Uhl, Matthias W.

Working Paper

Reuters sentiment and stock returns

KOF working papers // KOF Swiss Economic Institute, ETH Zurich, No. 288

Provided in Cooperation with:
KOF Swiss Economic Institute, ETH Zurich

Suggested Citation: Uhl, Matthias W. (2011) : Reuters sentiment and stock returns, KOF working papers // KOF Swiss Economic Institute, ETH Zurich, No. 288, http://dx.doi.org/10.3929/ethz-a-006620590

This Version is available at:
http://hdl.handle.net/10419/50401

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
KOF Working Papers

Reuters Sentiment and Stock Returns

Matthias W. Uhl
Reuter’s Sentiment and Stock Returns∗

Matthias W. Uhl†

September 2011

Abstract

We examine the statistical power of fundamental and behavioral
factors with regards to stock returns of the Dow Jones Industrials In-
dex. With a novel sentiment dataset from over 3.6 million Reuters
news articles, we find significant correlations between Reuters sen-
timent and stock returns. We show with vector autoregression and error
correction models that sentiment can explain and predict changes in
stock returns better than macroeconomic factors. Considering posi-
tive and negative sections of Reuters sentiment, we find that negative
sentiment performs better in simple trading strategies to predict stock
returns than positive sentiment, while the sentiment effect remains over
months.

Keywords: Reuters sentiment, stock returns, out-of-sample forecasts,
vector error correction model

JEL classifications: G11, G14, G17

∗Thanks go to Thomson Reuters for the sentiment dataset. I am grateful to Didier
Sornette and Jan-Egbert Sturm for helpful comments and suggestions. Thanks also go
to discussants and participants of the internal research seminar at MAN Investments, the
World Finance Conference, and the European Financial Management Conference for their
feedback and suggestions. I thank Edward Fridael for his IT support.
†KOF Swiss Economic Institute, ETH Zurich, 8092 Zurich, Switzerland, Tel. +41-44-
632-2553, Fax +41-44-632-1218, E-mail: uhl@kof.ethz.ch
1 Introduction

1.1 Outline

The Efficient Market Hypothesis (EMH), first introduced by Fama (1970), has been questioned widely on the grounds of psychological phenomena occurring in financial markets. Financial economists and psychologists alike have devoted time to research that relates sentiment among investors to financial market returns.

In this light, we want to introduce another way of explaining and predicting stock returns, undermining the EMH. In this study, we test whether Reuters sentiment is able to explain changes in stock prices. With Reuters sentiment, we mean a (positive or negative) feeling, opinion, or emotion evoked among a reader while reading a certain Reuters news article. Tetlock's (2007) study and findings serve as motivation, as we identify the need to not only consider the predictive power of negative sentiment on stock returns, but also of positive sentiment as well as combined (positive and negative) sentiment. We also extend the timeframe from daily to monthly, examining whether sentiment prevails for a longer time period than suggested by the existing literature. The dataset used in this study is novel and unique. Using sentiment in Reuters news and a macroeconomic indicator, we build Vector Error Correction Models (VECM) and simple trading strategies based on out-of-sample forecasts to test the predictive accuracy of the models. We find that negative sentiment predicts stock returns better than positive and combined sentiment, while the effect remains over months, and not only days, as previously assumed.

Section 1 gives an overview of the existing literature and lays out the motivation. Section 2 describes the dataset, while section 3 discusses the econometric modeling approach and the empirical results of the specified models. Section 4 lays out simple trading strategies based on out-of-sample forecasts. Section 5 concludes.
1.2 Related Literature

Since the late 1980s, when the first studies emerged that postulated irrationality in financial markets, the domain of behavioral finance has introduced ways to explain that irrationality. Kahneman and Tversky (1981) find that subjects overreact to new information in making probabilistic judgments. Based on the same grounds, Shiller (1981) notes that financial markets display excess volatility and overreaction to new information. Summers (1986) then posed the question whether the stock market rationally reflects fundamental values and came to the conclusion that most tests of market efficiency have had little power to solidify the EMH, suggesting that excess volatility and negative autocorrelation can produce a deviation of the price in a rational fundamental market. Further, he elaborates, certain types of inefficiency in market valuations are not likely to be detected using standard methods. Thus, one should not conclude erroneously that market prices represent rational assessments of fundamental valuations based on the grounds that many studies have found that the EMH cannot be rejected. One of the first studies that attempted to link other exogenous variables to financial market returns was undertaken by De Bondt and Thaler (1985). They show that, based on research in experimental psychology, overreaction occurs mainly when unexpected and dramatic news events happen. A few years later, Cutler et al. (1989) identified a link between news coverage and stock prices. Since then, studies have evolved that look at the potential influence that the media has on investor behavior.

The growing evidence in the finance literature about news affecting investors and thus stock returns is key motivator for this study. DeLong et al. (1990) are among the first to find that investors are subject to news. In their model, two sets of traders in the financial markets exist: professional arbitrageurs and unsophisticated traders, i.e. noise traders. The prevailing risk in the market, they find, is created by the unpredictability of the noise traders. Professional arbitrageurs respond to the behavior of noise traders rather than acting on fundamentals. In doing so, professional arbitrageurs consider pseudo signals, such as volume and price patterns, but also news.
With the growing importance of the media in financial markets globally, we can assume that the news effect is becoming more important. Assuming that markets are not efficient, examining under- and overreaction in stock prices due to news releases becomes then even more apparent. Barberis et al (1998) show that news can cause both over- and underreaction to stock prices by formulating a parsimonious model of investor sentiment. They claim that news are incorporated only slowly into stock prices. Their findings speak for a lower frequency, i.e. monthly, analysis that we conduct in this study.

Other studies have identified a variety of behavioral aspects of stock investors with regards to news. For example, Klibanoff et al (1998) show that country-specific news reported on the front page of the New York Times affect the pricing of closed-end country funds. Huberman and Regev (2001) find that an article in the Financial Times on a biochemical firm made prices of that company soar. Antweiler and Frank (2004) consider the influence of Internet stock message boards. They find that stock messages predict market volatility. The above mentioned studies make the case for examining the impact of news closer, as news appear to have an effect on investors, which should be reflected in stock returns movements. We want to dig deeper and consider how news are written and portrayed.

