Triulzi, Giorgio; Scholz, Ramon; Pyka, Andreas

Working Paper

R&D and knowledge dynamics in university-industry relationships in biotech and pharmaceuticals: An agent-based model

FZID Discussion Paper, No. 33-2011

Provided in Cooperation with:
University of Hohenheim, Center for Research on Innovation and Services (FZID)

Suggested Citation: Triulzi, Giorgio; Scholz, Ramon; Pyka, Andreas (2011) : R&D and knowledge dynamics in university-industry relationships in biotech and pharmaceuticals: An agent-based model, FZID Discussion Paper, No. 33-2011, Universität Hohenheim, Forschungszentrum Innovation und Dienstleistung (FZID), Stuttgart, http://nbn-resolving.de/urn:nbn:de:bsz:100-opus-6359

This Version is available at:
http://hdl.handle.net/10419/50176

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Discussion Paper 33-2011

R&D AND KNOWLEDGE DYNAMICS IN UNIVERSITY-INDUSTRY RELATIONSHIPS IN BIOTECH AND PHARMACEUTICALS: AN AGENT-BASED MODEL

Giorgio Triulzi, Ramon Scholz & Andreas Pyka
R&D and Knowledge Dynamics in University-Industry Relationships in Biotech and Pharmaceuticals: an Agent-Based Model

Giorgio Triulzi, Ramon Scholz, Andreas Pyka

Download this Discussion Paper from our homepage:
https://fzid.uni-hohenheim.de/71978.html

ISSN 1867-934X (Printausgabe)
ISSN 1868-0720 (Internetausgabe)

FZID Discussion Papers are intended to make results of FZID research available to the public in order to encourage scientific discussion and suggestions for revisions. The authors are solely responsible for the contents which do not necessarily represent the opinion of the FZID.
R&D and Knowledge Dynamics in University-Industry Relationships in Biotech and Pharmaceuticals: an Agent-Based Model

Giorgio Triulzi
UNU-MERIT and School of Business and Economics,
Maastricht University, The Netherlands
triulzi@merit.unu.edu

Ramon Scholz
University of Hohenheim, Germany
ramon.scholz@uni-hohenheim.de

Andreas Pyka
University of Hohenheim, Germany
a.pyka@uni-hohenheim.de

Abstract

In the last two decades, University-Industry Relationships have played an outstanding role in shaping innovation activities in Biotechnology and Pharmaceuticals. Despite the growing importance and the considerable scope of these relationships, there still is an intensive and open debate on their short and long term effects on the research system in life sciences. So far, the extensive literature on this topic has not been able to provide a widely accepted answer. This work introduces a new way to analyse University-Industry Relationships (UIRs) which makes use of an agent-based simulation model. With the help of simulation experiments and the comparison of different scenario results, new insights on the effects of these relationships on the innovativeness of the research system can be gained. In particular, focusing on knowledge interactions among heterogeneous actors, we show that: (i) universities tend to shift from a basic to an applied research orientation as a consequence of relationships with industry, (ii) universities’ innovative capabilities benefit from industry financial resources but not so much from cognitive resources of the companies, (iii) biotech companies’ innovative capabilities largely benefit from the knowledge interaction with universities and (iv) adequate policies in terms of public basic research funding can contrast the negative effects of UIRs on university research orientation.

Keywords: University-Industry Relationships, Knowledge Dynamics, University Patenting, Technology Transfer, Agent-Based Modelling.

1 The authors would like to thank participants to the sixth European Meeting on Applied Evolutionary Economics in Jena (May 2009) and Herbert Dawid for useful comments on an earlier version of this paper. First versions of the paper have also been presented at the VI Triple Helix Conference in Glasgow (June 2009) and at the EAEPE 2009 in Amsterdam (October 2009).
1. Introduction

In the last thirty-five years science-based industries have been strongly influenced by a radical scientific breakthrough, the engineering of the recombinant DNA technique made by Stanley Norman Cohen and Herbert Boyle in 1973 (Cohen et al., 1973), and by a major institutional change, namely, the surge in university patenting (see Kortum and Lerner, 1999; Saragossi and van Pottelsberg, 2003; Balconi et al., 2003; Breschi et al., 2007; Lissoni et al., 2007). Consequently, the way innovation is pursued in the bio-molecular industries has been crucially affected. On the one hand, the advent of the biotechnology paradigm has forced pharmaceutical incumbents to deal with a radically different set of capabilities than organic chemistry, upon which pharmaceutical firms’ core-knowledge was grounded. This has pushed large diversified pharmaceutical firms (LDFs) to adopt an innovation strategy characterized by a twofold interaction with the generators of the new scientific knowledge, namely dedicated biotech firms (DBFs) and universities. On the other hand, the spreading of university patenting has further increased the importance of universities as a source of new knowledge and basic research findings, not to mention the role of universities as biotechnological start-up incubators. The joint effects of these two breakthroughs led to a dramatic strengthening of university-industry relationships (UIRs). Indeed, both biotech and pharmaceutical industry widely rely on universities, as well as on public research institutions, to acquire mainly fundamental but in part also applied external knowledge. The raise and the crucial importance of UIRs in the innovation system of life sciences led to a growing awareness of economic and medical literature on this central topic. Nevertheless, the costs/benefits debate concerning short and long run effects of UIRs on the innovativeness of the research system in the pharmaceuticals and biotech, is still open and intense.

Therefore it is of primary importance to understand whether UIRs are a phenomenon which intrinsically presents short-term benefits and long-term drawbacks or whether there are different and additional effects to be considered. In the former case, UIRs should not be furthered at all, because short-run and self-reinforcing effects would induce universities to rely more and more on these relationships as source of funding, even though this would generate harmful effects on the long run innovativeness of the research system as a whole. In the latter case, the two effects are opposed and in dependence on their relative strength the total effect on the innovativeness of the research system as a whole can be positive.

The lack of a generally accepted evaluation of UIRs, despite their meanwhile long tradition, can be traced back to a twofold shortcoming. First, the complexity of these relationships makes it difficult to analyse their multiple correlated effects. In particular because of this complexity it is more and more important to consider the role of all the actors which are engaged in the biotech and
pharmaceuticals’ innovation systems and to analyse how these relationships affect each of them (i.e. universities, industry and governments). To focus only on a selected group (e.g. universities or firms) can be misleading. For instance, in the life science sectors networking with universities is crucial for firms in order to ensure knowledge exchange and innovation. A fully systemic analysis of UIRs has to consider the two way character of these relations. Furthermore, for the analysis of UIRs in the biotech and pharmaceutical sectors, it has to be considered that they are embedded into a broader innovation system where also the government plays an important role (e.g. Niosi, 2010). In particular there is a growing debate in the literature and in media on the nature and role of public funding with respect to academic research. Several studies highlight complementarities between public and private R&D while others claim a substitutive relationship between these two sources of research funding (for a comprehensive literature review, see David et al., 2000).

The second shortcoming stems from the limitations of traditional scientific tools which have been used for this analysis so far. Qualitative (interviews, case study, etc.) as well as quantitative (surveys, econometric models, etc.) and theoretical analysis have been extensively applied to study the UIRs phenomenon. Without doubt, they have been extremely useful to understand some specific aspects of UIRs and to gain useful insights into the complex relations, but they all missed a key issue, namely the interaction sphere dealing in particular with knowledge flows between different actors.

In the attempt to overcome these shortcomings, we apply a different methodology to investigate this phenomenon: agent-based models (ABMs) (see Triulzi and Pyka, 2011). Due to their focus on multi-agents’ micro-interactions, ABMs are explicitly suited to analyse UIRs and generate new insights to the UIRs debate. Furthermore, this class of models can be meaningfully applied to study phenomena where data cannot be easily collected – in our case knowledge dynamics - and allows studying self-reinforcing mechanisms. Therefore, by building an agent-based UIRs model, we aim to provide a new dimension for the discussion on UIRs long run effects on the production of innovative new drugs based on the interaction of the different agents and on the underlying knowledge dynamics. For this purpose we draw on an extensive and growing literature about simulation models of innovation networks (Gilbert et al., 2001 and 2007; Pyka et al., 2002, 2007 and 2009; Ahrweiler et al., 2004a and 2004b and 2009; Pyka and Scholz, 2009) which guided us in our research and is laying the foundations of our model.

