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Abstract

In this article we derive conditions which ensure the non-negativity of the conditional variance

in the Hyperbolic GARCH(p, d, q) (HYGARCH) model of Davidson (2004). The conditions are

necessary and sufficient for p ≤ 2 and sufficient for p > 2 and emerge as natural extensions of the

inequality constraints derived in Nelson and Cao (1992) for the GARCH model and in Conrad and

Haag (2006) for the FIGARCH model. As a by-product we obtain a representation of the ARCH(∞)

coefficients which allows computationally efficient multi-step-ahead forecasting of the conditional

variance of a HYGARCH process. We also relate the necessary and sufficient parameter set of the

HYGARCH to the necessary and sufficient parameter sets of its GARCH and FIGARCH components.

Finally, we analyze the effects of erroneously fitting a FIGARCH model to a data sample which was

truly generated by a HYGARCH process. An empirical application of the HYGARCH(1, d, 1) model

to daily NYSE data illustrates the importance of our results.
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1 Introduction

Long-range dependence in the absolute or squared observations of many macro and financial time series

– first reported in the seminal articles of Ding et al. (1993) and Ding and Granger (1996) – has become

a widely documented stylized fact. For a recent review article on long memory processes and their ap-

plications in economics and finance see Henry and Zaffaroni (2003). The Bollerslev (1986) stationary

GARCH model implies an exponentially decaying autocorrelation function (ACF) for the squared inno-

vations and hence can not reproduce the observed persistence in the conditional variance of such time

series. To overcome this shortcoming Baillie et al. (1996) suggested the fractionally integrated GARCH

(FIGARCH) model which allows for a hyperbolic decay of shocks to the conditional variance and so

explicitly captures the empirical observation. However, by construction the FIGARCH does not spec-

ify a covariance stationary process. Consequently, Davidson (2004) proposed the hyperbolic GARCH

(HYGARCH) model which nests both GARCH and FIGARCH as special cases. The HYGARCH shares

with the GARCH model the desired property of covariance stationarity while at the same time it obeys

hyperbolically decaying impulse response coefficients as the FIGARCH. Moreover, it provides a natural

framework for testing geometric versus hyperbolic decay.

Although proposed only recently, the HYGARCH model has proven to be successful in modeling

the long-run dynamics in the second conditional moment of several financial time series. For the sake

of brevity, we concentrate on a few examples from the literature. Davidson (2004) shows that the

HYGARCH is capable of modeling the volatility dynamics in three Asian currencies during the crisis

period 1997–1998. While it is usually believed that the modeling of such a period with its extreme

changes from low to high volatility and vice versa requires some sort of external switching mechanism, it

is the advantage of the HYGARCH that it can explain such behavior by a simple endogenous mechanism

entirely driven by its innovation process. Ñı́guez und Rubia (2006) apply the HYGARCH model to a

portfolio of five exchange rates and report that it clearly outperforms simpler GARCH variants in terms

of out-of-sample forecasting. Their analysis reveals that the correct modeling of the volatility’s long-run

component is important even if one is only interested in short-run volatility forecasting. Finally, Tang and

Shieh (2006) compare the performance of FIGARCH and HYGARCH models in predicting Value-at-Risk

for three stock index futures markets. Based on Kupiec LR tests their results show that the HYGARCH

model dominates over the FIGARCH.

In all three models – GARCH, FIGARCH and HYGARCH – the conditional variance can be expressed

as an infinite sum of weighted lagged squared residuals. A necessary condition for such a specification

to define a valid non-negative conditional variance process is that all the weights in this sum – the so-

called ARCH(∞) coefficients – are non-negative. To ensure this, conditions have to be placed on the

parameters of the process. Such conditions have been derived by Nelson and Cao (1992) and Tsai and

Chan (2007) for the GARCH model and by Conrad and Haag (2006) for the FIGARCH model. Davidson

(2004) simply assumes that the parameters of the HYGARCH process are a priori chosen such that the
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non-negativity of all the ARCH(∞) coefficients is satisfied without further investigating the issue.

In this article we first show that the ARCH(∞) coefficients of the HYGARCH model obey a recursive

representation very similar to the one obtained by Conrad and Haag (2006) for the ARCH(∞) coefficients

of the FIGARCH model. Second, we establish necessary and sufficient conditions for the non-negativity

of the conditional variance in the HYGARCH(p, d, q) with p ≤ 2 and sufficient conditions for p > 2.

The availability of such conditions is of importance for any practitioner estimating HYGARCH models,

since they are a first inevitable check of model validation. In particular, our results are of interest for

those who use the HYGARCH model for forecasting because a misspecified HYGARCH will generate

negative conditional variance forecasts out-of-sample with positive probability even if this did not occur in-

sample. Our recursive representation provides an efficient way of calculating multi-step-ahead volatility

forecasts, while the inequality constraints guarantee the non-negativity of the forecasted conditional

variances. Moreover, although the HYGARCH can be thought of as a linear combination of a GARCH

and FIGARCH component we show that the necessary and sufficient HYGARCH set does not simply

coincide with the intersection of the necessary and sufficient sets of its components.

We investigate a further central question for the empirical researcher: what are the effects of erro-

neously applying a FIGARCH model to a data sample which was truly generated by a HYGARCH pro-

cess? It is shown that the persistence parameter which will be estimated for the misspecified FIGARCH

model, can be expressed as a function of the persistence parameter of the underlying HYGARCH model

and the weight on the FIGARCH component. The two persistence parameters will coincide only in the

trivial case, namely if the weight on the FIGARCH component is one. We illustrate this point by means

of a Monte-Carlo simulation.

Finally, an empirical application of the HYGARCH model to NYSE data highlights the practical

importance of our theoretical results.

The remainder of the article is organized as follows. Section 2 defines the HYGARCH model, presents

its properties, and sets out assumptions and notation. In Section 3 we derive the inequality constraints

which ensure the non-negativity of the conditional variance of the HYGARCH(p, d, q) process. A discus-

sion of the relationship between the persistence parameters in the HYGARCH and the FIGARCH model

is provided in Section 4. Section 5 presents an empirical example and Section 6 concludes the article. All

proofs are deferred to the appendix.

2 The Hyperbolic GARCH Model

In this section we present the HYGARCH model as a natural extension of the GARCH and FIGARCH

models and introduce some notation which makes the derivations in the subsequent sections more

tractable.
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2.1 From GARCH and FIGARCH to HYGARCH

Following Bollerslev (1986) we define a GARCH(p, q?) process {εt, t ∈ Z} by the equations

εt = Zt

√
ht, (1)

where {Zt, t ∈ Z} is a sequence of independent and identically distributed random variables with E[Zt] =

E[Z2
t − 1] = 0, and

B(L)ht = ω + α(L)ε2
t (2)

for some ω ∈ R+ and lag polynomials α(L), B(L) given by α(L) =
∑q?

i=1 αiL
i and B(L) = 1−∑p

i=1 βiL
i

with L being the lag operator. Equation (2) is often rewritten as

Φ(L)ε2
t = ω + B(L)vt (3)

the so-called “ARMA in squares” representation, where vt = ε2
t − ht and Φ(L) = 1 − ∑q

i=1 φiL
i with

q = max{p, q?} and φi = αi + βi for i = 1, . . . , q. By construction vt is a martingale difference sequence

with respect to the filtration Ft generated by {εs, s 6 t}.
Under the assumption that the roots of the polynomial B(L) lie outside the unit circle, the GARCH(p, q?)

process obeys an ARCH(∞) representation of the form

ht =
ω

B(1)
+ ΨGA(L)ε2

t =
ω

B(1)
+

∞∑

i=1

ψGA
i ε2

t−i (4)

with

ΨGA(L) =
B(L)− Φ(L)

B(L)
=

α(L)
B(L)

. (5)

For example, for a simple GARCH(1, 1) the ψGA
i coefficients are defined recursively by ψGA

1 = φ1−β1 = α1

and ψGA
i = β1ψ

GA
i−1 for i ≥ 2. Obviously, for a GARCH model to be well defined restrictions on the

parameters (β1, . . . , βp, α1, . . . , αq?) have to be imposed ensuring that ht ≥ 0 for all t almost surely (a.s.).