In a journalistic study, Maier (2005) notes that there are 61% errors in local news and feature stories in the US, while subjective errors are considered most severe. Maier’s results suggest that how a story is conveyed is at least as important as getting the facts straight. The results of these studies speak for examining news reports for sentiment, and using the sentiment values to explain changes in stock prices. In their extensive study on the news media, Mullainathan and Shleifer (2005) identify that there are biases in economic and political news and that these are slanted towards the customers of the media outlet. Given these findings, it appears relevant that sentiment in news plays a crucial role in the decision process of investors who follow news.

Baker and Wurgler (2007) argue that the key nowadays for researchers is to find out how to measure investor sentiment and quantify its effects. Owing to the quest for more accuracy in explaining financial market returns
from a behavioral point of view, studies have been aiming towards the quantification of sentiment recently. Thus, we introduce and test a new dataset that measures sentiment quantitatively in a systematic way, while trying to avoid subjectivity bias. With the growing importance of the media in the past decades, the obvious publicly available information are news, as De Bondt and Thaler (1985) as well as Cutler et al (1989) noted as early as a few decades ago. Based on these initial findings, we focus on news relevant to investors, such as Reuters news reports.

More recently, some researchers have looked at the quantification of sentiment in media reports. Tetlock (2007) is one of the first to quantitatively measure the interactions between the media and the stock market using daily content from a Wall Street Journal column. High media pessimism, he finds, predicts falling stock market prices followed by a reversion to fundamentals. Unusually high or low pessimism predicts high trading volume as well. In a follow-up to Tetlock's (2007) study, Tetlock et al (2008) use a simple quantitative measure of language to predict individual firms’ accounting earnings and stock returns. Linguistic media content, they conclude, captures aspects of firms’ fundamentals that are otherwise hard to quantify, which are quickly incorporated into stock prices. Fang and Peres (2009) investigate the cross-sectional relation between media coverage and expected stock returns. They find that stocks with no media coverage earn higher returns than stocks with high media coverage even after controlling for well-known risk factors. Their results are more pronounced among small stocks and stocks with high individual ownership, low analyst following as well as high idiosyncratic volatility. Given their findings, this suggests that the breadth of information dissemination affects stock returns. On a similar note, Livnat and Petrovits (2009) examine whether stock price reactions to earnings surprises and accruals vary systematically with the level of investor sentiment. By formulating a monthly trading strategy, they find evidence that holding extreme good news firms following pessimistic sentiment periods earns significantly higher abnormal returns than holding extreme good news firms following optimistic sentiment periods. These results indicate that investor sentiment influences the source of excess returns from earnings-based trading
strategies.

As Baker and Wurgler (2007) point out, it is no longer questionable whether sentiment affects investors and thus stock returns, but rather how to measure sentiment. Many studies have emerged in the past years attempting to tackle the issue of defining sentiment that influences stock markets and, more importantly, measuring it.\footnote{See, for example, Cao and Wei (2005), Edmans et al (2007), Hirshleifer (2001), Hirshleifer and Shumway (2003), Kamstra et al (2003), and Yuan et al (2006), among others.} This study introduces a novel dataset and approach to measure sentiment in Reuters news. For example, Tetlock (2007) uses the General Inquirer (GI), a quantitative content analysis program to measure sentiment.\footnote{See The General Inquirer Home Page, available at http://www.wjh.harvard.edu/~inquirer/, last accessed 23 November 2010.} As explained in the appendix in Tetlock (2007), the GI has one major shortcoming: it is only able to distinguish between positive and negative words, or sentiment categories, but not between context. As opposed to Tetlock’s (2007) dataset, the sentiment classifier used in this study is able to account for both individual words and context in the sentiment analysis through cutting-edge technology developed by Thomson Reuters.

In his recent study, Tetlock (2011) tests whether investors distinguish between old and new information about firms, or, what he calls the “staleness of news.” A firm’s return on the day of stale news negatively predicts its return in the following week, which speaks for the fact that individual investors overreact to stale information, leading to temporary movements in firms’ stock prices. In our dataset, we are able to account for the issue of stale news, as every news item is coded accordingly by Thomson Reuters in order to avoid this pitfall.

2 Dataset

We analyze both positive and negative sentiment in relation to stock returns. The sentiment scores are not only obtained through simply coding positive and negative words according to a database. Owing to new technological advance in text mining, Thomson Reuters is able to undertake a
sentiment analysis that takes the context into account. For example, the sentiment algorithm is able to distinguish between negative words and negations of positive words. “Good” would be categorized as positive in the sentiment analysis, but “not good” would be classified as negative. This has not been possible so far in textual mining programs that are based on a pre-defined databases of positive and negative words only. Thus, we want to contribute to the literature with a more precise methodological approach as opposed to earlier studies.

Based on this dataset, we introduce the concept of measuring sentiment in Reuters news articles quantitatively in order to explain stock returns. Every Reuters news article is coded with positive \{1\}, neutral \{0\}, or negative \{-1\} sentiment. In the past, most solutions have come from the text mining industry that caters to the financial markets industry, in which news texts can be scanned in great quantities and a short amount of time for sentiment with specific sentiment algorithms. Thomson Reuters is one of the few providers of sentiment classified news.\(^3\) The dataset at hand consists of high-frequency (tick data) sentiment rated Thomson Reuters news pieces, classified from a wide list of topics for the US market.\(^4\) For this study, we filter all Reuters news items for sentiment from the Equities topic codes section.\(^5\) Then, we extract both positive and negative sentiment values in order to form two independent time-series in order to aggregate the tick sentiment scores to monthly values. The dataset can also account for the issue of staleness as described in Tetlock (2011) because the sentiment algorithm is able to tag each news item with a unique time stamp and topic identifier, so that repeatedly reported news items are not considered again in the analysis.

\(^4\)The topics range from financial market to economic and political news, categorized into topic codes. See Reuters Codes - A quick guide, available at https://customers.reuters.com/training/trainingCRMdata/promo_content/ReutersCodes.pdf, last accessed 9 December 2010.

\(^5\)We filter for “U” in the product code section, and for “DIV, MRG, RES, RESF, RCH, STX” in the topic code section. These codes mean that we filter for news related to dividends, ownership changes, broker research, corporate results, results forecasts and stock markets for North American companies.
Table 1 shows the number of news pieces that were tagged; in total, over 3.6 million Reuters news items were coded for sentiment from January 2003 to December 2010.