The paper is organized as follows: The theoretical framework and the hypotheses to be tested are introduced in section 2. Then a description of the methodology (section 3) and of the agent-based UIRs model follows (section 4). Finally, the results generated by simulation experiments are introduced (section 5) and discussed (section 6).
2. Theoretical framework and hypotheses

The biotech and pharmaceuticals’ system of innovation is grounded on complex interactions among many different actors. Several studies analyzed UIRs focussing only on the effects that these relationships have on single classes of actors, generating very useful insights but loosing the overview on the systemic nature of these relationships. Nevertheless, these detailed and specific insights and concerns are undoubtedly helpful to set a general model of the biotech and pharmaceuticals’ system of innovation centred on UIRs. In the following we will very briefly review the most important issues which constitute the theoretical framework of our model. From these arguments some hypotheses are extracted. We grouped them by actors: universities, industry and government.

2.1 UIRs’ effects on universities

In life sciences the generation of new scientific discoveries and the achievement of highly innovative and patentable research results strongly depend on a sound understanding of a particular disease. In order to have chances to find an innovative and effective drug for a certain disease the crucial point is to deeply study the disease. Only this way one can understand how the human body is affected and how to “attack” the causes and the effects of the disease. That is, in general terms, what basic research deals with (Angell, 2004). Therefore, the generation of innovative medical solutions can be attained more easily by those actors which are characterized by a fundamental research orientation, i.e. universities².

Following the main arguments of the costs/benefit debate in the literature, UIRs may move universities away from their traditional basic research orientation, in favour of a more-applied one, because of distorted traditional academia incentives and reward schemes. However, UIRs are potentially able to create a virtuous circle, labelled as the ‘resource effect’ which, through the increase of financial and cognitive resources available for an university, could boost its productivity with respect to innovative research results.

On the cost side, many authors (e.g. Angell, 2004; Ding, 2004; Geuna, 2001; Blumenthal et al., 1996) suggest that UIRs can potentially damage the long run innovativeness of the research system in life sciences. Following this literature, UIRs have modified the reward system for academic researchers and for universities in general, introducing a personal and institutional incentive to do more applied research. From this point of view, the possibilities to increase industry funding stemming from the commercialization of academic research potentially push universities away from

² This is what we assume in our model, coherently with the empirical evidences showed by Angell (2004).
the pure basic research in favour of a more applied research, in order to increase the probability to end up with patentable research outcomes. The results might be harmful for the system because it might generate a situation in which less scientists and less academic institutions are engaged in pure basic research, which is a fundamental component of the whole system necessary to generate scientific discoveries which open new research areas.

In particular the most common forms of UIRs are (i) large diversified firms (LDFs) sponsorships to universities, (ii) university patents licensing and (iii) joint research projects between universities and dedicated biotech firms (DBFs) (Blumenthal, 2003). Industry-sponsored research is often focused along the goals of the sponsor rather than on the goals of the researcher or the sponsored academic institution (AUTM Licensing Survey, 2007). Therefore, projects of this nature tend to involve applied research instead of fundamental research, as argued by Poyago-Theotoky et al. (2002). The considerable financial resources which come along with licensing also strengthen the incentive to focus on applied research. Universities may be induced to put stronger emphasis on those research projects which offer a higher probability to achieve patentable outputs. Finally, the same shift of the research direction may be caused by an increase of joint research projects with DBFs, due to the influence of knowledge exchange with actors whose research interests are more commercially-oriented (especially in case of frequent and long interactions). Therefore we postulate:

H1: University relationships with industry, in terms of sponsored research, university licensing and joint research projects, cause a shift from basic to applied research in the research direction of universities.

On the other hand, according to the U.S. National Science Board, the reason why UIRs increased tremendously are the potential positive effects of these relationships on the availability of university research funding, on the speed of technology transfer and on economic development in general (NSF, 1996). Indeed, many studies (e.g. Meyer-Krahmer and Schmoch, 1998; D’Este et al., 2005), showed that access to additional financial resources and to industry skills and facilities, as well as the search of research applicability are among others the reasons why university researchers interact with industry. Some authors (Breschi et al., 2007; Markiewicz and Di Minin, 2004 and Azoulay et al., 2004) postulate the existence of a resource effect: interactions with industry, providing larger cognitive and financial resources, increase the productivity of academic scholars and university institutions in terms of publishing and patenting, thus increasing their visibility, fame and reputation. By this, a self-reinforcing virtuous circle is generated which ultimately boosts research productivity. In particular, sponsorships, licensing and joint research projects, provide a unique balance of financial support, expertise and knowledge exchange which creates a prolific atmosphere for applied research that may result in an increase of patentable outputs by the university compared
to basic programs supported by government or by universities themselves. Following this reasoning, we formulate the second hypothesis:

H2: The access to cognitive and financial resources coming from industry increases university productivity in terms of truly innovative outputs.

2.2 UIRs’ effects on the industry

In pharmaceuticals and biotech basic research plays a fundamental role. Of course, in order to produce commercially meaningful outputs, basic research needs to be matched with adequate applied research. Considering both, the narrowness of resources as well as the limited competences of actors, it is easy to understand that no actor is able to manage all the research process, from basic to applied research, and to keep pace with the innovation process and the rate of new knowledge production in isolation. Therefore, biotech and pharmaceutical firms, specialize in one area of research and in selected parts of the knowledge space, thus, relying on interaction with other actors in order to complete the research process (Arora and Gambardella, 1990 and 1994; Powell et al., 1996; Pyka and Saviotti, 2005). In other words, a wide part of the innovation activities in the biotech and pharmaceutical sectors is undertaken in innovation networks, in which science-technology interactions and bi-directional knowledge flows arise. A halt to relationships with universities would significantly affect the expansion of companies’ knowledge base, with a negative effect on firms’ productivity in terms of truly innovative patents and drugs. This holds in particular for DBFs because, due to their limited financial resources, they have to specialize in a narrower part of the knowledge space (Pyka and Saviotti, 2005) and hence can substantially benefit from interaction with universities. From this the third hypothesis follows:

H3: Interaction with universities increases dedicated biotech firms’ productivity in terms of truly innovative outputs.

2.3 The role of government and the impact of its research funding policies

UIRs in biotech and pharmaceuticals have to be placed in the broader context of the Triple-Helix system of research (Leydesdorff and Etzkowitz, 1996; Etzkowitz and Leydesdorff, 1997, 2000) which also includes government agencies. In several countries government plays a crucial role in the biotech and pharmaceuticals’ system of innovation, as main funders of academic research. Due to the growing importance of industry as additional source of funding for universities, the role of public R&D funding with respect to private R&D has been increasingly gained attention (see, David et al., 2000). Several econometric analyses (Jaffe, 1989; Adams, 1990; Acs et al., 1991; Toole, 1999a and 1999b), as well as historical case studies (Link and Scott, 1998; National Research
Council, 1999) demonstrate that public R&D has positive spillover and stimulating effects on private R&D and beneficial effects on the generation and diffusion of new technologies. In particular, in the case of UIRs, an increase in public research funding for basic research can reduce the pressure on universities to search for external funding from industry, thereby reducing the potential negative effects of these relationships. If universities can rely on large and stable funding sources which also guarantee academic freedom, they can use partnerships with industry to foster the exchange of knowledge and to diffuse university-generated technologies. This allows universities to select partnerships more carefully, avoiding those which provide considerable resources but also potentially harm academic freedom. A brief overview on the historical evolution of UIRs in U.S. seems to sustain this hypothesis. Considering the past record, as shown by Blumenthal (2003), we observe that a cut in U.S. government investments in basic research, like in mid-1970s, led American universities to increasingly search for industry partnerships. Vice-versa, when public funding was widely available, like after World War II, relationships with industry were considered to be less crucial. Therefore, we believe that government funding policies more favorable to basic research allows for mitigating the potential negative effects on university research orientation caused by interactions with industry. If this hypothesis is proved to be correct, our findings also sustain the idea of complementarities between public and industry research funding. The hypothesis is formulated as follows:

H4: An increase in government basic research funding prevents the shift of university research direction from basic to applied research.