Bollerslev (1986) simply assumed the non-negativity of all the α and β coefficients which (together with

non-negative starting values, say, h−1, . . . , h−p and ε−1, . . . , ε−q?) is by equation (2) of course a sufficient

condition for the non-negativity of ht for t ≥ 0. However, as can be seen from equation (4) the non-

negativity of all the α and β coefficients is not necessary. Instead a necessary and sufficient condition must

only require the weaker condition that ψGA
i ≥ 0 for i = 1, 2, . . ., whereby the ARCH(∞) coefficients can

be directly expressed in terms of the α and β coefficients. Consequently, Nelson and Cao (1992) derived

necessary and sufficient conditions for p ≤ 2 and sufficient conditions for p > 2. E.g. the conditions for

the GARCH(1, 2) are ψ1 = α1 ≥ 0, ψ2 = β1α1 + α2 ≥ 0 and 0 ≤ β1 < 1. Note, that these conditions

allow for α2 < 0. The condition β1 < 1 is required to guarantee invertibility.1 Recently, Tsai and Chan

(2007) have provided the surprising result that the conditions stated in Nelson and Cao (1992) for p > 2

are not only sufficient, but also necessary.
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In a more general setting equation (1) together with ht = ω?+Ψ(L)ε2
t , Ψ(L) =

∑∞
j=1 ψjL

j with ψj ≥ 0

for all j, defines what is called an ARCH(∞) process (see Zaffaroni, 2004). From equation (1) we have

E[εt] = 0 and Cov(εt, εt−j) = 0 for j ≥ 1. Hence, covariance stationarity of such a process εt requires

that Ψ(1) < 1 which implies E[ε2
t ] = ω?/(1 − Ψ(1)) < ∞. The GARCH model can be considered as a

specific case of an ARCH(∞) with a finite parametrization ω? = ω/B(1) and Ψ(L) = ΨGA(L). For the

GARCH model the condition ΨGA(L) < 1 is equivalent to the well-known condition that Φ(1) > 0. If the

polynomial Φ(L) has a unit root and hence can be factored as Φ(L) = Φ̃(L)(1−L) the process εt is referred

to as an integrated GARCH (IGARCH) model. Although possibly strictly stationary, the IGARCH

process is not covariance stationary since its unconditional second moment does not exist.2 While the

stable GARCH is characterized by an exponentially decaying impulse response function (IRF), the IRF

of the IGARCH is a constant indicating complete persistence of shocks to the conditional variance. Thus,

the behavior of the IRFs of the GARCH and IGARCH models are very much the same as those of ARMA

and ARIMA models for the mean which are said to be integrated of order zero and one, respectively. In

sharp contrast, shocks to the conditional variance of many financial times series are empirically found to

be highly persistent, i.e. decaying at a slow hyperbolic rate, but nevertheless transitory. A model that can

deal with such long-range dependence in the conditional second moment of a time series is the FIGARCH

model by Baillie et al. (1996). The FIGARCH allows for fractional orders of integration between zero

and one, and implies hyperbolically decaying impulse response weights. Baillie et al. (1996) define the

FIGARCH via

(1− L)dΦ(L)ε2
t = ω + B(L)vt, (6)

for some ω, Φ(L) and B(L) as before and 0 ≤ d ≤ 1 being the fractional differencing parameter. The

FIGARCH implies the ARCH(∞) representation

ht =
ω

B(1)
+ ΨFI(L)ε2

t =
ω

B(1)
+

∞∑

i=1

ψFI
i ε2

t−i

with

ΨFI(L) = 1− (1− L)dΦ(L)
B(L)

. (7)

For example, the FIGARCH(1, d, 1) coefficients ψi are given by ψFI
1 = d + φ1 − β1 and ψFI

i = β1ψ
FI
i−1 +

(fi − φ1)(−gi−1) for i ≥ 2, where fi and gi are functions of the fractional differencing parameter d and

will be defined in the next subsection. Similarly, as in the GARCH model conditions on the parameters

(β1, . . . , βp, d, φ1, . . . , φq) of the FIGARCH process have to be imposed to guarantee the non-negativity

of the conditional variance. Conrad and Haag (2006) extend the results of Nelson and Cao (1992) to the

FIGARCH set-up and establish necessary and sufficient conditions for p ≤ 2 and sufficient conditions for

p > 2. Endowed with the additional flexibility of the fractional differencing parameter the FIGARCH

proved to be successful in modeling the long-run features in the volatility of many time series such as
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stock market returns, exchange rates and inflation (see e.g. Bollerslev and Mikkelsen, 1996, Tse, 1998,

or Conrad and Karanasos, 2005). In contrast to the exponentially decaying IRF of the GARCH model

the FIGARCH (with 0 < d < 1) is characterized by hyperbolically decaying impulse response weights πj ,

j = 1, 2, . . ., of the order πj = O(jd−1) (for details see Conrad and Karanasos, 2006). The FIGARCH

nests the GARCH model for d = 0 and the IGARCH model for d = 1. However, the major drawback of

the FIGARCH is that for any 0 < d < 1 we have ΨFI(1) = 1 and hence the unconditional variance of εt

does not exist. As in the IGARCH case the FIGARCH process is not covariance stationary.

Therefore, Davidson (2004) constructed the hyperbolic GARCH (HYGARCH) model in a way to

overcome this drawback. The HYGARCH is obtained by modifying equation (6) to

Φ(L)
(
(1− τ) + τ(1− L)d

)
ε2
t = ω + B(L)vt, (8)

by incorporating the additional parameter τ ≥ 0. Clearly, the HYGARCH nests the GARCH model

under the restriction τ = 0 (or d = 0) and the FIGARCH model under the restriction τ = 1. When

d = 1 the parameter τ becomes an autoregressive root and the HYGARCH reduces to either a stationary

GARCH (τ < 1), an IGARCH (τ = 1) or an explosive GARCH (τ > 1). Rewriting equation (8) as

ht =
ω

B(1)
+ ΨHY (L)ε2

t =
ω

B(1)
+

∞∑

i=1

ψHY
i ε2

t−i

with

ΨHY (L) = τΨFI(L) + (1− τ)ΨGA(L)

shows that the HYGARCH is constructed such that its ARCH(∞) coefficients are a linear combination

of the ARCH(∞) coefficients from a FIGARCH and a GARCH model with weights τ and (1 − τ),

respectively, i.e. can be written as

ψHY
i = τψFI

i + (1− τ)ψGA
i for i = 1, 2, . . . (9)

In the following, we will refer to the “FIGARCH component” and the “GARCH component” of the HY-

GARCH process meaning the processes which generate the ψFI
i and ψGA

i coefficients. To check whether

the HYGARCH is covariance stationary or not, the behavior of ΨHY (1) has to be investigated. The trivial

case arises when d = 0. Then the HYGARCH reduces to a GARCH model with the corresponding covari-

ance stationarity condition Φ(1) > 0. The interesting case 0 < d ≤ 1 leads to ΨHY (1) = τ+(1−τ)ΨGA(1).

