrix be negative. Then under (C1′) and
(C3′a), conditions (C2′) and (C3′b) reduce to a1ibj1 ≥ |bj2 − φ2| a2i and a1ibj1 ≥ |bj2| a2i,
i, j = 1, 2, respectively.

A particularly interesting case arises when one of the off-diagonal elements of B is
negative while all other parameters are positive. Such a case implies that β2 = b12b21 −
b11b22 < 0 and both second order ARCH coefficients in one row of α(2) are negative, e.g.,
if b12 < 0 this implies that α

(2)
11 and α

(2)
12 in equation (6) are negative.

Example 2 Bai and Chen (2008) apply the bivariate UETVCC-GARCH(1,1) model to
the data set used in Tsay (2002, p.374). They use the following Cholesky decomposition:

Ht = LtGtL
′
t where Lt =

(
1 0
qt 1

)
, Gt =

(
h1t 0
0 g2t

)
with qt = ρt

√
h2t/

√
h1t and

g2t = h2t(1 − ρ2
t ). Then the bivariate process: [I2 − BL]gt = µ + Aη∧2

t−1 where gt =
[diag{Gt}]′, η′t =

(
ε1t η2t

)
with η2t = ε2t− qtε1t is estimated.9 The following estimates

for the entries of the A and B matrices are obtained: A =

(
0.113 −
0.021 0.052

)
, B =

9For the time-varying conditional correlation they employ the equation: (1 − γ1L)qt = γ0 + γ2Lε2t

(see also Tsay, 2002, p.374).
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(
0.804 −
−0.040 0.937

)
. Since b12 = 0 we have φ1 = b22 = 0.937 and φ2 = b11 = 0.804 > 0.

Most importantly, condition (C2′) is violated because b21a11 +(b22−φ2)a21 = −0.115 < 0.
Therefore the estimated model does not guarantee the positive definiteness of either Gt or
Ht.

To summarize our results concerning the elements of B figuratively we may say that
at most two out of the four coefficients of the B matrix can be negative as long as they
are elements of the same column.

Further, unlike the univariate GARCH(2, 2) model, the bivariate one can produce,
under some conditions, negative values for the constants. The case that one of the two is
negative is straightforward and requires no further discussion. We now consider the case
of both constants being negative. First note that the condition φi < 1 for i = 1, 2 implies
that b11 and b22 cannot be greater than one simultaneously, because b11 + b22 = φ1 + φ2.

Corollary 6 In the bivariate UECCC-GARCH(1, 1) model the constants µ1 and µ2 can
be negative simultaneously if and only if one of the two diagonal elements of B is greater
than one.

Finally, we should emphasize that the set of conditions provided by the above propo-
sition is weaker than those in Jeantheau (1998), He and Teräsvirta (2004) and Nakatani
and Teräsvirta (2007). That is, although all four ARCH coefficients must be non-negative,
the two constants and two out of the four GARCH parameters, under some conditions,
can be negative.

These results require more discussion. For illustrative purposes we examine in the
next subsection a few numerical examples.

3.4 Numerical Examples

In what follows we graphically illustrate the necessary and sufficient parameter set for the
bivariate UECCC-GARCH(1, 1) model. This will provide a better understanding of the
results presented in the previous subsection. We discuss four examples.

In the first example we allow the two off-diagonal elements of B, to vary. The param-
eters chosen for Example 1 are rather standard, except that we assume a21 = 0.2, which
implies that the squared innovations ε2

1t−1 have a strong impact on h2t. In Example 2 we
examine the situation where b11 and b21, i.e., two coefficients in the first column of B,
vary. In Example 3 the two constants µ1 and µ2 vary freely, while the two off-diagonal
elements of A vary in Example 4.