3. Methodology

To investigate the long-run effects of UIRs on innovative capabilities and to analyse the knowledge dynamics among the involved actors an agent-based model has been developed. The model is characterized by the interactions among different actors which lead to modifications of the agents’ knowledge base. The model allows tracing the knowledge dynamics for each class of actors as well as their patenting behaviour.

The methodology used is particularly suitable to provide new insights to the costs/benefits debate on UIRs. In fact, as Dawid and Fagiolo (2008) pointed out, the fundamental characteristic of agent-based computational models is their ability to explicitly capture “the relationship between structured interaction of heterogeneous individuals and the emerging patterns at the macroeconomic level, and to incorporate different types of boundedly rational individual behaviour”. Furthermore, ABMs allow testing hypotheses that could not be analyzed with traditional tools. For instance, knowledge dynamics can hardly be studied with conventional quantitative analysis because data are not easily available. Finally, another important advantage of this class of models is the possibility to make experiments, for example
eliminating some classes of actors from the population, which are able to provide insights that could not be generate by the solely observation of reality.

Our hypotheses are tested with simulation experiments which make use of a standard and some alternative scenarios. Results are then compared and tested for statistical significance. In order to reduce the random component of the results and to increase their trustworthiness, we ran sets of 20 Monte Carlo simulations for 100 periods and then compute the average value for each of the variable under observation. The comparison of the results of different simulation experiments proves a fair level of stability of the model with respect to those parameters that were not modified exogenously.

4. The model

The model is a multi-agent simulation which reproduces R&D and knowledge dynamics in the biotech and pharmaceutical sectors, with a particular focus on the role of UIRs. We draw on a theoretical model of innovation networks originally developed by Gilbert, Pyka and Ahrweiler (2001 - see also Pyka et al., 2002). This model is further refined in subsequent works in which it has been applied to study knowledge dynamics between innovation network’s agents (Ahrweiler et al., 2004), to investigate the impact of different learning activities on agent’s knowledge stocks (Gilbert et al., 2007), to highlight the persistency of cooperation activities in knowledge intensive industries (Pyka et al., 2007) and to investigate the existence and channels of knowledge spillovers among agents (Pyka et al., 2009). Further works have applied a modified version of the model to study the governance of EU-funded innovation networks (Pyka and Scholz, 2009) and to explore the role of science-technology links for innovation diffusion (Ahrweiler et al., 2011). We extend the original theoretical model to reproduce the innovation system of biotech and pharmaceutical industries, explicitly taking into account different classes of agents moved by diverse aims and rewards (universities, biotech and pharmaceutical firms), multiple channels of interactions (research collaborations, licensing and sponsored research) and different research outputs (three classes of patents and drugs).

4.1 The agents

The model’s population is composed of universities (UNIs), large diversified firms (LDFs) and dedicated biotech firms (DBFs). There are two further actors, a National Research Agency (NRA) and venture capitalists (VCs). However, these latter agents are funding bodies (of universities and biotech firms respectively) which are not actively engaged in research. Agents’ research efforts

3 The NetLogo code of the model is available upon request to the first author.
follow different aims. However, a common feature of firms and universities is that they both undertake research and want to produce the “best” research outcomes.

In particular, universities’ main aim is to expand their knowledge and to spread it among the society. In order to pursue their mission, they are engaged in research and licensing, which can be seen as the major form of technology transfer. Their research activities lead universities to get in contact with industry also through joint research projects or by performing sponsored research. Universities can also obtain government research funds by applying for public funding granted by the National Research Agency (NRA). In this case, universities set up a research project proposal and sent it to the NRA for evaluation. The NRA funding criteria are based on the research direction of the proposal (basic projects are favoured) and on the variance of the capabilities involved. Additional information on these criteria can be found in the appendix A.1.

Large Diversified Firms (LDFs) are actors with a large capital stock and a broad specialization pattern (as the name suggests). LDFs’ aim is to produce as many new drugs as possible, filling up their pipeline. For this reason, besides own research, LDFs intensively screen the market for research, searching for new patents to acquire from other agents through licenses. LDFs also rely on sponsorships of university research as alternative source of patents.

Finally, Dedicated Biotech Firms (DBFs) are private actors with a small capital stock compared to LDFs. DBFs are specialized in a small subset of capabilities and abilities, due to the narrowness of their financial resources. In order to survive in the long run, DBFs are forced to apply for venture capitalists’ funding. VCs will invest only in those companies who proved to have strong research skills, i.e. in those companies that hold a large cumulated number of patents. Their efforts to produce innovative outputs induce biotech companies to approach also universities, in order to get access to academic knowledge. Moreover DBFs are engaged in extensive licensing activities with LDFs, which provide large additional resources that are crucial for their survival.

4.2 University-Industry Relationships

Interactions among agents lead to the rise of University-Industry relationships. In particular universities interact with DBFs through joint research projects in which knowledge is mutually exchanged. Mixed teams of university and LDF researchers working on a joint research project are unlikely to be observed in reality (Poyago-Theotoky et al., 2002). Therefore, we designed the interaction between universities and LDFs in a twofold way as licensing or sponsoring relations. In both cases knowledge is transferred from universities to LDFs which reward universities through a corresponding transfer of financial resources. These relationships are depicted in Figure 1.
If a university research project eventually leads to a patent, the university tries to find a LDF partner in order to grant an exclusive license that increases the university capital stock through periodical royalties. Similarly, through sponsorships universities receive funding from LDFs to perform selected research projects. It is important to notice that the cumulated number of patents hold by a university plays a crucial role. The more patents a university holds the easier it is to access industry funding. Indeed, only the most productive universities in terms of patents are eligible for LDFs’ sponsorships. Furthermore, LDFs only sponsor applied research projects (i.e. projects whose research direction value (RD) is above a certain threshold – see paragraph 4.6 and appendix A.4). Consequently, universities which get a sponsorship shift the research orientation of the sponsored research project towards a more-applied direction. This is because UNIs know that it might be difficult to receive further funding in future if they do not prove to be able to produce a patentable outcome.

In other words, both in the case of licensing and sponsorships, the patent can be considered as a powerful tool that is able to produce the so-called resource effect (Breschi et al. 2007). Basically, the patent is a signal of the academic researchers’ abilities. A strong signal allows attracting more funds from industry as well as from the NRA (whose funding allocation criteria favour universities which are engaged in patenting\(^4\)). The increased amount of financial resources allows the receiving university to undertake more research projects, increasing the probability of filing new patents and, by this, increasing university’s resources further on.

\(^4\) This is a common trend in many countries, as government funds allocation has been increasingly inspired by criteria of competition (Clark, 1998, Vincent-Lancrin 2004).
4.3 The model's dynamics

Figure 2 shows the model flowchart. We distinguish between stock inputs (light gray boxes), decisions (white boxes), actions (black boxes) and outcomes (dark grey boxes). Each simulation run consists of several iterations, i.e. cycles of research. A cycle starts with the agents’ decision on how to allocate their budget (that is the amount of their capital stock to finance the starting cycle of research). Agents have different options. Universities and DBFs can allocate their budget between own research projects and joint research projects⁵. LDFs can additionally invest part of their budget in sponsoring universities’ research projects, acquiring licenses and performing clinical trials. Afterwards, those agents which have decided to undertake a joint research project and/or a partnership, move to the process of partnership and/or sponsorship formation, the others directly jump to the following action: running the project. Projects last several periods, in other words agents are allowed to refine their project and run it again if the first attempt is not successful. If the project is successful a patent is granted (Outcome 1). If the patent is granted to an university or a DBF, the patent holder search for possible licensees among LDFs. If the license agreement formation (Decision 3) is successful a license is granted (Outcome 2) and the LDF has to pay the related royalties to the licensor. Alternatively, if the patent is originally granted to a LDF, the firm can directly perform clinical trials (Action 2) and try to develop a new drug (Outcome 3) to earn revenues from it. Eventually the actors re-invest the money that they have gained at the end of the research cycle (from the license’s royalties or the sales of the new drug) in new research projects and a new cycle begins.