Checking the condition ΨHY (1) < 1 reveals that the HYGARCH process will be covariance stationary

provided that (1− τ)Φ(1) > 0. Hence, for any 0 ≤ τ < 1 the HYGARCH will be a covariance stationary

process, if the GARCH component fulfills the condition Φ(1) > 0. In contrast to the FIGARCH model,

the HYGARCH allows to combine the desired properties of hyperbolically decaying impulse response

coefficients and covariance stationarity.3

Finally, we would like to point out that – under a small modification – it is possible to obtain a

covariance stationary HYGARCH process even if τ > 1. We call the new specification a generalized
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HYGARCH model. The modification is to replace the assumption E[Z2
t ] = 1 by E[Z2

t ] = σ2
Z < 1. Hence,

instead of equation (8) we define the generalized HYGARCH by

(
1− σ2

ZΨHY (L)
)
ε2
t = σ2

Zω/B(1) + vt. (10)

For the generalized HYGARCH the covariance stationarity condition can be written as σ2
ZΨHY (1) < 1.

Now, rearranging terms shows that this condition is equivalent to

σ2
Z(1− τ)Φ(1) > (σ2

Z − 1)B(1) (11)

which can be satisfied although τ > 1. Note, that the ARCH(∞) representation of the generalized

HYGARCH is still the same as for the Davidson (2004) HYGARCH.

As for the GARCH and the FIGARCH models restrictions on the parameters of the HYGARCH have

to be imposed to ensure the non-negativity of the conditional variance. The remainder of this article will

be devoted to deriving such conditions. In the following derivations we always assume that 0 < d < 1

and 0 < τ 6= 1, since otherwise the inequality constraints of Nelson and Cao (1992) or Conrad and Haag

(2006) can be directly applied. The following subsection introduces some more notation and assumptions.

2.2 Assumptions and Notation

We closely follow the notation used in Conrad and Haag (2006). We assume that the inverse roots λi,

i = 1, . . . , p, of the polynomial B(L) are real and 0 6= |λi| < 1 for i = 1, . . . , p. By (λ(1), λ(2), . . . , λ(p)) we

denote a certain ordering of those inverse roots. Additionally, we assume that the roots of Φ(L) lie outside

the unit circle and Φ(L) and B(L) have no common roots. Note, that these assumptions on the roots

of Φ(L) and B(L) imply that Φ(1) > 0 and B(1) > 0, i.e. they guarantee the covariance stationarity of

the GARCH component of the HYGARCH process and invertibility. The fractional differencing operator

(1− L)d can be expanded as (1− L)d =
∑∞

j=0 gjL
j , where the coefficients gj are given by

gj = fj · gj−1 =
j∏

i=1

fi with fj =
j − 1− d

j
for j = 1, 2, . . .

and g0 = 1. Note, that f1 = −d < 0, f2 = (1 − d)/2 > 0 and fj > 0 for all j > 2 and hence gj < 0 for

all j ≥ 1. It is easy to see that fj < fj+1 and fj → 1 as j → ∞. Moreover, for i > q ≥ 0 we define

Fi = −∑q
l=0 φl

∏q−1
j=l fi−j with φ0 = −1 and

∏−1
j=0 = 1, then Fi < Fi+1 and Fi → 1−φ1− . . .−φq > 0 as

i →∞. Let Λr =
∑r

i=1 λ(i), r ≤ p. It follows that F
(r)
i = ΛrFi−1 + Fifi−q → (Λr + 1)(1− φ1 − . . .− φq)

and the limit is positive provided that Λr > −1.

3 Non-negativity Conditions for HYGARCH(p,d,q)

From equation (9) it directly follows, that for 0 < τ < 1 a sufficient condition for the non-negativity of the

ψHY
i coefficients is the non-negativity of all the ψFI

i and ψGA
i coefficients which can be easily guaranteed

7



by applying the results of Nelson and Cao (1992) and Conrad and Haag (2006) to the GARCH and

the FIGARCH component separately. However, imposing such a sufficient condition will be by far too

restrictive. Intuitively, this is because the non-negativity of the ARCH(∞) coefficients of the HYGARCH

does not preclude the case that some or even all ARCH(∞) coefficients of one of the components are

negative, as long as the other component’s coefficients are positive and dominating. Additionally, in the

case where τ > 1 it is not clear how to proceed, because the weight on the ψGA
i coefficients will be

negative and hence not even a sufficient condition is readily available.

In this section we focus on deriving necessary and sufficient conditions which do not necessarily require

the non-negativity of all the ψFI
i and ψGA

i coefficients. We begin by stating a recursive representation

for the ARCH(∞) coefficients of the HYGARCH(p, d, q).

Lemma 1. In the HYGARCH(p, d, q) the sequence {ψHY
i , i = 1, 2, . . .} can be written as

ψHY
i = ψ

HY (p)
i where (12)

ψ
HY (r)
i = λ(r)ψ

HY (r)
i−1 + ψ

HY (r−1)
i 1 < r ≤ p, i ≥ 1, (13)

with starting values ψ
HY (r)
0 = −τ , r = 2, . . . , p, and {ψHY (1)

i } given by

ψ
HY (1)
i = τ

(
− ci +

i∑

j=1

φjci−j

)
+ (1− τ)

i∑

j=1

λi−j
(1) (φj − βj) for i = 1, . . . , q (14)

= λ(1)ψ
HY (1)
i−1 + τFi(−gi−q) for i ≥ q + 1 (15)

where ci =
∑i

j=0 λi−j
(1) gj.

The representation given by Lemma 1 has an interesting and intuitive interpretation. For this, recall

that an ARMA(p, q) can be rewritten as (p−1) AR(1) processes with autoregressive parameters equal to

the inverse roots of the autoregressive polynomial, whereby the first (p−2) of those AR(1) processes have

an innovation term which is itself an AR(1) and the last one an innovation term which is ARMA(1, q).

Similarly, Lemma 1 expresses the ARCH(∞) coefficients of a HYGARCH(p, d, q) model as (p−1) “AR(1)-

type” expressions ψ
HY (r)
i with autoregressive parameters λ(r) and “innovations” ψ

HY (r−1)
i which are

themselves “AR(1)-type”, apart from the last ones, ψ
HY (1)
i , which are the ARCH(∞) coefficients of a

HYGARCH(1, d, q).

It is important to observe the analogy between the recursive structure of the ARCH(∞) coefficients

in the HYGARCH model and the corresponding representation of the FIGARCH coefficients derived

in Conrad and Haag (2006). The main difference comes from equations (14) and (15) which combine

the ARCH(∞) coefficients of a GARCH(1, q) and a FIGARCH(1, d, q) to the ARCH(∞) coefficients of

a HYGARCH(1, d, q) (with β1 = λ(1)). Clearly, for τ = 1 the recursions coincide with those for the

FIGARCH(p, d, q) (see Conrad and Haag, 2006).

The recursive representation given by Lemma 1 can be directly used for multi-step-ahead volatility
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forecasting. The K-step-ahead volatility forecast can be constructed by recursive substitution in

ĥt+k|t = E(ht+k|Ft) =
ω

B(1)
+ ΨHY (L)E(ε2

t+k|Ft) =
ω

B(1)
+

k−1∑

j=1

ψHY
j ĥt+k−j|t +

∞∑

j=0

ψHY
k+jε

2
t−j

for k = 1, . . . , K and an appropriately chosen truncation lag in the second sum. Andersen et al. (2006,

p. 805) present the corresponding recursions for the FIGARCH(1, d, 1) and argue that recursions for

“higher order FIGARCH models or volatility forecast filters, may be defined in an analogous fashion”.