In the following figures the bold solid lines show which combinations of the two freely
varying parameters do satisfy the necessary and sufficient conditions of Proposition 1 when
the other parameters are fixed as in the Examples of Table 1. Additionally, they show
which combinations satisfy the conditions for the existence of the unconditional second
(dotted lines) and fourth moments (dashed lines), which are presented in Appendix A.

We begin by discussing the implications of Example 1, which is presented in Figure 1,
left panel. First, all combinations of b12 and b21 which are bounded by the three bold solid

12



Table 1: Data generating processes (DGP) for Examples 1 to 4.

DGP Ex. 1 DGP Ex. 2 DGP Ex. 3 DGP Ex. 4

µ′ (
0.10 0.20

) (
0.10 0.20

) (
µ1 µ2

) (
0.20 0.10

)

A

(
0.03 0.02
0.20 0.05

) (
0.03 0.02
0.40 0.05

) (
0.07 0.03
0.01 0.002

) (
0.03 a12

a21 0.05

)

B

(
0.30 b12

b21 0.80

) (
b11 0.30
b21 0.80

) (
1.2 −0.50
0.50 0.15

) (
0.10 0.30
−0.35 0.80

)

lines satisfy the conditions of Proposition 1. The line in quadrant one represents the invert-
ibility Assumption (A2), which is satisfied when b12 < (1−b11)(1−b22)/b21 = 0.14/b21. In
quadrant four the line stands for the condition that φ1 is real: b12 < −(b11−b22)

2/(4b21) =
−0.062/b21. The requirement that b12 is non-negative is triggered by condition (C2′):
b12 > a11 |b11 − φ2| /a21 = |0.30− φ2| /6.67. In line with Corollary 4 this ensures that
not both off-diagonal elements of B can be negative simultaneously. Finally, it is evident
that the Bollerslev conditions which would restrict both b12 and b21 to being positive are
too strong, since they exclude the area below the bold solid line in quadrant four where
b21 < 0. Second, the combinations of b12 and b21, which are bounded by the dotted lines,
satisfy the conditions for the existence of the second moments. The dotted lines in quad-
rant one and four represent the covariance stationarity condition (see Assumption (3) in
Appendix A), while the straight dotted line in quadrants two and three is triggered by
the restriction that the unconditional variances are non-negative (see equation (A2) in
Appendix A). Similarly, the constraints for the existence of the fourth moments imply
the dashed lines (see equations (A3) and (A4) in Appendix A). In the first quadrant the
restrictions implied by the conditions for the existence of the second and fourth moments
are more restrictive than the one implied by the invertibility Assumption (A2). In sum-
mary, the parameter set which satisfies all conditions simultaneously is given by the area
which is below the dashed line in the first and fourth quadrant and below the bold solid
line in the fourth quadrant.

Next, we consider the case where both elements of the first column of B vary. The bold
solid lines in Figure 1, right panel, show the necessary and sufficient set for Example 2.
As suggested by Corollary 5, we can now have both elements in a column being negative.
The line in quadrants one and two represents the invertibility Assumption (A2): b11 <
1 − b12b21/(1 − b22) = 1 − 1.50b21, while the one in quadrants two and three is triggered
by condition (C3′b): b11 ≥ −b12a22/a12 = −0.75. The line in quadrant four represents
condition (C2′): b21 > −(b22 − φ2)a22/a12 = −2.50(0.80− φ2).

Figure 2, left panel, shows that for the parameters in Example 3 we can have both con-
stants being negative. All parameter combinations above the bold solid lines in quadrants
one and three are valid: µ1 > |b12|µ2/(1−b22) = 0.59µ2 and µ1 > |1−b11|µ2/b21 = 0.40µ2,
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Figure 1: Necessary and sufficient parameter sets for bivariate UECCC-GARCH(1, 1) from
Examples 1 (left panel) and 2 (right panel). The bold solid lines represent the restrictions
implied by Proposition 1. The dotted and dashed lines stand for the restrictions for the
existence of the unconditional second and fourth moments.
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Figure 2: Necessary and sufficient parameter sets for bivariate UECCC-GARCH(1, 1) from
Examples 3 (left panel) and 4 (right panel). The bold solid lines represent the restrictions
implied by Proposition 1. The dotted and dashed lines stand for the restrictions for the
existence of the unconditional second and fourth moments.