Monthly price return data for the Dow Jones Industrials stock index were obtained from Thomson Reuters Datastream. The corresponding monthly volume data for the Dow Jones stock index are from MasterData. To capture the real macroeconomic development, we use a time series of the Conference Board Leading Economic Indicators Index. This index consists of a combination of leading indices, such as production, employment, monetary, and consumer data for the US. The advantage over using many different indicators is that one variable is easier to handle in our subsequent model than multiple variables. Given that we attempt to explain stock returns with non-conventional measures - inconsistent with the EMH - such as sentiment, we need to include fundamental facts that are consistent with the EMH to capture all possible channels of influence on the stock index, and to compare the fundamental to the behavioral. The Conference Board Leading Economic Indicators Index appears the most suited for “summarizing” macroeconomic factors in one variable. Monthly data for this indicator were obtained from Thomson Reuters Datastream.

To get a first understanding of the data, we look at the variables graphically in fig. 1. The Dow Jones stock index shows a pattern, in which we can make out the bull market from 2003 to 2008 and the subsequent crash when the financial crisis hit global capital markets in 2008. As of March 2009, prices have recovered until the end of the period examined. The volume chart shows more or less an inverse pattern to stock prices. This suggests a negative correlation between stock prices and volume. Tetlock (2007) finds that a high level of pessimism in the media predicts falling market prices. The Reuters sentiment graph shows that the stock indices follow Reuters sentiment with a certain lag. Most prominently, the trough in Reuters sentiment occurred around December 2008, whereas the stock market bottomed

in March 2009. The Conference Board Index shows a similar movement as the Dow Jones Industrials index. We thus undertake further empirical tests to find out whether a combination of fundamental data, i.e. the Conference Board Index, and behavioral data, i.e. Reuters sentiment, can explain changes in stock prices.

Fig. 2 shows cross-correlations of the Dow Jones stock index returns and volume, the Conference Board Index and Reuters sentiment. As graphically anticipated, stock index volume has a negative correlation with the Dow Jones Industrials stock index at most lags. The Conference Board Index has a strong correlation with Dow Jones stock returns, greatest at lag zero. This observation makes sense when considering the common belief that stock markets price in immediately any real macroeconomic development; especially for monthly data, the effect should be already priced in. The Reuters sentiment variable is positively correlated with stock prices, with the highest correlation at lag 1. This means that Reuters sentiment moves one month “ahead” of stock markets. In fig. 3, we consider the cross-correlations between stock returns and positive and negative sentiment scores. Positive and negative sentiment both show the highest correlation at lag one, whereas positive sentiment has a positive correlation and negative sentiment a negative correlation with stock returns.

In the next section, we proceed by constructing a model to test our initial observations.

3 Modeling

By constructing a Vector AutoRegression model (VAR), we tackle possible endogeneity issues. Since we have unit roots in most of the variables, we test for cointegration according to Johansen (1991) first. We find one cointegrating relation. Thus, we formulate a Vector Error Correction Model (VECM) according to the reduced rank (RR) estimation procedure as in Johansen (1995) to account for nonstationarity and cointegration in the data as follows:
\[\Delta y_t = \alpha \beta^* \left[D_{t-1}^{co} \right] + \Gamma_1 \Delta y_{t-1} + \cdots + \Gamma_p \Delta y_{t-p} + CD_t + u_t, \] (1)

where \(y_t \) refers to the endogenous variables, which are the Dow Jones Industrials stock index, Reuters sentiment, Dow Jones stock index volume, and the Conference Board Index, \(D_t \) refers to the deterministic term (here: a constant \(C \)), \(D_{t-1}^{co} \) is the cointegrating relation, \(u_t \) is the error term, and \(\beta^* \) is the cointegration matrix.

In total, we construct three VECMs: first, a model that includes all variables named above with the Reuters sentiment variable that includes all scores, namely positive, neutral and negative. Second, one model comprises only the negative sentiment scores plus the Conference Board Index and stock index volume and, third, one that incorporates positive sentiment, also with the Conference Board Index and stock index volume. To find an optimal lag structure of the models, we perform lag length selection tests according to the Akaike Info Criterion, as shown in table 2.\(^8\) For two of the three models, we obtain an optimal number of lags of four, and for one model, which incorporates negative sentiment, an optimal lag length of two. Given our graphical interpretation as well as the insights from the cross-correlograms, which show that sentiment has leading characteristics over stock returns, it appears suited to use a lag structure in the models.

We empirically test the above models to obtain further clues whether Reuters sentiment as well as other variables can explain and/or predict stock returns. Table 3 shows the results of the VECM estimation with Reuters sentiment, allowing for up to four lags, as specified above. The estimated cointegration relation shows statistically significant values for volume and sentiment, both with correctly specified coefficient signs. Interestingly, the Conference Board Index coefficient is not statistically significant, although the coefficient sign is correct. In the cointegration relation, a negative coefficient sign means that there is a positive relationship with stock returns, and vice versa. For the lagged endogenous term results, the coefficients of

\(^8\) See Akaike (1974) for more information on the Info Criterion.
sentiment are statistically significant at lags one and three, whereas the Conference Board Index is not statistically significant. These observations lead to assuming that Reuters sentiment has more statistical power to explain stock returns than the Conference Board Index in our model. Macroeconomic factors might thus not be as relevant as behavioral aspects for stock markets in the longer term.

We consider these results in more detail by looking at positive and negative Reuters sentiment individually. Table 4 shows the VECM estimation results with Reuters negative sentiment values, allowing up to two lags. The estimated cointegration relation results show highly statistically significant coefficients for volume and negative sentiment, whereas the Conference Board Index coefficient is not statistically significant. Furthermore, the coefficient sign for Reuters sentiment is correctly specified. The lagged endogenous term results show that the negative sentiment coefficient is statistically significant at lag two. The Conference Board Index coefficient is highly statistically significant at lag one, whereas volume is statistically significant at lags one and two. In this model, both Reuters sentiment and the Conference Board Index are statistically significant.

Table 5 shows the VECM estimation results with Reuters positive sentiment. The coefficients of volume, positive sentiment and the Conference Board index of the estimated cointegration relation are all highly statistically significant. However, the coefficient sign of Reuters positive sentiment is not correctly specified. Furthermore, the coefficients in the lagged endogenous term estimation of Reuters positive sentiment are not statistically significant. The Conference Board index coefficients are statistically significant at lags one and two. These results suggest that positive sentiment is not as well suited as general and negative sentiment as well as fundamental factors.