Lemma 1 states a computationally efficient and exact representation of the ψHY
i coefficients for the general

HYGARCH(p, d, q) volatility forecast filter, which can be directly inserted into the forecast formula.

In the following two subsections we exploit the recursive representation of Lemma 1 for deriving

inequality constraints first for the empirically most relevant HYGARCH(1, d, 1) and then for the general

HYGARCH(p, d, q).

3.1 HYGARCH(1,d,1)

Recall that throughout this section we assume stationarity of the GARCH component (−1 < φ1 < 1),

invertibility (−1 < β1 < 1) and non-reducibility (φ1 6= β1). For the HYGARCH(1, d, 1) model the

recursive representation of the ARCH(∞) coefficients stated above simplifies to

ψHY
1 = τd + φ1 − β1 (16)

ψHY
i = β1ψ

HY
i−1 + τ(fi − φ1)(−gi−1) for i ≥ 2 (17)

and alternatively, ψHY
i = β2

1ψHY
i−2 + τ

(
β1(fi−1 − φ1) + (fi − φ1)fi−1

)
(−gi−2) for all i ≥ 3. (18)

Equation (16) directly follows from equation (14) for i = 1. Equation (17) follows from equation (15) by

realizing that Fi = (fi − φ1) when q = 1. Finally, equation (18) is an iterated version of equation (17).

Theorem 1. The conditional variance of the HYGARCH(1,d,1) is non-negative a.s. iff

Case 1: 0 < β1 < 1

either ψHY
1 ≥ 0 and φ1 ≤ f2 or for k > 2 with fk−1 < φ1 ≤ fk it holds that ψHY

k−1 ≥ 0.

Case 2: −1 < β1 < 0

either ψHY
1 ≥ 0, ψHY

2 ≥ 0 and φ1 ≤ f2(β1 + f3)/(β1 + f2) or for k > 3 with fk−2(β1 + fk−1)/(β1 +

fk−2) < φ1 ≤ fk−1(β1 + fk)/(β1 + fk−1) it holds that ψHY
k−1 ≥ 0 and ψHY

k−2 ≥ 0.

The proof of Theorem 1 – which is presented in the appendix – follows the same arguments as the

proof of Theorem 1 in Conrad and Haag (2006). The parameter τ in equations (17) and (18) simply

serves as a scaling parameter but does not have an effect on the central argument used in the proof,

namely that there always exists a k such that fk−1 < φ1 ≤ fk or fk−2(β1 + fk−1)/(β1 + fk−2) < φ1 ≤
fk−1(β1 + fk)/(β1 + fk−1), respectively. Although the ARCH(∞) coefficients are complicated functions
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of the underlying parameters, it turns out that checking two (Case 1) or three (Case 2) conditions is

sufficient for ensuring the non-negativity of the conditional variance for all t.

With the following Proposition we relate the necessary and sufficient parameter set of a HYGARCH(1, d, 1),

denoted byNSHY , to the necessary and sufficient parameter sets of its FIGARCH(1, d, 1) and GARCH(1, 1)

components, denoted by NSFI and NSGA.4 Analyzing this relationship is of interest because – as dis-

cussed earlier – it is not a priori clear how these sets are related. Recall that even if we know that for a

HYGARCH parameter combination (β1, d, φ1, τ), (β1, d, φ1) is not an element of NSFI and/or (β1, φ1)

not an element of NSGA this means only that there is at least one coefficient which is negative in the

ψFI
i and/or ψGA

i sequence. What this implies for ψHY
i = τψFI

i + (1 − τ)ψGA
i with 0 < τ < 1 or τ > 1

has to be investigated.

Proposition 1. NSHY is related to NSFI and NSGA as follows.

Case 1: For 0 < τ < 1 there do not exist parameter combinations (β1, d, φ1, τ) ∈ NSHY for which

neither (β1, d, φ1) is an element of NSFI nor (β1, φ1) an element of NSGA.

Case 2: For τ > 1 there do not exist parameter combinations (β1, d, φ1, τ) ∈ NSHY for which (β1, φ1)

is an element of NSGA but (β1, d, φ1) is not an element of NSFI .

Case 1 tells us that either all ψFI
i , all ψGA

i or both have to be non-negative to guarantee that ψHY
i ≥ 0

for all i. Since NSHY is non empty, Case 1 implies that for 0 < τ < 1 and any 0 < d < 1 the necessary

and sufficient set for the HYGARCH(1, d, 1) model represented in the (φ1, β1) space lies entirely inside

the union of the necessary and sufficient sets of its FIGARCH(1, d, 1) and GARCH(1, 1) components.

The intuition for the result in Case 2 is that for τ > 1, the positive ψGA
i coefficients have negative

weight and hence their negative effect on ψHY
i must be compensated by positive ψFI

i coefficients. However,

note that when τ > 1 it may well be that parameter combinations (β1, d, φ1, τ) ∈ NSHY exist for which

neither (β1, d, φ1) is an element of NSFI nor (β1, φ1) of NSGA.

Next, we provide a graphical representation of the admissible parameter set described by Theorem 1

and illustrate the result of Proposition 1. The left panel of Figure 1 plots the necessary and sufficient

set for a HYGARCH(1, d, 1) model (solid) with d = 0.3 and τ = 0.4. The dashed line characterizes the

necessary and sufficient set for d = 0.3 but τ = 1, i.e. for the FIGARCH(1, d, 1) component only. The

necessary and sufficient set for the GARCH(1, 1) component is the lower triangular in the first quadrant.

As can be seen, the HYGARCH set is a subset of the FIGARCH set in the second, third and fourth

quadrant, while the HYGARCH set lies partly inside the FIGARCH set and partly inside the GARCH

set in the first quadrant. It also shows the restrictiveness of the sufficient condition mentioned above

which requires that both the inequality constraints for the GARCH and the FIGARCH are satisfied

and thereby would limit NSHY to the first quadrant. On the contrary, the HYGARCH necessary and

sufficient set in quadrants two, three and four is based on positive ψFi
i coefficients combined with ψGA

i

coefficients with negative or alternating sign. For τ → 0 the HYGARCH set approaches the GARCH(1, 1)

set while for τ = 1 it is identical with the FIGARCH set.
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Figure 1: Necessary and sufficient parameter sets for HYGARCH models (solid) with d = 0.3 and

τ = 0.4 (left panel) and τ = 1.7 (right panel) and their FIGARCH components (dashed). The dotted

line corresponds to φ1 = f3.

The right panel of Figure 1 shows a situation in which τ = 1.7, i.e. the weight on the FIGARCH

component is 1.7 while the weight on the GARCH component is -0.7. Now, the HYGARCH set encloses

the FIGARCH set in the second, third and fourth quadrant. In the first quadrant the HYGARCH set

lies partly inside and partly outside the FIGARCH set. In particular, note that in a major area the

HYGARCH set lies outside both the FIGARCH set and the GARCH set.

Finally, the dotted vertical lines in Figure 1 bound a sufficient set which is given by the conditions

β1 > 0, β1 − τd ≤ φ1 ≤ 2− d

3
and τd

(
φ1 − 1− d

2

)
≤ β1(φ1 − β1 + τd).