As Figure 2 shows, agents have to take decisions. In accomplishing this task they are helped by some decision rules which shows some elements of adaptive intelligence (i.e. agents learn from their past decisions). Since the way cooperation and interactions are built is key for the main hypotheses of the paper, we will focus in the following on the process of budget allocation (§4.4), partnership formation (§4.5) and sponsorship formation (§4.6).

Besides decision rules agents also follow some rules of the game, which can be grouped based on the three outcomes of our model: how to get a patent (§4.9 and §4.10), how to get a license and how to get a drug. For the sake of simplicity we will only explain how patents are generated, as our hypotheses and experiments focus on this outcome. We leave the role of licenses and commercialization of drugs for future work, hence we do not provide further detail on this part of the model in this paper.

⁵ As mentioned in subsection 4.1, universities’ own and joint research projects with other universities can also get funded by the NRA. In this case universities do not have to use their capital stock to finance their research projects.
Finally it is crucial to notice that what drives the dynamics of our model is knowledge. Knowledge has a multiple role throughout all the cycle. It affects directly the process of partnership formation (through the characteristics of the knowledge base of the possible partners) and indirectly the sponsorship formation (through the number of cumulated patents). Furthermore the knowledge base of the project determines (except for random events) whether the project is successful or not. We provide details about the knowledge base of the agents in subsection 4.7, on how knowledge is upgraded through research in paragraph 4.8 and on the process of patent generation in subsections 4.9 and 4.10.

4.4 Budget allocation

Agents have to decide (i) how much to invest each period and (ii) how to allocate their budget through the different activities. It is evident that no actor can invest his whole capital stock in only one period, so agents have to decide the amount of their periodic budget. This decision is initially set randomly within the range 10% - 30% of their capital stock. In the following periods the actors follow a process of adjustment of the size of their investment budget which is based on market feedbacks. If they are successful (i.e. between the top 20% of their sector ranking – UNIs, LDFs or DBFs) they will maintain the same amount of investments in the next period, otherwise they will increase their periodic budget by 10%.

Once a periodic budget has been set, actors have to choose how to allocate it through the different options. First of all, it has to be stated that the budget allocation must respect a constraint which refer to the maximum number of projects per period that an actor is able to sustain. This number depends on the size of the actor (we use the size of the capital stock as a proxy). The larger capital stock an actor has, the larger number of projects per period is able to undertake.

The budget allocation process is slightly different between firms and universities. Concerning firms, initially the periodic budget is split among the different activities ('own research', 'joint research', 'sponsoring', 'licensing' and 'clinical trials' for LDFs; 'own research' and 'joint research' alone for DBFs) through a random process. Then a particular market feedback mechanism is implemented. This mechanism follows the principles of satisficing behaviour, rather than optimizing behaviour, as applied by Nelson and Winter (1982) in their evolutionary model of firms’ behaviour. Periodically each firm (both LDFs and DBFs) compares its allocation strategy with the average allocation of the most successful firms (top 15%) of its own sector in terms of annual profits (total annual earnings of new drugs + total annual royalties of the licensing activity – total annual research costs). If the firm is successful, i.e. it is within the top 15%, it does not change its allocation strategy. If the firm is not successful it will modify its strategy as follows. The activity, in which the spread with the
average allocation strategy of the most successful firms is highest, will get 10% more of the budget in the next period. The 10% increase will be financed by a corresponding 10% reduction of the budget allocated to the other activities.

Universities apply a similar budget allocation process than firms except for two important differences. First, UNIs are only engaged (as DBFs) in own and joint research projects. Second, the budget allocation process does not really decide how much of the universities’ capital is invested in own research or in joint research. In fact, through the same comparative process with the most successful universities (in terms of patents hold), a certain university decides how many projects to undertake on their own and how many to undertake jointly with other actors; but this does not necessarily imply that the project will be financed with university’s own capital. In fact, universities first try to get their projects funded by the NRA, than through a LDF’s sponsorship and only if they are not successful with these two possibilities they will finance research projects with their own capital.

4.5 Partnership formation

When an agent decides to enter in a partnership with one or more other agents in order to undertake a joint research project, she applies a particular partnership strategy in order to select the ‘right’ counterpart. Two partnership strategies exist: (1) a conservative strategy in which the actor looks for a similar partner according to his knowledge base; (2) a progressive strategy in which the actor looks for a dissimilar partner. The actors that choose the former aims to undertake an incremental research project, therefore they prefer less risk and a common understanding. In this case the variance between the knowledge bases of the partners is little, this increase the probability of success but on the other hand reduces the potential magnitude of the project outcome (see subsection 4.9). Instead actors that choose to follow a progressive strategy aim to undertake a radical research project. In this case the variance between the knowledge bases is high, with a positive effect on the potential innovativeness of the project outcome but with a negative effect on the probability of success. Hence, the decision rule in the model is grounded on the different aims of the agents and on a mechanism based on similarities and complementarities with respect to the agent’s knowledge base. This rule of selection is supported by recent literature on partner selection in innovation networks (Guezguez et al., 2009; Balconi et al., 2009).

It is also important to add that, regardless of the partnership strategy, in all cases agents first look for partners among the list of agents with which they had a successful cooperation in the past. If there are no agents satisfying the requirements of the chosen partnership strategy then they extend the search to the other agents. This reflects the aim to increase the probability of success of the
partnership and is in line with well known evidences that accumulated network resources arising from firm participation in the network of prior alliances are influential in firms’ decisions to enter into new alliances (Gulati, 1995, 1999).

4.6 Sponsorship formation

The sponsorship procedure is introduced in Table 1. The first step is the creation of two rankings. In the first one, LDFs are ranked according to their sponsorship budget. In the second one all UNIs who have projects that have not been sponsored by the NRA are ranked according to their cumulate number of patents. Then, a matching procedure starts. The first university of the ranking gets the sponsorship from the first LDF that has enough remaining sponsorship budget to finance the research project (all the UNIs’ research projects have equal cost, which is exogenously fixed).

Table 1: The sponsorship mechanism

<table>
<thead>
<tr>
<th>Private agent</th>
<th>Sponsorship budget</th>
<th>Remaining sponsorship budget</th>
<th>Who will the sponsor be?</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDF₁</td>
<td>20</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>LDF₂</td>
<td>15</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>LDF₃</td>
<td>10</td>
<td>5</td>
<td>√</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>LDFₙ</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Public Agent</th>
<th>Cumulate patents</th>
<th>Project cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNI₁</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>UNI₂</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>UNI₃</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>UNIₘ</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

It is important to notice that the cumulate number of patents held by a university, as well as the size of LDFs’ sponsorship budget play a crucial role. The more patents a university holds the easier access to industry funding it has. This is one of the different ways in which the so-called resource effect is implemented in the model. Of course the biggest firms in terms of sponsorship budget are able to get in contact with the best universities (the high number of cumulate patents is an evidence of the research abilities of the agent). Another important aspect of the sponsorship is the size of LDFs’ sponsorship budget. If a LDF wants to increase the probability to sponsor a successful university it has to increase its sponsorship budget, on the other side, this would lead to a reduction of the budget sets apart for the other activities in which it is engaged. It is evident that this choice can be considered profitable by the LDFs only if the probability that the sponsored university will come out with a patent (whose intellectual property, under the sponsorship agreement, is held by the sponsor LDF) is high. For this reason LDFs sponsor applied research projects rather than basic
research projects. Furthermore, those universities that get a sponsorship will shift the research direction of part (2/3) of their innovation hypothesis’ quadruples, toward a more-applied direction during the running of the sponsored project. This is due to the fact that UNIs knows that it could be hard to get further sponsorships in the future if they do not prove to be able to produce a patentable outcome.

4.7 The agent’s knowledge base

The model’s representation of the agents’ knowledge builds on the concept of ‘kene’ developed by Gilbert (1997) and applied in previous simulations of knowledge dynamics in innovation networks (Gilbert et al., 2001 and 2007; Pyka et al., 2002, 2007 and 2009; Ahrweiler et al., 2004a and 2004b). In the model we used the notion of kene, the knowledge base of an agent, as it has been developed further by Pyka and Scholz (2008). In this version, kene elements also include the research orientation of the actors. Figure 3 shows the concept of kene graphically.