To analyze the dynamic interactions between the endogenous variables of the VEC process, we draw on the impulse response analysis so that we can analyze the dynamic interactions between the endogenous variables of the VEC(p) process. A structural vector error correction (SVEC) analysis appears suited in this case.9 The SVEC model is used to identify the shocks

9 See Appendix A.1 for a detailed discussion of Impulse Responses in VEC(p) processes.
to be traced in an impulse response analysis by imposing restrictions on the matrix of long-run effects of shocks and the matrix B of contemporaneous effects of the shocks.10

Fig. 4 shows the results of the impulse response functions based on the SVEC model. We focus on the first row of the impulse response graphs because we want to identify possible impacts of sentiment, volume, and macroeconomic facts on stock returns. The graphs show an effect of the Conference Board Index as well as Reuters sentiment on stock returns, while stock index volume does not seem to have a significant impact on the Dow Jones Industrials stock index. Stock returns show the greatest response to Reuters sentiment after one month, and to the Conference Board index after two months.

Fig. 5 shows the impulse responses based on the SVEC model with Reuters negative sentiment. The response of stock returns to Reuters negative sentiment is negative and greatest after one month, while the response to the Conference Board Index is positive and also greatest after one month. In fig. 6, we get a similar pattern with Reuters positive sentiment. The response of stock returns to Reuters positive sentiment is positive and greatest after one month. The same applies for responses of stock returns to the Conference Board Index. Hong and Stein (1999) show theoretically that prices underreact in the short run, suggesting that this should ultimately lead to overreaction in the long run. In this study, we consider the longer term with a monthly data analysis, in which we find an overreaction to sentiment, contradicting studies that claim that the sentiment effect is only present for at most a few days, such as Tetlock (2007). In a recent study, Livnat and Petrovits (2009) account for a post-earnings announcement drift among investor sentiment. They find evidence that holding firms with extremely good news following pessimistic sentiment periods earns significantly higher abnormal returns than holding firms with extreme good news following op-

\footnote{See Appendix A.2 for the derivation of matrix B.}
timistic sentiment periods. Similarly, they show that holding low accrual firms following pessimistic sentiment periods earns significantly higher abnormal returns than holding low accrual firms following optimistic sentiment periods.11 Our findings are novel in that we show a longer lasting response of stock returns to Reuters sentiment that remains for months, while the response is most pronounced after one month.

We further test how much impact each variable has on stock returns in relation to another. To do this, we draw on the forecast error variance decomposition (FEVD).12 The FEVD of Dow Jones Stock index returns is depicted in fig. 7. Interestingly, the impact of the economic factors, in the form of the Conference Board Index, makes up around 5% of the variance of the forecast error of stock returns. The largest share has Reuters sentiment, making up around 15-20% of the variance of the forecast error of stock returns. Volume only attributes to about 5% of the variation in stock returns. This is in line with our empirical results from the VECM and the impulse response functions, strongly speaking for Reuters sentiment as a relevant variable to explain stock returns on a monthly basis.

Overall, we can claim that both fundamental, i.e. the Conference Board Index, and behavioral, i.e. Reuters sentiment, factors can explain stock returns in lower frequencies. Other factors that we have accounted for, such as stock index volume, do not explain stock returns too well, but Reuters negative sentiment appears to have more explanatory power to stock returns than positive sentiment. Contrary to the existing literature, we show that the sentiment effect does not disappear after hours or days, but that it is also present in a setting with monthly time periods. In the next section, we test how the variables perform in an out-of-sample forecasting environment.

4 Forecasting

Tetlock (2007) shows that one can use negative words in news articles to predict quarterly earnings. Negative words, he finds, consistently predict lower earnings, regardless of the measure and the newspaper. Based

11 See also Chan (2003) for evidence of a post-news drift.
12 See Appendix A.3 for a more detailed explanation of the FEVD.
on a systematical analysis, a measure of media content specifically tied to either negative investor sentiment or risk aversion, he constructs a hypothetical zero-cost trading strategy using negative words to predict returns of the Dow Jones Industrials Stock Index that yields excess returns (7.3% p.a.). He notes, however, that since this strategy neither accounts for transaction costs nor for slippage and bid-ask spreads, it is questionable whether this strategy would remain profitable in a real-world setting. Furthermore, Tetlock’s trading strategy is based on a daily analysis and thus requires to trade daily. Motivated by this approach, we formulate a simple trading strategy that only requires to trade once per month, given our low-frequency (monthly) data analysis, so that we essentially do not have to account for transaction costs. We attempt to formulate a similar strategy by hypothesizing that Reuters sentiment, i.e. both positive and negative as well as individually, can predict stock returns.

To practically test the predictive power of our models, we construct out-of-sample forecasts. The forecasts are derived from the previously formulated VECMs in (1) based on conditional expectations assuming independent white noise u_t. The vector y_t, incorporating the endogenous variables Dow Jones Industrials stock index returns and volume, the Conference Board Index as well as Reuters Sentiment, is altered for the forecasts to test which variables add forecasting power, and which ones do not. We estimate the out-of-sample forecasts with values from January 2003 to December 2009. Then, we perform step-by-step $t+1$ forecasts for each month of 2010, simulating a real-world trading environment. In total, we estimate seven different models according to results of the Johansen test and the Akaike Info Criterion test. Depending on the test results, we use VARs or VECMs with differing endogenous lag structures. Table 6 shows the results.

The first row shows the absolute performance of the Dow Jones Industrials stock index in 2010: almost 8%, while the Sharpe ratio is 0.48. This is our benchmark to which we compare the performance of each trading strategy. Based on the predicted values of the model, we formulate a simple long-

short strategy. If the forecast is above the month-end closing price of the stock index, the strategy goes long at the beginning of the forecast month. If the forecast is below the month-end closing price of the stock index, the strategy goes short. The position is closed at the end of each month at the closing price and adjusted in the direction if the forecast assumes a reversal. For simplicity reasons, the available equity is always invested in full at the beginning of each month.

The first model that we build our trading strategy on has the same variables and characteristics as the initial VECM in (1), from which the results are outlined in table 3. The model contains stock returns and volume, the Conference Board Index and Reuters sentiment (all values), allowing up to four endogenous lags. The annual performance of the strategy is less than 4%, so that it underperforms the benchmark by over 4%. The success rate is above 50%, indicating that the trading direction whether the index went up or down was predicted correctly in over 6 months for the year.14 With the next strategy, we want to test how well the model performs without Reuters sentiment, so that we estimate a VECM with stock returns and volume, and the Conference Board Index as endogenous variables. According to the Akaike Info Criterion test, the optimal endogenous lag structure is one. This strategy obtains a negative performance in 2010 of almost -17%, a great underperformance to the index. This lets suggest that Reuters sentiment does add value in forecasting models of stock returns. Further, we want to test Reuters sentiment individually to predict stock returns. According to the Johansen test, we do not find a cointegrating relation, so that we apply a VAR model as opposed to a VECM. The performance of this strategy is quite high with a total outperformance over the index of 23%. Confirming our earlier assumption and in line with our findings from the FEVD, Reuters sentiment is a good variable to predict stock returns in a monthly frequency setting.