These conditions are a modified version of the sufficient conditions for the FIGARCH(1, d, 1) derived by

Bollerslev and Mikkelsen (1996) and are applied, e.g., by Dark (2005). As in the FIGARCH case such

sufficient conditions are very restrictive since they arbitrarily assume φ1 ≤ f3 and β1 > 0 and thereby

exclude a wide range of the necessary and sufficient set given by Theorem 1. In particular, applications

to high-frequency data have shown that φ1 > f3 arises as a very natural result (see e.g., Baillie et al.,

2004, Tables 9 to 12).

We conclude this section by stating two results for popular submodels of the HYGARCH(1, d, 1) which

follow directly from Theorem 1.

Corollary 1. The conditional variance of the HYGARCH(0,d,1) is non-negative a.s. iff

1. ψHY
1 ≥ 0 ⇔ τd + φ1 ≥ 0

2. F2 ≥ 0 ⇔ (1− d)/2− φ1 ≥ 0

Corollary 2. The conditional variance of the HYGARCH(1,d,0) is non-negative a.s. iff5

Case 1: 0 < β1 < 1

ψHY
1 ≥ 0 ⇔ τd− β1 ≥ 0

11



Case 2: −1 < β1 < 0

ψHY
2 ≥ 0 ⇔ (

τd−
√

τd(2− d(2− τ))
)
/2 ≤ β1

3.2 Higher order HYGARCH models

From the recursions derived in Lemma 1 and the proof of Theorem 1 it is clear that the inequal-

ity constraints derived in Conrad and Haag (2006) for the FIGARCH(p, d, q) likewise extend to the

HYGARCH(p, d, q). Here we present only a necessary and sufficient condition for the HYGARCH(1, d, q)

which is a direct extension of the (1, d, 1) case and a sufficient condition for the HYGARCH(p, d, q).

In particular, the HYGARCH(2, d, q) case is not presented for reasons of brevity but the conditions in

Conrad and Haag (2006) can be directly applied with ψi replaced by ψHY
i .

Theorem 2. The conditional variance of the HYGARCH(1,d,q) is non-negative a.s. iff

Case 1: 0 < β1 < 1

1. ψHY
1 , . . . , ψHY

q−1 ≥ 0 and

2. either ψHY
q ≥ 0 and Fq+1 ≥ 0 or for k > q + 1 with Fk−1 < 0 ≤ Fk it holds that ψHY

k−1 ≥ 0.

Case 2: −1 < β1 < 0

1. ψHY
1 , . . . , ψHY

q−1 ≥ 0 and

2. either ψHY
q ≥ 0, ψHY

q+1 ≥ 0 and F
(1)
q+2 ≥ 0 or for k > q + 2 with F

(1)
k−1 < 0 ≤ F

(1)
k it holds that

ψHY
k−1 ≥ 0 and ψHY

k−2 ≥ 0.

Clearly, in the HYGARCH(1,d,q) it suffices to check q + 1 (Case 1) or q + 2 (Case 2) conditions to

ensure the non-negativity of the conditional variance for all t.

Finally, we present a general sufficient condition for the HYGARCH(p, d, q). For this condition we

have to find 0 ≤ p1 ≤ p2 ≤ p with p2 − p1 even, such that the ordering of the p inverse roots of B(L) is

in the following way

λ(1) ≤ · · · ≤ λ(p1) < 0

λ(p1+1) > 0, λ(p1+2) < 0, . . . , λ(p2−1) > 0, λ(p2) < 0

with λ(p1+2i−1) + λ(p1+2i) ≥ 0, i = 1, . . . , (p2 − p1)/2

λ(p2+1) ≥ · · · ≥ λ(p) > 0

It should be noted that this ordering is not unique as it is always possible to combine positive and negative

roots to form a new pair as well as pairs can be separated, such that p1 and p2 differ. But it is always

possible to find such an ordering.

Theorem 3. If in the HYGARCH(p, d, q) there exists an ordering of the roots such that Λp1 > −1 then

there exists a k such that ψHY
i ≥ 0 for all i > k.

12



Note, that Theorem 3 imposes only weak conditions on the parameters of the HYGARCH process to

derive a strong result. By applying the computationally efficient algorithm stated in Lemma 1 the above

condition can be easily validated for a given set of estimated parameters. Tsai and Chan (2007) conjecture

that by using their approach it may be shown that the sufficient condition for the FIGARCH(p, d, q) stated

in Conrad and Haag (2006) is also necessary. If this conjecture can be verified then the same should be

true for the above Theorem 3. This, however, is beyond the scope of the present article and we leave the

issue as an interesting future research problem.

4 HYGARCH vs. FIGARCH

The last section illustrated the close connection between the FIGARCH and the HYGARCH model. The

central feature of both models is that they can deal with data that is highly persistent in its second

conditional moment. The persistence or memory of a particular model specification is best characterized

by the rate of decay of the corresponding impulse response coefficients. Conrad and Karanasos (2006)

derive convenient representations for the IRF of the FIGARCH(p, d, q) model. The impulse response

coefficients πk are given by the optimal forecast of the future conditional variance ht+k as a function of

the current surprise innovation vt, i.e. by the difference between ε2
t and its conditional expectation ht.

Likewise, the impulse response coefficients of the HYGARCH(p, d, q) model can be obtained from the

expansion of the following polynomial:

Π(L) =
B(L)
Φ(L)

(
(1− τ) + τ(1− L)d

)−1

− 1

From the expression of Π(L) it is clear that for τ = 0 the impulse response coefficients will behave like

those of a GARCH model, i.e. they will be governed by an exponential rate of decay. On the other hand,

for τ = 1 the coefficients will decay with a slow hyperbolic rate characterizing a FIGARCH process. The

HYGARCH coefficients will be a mixture of both components, dominated by the hyperbolic rate of decay

of the FIGARCH component.

We will now investigate the following question: what is the effect of estimating a FIGARCH model

to a data set which was truly generated by a HYGARCH process? The answer is closely related to the

fact, that estimating a FIGARCH model to such a data set is equivalent to the problem of finding the

best approximation Π̃(L) of Π(L) under the restriction τ = 1.

For simplicity we abstract from the term B(L)/Φ(L). This is reasonable since the Φ(L) and B(L)

polynomials will determine only the short-run behavior of πk, while the long-run behavior is governed

by the persistence parameter d and the parameter τ . Alternatively, we could think of the true data

generating process (DGP) being a HYGARCH(0, d, 0). If the DGP is HYGARCH, but one estimates a

FIGARCH model to the data, then this can be thought of as choosing a persistence parameter d̃ such

that πk is approximated best by π̃k coming from the expansion of (1− L)−ed, where d̃ is the persistence

parameter of the FIGARCH process. Since πk can be numerically evaluated and it is well known that
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π̃k ∼ 1/Γ(d̃) · k ed−1, where Γ(·) is the Gamma function, we can approximate d̃ by running the restricted

OLS regression

ln(πk) = γ0 + γ1 ln(k) + ∆k s.t. γ0 = ln(1/Γ(γ1 + 1))

with ∆k being the approximation error. The persistence parameter d̃ is then given by γ̂1 + 1. Figure 2

plots d̃ as a function of the true d, given a fixed value of τ ∈ {0.85, 1.15}. Clearly, d̃ is smaller than d if

τ < 1 and d̃ is bigger than d if τ > 1. For a fixed value of τ , the effect is the stronger the larger d. Also,

for a fixed value of d, the effect will be the stronger the further τ is away from one.