Figure 3: The kene concept

The knowledge base of each agent consists of a vector containing different ‘units of knowledge’ called quadruples. Each quadruple includes: a research direction (RD) which allows to differentiate between universities (mainly engaged in basic research) and firms (mainly engaged in applied research), a capability (C) which stands for the particular technological discipline in which actors are engaged (pharmaceutical or biotechnology), an ability (A) which reveals the actor’s specialization in his/her capability field and an experience level (E) which shows for how long an agent has been active in a certain ability. The research direction is represented by an integer. It can take values from 0 (pure basic research) to 9 (pure applied research). In the model biotechnology covers the array of capabilities from 1 to 60, whereas the range from 61 to 100 stands for pharmaceutical capabilities. The range of abilities, instead, spans from 1 to 10. Finally, the experience level depends on the use of knowledge in research projects: if the knowledge is applied in a certain research project (individually or jointly with other actors) the experience level of the respective actor’s kenes increases by 1 each period; if the knowledge is not used the experience level reduces each period, if it reaches 0 the respective knowledge is forgotten. The initial distribution of the kene variables for the different agents is provided in the appendix (§A.5).
4.8 Learning and cooperation

The actors choose whether to conduct research on their own, to collaborate with other actors or both, according to the budget allocation explained in subsection 4.4. As in Gilbert, Pyka and Ahrweiler (2001) (see also Gilbert et al., 2007; Pyka et al., 2002, 2007 and 2009; Ahrweiler et al., 2004a and 2004b) the process of own and collaborative research process is based on the combination of selected elements of agent’s knowledge base which form so-called innovation hypothesis (IH).

When agents choose to undertake research on their own they focus on some selected research interests which are designed as a subset of their kenes. Project innovation hypotheses are periodically derived from these research activities. Once the project is completed, the experience level of the abilities involved in the IH are increased by 1 while the experience level of those quadruples of the kenes that are not involved in the IH are reduced by 1. This represents learning by doing and forgetting.

In the case of joint research the project knowledge base is a combination of parts of the knowledge bases of the involved agents. Some quadruples of the agents’ kenes are randomly recombined to form a project innovation hypothesis. If the project is successful, the actors with an absorptive capacity (Cohen and Levinthal, 1990)6 above a critical threshold acquire the knowledge of the joint innovation hypothesis which has been contributed by the project partner(s) with a reduced experience level.

4.9 Transforming knowledge inputs into project outcomes

Whether a research project is successful or not and which outcome is eventually produced is decided by two equations which determine the ‘value of success’ and ‘probability of success’. The former decides on the type of potential outcomes, the latter decides if the outcome is actually generated or not. These two equations are different for own and joint research projects. Furthermore, joint research projects are evaluated in two different ways following the partnerships strategy that actors have applied. This way, we are able to consider different aims which drive the partnership. A detailed description of these formulas can be found in the appendix.

Basically the ‘value of success’ and the ‘probability of success’ functions are based on four variables: (i) the knowledge distance among the IH’s quadruples, used as a measure of heterogeneity of the knowledge applied in the project; (ii) a research direction factor’, which accounts for the IH’s quadruples average research direction, (iii) the experience of the actor(s) and (iv) a so-called technical

6 As a proxy of the agents’ absorptive capacities we apply a measure of un-relatedness (i.e. the variance) of their knowledge base, which is calculated as the average distance between all own kene elements.
The 'value of success' is affected by the research orientation of the agents and by the heterogeneity of knowledge. A basic research direction increases the potential magnitude of the innovation. This is due to the fact that it is mandatory to deeply understand the causes and effects of a disease in order to discover a new molecular entity which produces a significant improvement in the treatment (as it will be explained in the next subsection, this is how we define the most innovative patents). Therefore such a result is more likely to be achieved by someone whose research focus is the study of the disease, i.e. by someone who is predominantly engaged in basic research. On the contrary, an applied research direction reduces the potential magnitude of the innovation. In fact, in this context, for an agent who is engaged only in applied research it is harder to generate an output with a very high innovative potential. As argued by Angell (2004), the discovery of a new application for an already known molecule, or minor modifications of an already existing drug are more likely outcomes. The 'value of success' also depends on the variance in the capabilities involved: the higher (the lower) the variance, the higher (the lower) the potential magnitude of the innovation. The underlying idea is that the potential novelty is higher if many different capabilities are involved and lower vice versa, as discussed by Noteboom et al. (2007) and Wuyts et al. (2005). The effects of the research orientation and of the heterogeneity of knowledge in terms of capabilities on the value of success are shown in Figure 4.

Figure 4: The relation between the 'value of success' and the kene-related variables

The 'value of success' function predicts which kind of innovations can be potentially generated. Whether this innovation is actually successfully generated or not, is decided by the 'probability of success' equation. This equation depends on the same variables as the 'value of success' but in an opposite way. A basic research direction decreases the possibilities for a project to be successful (i.e. to end up with a patent). The same holds for a high maximum distance between the kene elements.
of the project's innovation hypothesis, which is used as a proxy for the heterogeneity of involved capabilities and abilities. This definition of the probability of success reflects two difficulties: Basic research is truly uncertain by definition, therefore an applied research direction provides a higher probability to end up with concrete results than a basic research one. The other obstacle on the road to success depends on the difficulties combining heterogeneous knowledge in a single project. This surely increases the novelty of a potential outcome but, at the same time, reduces the possibility to achieve the desired result. Finally, the 'probability of success' is also influenced by the experience level of the actors which obviously positively affects the likelihood to generate a patent.

The experience level does not affect the 'value of success' because the novelty value of a project can be high even if the participant(s) is(are) not expert. Indeed new comers are more keen to think out-of-the-box and overcome what the literature calls learning traps (Levinthal and March, 1993, see also Christensen, 1997) which are due to a certain rigidity of thinking coming from overembeddedness in a particular field and path dependency of the learning process. On the other hand experienced agents can also contribute much to the novelty of a project due to their larger endowment of knowledge. Hence the experience level has no direct impact on the value of success but rather a strong influence on the probability of success.

The relation between the ‘probability of success’ and the kene-related variables ‘research direction’, ‘knowledge distance’ and ‘experience’ are graphically depicted in Figure 5.

Figure 5: The relation between the ‘probability of success’ and the kene-related variables

![Graph showing the relation between probability of success and research direction, knowledge distance, and experience](image)

4.10 Research outcomes

In this work we focus on a single research outcome: patents. Although in the “real world” universities are obviously widely engaged in publishing, tracing the publication activities is beyond

7 Therefore the relation between the innovative output and the knowledge distance, which is jointly determined by the combination of the two equations for the ‘value of success’ and the ‘probability of success’, is shaped as an inverted U. This is in line with the recent literature on knowledge distances and innovation (Nootboom, 1992, 1999; Nootboom et al., 2007; Wuys et al., 2005).
the scope of our model. However, patents are not a uniform category. Even if they are identical from a legal point of view, huge differences exist with respect to their economic value. In the case of drugs, the differences are related to the newness of the related molecule and to the effectiveness of the treatment. In the model we distinguish between three kinds of patents (from the most to the least innovative): (1) A-class patent, (2) B-class patent and (3) C-class patent. We define our three patent classes drawing on the US Food and Drug Administration (FDA) classification of the new drugs as introduced in Angell (2004). The FDA is the US federal agency which decides whether a new drug can be commercialized or not. Once the FDA receives the request for commercialization based on a certain patent, the agency classifies the potential drug (thus, implicitly, the related patent too) according to two criteria: (i) the newness of the molecular entity and (ii) the improvement in the treatment of the particular disease. The drug can be characterized by a molecular entity which is completely new (in this case the drug is assigned with a ‘1’) or already discovered in the past (in this case FDA assigns the drug with a ‘0’). Moreover the new drug can provide a significant improvement in the treatment (in this case FDA proceeds with a privileged analysis – ‘P’) or a similar treatment as an old drug (in this case the agency proceeds with a standard analysis – ‘S’). It is important to notice that the discovery of a new molecular entity does not necessarily imply that the related drug provides a significant improvement in the treatment. On the other hand, a molecular entity already discovered in the past could be successfully used to treat another disease. For these reasons we propose the following patent classification:

- A-class patent: combination (1)-(P);
- B-class patent: combinations (0)-(P) and (1)-(S);
- C-class patent: combination (0)-(S).