respectively. Interestingly, combinations with µ1 < 0, µ2 > 0 are ruled out whereas in
sharp contrast all possible combinations with µ1 > 0, µ2 < 0 are permitted. Example 3
is in line with Corollary 6, which requires for this case that one of the diagonal elements
of B must be greater than one (b11 = 1.2). Example 4 is visualized in Figure 2, right
panel. The negative volatility feedback from equation one to equation two does not vio-
late the conditions of Proposition 1 only if a12 takes rather small values. In particular,
since φ2 = 0.32 > 0, the two off-diagonal elements of A should satisfy condition (C2′):
a21 > a11 |b11 − φ2| /b12 = 0.02 and a12 < a22b12/|b11 − φ2| = 0.07.

The examples above impressively show that the weaker conditions of Proposition 1
substantially enlarge the necessary and sufficient parameter set in comparison to the
Bollerslev condition. Having a wider admissible parameter set should increase the flexi-
bility of the UECCC-GARCH(1, 1) model. For Example 2 we illustrate this by plotting
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the auto- and cross-correlations of the squared errors.10 For this, we set b21 = −0.10
and vary b11 from −0.70 to 0 by steps of 0.10. Since b22 = 0.80 the restriction that
β1 = b11 + b22 > 0 is always satisfied. When b11 takes large negative values we observe an
oscillating behaviour in the auto- and cross-correlations r11(m) and r12(m), m = 1, 2, . . .,
which disappears as b11 gets close to zero.
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Figure 3: The figure shows the m-th order auto- and cross-correlations, rij(m), between
ε2

it and ε2
jt−m for the bivariate UECCC-GARCH(1, 1) from Example 2. We set b21 = −0.10

and vary b11 from -0.70 (lowest, dotted line) to 0 (highest, solid line) by steps of 0.10.

4 Testing Economic Theory

4.1 The Stock Returns-Volume Link

Caporin (2007) argues that highly volatile stock prices induce a decrease in trading vari-
ations, stabilizing the average volume of trades. While such a negative effect from stock
volatility to volume variability is untestable under the Bollerslev conditions, the necessary
and sufficient conditions of Proposition 1 allow for such a scenario. We employ daily log
returns (y1t) and de-trended log volume (y2t) for the BASF stock which is traded on the
DAX30 stock index. The data set is available at Yahoo!Finance and spans the period Jan-
uary 2000 to August 2004. Because log volume appears to be fractionally integrated (see,
for example, Karanasos and Kartsaklas, 2007) we estimate a bivariate ARFIMA(1, d, 0)

10The analytic forms for the auto- and cross-correlations of the squared errors of the UECCC-
GARCH(1, 1) model are given in Corollary 3 in He and Teräsvirta (2004). It is interesting to note
that one can express the N -dimensional vector UECCC-GARCH(p, q) model in an ARMA representa-
tion and then apply the methodology in Karanasos (1999b, 2007) to obtain the correlation structure of
the squared errors (see, Conrad and Karanasos, 2008).
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process with residuals following a UECCC-GARCH(1, 1) specification and normally dis-
tributed innovations zit. For reasons of brevity we omit the parameter estimates for the
mean equation and directly discuss the results for the conditional variances:

ht =




0.095
(0.016)

0.107
(0.022)


 +




0.206
(0.026)

0.048
(0.018)

0.016
(0.006)

0.020
(0.006)


 ε∧2

t−1 +




0.703
(0.022)

−
−0.030
(0.008)