For the next strategies, we consider the VECM results from tables 4 and 5 with Reuters negative and positive sentiment individually. The strategy

14Success Rate – number of correctly forecast trading direction (i.e. up or down) months divided by number of total forecast months.
with Reuters negative sentiment returns over 22% with a high success rate of 75%. The Sharpe Ratio, a measure that puts returns in relation to volatility, is quite high with a score of 1.62.15 The strategy that includes stock index volume, the Conference Board index, and Reuters positive sentiment is not as successful as the previous one, as it returns 19% with a much lower success rate and lower Sharpe Ratio. Nevertheless, this strategy is more successful than the first strategy with all values of Reuters sentiment. We can thus infer that "directional" sentiment, i.e. positive or negative, has more power to predict stock returns than combined sentiment from Reuters news pieces. This might also hail from the fact that the combined sentiment contains neutral sentiment, i.e. ambiguous and indiscernible statements without clear sentiment status, which might blur the sentiment score, although more words and context have been coded. Therefore, it is a clear advantage to consider only the positive and negative shares of the coded sentiment.

The last two strategies that we consider are based on VAR models with solely negative and positive sentiment, respectively, so that we can test directly whether positive or negative sentiment is the better predictor for stock returns. The strategy with negative sentiment returns over 47% in 2010, whereas the strategy with positive sentiment returns 15%. The difference between the two strategies gets more imminent when looking at the success rates: 83\% vs. 50\%. This makes negative sentiment clearly the better predictor for stock returns than positive sentiment.

According to the various tests and analyses that we have undertaken, we stress four major findings. First, we confirm the EMH by Fama (1970) to the extent that fundamental factors, accounted for by the Conference Board Index, can partly explain stock returns of the Dow Jones Industrials stock index. This finding is pronounced in both the impulse response functions and the variance decomposition analysis, in which the Conference Board Index makes up less of the variance of stock returns than sentiment. We also find that volume plays a minor role in the model. Second, we reject the EMH on the grounds that behavioral factors can explain a great share of stock returns, in particular to a greater extent than fundamental factors (i.e.

15See Appendix A.5 for a detailed calculation of the Sharpe Ratio.
the Conference Board Index) can. Reuters sentiment appears to capture
investor sentiment quite well, entailing strong predictive power for stock
returns. Third, even among sentiment there is a difference in the predictive
power, as we discern between positive and negative sentiment. We find
that negative sentiment is a much better predictor for stock returns than
positive sentiment. And, fourth, the major contribution of this paper does
not only lie in a more sophisticated sentiment approach as well as a more
extensive dataset, but also in the justification of a longer-lasting sentiment
effect. Contrary to previous studies, we find that sentiment is present over
months, not only over days.

5 Conclusion

Based on the EMH by Fama (1970), we examine whether fundamental
and/or behavioral factors influence US stock returns. To account for fun-
damental factors, we use the Conference Board Index that comprises of a
basket of various macroeconomic variables and indicators. We use stock in-
dex volume to control for possible market depth and liquidity constraints.
To account for behavioral factors, we use a novel dataset with sentiment
values that is obtained from over 3.6 million Reuters news articles. Tetlock’s
(2007) approach serves as inspiration for this study, as the use of his tex-
tual analysis tool, the General Inquirer (GI), seems limited, given that it is
only able to account for negative words, but neither for positive words nor
between the context of the article.

We reject the EMH by Fama (1970) because we find positive correlations
between negative media sentiment and declines in stock returns as well as be-
tween positive media sentiment and gains in stock returns, confirming that
markets are not fundamentally efficient. We show with impulse response
functions and a forecast error variance decomposition (FEVD) analysis of
a Vector Error Correction Model (VECM) that behavioral factors, such as
Reuters sentiment, can better explain stock returns than fundamental fac-
tors, such as the Conference Board Index. Furthermore, we find that negative
sentiment has a much higher explanatory and predictive power than posi-
tive sentiment in Reuters news. This finding is manifested in the results of out-of-sample forecasts that were constructed for the year 2010. Based on these forecasts, we construct successful trading strategies that produce high returns and good Sharpe ratios. We extend the current sentiment literature with a sophisticated approach and extensive dataset by finding that negative sentiment is not only the better predictor over positive sentiment for stock returns, but also by identifying that the sentiment effect remains for months, and not only for days, as previously suggested by the empirical literature.
Appendix

A.1 The Vector Error Correction Model

In a VECM, the vector of endogenous variables is denoted by y_t. If the process y_t is stationary, it has a Wold moving average (MA) representation

$$y_t = \Phi_0 u_t + \Phi_1 u_{t-1} + \Phi_2 u_{t-2} + \cdots,$$

where $\Phi_0 = I_K$ and the Φ_s can be computed recursively as

$$\Phi_s = \sum_{j=1}^{s} \Phi_{s-j} A_j, \quad s = 1, 2, \ldots,$$

with $\Phi_0 = I_K$ and $A_j = 0$ for $j > p$. The coefficients of this representation may be interpreted as reflecting the responses to impulses hitting the system. The (i,j)th elements of the matrices Φ_s, regarded as a function of s, trace out the expected response of y_{it+s} to a unit change in y_{jt} holding constant all past values of y_t. The elements of Φ_s represent the impulse responses of the components of y_t with respect to the u_t innovations.

Because the underlying shocks are not likely to occur in isolation if the components of u_t are not instantaneously uncorrelated, that is, if $\sum u$ is not diagonal, in many applications the innovations of the VAR/VECM are orthogonalized using a Cholesky decomposition of the covariance matrix $\sum u$. Denoting by P a lower triangular matrix such that $\sum u = PP'$, the orthogonalized shocks are given by $\varepsilon_t = P^{-1} u_t$. Thus, we obtain

$$y_t = \Psi_0 \varepsilon_t + \Psi_1 \varepsilon_{t-1} + \cdots,$$

where $\Psi_i = \Phi_i P (i = 0, 1, 2, \ldots)$. Here $\Psi_0 = P$ is lower triangular so that an ε shock in the first variable may have an instantaneous effect on all the variables, whereas a shock in the second variable cannot have an instantaneous impact on y_{1t} but only on the other variables and so on.