In our view only the combination (1)-(P) deserves to be labelled as a truly innovative patent (A class) because it is both new-to-the-world and meaningful for the final users. Combinations (0)-(P) and (1)-(S) can be considered having a semi-innovative value because they lack one of the two characteristics of truly innovative patents. Finally, combination (0)-(S) is surely the least innovative, since it is little more than an imitation (so-called me-too drugs and generics) of an already existing drug which, moreover, does not provide any significant improvement in the treatment. Table 2 shows the ‘value of success’ thresholds which generate the different patents. The calibration of these values have been carried out relying on some empirical evidences on the classification of ‘real-world’ production of drugs (see appendix A.6) combined with insights gained through a sensitive analysis. As it can be noticed from the table, a research project is not successful if it does not generate a value larger than 0.5. One can interpret this as a threshold below which a research project may produce publications or working papers (which we do not take into consideration in the model) without being able to generate any patentable outcome.
Table 2: ‘Value of success’ and patent classes

<table>
<thead>
<tr>
<th>Value Range</th>
<th>Patent Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 ≤ v < 0.63</td>
<td>v = C</td>
</tr>
<tr>
<td>0.63 ≤ v < 0.71</td>
<td>v = B</td>
</tr>
<tr>
<td>0.71 ≤ v</td>
<td>v = A</td>
</tr>
</tbody>
</table>

As explained in subsection 4.9, it is evident that the probability to generate A-class patents is not the same for all actors. Besides the luck element which deals with the random components of the equations (see appendix A.2 and A.3), necessary conditions in order to discover a new molecular entity which is also effective are: a fairly basic research orientation, a sufficiently high variance of the capabilities involved and a good level of experience.

5. Results

For testing the hypotheses introduced in section 2, we first develop a standard scenario. In the following steps we run different experiments with alternative scenarios for each hypothesis and compare the results with the standard scenario.

5.1 UIRs’ effects on universities

The first hypothesis postulates that university relationships with industry, which are reproduced in the model through joint research projects, sponsorships and licensing, cause a shift of university research orientation from basic to applied. To test this effect of UIRs, we compare the results in terms of university average RD (for both the kenes and the current research interests quadruples) from the standard scenario with those generated by a scenario whose population is composed solely by universities. Figure 6 shows the comparison of the UNIs’ RD mean values in the different scenarios.

Figure 6: Scenario comparison
The t-test confirms the statistical significance of the differences in the mean values (p<0.001). Accordingly, the presence of university interactions with industry increases the university focus on applied research. In particular, the average research direction of the kene elements increases by 8.93%, whereas the current research orientation increases by 7.12%. Additionally, the standard deviation for the mean values of the university research direction is higher in the standard scenario than in the ‘only UNIs’ one (0.09 vs. 0.008 for the kenes and 0.105 vs. 0.005 for the current research). This confirms that the interaction with industry increases the heterogeneity of universities’ knowledge bases and research interests. In section 4.9 we argued that this has a positive effect on the magnitude of the university research outcomes, though contrasted by an increase of the RD factor, but, on the other hand, also reduces the probability of success (this issue will be considered below).

Furthermore, the differences in the evolution of the average research direction between the standard scenario and the ‘only UNIs’ scenario, shown in Figure 7, demonstrates that the average university RD is not only higher in the case of interaction with industry but also continuously increasing, whereas in the ‘only UNIs’ scenario the university research orientation stays almost constant. Therefore these findings fully confirm H2.

Figure 7: Differences in the evolution of the average research direction between the standard scenario and the ‘only UNIs’ scenario

The second hypothesis deals with the potential positive effects that interaction with industry generates for universities in terms of a larger access to cognitive (i.e. larger knowledge heterogeneity) and financial (i.e. larger capital stock) resources. In particular, the third hypothesis can be split in two parts. First, according to H2, joint research projects with DBFs are expected to increase the heterogeneity of universities’ knowledge base due to the underlying knowledge
exchange processes. A larger innovativeness of university research outputs is expected if the positive effect on the ‘value of success’ stemming from an increase in the variance of universities’ knowledge is stronger than the negative effects caused by the decrease of the RD factor (due to a shift to more-applied research, as proved by H1) and by a reduced probability of success. To test this first part of H2 related to the increase of university cognitive resources, we compare the standard scenario with the results of a scenario in which DBFs are excluded from the population. The second part of H2 claims that university patenting benefits from the availability of extra financial resources coming from LDFs’ research sponsorships and from license agreements. To test this sub-issue of H2, we compare the standard scenario with an alternative scenario in which LDFs are excluded from the population.

The results from the comparisons between the standard and the ‘without DBFs’ scenarios are shown in Figure 8. The differences in the percentages of A-B-C classes between the two scenarios have proved to be statistically significant (p<0.005).

Figure 8: Scenario comparison in terms of relative number of A-B-C patents

The results suggest a rejection of the first part of H2. The ‘without DBFs’ scenario generates better results in terms of the percentage of university A and B-class patents compared to the standard scenario. Accordingly, university productivity in terms of truly innovative patents is negatively affected by extensive interactions with DBFs. Furthermore, the test of H2 has revealed another important aspect. As shown in Figure 9 joint research projects with DBFs reduce the total number of patents produced by universities for each class.
This finding is coherent with the insights given by the tests of H1. As explained above, the knowledge exchange between UNIs and DBFs leads to an increase in the heterogeneity of the university knowledge base, due to a higher variance of university capabilities and abilities, but these positive effects on the ‘value of success’ seem to be overcompensated by the negative effects given by the decrease of the research direction factor, the increase in the knowledge distance and the decrease in the experience level, which reduce the probability as well as the value of success (see section 4.9).

The comparison between the evolution of the relative production of A-class patents in the two scenarios, which is shown in Figure 10, further confirms the rejection of the first sub-part of H3.

Figure 10: The evolution of the relative production of A-class university patents in the two scenarios
The second sub-part of H3 is partially rejected as well. The differences in the relative number of A-B-C university patents between the ‘without LDFs’ scenario and the standard scenario, have not proved to be statistically significant (p>0.005). Nevertheless, the difference in the total number of university patents generated by the two simulations has proved to be significant (p<0.05). In particular, as Figure 11 shows, the total number of A-B-C university patents is always higher in the standard scenario than in the ‘without LDFs’ one.

Figure 11: Scenario comparison in terms of total number of A-B-C patents

The exclusion of the possibility for universities to rely on sponsorships and on licensing revenues, reduces significantly the number of projects that universities are able to undertake, thus, generally reducing the number of patentable research outputs. Therefore, a financial resource effect seems to emerge, but this has a general influence on the number of university patents without specifically affecting the most innovative ones. On the one hand this is due to the fact that there is no direct knowledge exchange between universities and LDFs, hence the ‘value of success’ is not directly affected by this interaction. On the other hand, as we have explained in sub-section 4.6, sponsorships provide incentives to universities to shift their research direction, hence the relative number of A-class patents should decrease. Our results suggests that the former effect is stronger than the latter. In other words partnerships with LDFs increase universities’ capital stock, leaving their knowledge stock substantially unchanged. The larger availability of financial resources allows universities to increase the number of project that can be undertaken, thus, increasing the total number of patentable outcomes.
5.2 UIRs’ effect on industry

The third hypothesis focuses on the industry side of the relationship. In particular a positive influence of UIRs on DBFs’ knowledge base and patent production is hypothesized. To test this hypothesis we compare the results coming from an alternative scenario in which universities were excluded from the population (thus, impeding interactions with DBFs) with the results of the standard scenario.

The difference in the percentages is statistically significant (p<0.005). DBFs widely benefit from knowledge exchange with universities. The percentage of A and B-class patents generated by DBFs own research and in cooperation with other DBFs in the standard scenario is about 4.6% higher than in the ‘without UNIs’ scenario (see Figure 12). The same results hold for the total number of A and B-class patents (see Figure 13). These findings confirm H3 and show that interactions with universities in terms of two-way knowledge exchanges, sharply increase DBFs’ innovative potential.