0.852
(0.034)


ht−1, (10)

with ρ = −0.072 (0.027); the numbers in parentheses are robust standard errors. Since b12

is insignificant we set it to zero. All other parameters were found to be highly significant.
Most importantly, we find evidence that the variability of stock returns affects volume
volatility negatively. The conditions for the existence of the unconditional second and
fourth moments are satisfied. Figure 4 highlights the negative unidirectional feedback by
plotting the auto- and cross-correlation, rij(m), of the squared errors. The behaviour of
r21 reflects the theoretical prediction that the variance of volume tends to decrease when
stock volatility increases.
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Figure 4: The figure shows the m-th order auto- and cross-correlations, rij(m), between
ε2

it and ε2
jt−m for a bivariate process of order (1, 1) with parameter estimates as presented

in equation (10).

The example above highlights the empirical relevance of the unrestricted model, which
allows for negative volatility feedback. However, when we check the conditions of Propo-
sition 1 it turns out that the estimated parameter combination violates condition (C2′).
In particular, the condition α21(φ

−1
1 ) = b21a11 + (b22 − φ2)a12 > 0 is not satisfied. Hence,

there is a positive probability that the conditional covariance matrix is not positive defi-
nite for all t. When employed for volatility forecasting, the estimated model may produce
negative out-of-sample predictions. Interestingly, when we fix four of the parameters in
α21(φ

−1
1 ) at the estimated values and choose the remaining one such that α21(φ

−1
1 ) > 0 is
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just satisfied, then all auto- and cross-correlations take positive values only.11 Hence, it
appears that the bivariate UECCC-GARCH(1, 1) process, under the necessary and suffi-
cient conditions of Proposition 1, allows for negative unidirectional feedback but cannot
generate negative auto- and cross-correlations. Analyzing whether this is true in general
is an interesting topic for future research.

4.2 The Inflation-Output Growth Relationship

The debate about the inflation-growth interaction is linked to another ongoing dispute,
that of the existence or absence of a variance relationship. As Fuhrer (1997) puts it: ‘It is
difficult to imagine a policy that embraces targets for the level of inflation or output growth
without caring about their variability around their target levels. The more concerned the
monetary policy is about maintaining the level of an objective at its target, the more it
will care about the variability of that objective around its target’.

There are many controversies in the theoretical literature on the relationship between
the four variables (see Fountas et al., 2006, and the references therein). The extent to
which there is an interaction of either sign between the two variances is an issue that can-
not be resolved on merely theoretical grounds. Not only that, the models regarding the
‘uncertainty link’ that do exist are often ambiguous in their predictions. These consider-
ations reinforce a widespread awareness of the need for more empirical evidence, but also
make clear that a good empirical framework is lacking. In what follows we will employ
the bivariate process to examine how US nominal and real uncertainties are interrelated.

Monthly US data for the period 1960:01 to 2007:11 are obtained from Datastream to
provide a reasonable number of observations. The inflation rate (y1t) and output growth
(y2t) series are calculated as the monthly difference in the natural log of the Consumer
Price Index and Industrial Production Index respectively.

Assuming conditional normality we estimate an ARMA(12, 0)-UECCC-GARCH(1, 1)
specification. Again, we omit the results for the mean equation. The estimation results
for the conditional variances are:

ht =




0.482
(0.140)

5.028
(3.262)


 +




0.086
(0.018)

0.009
(0.002)

− 0.257
(0.054)


 ε∧2

t−1 +




0.888
(0.042)

−0.010
(0.004)

1.296
(0.491)

0.512
(0.065)


ht−1, (11)

with ρ = −0.026 (0.045); the numbers in parentheses are robust standard errors.
The parameter a21 was set to zero because it turned out to be insignificant. Inter-

estingly, there is a bidirectional feedback between the two variables. In particular, there
is strong evidence supporting the Logue and Sweeney (1981) theory that inflation uncer-
tainty has a positive impact on the volatility of growth. In sharp contrast real variabil-
ity affects nominal uncertainty negatively as predicted by, among others, Fuhrer (1997).
Clearly, the negative coefficient b12 would have been ruled out by the sufficient Bollerslev
conditions. On the other hand, it is easy to check that in this example the conditions of

11Choosing such values is possible for all parameters with the exception of b22. The value that has to
be chosen for b22 leads the larger of the inverse roots of β(z) to being greater than one, and hence to
another violation of Proposition 1.
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Proposition 1 are satisfied for the given parameter combination. Moreover, the conditions
for the existence of the unconditional second and fourth moments are satisfied as well.