The intuition for this is straightforward. In the case of a HYGARCH the persistence parameter d

is associated with the FIGARCH component, which is multiplied by a factor τ < 1 (τ > 1). Hence,

when a pure FIGARCH is estimated to the data the persistence parameter d̃ which best approximates

the degree of dependence in the data is smaller (larger) than the one in the FIGARCH component of the

HYGARCH.

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4
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τ=1.15

~d

d

Figure 2: The figure plots d̃ as a function of d given τ = 0.85 or τ = 1.15.

Next, we perform a Monte-Carlo simulation in order to confirm our theoretical considerations. This

will allow us to gain further insights into the relation between FIGARCH and HYGARCH models. The

true DGPs are a FIGARCH, a HYGARCH with τ = 0.85 and a HYGARCH with τ = 1.15. The

true parameter values are chosen such that they are typical for empirical applications and satisfy the

non-negativity conditions derived in the last section. The innovations Zt are drawn from a standard

normal distribution. In order to avoid start-up problems we delete the first 10000 realizations of each

replication. All simulations are performed M = 1000 times for a sample size of T = 5000. For the

practical estimations we employ the G@RCH package for Ox developed by Laurent and Peters (2006).

Finally, all estimated parameter combinations which do not satisfy the non-negativity conditions are

discarded from the simulation. Table 1 provides the simulation results.
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Table 1: Monte-Carlo estimates for FIGARCH(1, d, 1) and HYGARCH(1, d, 1) models.

DGP: ω = 0.05, φ1 = 0.6, β1 = 0.35, d = 0.3 and

τ = 1, i.e. ln(τ) = 0 τ = 0.85, i.e. ln(τ) = −0.16 τ = 1.15, i.e. ln(τ) = 0.14

FIGARCH HYGARCH FIGARCH HYGARCH FIGARCH HYGARCH

ω 0.052 0.052 0.046 0.050 0.091 0.054

[0.047, 0.059] [0.043, 0.062] [0.041, 0.053] [0.044, 0.057] [0.072, 0.120] [0.036, 0.077]

φ1 0.593 0.597 0.623 0.602 0.529 0.595

[0.554, 0.633] [0.545, 0.635] [0.590, 0.657] [0.555, 0.637] [0.482, 0.579] [0.547, 0.633]

β1 0.342 0.335 0.316 0.339 0.338 0.343

[0.305, 0.383] [0.296, 0.380] [0.282, 0.351] [0.300, 0.389] [0.295, 0.384] [0.307, 0.383]

d 0.304 0.306 0.198 0.305 0.370 0.305

[0.264, 0.345] [0.243, 0.369] [0.168, 0.233] [0.225, 0.385] [0.341, 0.401] [0.253, 0.357]

ln(τ) - 0.014 - -0.143 - 0.147

[-0.057, 0.087] [-0.218, -0.056] [0.101, 0.220]

Notes: The entries are the median of the estimated parameters over the M = 1000 replications. The entries in

brackets are the 25% and 75% quantiles over the M = 1000 replications.

Clearly, if the true DGP is a FIGARCH the median parameter estimates from both models – the

correctly specified FIGARCH and the misspecified HYGARCH – are close to the true parameter values.

The estimated median parameter value for τ in the HYGARCH model is indistinguishable from one and

hence one would correctly reject the overparameterized HYGARCH in favor of the FIGARCH model.6

As expected in a situation in which the additional flexibility provided by the HYGARCH is not needed,

the estimates of φ1, β1 and d are very similar for both models. If the true DGP is a HYGARCH with

τ < 1, the HYGARCH parameter estimates are again close to their true values. Also, the FIGARCH

parameter estimates for β1 and φ1 are close to the true values. In contrast, the persistence parameter d

is estimated considerably lower than the value specified for the FIGARCH component of the underlying

HYGARCH. In particular, the interquartile reported for the estimated FIGARCH persistence parameter

does not cover the value of the persistence parameter of the true HYGARCH. This result is completely

in line with the above considerations. The last two columns of Table 1 report the results for the case

τ > 1. The true DGP is very well recovered by the HYGARCH parameter estimates. As expected, the

FIGARCH parameter estimate for d is higher than the one of the underlying HYGARCH process.

Interestingly, our simulation results are in accordance with an observation made by Dark (2005) who

applies several variants of the HYGARCH model to daily Nikkei 225 returns. First, he reports a spectral

density estimate of 0.3 for the degree of persistence in the volatility. Then, estimating a FIGARCH

model to the same data he obtains a considerably higher estimate of d̂ = 0.52. Finally, he estimates a
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HYGARCH and a HYAPARCH model.7 The latter model results in a τ parameter estimate of 1.16 in

combination with a persistence parameter of 0.31. Hence, the HYGARCH estimate of the persistence

parameter is much closer to the spectral density estimate than the FIGARCH estimate of d.

Similar findings are reported by Tang and Shieh (2006) in their Tables 3 and 4. For example, for

the NASDAQ 100 the FIGARCH estimate of d is 0.38, while the HYGARCH estimate of d is 0.20 in

combination with a τ of 1.25. All these results are in perfectly in line with the above considerations.

Moreover, in the literature it is often argued that the estimated persistence parameters from FI-

GARCH models are “too high”. In the light of our results, a likely explanation for this finding could be

that the true DGP is closer to a HYGARCH with lower d, but τ greater than one.

5 Empirical Application

In this section we illustrate the usefulness of our results in an empirical application of the HYGARCH

model. For this purpose we employ daily stock index data on the NYSE obtained from the Datastream

Database for the periods 02.09.85 – 30.04.93 and 21.06.89 – 25.08.05. The main intention of this section

is to illustrate that the phenomena discussed in the last two sections are not only of theoretical interest

but arise naturally in empirical applications.

Davidson (2004) applies the HYGARCH model to ten major dollar exchange rates and to three Asian

currencies during the crisis 1997–1998. For the ten major series the estimate of τ is close to and in most

of the times not significantly different from one. Hence, for those ten currencies the FIGARCH model

explains the data sufficiently well. In sharp contrast, for the three crisis currencies the estimate of τ

is considerably larger than and significantly different from one. Although the crisis currencies seem to

be characterized by two entirely different periods, a tranquil one before the crisis and one with large

fluctuations afterwards, the HYGARCH does a very good job in modeling the series.

Motivated by these findings we have chosen our samples such that they correspond to “extreme

periods” for the NYSE. The first sample includes the “Black Monday” in October 1987 with its enormous

daily movements, while the second sample fully covers the “Dot-Com Bubble” which burst in 2000.

Table 2 presents MA(1)-FIGARCH(1, d, 1) and MA(1)-HYGARCH(1, d, 1) parameter estimates on

the NYSE return series for the two selected time periods. Instead of reporting all the parameters we

focus only on those which are relevant in our context. Clearly, according to the Ljung-Box statistics the

null hypothesis of uncorrelated standardized and squared standardized residuals cannot be rejected for

all four models.

The parameter estimate for ln(τ) in the HYGARCH model is significantly negative in the first period,

implying a parameter τ̂ = 0.811. The corresponding estimate for the fractional differencing parameter

is d̂ = 0.582. The pure FIGARCH model leads to an estimate d̂ = 0.114, which is considerably smaller

than the one from the HYGARCH model applied to the same data. Also the φ1 and β1 parameters
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Table 2: HY/FIGARCH models for daily NYSE returns.