![Figure 12: Scenario comparison in terms of relative number of A-B-C patents](image1)

![Figure 13: Scenario comparison in terms of total number of A-B-C patents](image2)
Finally, Figure 14 shows the evolution of the relative production of A-class patents by DBFs in the two scenarios.

Figure 14: The evolution of the relative production of A-class patents by DBFs in the two scenarios

Until about period 15, the percentages of DBFs’ A-class patents are very similar. The first periods are usually considered as an initial adjustment time of the simulation in which actors increase their experience and build their network of collaborators. The following surge in A-class patents in the standard scenario is interpreted as a signal that once DBFs have developed an adequate experience in collaboration, interactions with university start to achieve their true potential on the industry side. In fact, DBFs, thanks to their high experience level, are able to apply the new knowledge elements, gained through joint research projects with universities and characterized by a basic research orientation, in their own innovation hypothesis in the most fruitful way. As the figure shows, after the adjustment time, the trend of DBFs’ A-class patents is constantly about two percentage points higher in the standard scenario than in the ‘without UNIs’ scenario.

5.3 The government’s role and the impact of research funding policies

The test of the first two hypotheses shows that UIRs negatively affect university research orientation. The fourth hypothesis theorizes that government funding policies more favorable to basic research (through a larger public funding budget) might be able to prevent this shift. We test this hypothesis by comparing the standard scenario with three alternative scenarios in which NRA’s funding policies were progressively shifted toward a larger basic research funding budget and a reduction of the RD threshold to be eligible for NRA’s funds (MAX_NRA_rd5/4/3). As no further changes are implemented in the alternative scenarios, the impact of relationships with
industry on universities’ research direction and patent production is exactly the same as in the standard scenario. The scenario comparison in terms of mean values of the average university research direction and of the relative number of A-B-C patents are shown in Figure 15 and 16, respectively.

Figure 15: Scenario comparison in terms of average RD

![Figure 15: Scenario comparison in terms of average RD](image)

Figure 16: Scenario comparison in terms of relative number of A-B-C patents

![Figure 16: Scenario comparison in terms of relative number of A-B-C patents](image)

The differences between the RD (Figure 15) and patents variables (Figure 16) among the different scenarios, which have proved to be statistically significant (p<0.01), confirm H4. An increase in government basic research funding prevents the shift of university research orientation from basic to applied research. This also causes an increase in the relative number of A and B-class patents.
which academic research is able to generate. It is important to notice that even a small reduction in the mean value of RD leads to a considerable increase in the percentage of A and B-class patents. Between the standard scenario and the most favorable scenario for basic research funds (MAX_NRA_rd3) the mean value of the average RD is reduced by 0.19 which nevertheless leads to an increase of about 3% in the relative number of A and B-class patents.

Figures 17 and 18 illustrate the comparison of the evolution of the average university RD for both kenes and current research among the alternative scenarios.

The figures visually support what the analysis of the mean values in Figure 15 suggests. An increase in the government research funding budget avoids a shift of universities towards more applied
research, thus, increasing the relative number of truly innovative patents. Therefore, hypothesis 4 is confirmed by the results.

6. Discussion

The application of the Agent-based simulation methodology generates new insights on the complex phenomenon of University-Industry Relationships.

First, our analysis confirms that relationships with industry influence the research orientation of universities (H1). In order to generate highly innovative therapeutic solutions, a strong understanding of scientific knowledge is necessary. Therefore universities have to keep a basic research direction, alongside with more applied oriented joint research projects with industry. The ‘traditional’ division of scientific labor (universities engaged in basic research and industry devoted in applied research) should not be radically broken. Besides interacting with each other and building a mutual understanding, university and industry should still keep their own identities. Otherwise we may face an unpleasant slowdown in the growth of scientific knowledge and in the improvement of the treatments of known and less-known diseases, which can only be realized through the development of new innovative drugs, for which truly innovative patents are a crucial input.

Second, our experiments reject the hypothesis of a positive influence of a cognitive resource effect on university innovative patents productivity and partially reduce the influence of the financial resource effect (H2). Nevertheless, knowledge exchange processes are still a crucial characteristic of UIRs. Intensive interactions between universities and DBFs do not produce an increase in universities’ innovative capabilities. Instead, they reduce the total number of patents coming from academic research. The reduction of the amount of university patents that is observed when universities interact with DBFs (H2) and consequently shift to applied research (H1), is due to the fact that when the average research orientation becomes more applied, there are fewer universities that are eligible for the allocation of NRA’s research funding, because the research projects of many universities do not match the agency’s requirements concerning the basic research orientation anymore. This leads to a reduction of patents stemming from NRA-funded projects which generates a vicious circle. A decrease in the amount of patents affects the reputation of universities in terms of their research productivity, decreasing the flow of industry funds generated by sponsorships, thus, further reducing the amount of university patents.

Even if universities do not take advantage, from a cognitive point of view, of interactions with DBFs, this does not mean that the relevance of these partnerships for universities should be disregarded. Joint research projects between universities and biotech firms allow for an exchange of the successful innovation hypothesis’ quadruples. The newly acquired capabilities and abilities
expand university knowledge base, thereby increasing its heterogeneity, yet this is not sufficient to increase universities’ patent productivity. Universities also need to be able to effectively combine the new knowledge in their research projects. As Ahrweiler and colleagues (2009) explain, the relation between knowledge inputs and technology outputs is not linear. Different actors follow different scientific and technological trajectories and for universities, as for any other actor, there is no guaranteed success. For instance, many universities might not have the right skills to deal with applied research. As we show in section 4.9, the probability of success positively depends on the average experience level of the innovation hypothesis and negatively on the heterogeneity of the knowledge base. The capabilities and abilities which biotech firms transfer to universities when they work together, are related to an applied research orientation. On the one hand, this increases the heterogeneity of university knowledge base, augmenting the potential magnitude of the research outcomes. On the other hand universities are not experienced enough to successfully deal with these new capabilities. This dynamic is confirmed by the insights provided by the test of the second hypothesis, which shows that new knowledge acquired from interactions with DBFs is not effectively applied by universities.

Our findings also show that when a complex phenomenon like UIRs involving heterogeneous actors is analyzed, one has to consider all of its multi-facetted aspects. Even if we found that the existence of a ‘resource effect’, generated by UIRs, is limited to financial resources and excludes cognitive resources, the importance of the knowledge transfer between university and industry is not reduced. Instead, our results show that UIRs cause a significant increase in the innovative potential of biotech firms. This is due to a threefold effect. First, interactions with universities expand DBFs’ knowledge bases, allowing biotech firms to absorb new elements focusing on fundamental research. Second, they also increase the variance in their capabilities and, third, they have a positive effect on DBFs’ networking experience. Therefore our results highlight the importance of UIRs concerning technology and knowledge flows. Moreover, from the society point of view it is not important who develops an innovative new drug, but whether this drug is developed or not. Our findings suggest that besides universities, new scientific knowledge (symbolized by A-class patents) is increasingly generated by biotech firms. The creation and diffusion of this knowledge could be seen as a sort of ‘second mission’ of biotech firms (the first one would be, obviously, achieving commercial success), which complements the so-called ‘third mission’ of universities, defined as the commercialization of academic knowledge (Etzkowitz and Leydesdorff, 1997). We argue that biotech firms’ second mission cannot be accomplished without close interactions with universities, which, as a matter of fact, have characterized biotechnology

8 The low expertise level of the newly acquired capabilities reduces ‘ΦE’, the average agent’s experience related to the IH’s quadruples –see (4), (6) and (8) in the appendix A.2 and A.3–, thus decreasing the probability of success.
since its early days. Indeed, although our model has an explorative nature and not an history-friendly one (see Malerba and Orsenigo, 2002 and Malerba et al., 1999), its results in terms of UIRs’ effects on DBFs’ innovative potential seem to reproduce the historical development of biotechnology. In fact, during the first periods of the simulation made with the standard scenario, universities play the leading role in the production of new scientific knowledge (A-class patents). Then, after some periods of collaboration with universities, DBFs have expanded their knowledge base sufficiently, including also basic research interests, to be able to widely generate truly innovative science-based research outputs. This shows that what Gibbons and colleagues (1994) called ‘the Mode2’ of knowledge creation, namely a co-production of scientific knowledge between different agents, emerges from our simulation.