Figure 5 shows the auto- and cross-correlations of the squared errors. As expected, we
observe first an increase in the cross-correlation, r21(m), between the squared residuals
of output and inflation before it starts to decline to zero. This is driven by the strong
positive effect from inflation uncertainty to output variability captured by the coefficient
b21.
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Figure 5: The figure shows the m-th order auto- and cross-correlations, rij(m), between
ε2

it and ε2
jt−m for a bivariate process of order (1, 1) with parameter estimates as presented

in equation (11).

5 Conclusions

We have derived necessary and sufficient conditions which ensure the positive definite-
ness of the conditional covariance matrix in the N -dimensional UECCC-GARCH model
almost surely for all t. For this, we have shown that each variance admits an ARCH(∞)
representation in terms of the N convolutions of the GARCH kernels and the correspond-
ing squared errors. All the N conditional variances are almost surely non-negative for
all t if all the N2 kernels are simultaneously non-negative. It is then straightforward to
apply the methodologies developed in Nelson and Cao (1992) and Tsai and Chan (2008)
to each of these kernels. In contrast to the sufficient Bollerslev condition, the necessary
and sufficient conditions do not rule out the possibility that some of the parameters of
the model take negative values. In particular, negative volatility feedback is allowed. We
have shown that this substantially increases the permissible parameter space and thereby
the flexibility of the model in capturing the stylized facts of economic and financial data.
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The availability of the necessary and sufficient conditions allows us to test economic the-
ories within the unrestricted framework which were, by construction, excluded in the
restricted version. On the other hand, our results also highlight the limitations of the
model, e.g. the bivariate process of order (1, 1) does not make it possible to test theories
which imply negative volatility spillovers in both directions.

Finally, we should highlight that our results do not only hold for the CCC process but
also for the various parameterizations of the TVCC formulation.
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[17] He, C., Teräsvirta, T. (2004). An extended constant conditional correlation GARCH
model and its fourth-moment structure. Econometric Theory 20, 904-926.

[18] Jeantheau, T. (1998). Strong consistency of estimators for multivariate ARCH mod-
els. Econometric Theory 14, 70-86.

[19] Karanasos, M. (1999a). The second moment and the autocovariance function of the
squared errors of the GARCH model. Journal of Econometrics 90, 63-76.

[20] Karanasos, M. (1999b). The covariance structure of the S-GARCH and M-GARCH
models. Discussion Paper No 12, Department of Economics and Related Studies,
University of York.

[21] Karanasos, M. (2007). The correlation structure of some financial time series models.
Quantitative and Qualitative Analysis in Social Sciences 2, 71-87.

[22] Karanasos, M., Kartsaklas, A. (2007). Dual long-memory, structural breaks and the
link between turnover and the extreme-value volatility. Unpublished paper, Brunel
University.

[23] Leboit, O., Santa-Clara, P., Wolf, M. (2003). Flexible multivariate GARCH mod-
eling with an application to international stock markets. Review of Economics and
Statistics 85, 735-747.

[24] Ling, S., McAleer, M. (2003). Asymptotic theory for a vector ARMA-GARCH model.
Econometric Theory 19, 280-310.

[25] Logue, D., Sweeney, R. (1981). Inflation and real growth: some empirical results.
Journal of Money, Credit, and Banking 13, 497-501.
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A Second and Fourth Moments

A.1 Unconditional Variances

In this Appendix, we present expressions for the unconditional second moments of the
squared errors.