02.09.85 – 30.04.93 21.06.89 – 25.08.05

FIGARCH HYGARCH FIGARCH HYGARCH

φ1 0.852 (0.054) 0.410 (0.071) 0.223 (0.027) 0.177 (0.050)

β1 0.807 (0.061) 0.693 (0.073) 0.514 (0.040) 0.374 (0.066)

d 0.114 (0.018) 0.582 (0.109) 0.344 (0.028) 0.202 (0.038)

ln(τ) - -0.209 (0.071) - 0.210 (0.087)

Q(25) 13.38 [0.96] 12.63 [0.97] 31.66 [0.14] 31.87 [0.13]

Q2(25) 7.16 [0.99] 7.03 [0.99] 11.69 [0.97] 11.62 [0.98]

Notes: The table reports the parameter estimates for a MA(1)-FI/HYGARCH(1, d, 1)

model. Standard errors are given in parenthesis, p-values in brackets.

are very different for the two models, i.e. restricting τ to be one severely affects the estimates of the

remaining parameters. For the second period the picture is the exact opposite. For the HYGARCH

model a significantly positive parameter ln(τ) is estimated, implying τ̂ = 1.234, combined with a fractional

differencing parameter of d̂ = 0.202. The fractional differencing parameter of the pure FIGARCH model

is now considerably higher, namely d̂ = 0.344. Both results are perfectly in line with the outcome of the

Monte-Carlo simulations in the last section.

Next, we check whether the estimated parameters satisfy the non-negativity conditions derived in

Section 3. Figure 3 shows in the φ1, β1 space the necessary and sufficient sets for the FIGARCH (left

panel, dashed line) and HYGARCH (right panel, solid line) models with parameters d and τ as reported

in Table 2 for the first period. The dots represent the estimated parameter combinations. In both cases,

the estimated parameters clearly lie inside the necessary and sufficient sets. Interestingly, the parameter

values estimated for the FIGARCH model violate the Bollerslev and Mikkelsen (1996) conditions, but

satisfy the Conrad and Haag (2006) conditions. Hence, relying on the Bollerslev and Mikkelsen (1996)

conditions would have led to the erroneous rejection of a valid model specification. The example nicely

illustrates, that checking the necessary and sufficient conditions derived in this article is an essential step

in validating a particular HYGARCH specification. The parameters estimated for the second period also

satisfy the conditions derived in Section 3, but we omit the figure for reasons of brevity.

In order to compare the persistence properties of the estimated FIGARCH and HYGARCH models

from Table 2 we compute the corresponding IRFs. Figure 4 shows the IRFs for the FIGARCH (dotted)

and HYGARCH (solid) models presented in Table 2. The dashed lines are the IRFs for the FIGARCH

components corresponding to the HYGARCH models.

For the first period (Figure 4, left panel) the solid line is considerably below the dashed line. This

is because in the first period we estimated a τ of less than one and hence the dashed line does not take
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Figure 3: Necessary and sufficient parameter sets for FIGARCH (left panel) and HYGARCH (right

panel) models as estimated in Table 2 columns 2 and 3. The dots represent the estimated parameter

combinations.

into account the exponentially decaying GARCH component of the HYGARCH process. For the second

period (Figure 4, right panel) we have τ greater than one and therefore obtain a IRF of the HYGARCH

which is strictly above the dashed line. The dotted lines are the IRFs for the pure FIGARCH models

estimated for the two periods in columns 2 and 4 of Table 2. Interestingly, the dotted lines and the solid

lines are very similar. By choosing persistence parameters d in the pure FIGARCH models which are

lower (higher) than the ones in the HYGARCH models, the implied IRFs of the FIGARCH are very much

the same as the ones of the HYGARCH. Again, this finding is in line with our simulation results. The

pure FIGARCH model leads to a higher (lower) estimate of d in comparison to the persistence parameter

of the FIGARCH component of the HYGARCH model if τ > 1 (τ < 1).
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Figure 4: IRFs for HYGARCH models as estimated in Table 2 columns 3 (left panel) and 5 (right panel).

The solid line represents the IRF with τ as estimated and the dashed line represents the IRF when τ is

restricted to being one. The dotted IRFs represent the FIGARCH models estimated in Table 2 columns

2 (left panel) and 4 (right panel).
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6 Conclusions

We extend the results of Nelson and Cao (1992) and Conrad and Haag (2006) by deriving necessary

and sufficient conditions which ensure the non-negativity of the conditional variance in the HYGARCH

model of the order p ≤ 2 and sufficient conditions for the general model. The starting point for our

derivations is the idea to exploit the fact that the ARCH(∞) coefficients of the HYGARCH process are

a linear combination of the ARCH(∞) coefficients of its GARCH and FIGARCH components. Recursive

representations for the ARCH(∞) coefficients of those components are well known in the literature and

can be directly plugged in. It turns out that the coefficients of the HYGARCH obey a structure very

similar to the FIGARCH coefficients. The only difference is due to the additional parameter τ which

allows the HYGARCH to constitute a covariance stationary process. But this parameter appears simply

as a multiplicative constant and therefore the arguments used in Conrad and Haag (2006) to establish

non-negativity constraints for the FIGARCH can be extended to the HYGARCH process. It is important

to notice that our recursive representation of the ARCH(∞) coefficients has a powerful direct application

in constructing multi-step-ahead volatility forecasts for e.g. option pricing or Value-at-Risk computations

as suggested by Andersen et al. (2006).

Non-negativity conditions for the HYGARCH process are important since their validity is a necessary

condition for the parameters of a particular HYGARCH model to represent a well defined non-negative

conditional variance process. Similarly, as in the FIGARCH case one can not deduce the non-negativity

of the conditional variance only from the signs of the estimated parameters which means that non-

negativity conditions should always by checked. Moreover, it is shown that an extension of the Bollerslev

and Mikkelsen (1996) sufficient condition to the HYGARCH(1, d, 1) is overly restrictive and, therefore,

clearly the necessary and sufficient conditions presented here are preferable. For the (1, d, 1) model

we provide an analytical and graphical comparison of the necessary and sufficient parameter set of the

HYGARCH with the corresponding sets of its GARCH and FIGARCH components.

Moreover, we provide some further insights into the mechanics of the HYGARCH and FIGARCH

models. In the literature it is often reported as surprising, that both models applied to the same data

set result in quite different parameter estimates for the persistence parameter d. We explain that this is

a natural consequence if the true DGP is best described by a HYGARCH model.

Finally, the conditions derived in this article can be directly applied to multivariate models such as the

constant correlation HYGARCH, the orthogonal HYGARCH or possibly to a hyperbolic autoregressive

conditional duration (HYACD) model for the conditional duration time.
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Endnotes

1Recall, that throughout the article we always assume that ω > 0. Hence, this condition is not

explicitly restated here.
2The IGARCH specification implies Φ(1) = 0 and thus violates the covariance stationarity condi-

tion. This however does not preclude strict stationarity. E.g. the IGARCH(1, 1) process will be strictly

stationary and ergodic provided that E[ln(α1Z
2
t + β1)] < 0 (see Nelson, 1990).

3Karanasos et al. (2004) point to an alternative modification of the FIGARCH which also specifies a

covariance stationary εt process. In analogy to the ARFIMA model for the mean, they construct their long

memory GARCH (LMGARCH) process such that the fractional differencing operator is applied to the

“demeaned” squared innovations, i.e. instead of equation (6) they assume (1−L)dΦ(L)(ε2
t −ω) = B(L)vt,

which makes ω the unconditional variance of εt.
4The necessary and sufficient parameter set for the FIGARCH(1, d, 1) component is obtained from

Theorem 1 by setting τ = 1 and replacing ψHY
i by ψFI

i . The necessary and sufficient parameter set for

the GARCH(1, 1) component is given by 0 < β1 < φ1 < 1.
5Please note the typo in Case 2 of Corollary 3, p. 427, in Conrad and Haag (2006) which writes

(
d−

√
2(2− d)

)
/2 ≤ β1 instead of

(
d−

√
d(2− d)

)
/2 ≤ β1.