It is important to notice that if a different ordering of the variables in the vector y_t is chosen this may produce different impulse responses. Hence,
the effects of a shock may depend on the way the variables are arranged in the vector of y_t. Breitung et al (2004) discuss this issue in detail.

For the impulse responses that are computed from the estimated Structural Vector Error Correction Model (SVEC) coefficients, the confidence intervals (CIs) are constructed with the bootstrap method according to Efron and Tibshirani (1993). The standard percentile interval is determined as

$$CI_s = \left[s_{\gamma/2}^*, s_{(1-\gamma/2)}^* \right],$$

where $s_{\gamma/2}^*$ and $s_{(1-\gamma/2)}^*$ are the $\gamma/2$- and $(1-\gamma/2)$-quantiles, respectively, of the bootstrap distribution of the corresponding bootstrap estimator of the impulse response coefficient $\hat{\Phi}^*$.

A.2 Impulse Response Matrix

The matrix B is defined such that $u_t = B\epsilon_t$ in (1) and the matrix Ξ of long-run effects of the u_t residuals is

$$\Xi = \beta_\perp \left(\alpha_\perp \left(I_K - \sum_{i=1}^{p-1} \Gamma_i \right) \beta_\perp \right)^{-1} \alpha_\perp. \quad (2)$$

Hence, the long-run effects of ϵ shocks are given by ΞB. $rk(\Xi) = K - r$ and, hence, ΞB has rank $K - r$. Thus, the matrix ΞB can have at most r columns of zeros. Therefore, there can be at most r shocks with transitory effects (zero long-run impact) and at least $k_* = K - r$ shocks have permanent effects.

A.3 Forecast Error Variance Decomposition

The SVEC Forecast Error Variance Decomposition (FEVD) separates the variation in an endogenous variable into the component shocks to the Structural VAR (SVAR), or, in this case, the SVEC. The FEVD provides information about the relative importance of each random innovation in affecting the variables in the SVEC. Denoting the ij-th element of the orthogonalized impulse response coefficient matrix ψ_n, the variance of the forecast error $y_{k,T+h} - y_{k,T+h}'$ is
\[\sigma_k^2(h) = \sum_{n=0}^{h-1} (\psi_{k1,n}^2 + \cdots + \psi_{kK,n}^2) = \sum_{j=1}^{K} (\psi_{kj,0}^2 + \cdots + \psi_{kj,h-1}^2). \]

A.4 Forecast Errors

The corresponding forecast errors for the forecasts are

\[y_{T+h} - y_{T+h|T} = u_{T+h} + \phi_1 u_{T+h-1} + \cdots + \phi_{h-1} u_{T+1}, \]

where \(\phi_s = \sum_{j=1}^{s} \phi_{s-j} A_j, s = 1, 2, \ldots, \) with \(\phi_0 = I_K \) and \(A_j = 0 \) for \(j > p. \)

Thus, the forecast errors have zero mean and, hence, the forecasts are unbiased.

A.5 Sharpe Ratio

The Sharpe ratio is calculated according to Sharpe (1994):

\[\frac{R_p - R_f}{\sigma_p}, \]

where \(R_p \) is the annualized return of the portfolio, \(R_f \) the annualized rate of a risk-free asset (in this study we use the 1-month Treasury Bill rate), and \(\sigma_p \) is the annualized standard deviation of the portfolio returns.
References

Figure 1: Time-series charts of all variables.

Note: Abbreviations are as follows: Dow Jones Stock Index (dj_log) and Volume (dj_vol_log), The Conference Board Index (Conf_B_log), and Reuters sentiment - all values (tr_ns_u_eq_sel), Reuters negative sentiment (tr_ns_eq_sel_neg), and Reuters positive sentiment (tr_ns_eq_sel_pos)
Figure 2: Cross Correlations of the Dow Jones Stock Index and the Conference Board Index, Dow Jones Volume and Reuters Equities Sentiment (all values)

Figure 3: Cross Correlations of the Dow Jones Stock Index with negative and positive Reuters Equities Sentiment
Figure 4: Impulse Responses with Reuters sentiment from the Structural Vector Error Correction Model (SVEC) with 95% Bootstrap Confidence Intervals according to Efron and Tibshirani (1993).

Note: Abbreviations used denote the following: logarithmized Dow Jones Industrials Stock Index (dj_log_d1), logarithmized Dow Jones Industrials Stock Index Volume (dj_vol_log_d1), the Conference Board Index (Conf_B_log_d1), and Reuters sentiment from the equities section (tr_ns_U_eq_sel_d1).
Figure 5: Impulse Responses with Reuters negative sentiment from the Structural Vector Error Correction Model (SVEC) with 95% Bootstrap Confidence Intervals according to Efron and Tibshirani (1993).

Note: Abbreviations used denote the following: logarithmized Dow Jones Industrials Stock Index (dj_log_d1), logarithmized Dow Jones Industrials Stock Index Volume (dj_vol_log_d1), the Conference Board Index (Conf_B_log_d1), and Reuters negative sentiment from the equities section (tr_ns_eq_sel_neg_d1).
Figure 6: Impulse Responses with Reuters positive sentiment from the Structural Vector Error Correction Model (SVEC) with 95% Bootstrap Confidence Intervals according to Efron and Tibshirani (1993).

Note: Abbreviations used denote the following: logarithmized Dow Jones Industrials Stock Index (dj_log_d1), logarithmized Dow Jones Industrials Stock Index Volume (dj_vol_log_d1), the Conference Board Index (Conf_B_log_d1), and Reuters positive sentiment from the equities section (tr_ns_eq_sel_pos_d1).
Figure 7: SVEC Forecast Error Variance Decomposition of Dow Jones Industrials Stock Index (differenced logs)
<table>
<thead>
<tr>
<th>Thomson Reuters News Items*</th>
<th>3636917</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>3636917</td>
</tr>
</tbody>
</table>

Source: Thomson Reuters News Analytics*
Table 2: Optimal Endogenous Lags from Akaike Information Criteria

<table>
<thead>
<tr>
<th>Deterministic Variables: Constant</th>
<th>Endogenous Variables</th>
<th>Sample Range</th>
<th>Optimal number of lags (searched up to 10 lags) according to Akaike info Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dow Jones Industrials Stock Index and Volume (differenced logs),</td>
<td>[2004 M1, 2010 M12], T = 84</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>The Conference Board Business Cycles Indicator (differenced logs),</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reuters Sentiment - all values (first differences)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dow Jones Industrials Stock Index and Volume (differenced logs),</td>
<td>[2004 M1, 2010 M12], T = 84</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>The Conference Board Business Cycles Indicator (differenced logs),</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reuters Sentiment - negative values (first differences)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dow Jones Industrials Stock Index and Volume (differenced logs),</td>
<td>[2004 M1, 2010 M12], T = 84</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>The Conference Board Business Cycles Indicator (differenced logs),</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reuters Sentiment - positive values (first differences)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3: Vector Error Correction Model Coefficient Estimates (monthly values) with all values of Reuters sentiment