Define p∗ =max(p, q), and set C
(l)
t = [c

(l)
ij,t]i,j=1,...,N = A(l)Zt +B(l), l = 1, . . . , p∗, where

Zt = diag{z∧2
t }, A(l) = 0 if l > q and B(l) = 0 if l > p. Note that {C(l)

t } is a sequence of

i.i.d. random matrices (for A(l) 6= 0) such that C
(l)
t is independent of ht.

By equation (2) we may rewrite equation (3) as

ht = µ +
∑p∗

l=1 C
(l)
t−lht−l. (A1)

Next we shall make use of the following notation. Let Γ(L) = IN −
∑p∗

l=1 Γ(l)Ll where

Γ(l) = [γ
(l)
ij ]i,j=1,...,N = E(C

(l)
t ), with γ

(l)
ij = a

(l)
ij E(z2

it) + b
(l)
ij . Set γ(L) = 1−∑N×p∗

l=1 γlL
l =

det[Γ(L)]. We have assumed γN×p∗ 6= 0, that is γ(L) is a scalar polynomial of order
N × p∗. Define also ω̃ = [ω̃i]i=1,...,N = adj[Γ(1)]µ.
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Assumption 3 (Stationarity) The roots of det[Γ(z)] lie outside the unit circle.

Notice that when A(r) ≥ 0, r = 1, . . . , q, the stationarity assumption implies the
invertibility condition.

Lemma 3 When Assumption (A3) holds, the unconditional variances of the elements of
εt, µ2 = [µ2,i]i=1,...,N = E(ht), exist if ω̃ > 0, and are given by

µ2 =
1

γ(1)
ω̃. (A2)

Let ω̃ > 0 hold. Then under Assumption (A3) the vector UECCC-GARCH(p, q)
model has a weakly stationary solution. Moreover, this solution is unique and is also
strictly stationary and ergodic (see Proposition 3.1 in Jeantheau, 1998).

Remark 3 Recall that He and Teräsvirta (2004) assume all the parameters in µ to be
positive, and in A(L) and B(L) to be non-negative. In this situation and under As-
sumption (A3) the positivity of ω̃ is guaranteed by construction (see Remark 3 in their
paper). In sharp contrast in the unrestricted model, we allow some of these parameters to
be negative and hence the condition ω̃ > 0 has to be checked.

A.2 Fourth-Moment Structure of the process of order (1,1)

To keep this article relatively self-contained, we briefly review the main theoretical results
of He and Teräsvirta (2004) on the fourth-moment structure of the bivariate UECCC-
GARCH(1, 1) process defined in equation (5).12 Equation (A1) becomes

ht = µ + Ct−1ht−1,

where for typographical convenience we have set Ct−1 = C
(1)
t−1.

Assume E(z2
itz

2
jt) < ∞, i, j = 1, 2, and let ΓC = E(Ct), ΓZ⊗Z = E(Zt ⊗ Zt) and

ΓC⊗C = E(Ct⊗Ct) . Notice that under the assumption of conditional normality we have
ΓC = A + B and ΓZ⊗Z=diag{3, 1 + 2ρ2, 1 + 2ρ2, 3}.

Moreover, let λ(ΓC⊗C) denote the modulus of the largest eigenvalue of ΓC⊗C . Then
the matrix E[ε∧2

t (ε∧2
t )′] of the fourth moments of {εt} exists if

λ(ΓC⊗C) < 1, (A3)

and
adj(Γ̃C⊗C)[vec(µµ′) + Γµ

C ] > 0, (A4)

where

Γ̃C⊗C = I4 − ΓC⊗C ,

Γµ
C = (ΓC ⊗ µ + µ⊗ ΓC)(µ′ ⊗ I2)vec(I2 − ΓC)−1.