6In its output G@RCH provides estimates for ln(τ) instead of τ .
7The term HYAPARCH refers to hyperbolic asymmetric power GARCH. This model allows for asym-

metric effects of positive and negative shocks to the volatility and estimates a flexible power transformation

of the conditional variance.

Appendix:

Proof of Lemma 1.

Recall from equation (9) that for i = 1, 2, . . . we have that ψHY
i = τψFI

i + (1− τ)ψGA
i . Additionally,

Conrad and Haag (2006) provide recursions for the ARCH(∞) coefficients of the FIGARCH(p, d, q) (see

Lemma 1 in Conrad and Haag, 2006) and the GARCH(p, q) (see Remark 3 in Conrad and Haag, 2006).

Following the notation in Conrad and Haag (2006) we write ψHY
i = ψ

HY (p)
i = τψ

FI(p)
i + (1− τ)ψGA(p)

i .
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By application of the corresponding recursions we obtain for 1 < r ≤ p, i ≥ 1

ψ
HY (r)
i = τ(λ(r)ψ

FI(r)
i−1 + ψ

FI(r−1)
i ) + (1− τ)(λ(r)ψ

GA(r)
i−1 + ψ

GA(r−1)
i )

= λ(r)

(
τψ

FI(r)
i−1 + (1− τ)ψGA(r)

i−1

)
+ τψ

FI(r−1)
i + (1− τ)ψGA(r−1)

i

= λ(r)ψ
HY (r)
i−1 + ψ

HY (r−1)
i .

The ψ
HY (1)
i sequence of coefficients is given as a linear combination of the coefficients from a FIGARCH(1, d, q)

and a GARCH(1, q), i.e. we have for i = 1, . . . , q

ψ
HY (1)
i = τ

(− ci +
i∑

j=1

φjci−j

)
+ (1− τ)

i∑

j=1

λi−j
(1) (φj − βj)

and for i ≥ q + 1

ψ
HY (1)
i = τ(λ(1)ψ

FI(1)
i−1 + Fi(−gi−q)) + (1− τ)λ(1)ψ

GA(1)
i−1

= λ(1)(τψ
FI(1)
i−1 + (1− τ)ψGA(1)

i−1 ) + τFi(−gi−q)

= λ(1)ψ
HY (1)
i−1 + τFi(−gi−q).

Note, that an iterated version of the last equation for i ≥ q + 2 would be

ψ
HY (1)
i = β2ψHY

i−2 + τF
(2)
i (−gi−2).

Proof of Theorem 1.

Case 1: 0 < β1 < 1

”⇐”

1. If ψHY
1 ≥ 0 and φ1 ≤ f2 this ensures that ψHY

i = β1ψ
HY
i−1 + τ(fi − φ1)(−gi−1) ≥ 0 for all i ≥ 2,

since fi is increasing and τ ≥ 0.

2. If φ1 > f2, then there exists a k such that φ1 ≤ fk. Then for ψHY
i with 1 < i < k it holds that

ψHY
i = β1ψ

HY
i−1 + τ(fi − φ1)(−gi−1) ≥ 0 ⇔ β1ψ

HY
i−1 ≥ τ(fi − φ1)gi−1 > 0 ⇒ ψi−1 ≥ 0.

Thus, ψi ≥ 0 implies ψi−1 ≥ 0. As ψk−1 ≥ 0 it follows recursively that ψi ≥ 0 for all 1 ≤ i < k.

For i ≥ k we have ψHY
i = β1ψ

HY
i−1 + τ(fi − φ1)(−gi−1) and hence, from ψHY

k−1 ≥ 0 follows ψHY
k ≥ 0

since φ1 ≤ fk. ⇒ ψi ≥ 0 for all i > k by induction.

”⇒”

1. ψHY
1 , ψHY

k−1 ≥ 0 are trivially fulfilled.

2. Either φ1 ≤ f2 or φ1 > f2, but since fi−1 ≤ fi and fi → 1 there exists a k s.t. φ1 ≤ fi for all i ≥ k.
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Case 2: −1 < β1 < 0

”⇐”

We make use of the recursion

ψHY
i = β2

1ψHY
i−2 + τ

(
β1(fi−1 − φ1) + (fi − φ1)fi−1

)
(−gi−2) for i ≥ 3. (19)

1. If φ1 ≤ f2(β1 + f3)/(β1 + f2) then ψHY
1 ≥ 0 and ψHY

2 ≥ 0 ensure that ψHY
i ≥ 0 for all i ≥ q + 2.

2. If φ1 > f2(β1 + f3)/(β1 + f2) then for ψHY
i with 3 < i < k it holds that

ψHY
i = β2

1ψHY
i−2 + τ

(
β1(fi−1 − φ1) + (fi − φ1)fi−1

)
(−gi−2) ≥ 0

⇔ β2
1ψHY

i−2 ≥ τ
(
β1(fi−1 − φ1) + (fi − φ1)fi−1

)
(gi−2) ≥ 0

⇒ ψHY
i−2 ≥ 0

Thus, ψHY
i ≥ 0 implies ψHY

i−2 ≥ 0. As ψHY
k−1 ≥ 0 and ψHY

k−2 ≥ 0 it follows recursively that ψHY
i ≥ 0

for all 1 ≤ i < k. For i ≥ k we use equation (19) and hence, from ψHY
k−1 ≥ 0 and ψHY

k−2 ≥ 0 it follows

that ψHY
i ≥ 0 for all i > k by induction.

”⇒”

1. ψHY
1 , ψHY

2 , ψHY
k−2, ψ

HY
k−1 ≥ 0 are trivially fulfilled.

2. Either φ1 ≤ f2(β1 + f3)/(β1 + f2) or φ1 > f2(β1 + f3)/(β1 + f2), but since fi−1 ≤ fi and fi → 1

there exists a k s.t. φ1 ≤ f2(β1 + f3)/(β1 + f2) for all i ≥ k.

Proof of Proposition 1.

Case 1: 0 < τ < 1

Consider the behavior of ψGA
i if the condition 0 < β1 < φ1 < 1 is violated. It is straightforward to

show that in this case either ψGA
i < 0 for all i (which happens e.g. when φ1 < 0 and β1 > 0) or ψGA

i has

alternating sign (which happens when β1 < 0). For any 0 < d < 1, the former case immediately leads to

at least one ψHY
i < 0 if not all ψFI

i ≥ 0. The latter case could lead to a non-negative ψHY
i sequence if

the ψFI
i would be of changing sign themselves. Obviously, this is not the case. Hence, it follows that for

any (β1, φ1) /∈ NSGA and (β1, d, φ1) /∈ NSFI that also (β1, d, φ1, τ) /∈ NSHY .

Case 2: τ > 1

In this situation, the weight (1 − τ) on the ψGA
i coefficients is negative. Hence, for all parameter

combinations (β1, φ1) ∈ NSGA, the relation ψHY
i = τψFI

i +(1−τ)ψGA
i implies that if (β1, d, φ1) /∈ NSFI

it must be that there is a ψHY
i < 0 and hence (β1, d, φ1, τ) /∈ NSHY .

Proof of Theorem 2.

As the proof of Theorem 1 in Conrad and Haag (2006).
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Proof of Theorem 3.

As the proof of Theorem 4 in Conrad and Haag (2006).
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