<table>
<thead>
<tr>
<th>Lagged endogenous term</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>p-value</th>
<th>Exogenous Variables</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0,0</td>
<td>-0.698</td>
<td>1.733</td>
<td>0.112</td>
<td>0.033</td>
<td>-0.299</td>
<td>0.364</td>
<td>0.162</td>
</tr>
<tr>
<td>2,0,0</td>
<td>-0.310</td>
<td>0.263</td>
<td>0.099</td>
<td>0.013</td>
<td>-0.119</td>
<td>0.114</td>
<td>0.009</td>
</tr>
<tr>
<td>1,1,0</td>
<td>0.103</td>
<td>0.374</td>
<td>0.099</td>
<td>0.013</td>
<td>-0.142</td>
<td>0.100</td>
<td>0.040</td>
</tr>
<tr>
<td>2,1,0</td>
<td>0.173</td>
<td>0.374</td>
<td>0.099</td>
<td>0.013</td>
<td>-0.142</td>
<td>0.100</td>
<td>0.040</td>
</tr>
<tr>
<td>3,0,0</td>
<td>-0.180</td>
<td>0.565</td>
<td>0.099</td>
<td>0.013</td>
<td>-0.142</td>
<td>0.100</td>
<td>0.040</td>
</tr>
<tr>
<td>4,0,0</td>
<td>-0.180</td>
<td>0.565</td>
<td>0.099</td>
<td>0.013</td>
<td>-0.142</td>
<td>0.100</td>
<td>0.040</td>
</tr>
<tr>
<td>3,1,0</td>
<td>-0.180</td>
<td>0.565</td>
<td>0.099</td>
<td>0.013</td>
<td>-0.142</td>
<td>0.100</td>
<td>0.040</td>
</tr>
<tr>
<td>4,1,0</td>
<td>-0.180</td>
<td>0.565</td>
<td>0.099</td>
<td>0.013</td>
<td>-0.142</td>
<td>0.100</td>
<td>0.040</td>
</tr>
</tbody>
</table>

Notes:
- The table presents the coefficient estimates for a Vector Error Correction Model (VECM) with all values of Reuters sentiment as endogenous variables.
- For each lag order, the table shows the coefficient, standard error, and p-value for each variable.
- The model includes the constant term and lags of the dependent variable as explanatory variables.
- The data was collected from [MM], with a sample size of [N].
- The estimation procedure used is the Johansen approach, with a lag order of [L].

Linear Cointegration Relation

Estimated cointegration relation

\[\begin{align*}
\log_d(\text{dj}) &= 1 \\
\log_d(\text{dj}) &= 0 \\
\log_d(\text{dj}) &= 1 \\
\log_d(\text{dj}) &= 0 \\
\log_d(\text{dj}) &= 1 \\
\log_d(\text{dj}) &= 0 \\
\end{align*} \]
Table 4: Vector Error Correction Model Coefficient Estimates (monthly values) - with negative values of Reuters sentiment

<table>
<thead>
<tr>
<th>Endogenous Variables</th>
<th>Exogenous Variables</th>
<th>Deterministic Variables</th>
<th>Endogenous Lags (Differences in months)</th>
<th>Sample Range</th>
<th>Estimation Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dow Jones Industrials Stock Index (log_v)</td>
<td>Dow Jones Industrials Stock Index</td>
<td>Constant (CCEST)</td>
<td>2</td>
<td>[2001 M3, 2010 M2], T = 90</td>
<td>One stage Johansen approach according to Johansen (1985)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$\Delta\log_{v}$ (0-1)</th>
<th>$\Delta\log_{v}$ (0-2)</th>
<th>$\Delta\Delta_{v}$ (0-1)</th>
<th>$\Delta\Delta_{v}$ (0-2)</th>
<th>$\Delta\log_{v}$</th>
<th>$\Delta\log_{v}$</th>
<th>$\Delta\Delta_{v}$</th>
<th>$\Delta\log_{v}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta\log_{v}$ (0-1)</td>
<td>-0.875 (0.000)</td>
<td>-1.051 (0.000)</td>
<td>-0.175 (0.084)</td>
<td>0.016 (0.098)</td>
<td>ϵ_{v11}</td>
<td>-0.033 (0.000)</td>
<td>-0.033 (0.000)</td>
<td>-0.014 (0.000)</td>
</tr>
<tr>
<td>$\Delta\log_{v}$ (0-2)</td>
<td>-0.046 (0.290)</td>
<td>-0.321 (0.104)</td>
<td>-0.039 (0.071)</td>
<td>0.011 (0.083)</td>
<td>ϵ_{v12}</td>
<td>-0.031 (0.000)</td>
<td>-0.032 (0.000)</td>
<td>-0.023 (0.000)</td>
</tr>
<tr>
<td>$\Delta\Delta_{v}$ (0-1)</td>
<td>0.173 (0.762)</td>
<td>0.149 (0.129)</td>
<td>-0.129 (0.107)</td>
<td>-0.016 (0.071)</td>
<td>Estimated cointegration relation</td>
<td>1</td>
<td>0</td>
<td>Estimated cointegration relation</td>
</tr>
<tr>
<td>$\Delta\Delta_{v}$ (0-2)</td>
<td>0.042 (0.100)</td>
<td>0.103 (0.100)</td>
<td>-0.039 (0.071)</td>
<td>-0.016 (0.071)</td>
<td>ϵ_{v21}</td>
<td>0</td>
<td>0</td>
<td>Estimated cointegration relation</td>
</tr>
<tr>
<td>$\Delta\log_{CCEST}$ (0-1)</td>
<td>1.982 (0.000)</td>
<td>4.215 (0.000)</td>
<td>0.129 (0.000)</td>
<td>-0.106 (0.000)</td>
<td>\log_{CCEST}</td>
<td>1</td>
<td>0</td>
<td>\log_{CCEST}</td>
</tr>
<tr>
<td>$\Delta\log_{CCEST}$ (0-2)</td>
<td>0.013 (0.100)</td>
<td>0.011 (0.100)</td>
<td>-0.019 (0.000)</td>
<td>-0.009 (0.000)</td>
<td>$\Delta\log_{CCEST}$</td>
<td>1</td>
<td>0</td>
<td>$\Delta\log_{CCEST}$</td>
</tr>
<tr>
<td>$\Delta\Delta_{CCEST}$ (0-1)</td>
<td>0.196 (0.290)</td>
<td>0.323 (0.100)</td>
<td>0.013 (0.083)</td>
<td>-0.008 (0.071)</td>
<td>$\Delta\Delta_{CCEST}$</td>
<td>1</td>
<td>0</td>
<td>$\Delta\Delta_{CCEST}$</td>
</tr>
<tr>
<td>$\Delta\Delta_{CCEST}$ (0-2)</td>
<td>0.005 (0.100)</td>
<td>0.001 (0.100)</td>
<td>0.019 (0.000)</td>
<td>-0.009 (0.000)</td>
<td>$\Delta\Delta_{CCEST}$</td>
<td>1</td>
<td>0</td>
<td>$\Delta\Delta_{CCEST}$</td>
</tr>
<tr>
<td>$\Delta\log_{CCEST}$ (0-1)</td>
<td>-0.022 (0.000)</td>
<td>-0.022 (0.000)</td>
<td>0.003 (0.000)</td>
<td>-0.003 (0.000)</td>
<td>\log_{CCEST}</td>
<td>-1.026 (0.000)</td>
<td>-0.004 (0.000)</td>
<td>\log_{CCEST}</td>
</tr>
<tr>
<td>$\Delta\log_{CCEST}$ (0-2)</td>
<td>0.001 (0.100)</td>
<td>0.001 (0.100)</td>
<td>0.001 (0.000)</td>
<td>-0.001 (0.000)</td>
<td>$\Delta\log_{CCEST}$</td>
<td>-0.026 (0.000)</td>
<td>-0.004 (0.000)</td>
<td>$\Delta\log_{CCEST}$</td>
</tr>
<tr>
<td>$\Delta\Delta_{CCEST}$ (0-1)</td>
<td>0.021 (0.100)</td>
<td>0.031 (0.100)</td>
<td>0.010 (0.000)</td>
<td>-0.001 (0.000)</td>
<td>$\Delta\Delta_{CCEST}$</td>
<td>-0.002 (0.000)</td>
<td>-0.002 (0.000)</td>
<td>$\Delta\Delta_{CCEST}$</td>
</tr>
<tr>
<td>$\Delta\Delta_{CCEST}$ (0-2)</td>
<td>0.032 (0.100)</td>
<td>0.042 (0.100)</td>
<td>0.010 (0.000)</td>
<td>-0.001 (0.000)</td>
<td>$\Delta\Delta_{CCEST}$</td>
<td>-0.003 (0.000)</td>
<td>-0.003 (0.000)</td>
<td>$\Delta\Delta_{CCEST}$</td>
</tr>
</tbody>
</table>