12The papers by Karanasos (1999b) and Hafner (2003) also contain results on fourth moments of
MGARCH models.
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Denote µ4 = [µ4,ij]i,j=1,2 = E[ε∧2
t (ε∧2

t )′]. Notice that µ4 is a square matrix. Under
equations (A3)-(A4),

µ4 = ΓZ⊗Z{(Γ̃C⊗C)−1[vec(µµ′) + Γµ
C ]}.

(see Corollary 2 in He and Teräsvirta, 2004).

Remark 4 Condition (A4) is needed because by Proposition 1 we allow some of the pa-
rameters in the vector µ and the matrix B to take negative values. Under the stricter
assumption made by He and Teräsvirta (2004), namely that all parameters of the process
are non-negative, condition (A4) is directly satisfied.

B Proofs

Proof of Lemma 1. Multiply both sides of equation (3) by adj[B(L)] = β(L)[B(L)]−1.

Proof of Corollary 1. The proof follows immediately from Lemma 1.

Proof of Theorem 1. From the ARCH(∞) expansion, that is equation (7), it follows
that each conditional variance, hit, admits an infinite moving-average representation in
terms of the N convolutions of the GARCH kernels (Ψij(L), j = 1, . . . , N) and the cor-
responding squared errors. Thus the proof follows by applying Theorem 1 in Tsai and
Chan (2008) to each of the N2 kernels.

Proof of Proposition 1. Initially we obtain the conditions in terms of the ω’s,
α’s and β’s. That is (C2′): φ1α

(1)
ij + α

(2)
ij > 0; (C3′a): ψ

(1)
ij = α

(1)
ij ≥ 0 and (C3′b):

ψ
(2)
ij = β1a

(1)
ij + a

(2)
ij ≥ 0. Note that since β1 = φ1 + φ2, if φ2 > 0 then α

(1)
ij φ1 + α

(2)
ij > 0

directly implies ψ
(2)
ij ≥ 0 and vice versa if φ2 < 0. Finally, using the expressions in equa-

tion (6) and the fact that φ1 = β1 − φ2 = b11 + b22 − φ2 the conditions are rewritten in
terms of the µ’s, a’s and b’s.

Proof of Corollary 2. The assumption that φ1 > |φ2| implies β1 = φ1+φ2 = b11+b22 ≥
0. Hence, b11 and b22 cannot be negative simultaneously.

Proof of Corollary 3. Conditions (C3′a) and (C2′) (when φ2 > 0) or (C3′b) (when
φ2 < 0) imply that both elements of the same row (bi1, bi2, i = 1, 2) cannot take negative
values.

Proof of Corollary 4. Let the two off-diagonal elements of the B matrix be negative
and the other two positive. We will show that if conditions (C1′) and (C3′a) in Proposition
1 are satisfied, conditions (C2′) and (C3′b) are violated. First we will show that the case
φ2 < 0 or (since φ1 > 0) β2 = −φ1φ2 = b12b21 − b11b22 > 0 violates the constraints of
condition (C3′b). Under condition (C3′a) the latter condition amounts to

b11a11 ≥ |b12|a21, b11a12 ≥ |b12|a22,
b22a21 ≥ |b21|a11, b22a22 ≥ |b21|a12.
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Then if we multiply the two inequalities of the first column we get b11b22 ≥ b12b21 which
contradicts φ2 < 0. Next, we will focus our attention on the case φ2 > 0. Notice that φ1,
φ2 > 0 implies that β2 < 0 or b12b21 < b11b22. Since φ2 > 0 condition (C3′b) is redundant.
Under condition (C3′a) and the fact that φ2 < b11, b22 < φ1 condition (C2′) amounts to

(b11 − φ2)a11 > |b12|a21, (b11 − φ2)a12 > |b12|a22,
(b22 − φ2)a21 > |b21|a11, (b22 − φ2)a22 > |b21|a12.