Note: Standard errors are in parentheses.
Table 5: Vector Error Correction Model Coefficient Estimates (monthly values) - with positive values of Reuters sentiment

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Log of All (0,1)</td>
<td>-1.041</td>
<td>0.403</td>
<td>0.215</td>
<td>0.107</td>
<td>0.004</td>
<td>0.028</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.006)</td>
<td>(0.004)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Log of All (0,2)</td>
<td>0.018</td>
<td>0.018</td>
<td>0.002</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
<td>(0.009)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Log of All (0,3)</td>
<td>0.018</td>
<td>0.018</td>
<td>0.002</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
<td>(0.009)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.003)</td>
</tr>
</tbody>
</table>

Logged endogenous tests (coefficients, standard deviation, p-values in () parentheses)

- Estimated cointegration relation

- Constant

- One step Johansen approach according to Johansen (1988)
Table 6: Performance of Trading Strategies based on Out-of-sample Prediction Estimates of VECM (Vector Error Correction Models) and VAR (Vector AutoRegression) Models (monthly values)

<table>
<thead>
<tr>
<th>Endogenous Variables</th>
<th>Type of Model*</th>
<th>Performance Stock Index</th>
<th>Performance Strategy Index</th>
<th>Outperformance Strategy / Stock Index</th>
<th>Sharpe Ratio***</th>
<th>Success Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dax Index</td>
<td>VECM</td>
<td>7.04%</td>
<td>-4.25%</td>
<td>0.62</td>
<td>58%</td>
<td></td>
</tr>
<tr>
<td>Dax Index, Volume, and the Conference Board Index</td>
<td>VECM</td>
<td>3.69%</td>
<td>-4.25%</td>
<td>0.62</td>
<td>58%</td>
<td></td>
</tr>
<tr>
<td>Dax Index, Volume, and the Conference Board Index,</td>
<td>VECM</td>
<td>-4.65%</td>
<td>-24.59%</td>
<td>-0.51</td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>Dax Index, Volume, and the Conference Board Index,</td>
<td>VAR</td>
<td>-7.63%</td>
<td>23.38%</td>
<td>1.17</td>
<td>67%</td>
<td></td>
</tr>
<tr>
<td>Dax Index, Volume, and the Conference Board Index,</td>
<td>VAR</td>
<td>22.13%</td>
<td>-14.20%</td>
<td>1.82</td>
<td>75%</td>
<td></td>
</tr>
<tr>
<td>Dax Index, Volume, and the Conference Board Index,</td>
<td>VAR</td>
<td>10.25%</td>
<td>11.91%</td>
<td>1.49</td>
<td>58%</td>
<td></td>
</tr>
<tr>
<td>Dax Index, Volume, and the Conference Board Index,</td>
<td>VAR</td>
<td>47.63%</td>
<td>-39.70%</td>
<td>3.80</td>
<td>83%</td>
<td></td>
</tr>
<tr>
<td>Dax Index, Volume, and the Conference Board Index,</td>
<td>VAR</td>
<td>15.74%</td>
<td>7.89%</td>
<td>1.26</td>
<td>50%</td>
<td></td>
</tr>
</tbody>
</table>

*The type of model was selected based on the Johansen Test of Cointegration as in Johansen (1988). If no cointegration was found, a VAR model was used. In all VECMs, no cointegrating function was identified.

**The endogenous lag length was selected according to the Akaike Info Criterion (AIC) as in Akaike (1974).

***For the calculation of the Sharpe Ratio, we use an average of the 1-month T-bill yield for the examined period (0.2% p.a.) as risk-free rate.