Notice that the two inequalities of the first column imply that |b12|
(b11−φ2)

< a11

a21
< (b22−φ2)

|b21| ,

while those of the second column imply that |b21|
(b22−φ2)

< a22

a12
< (b11−φ2)

|b12| . Since b21
(b11−φ2)

=
(b22−φ2)

b12
the four inequalities cannot be satisfied simultaneously.

Proof of Corollary 5. From the previous corollaries we know that not more than two
entries of B can be negative. That is, neither the two diagonal, the two off-diagonal nor
the two entries in one row can be negative. Further, assume that conditions (C1′) and
(C3′a) hold. Let also, without loss of generality, b11, b21 > 0, and one or both elements
in the second column of the B matrix be negative. We will examine the two cases where
φ2 ≶ 0. Notice that when only b12 < 0 then φ2 > 0, whereas when only b22 < 0 then
φ2 < 0. Moreover, when b12, b22 < 0 then φ2 ≷ 0 if |b12b21| ≷ |b11b22|. If φ2 < 0 condition
(C2′) is redundant and condition (C3′b) becomes

a11b21 ≥ a21 |b22| , a12b21 ≥ a22 |b22| .

The above inequalities hold when i) only b22 < 0 and ii) b12, b22 < 0 and |b12b21| < |b11b22|.
Notice that the last inequality implies that |b12|

b11
< |b22|

b21
. If φ2 > 0 we only need to check

condition (C2′). This condition reduces to

a11b21 > a21 |b22 − φ2| , a12b21 > a22 |b22 − φ2| ,

since b12
(b11−φ2)

= b22−φ2

b21
and hence b22 < φ2. The above inequalities hold when i) only

b12 < 0 and ii) b12, b22 < 0 and |b12b21| > |b11b22|.

Proof of Corollary 6. Let condition (C1′) in Proposition 1 hold. We will examine
the two cases where b11 ≶ 1. First, assume b11 < 1. If b12 < 0, b22 ≶ 0 and the other
two parameters in B are positive then the two inequalities in equation (9) rule out the
possibility that µ1 ≤ 0. Thus equation (9) becomes

µ1 > 0, µ2 ≤ 0, and
|µ2|
µ1

<
b21

(1− b11)
or

µ1 > 0, µ2 ≥ 0, and
µ2

µ1

<
(1− b22)

|b12| .

Note that the inequality in the first expression is more binding than the one in the second
expression since from the invertibility condition (1−b22)

|b12| > b21
(1−b11)

. Further, if b22 ≶ 0 and

the other three parameters in B are positive then the two inequalities in equation (9) rule
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out the possibility that µ1, µ2 ≤ 0. Thus equation (9) reduces to

µ1 > 0, µ2 ≥ 0, or µ1 ≥ 0, µ2 > 0, or

µ1 ≤ 0, µ2 > 0, and
|µ1|
µ2

<
b12

(1− b22)
, or

µ1 > 0, µ2 ≤ 0, and
µ2

|µ1|
<

(1− b22)

b12

,

since from the invertibility condition b12
(1−b22)

< (1−b11)
b21

. Second, let b11 > 1. If b12 < 0,

b22 ≶ 0 and b21 > 0 then the two inequalities in equation (9) rule out the possibility that
µ1 ≤ 0 and µ2 ≥ 0. In this case part (a) of Proposition 1 becomes

µ1 ≤ 0, µ2 < 0, and
|µ1|
|µ2|

<
|1− b11|

b21

or

µ1 > 0, µ2 ≥ 0, and
µ2

µ1

<
(1− b22)

|b12| or

µ1 > 0, µ2 ≤ 0,

since from the invertibility condition (1−b22)
|b12| < b21

|1−b11| .

Proof of Lemma 3. Taking expectations on both sides of equation (A1) yields
Γ(1)E(ht) = µ. Multiply both sides of this expression by adj[Γ(1)] = γ(1)[Γ(1)]−1 to
get equation (A2).
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