Finally, the application of a systemic perspective on innovation in biotech and pharmaceuticals shows that the negative effects on universities can be mitigated by public policies in favor of basic research. Even if public and industry research funding are sometimes considered to substitute each other, in the biotech and pharmaceuticals they are complementary. David et al. (2000) argue that the rational for government support to (academic) research is “the correction of the market failures in the production of scientific and technological knowledge, arising from the incomplete private appropriability problems identified by Nelson (1959) and Arrow (1962)” (David et al., 2000, p.501). Our results show that government basic research grants are crucially important to counterbalance the different aims and incentives provided by industry which further enlarge the market failure, especially in the long run. Accordingly, government research policies should be oriented to raise the public research funding budget with the aim to ensure that an adequate amount of fundamental research is undertaken by universities. This allows to contrast the harmful effects of UIRs and to further rely on the positive ones.

These findings are in line with the results of econometric analysis (Jaffe, 1989; Adams, 1990; Acs et al., 1991; Toole, 1999a and 1999b) and historical case studies (Link and Scott, 1998; National Research Council, 1999; Angell, 2004), surveyed by David et al. (2000), which show that government funded R&D generates beneficial spillover effects and stimulates commercial innovations. More specifically, in our model government funding has a twofold role. First, they create and strengthen capabilities in the universities. These capabilities allow for the creation of new scientific knowledge which, in the long run, spreads in the system through interactions with other agents. Second, government grants increase the amount of innovative patents which circulate in the system. As a consequence, the ultimate number of innovative drugs is positively affected.

A summary of our findings suggests that, if properly complemented by an increase in government basic research funds, UIRs in the biotech and pharmaceutical sector have a positive total effect,
from the society point of view, on the development of new innovative patentable outcomes. If not matched with applied research, basic research is not valuable for society. However, there is nothing left to be applied if basic research does not constantly generate new scientific discoveries. Therefore it is of essential importance that the different actors engaged in research cooperate to produce new scientific discoveries as well as new innovative drugs. Our results show that joint research projects with universities are an important source of knowledge for industry. Possibilities to prevent harmful effects of the interactions between universities and firms exist and are relatively easy to be implemented for governments.

7. Conclusions

Today innovation activities are undertaken in extremely complex systems which are characterized by heterogeneous actors, multi-dimensional interactions and multiple knowledge flows. The increasing complexity creates new challenges for scholars. In order to understand multifaceted phenomena as University-Industry relationships and to capture their global effect it is no longer possible to solely rely on traditional methods of analysis. As proved by the persistency of an open and intense debate on UIRs effects, these methods have failed in the goal to provide a largely accepted perspective, due to their often oversimplified and narrowly focused approach. Agent-based modeling provides a broader perspective grounded on micro interactions among heterogeneous actors. This methodology explains the emergence of macro-dynamics in terms of micro relations, exchanges and connections among heterogeneous and bounded rational individuals and organizations, thus capturing, in a relatively simple manner, a larger part of real world complexity.

The development of our agent-based model focused on knowledge dynamics underlying University-Industry Relationships. A bunch of simulation experiments provided new insights that contribute to the formation of a more widely accepted perspective on UIRs total effects on the short and long run production of innovative outputs in biotech and pharmaceutical sectors. Our results highlight the necessity to maintain a wide overview on UIRs effect, because an excessively narrow focus on some aspects might bias the perception of the total effects. Indeed, our results show that complex knowledge dynamics underlie UIRs. According to our simulation experiments relationships with industry modify the reward and incentive schemes for universities, as Stephan (1996) and Nelson (1959) argued. Consequently universities tend to shift their research orientation from basic to applied research. On the one hand, this affects industry positively (in particular DBFs’ research productivity) as firms are able to benefit from knowledge exchange with universities and increase their innovative capabilities. Thus, in the short run a welfare gain coming from an increase in the DBFs’ production of innovative drugs occurs. On the other hand, a
dangerous situation may arise in the long run. The smaller amount of basic research conducted by universities could ultimately lead to harmful effects to the research system and the society as a whole, under the shape of a slowdown of scientific and therapeutic progress. Our findings prove that governments’ policies more keen to support academic basic research provide a way out from this unpleasant situation. Accordingly, policy makers should not legitimize a reduction in public support to academic basic research as a consequence of an increase in industry funding to universities, as it frequently happens (e.g. see Blumenthal, 2003). Our results suggest that these two sources of university funding have different but complementary aims and address different needs. This strongly highlights the importance of a coordinated and harmonious innovation system as a platform which sustain innovation both in the short and long run.

Although data on drugs production, R&D investments, university patenting and licensing revenues have been used as benchmark to get some orders of magnitudes in the calibration, our model is not specifically grounded on empirical evidences. Since our aim was not to develop an history-friendly model (see, for instance, Malerba et al., 1999) but rather a theoretical model applicable to the analysis of hypothetical scenarios, a detailed process of empirical validation would have been unnecessary and irrelevant, if not impossible given the complexity of the model (which counts 17 parameters in the equations and 23 initial conditions, as listed in the appendix A.3, A.4 and A.5). Nevertheless, as our analysis focused on the comparison of several scenarios in terms of production of A, B and C-class patents, it is important that the standard scenario of our model is able to reproduce the stylized facts concerning the trends and the relative numbers of the three classes of innovative outcomes. As shown in the appendix A.6, the difference in the relative number of A, B and C patents in the model resembles those that we observe when looking at the distribution of A, B and C-class drugs in the real world. The trends also look similar, even though the real ones fluctuates much more than the artificial ones. This is unavoidable as random events have a stronger importance in reality. Therefore, the model is able to replicate the distribution of innovative outcomes that we observe in the biotech and pharmaceuticals innovation system. The comparative nature of our experiments, which was limited to the investigation of the effects of alternative scenarios on the generation of innovative outcomes, makes this relatively simple calibration strategy sufficient to provide reliable insights.

Besides the calibration of the equation parameters and initial conditions, there are other possible aspects which can influence the results. These are: the assumptions made about the particular functional forms of the equations governing the production of patents and about the nature of the budget allocation process and the mechanisms of partnership and sponsoring formation. It is crucially important to notice that these assumptions were not expression of the particular tastes of the authors but solidly grounded on theories and empirical evidences which can be find in the
literature, as we have argued in different subsections of the paper. This is a fruitful area of complementarity between Agent-based models and ‘traditional’ research tools which have to be exploited more heavily in the future of the discipline.

What has been left over from our analysis are the micro-processes whose aggregation lead to the emergence of macro phenomenon. Despite the micro-foundation of our model we preferred to focus on the aggregate variables, even though we can differentiate between the single agents whose interactions are responsible for the generation of the macro-based evidences. We chose so because we believe that this kind of analysis would have required a much larger amount of data to validate the results of the model at the micro-level. These data are not at our disposal. Furthermore several modifications to the principles of the model should be made to accomplish this task. However we are aware of the importance to look closely at the micro-macro interactions. Additional and extremely interesting results could be provided, for instance concerning the distinction and the characterization of successful and un-successful agents. Efforts to collect sufficient data to calibrate and validate future versions of the model at a micro-level will be done and such analysis will be performed in future researches.

Finally there are other features of the model which have not been exploited in this work. For instance, the analysis of the functioning of the market of research in terms of university licensing and its effect on the innovation system are also others interesting notes on the agenda for future researches.

Appendix
A.1 The National Research Agency (NRA)

The behaviour of the National Research Agency in the model aims to reproduce, in a simplified version, the role played by the U.S. National Institutes of Health (NIH), and by some smaller European national agencies, in the “real world”. The NIH is the larger life sciences research funding body in the world (Angell, 2004). Although the NIH also invests a minor part of its annual budget in research programs designed for the industry (Small Business Innovation Research and Small Business and Technology Transfer Programs), the larger part (more than 83%) of the NIH’s funding is granted to universities, medical schools and other research institutions, whereas about 10% of NIH’s budget supports projects conducted in the Institute’s laboratories (NIH Grants Policy Statement⁹, 2003). In the model the NRA is purely a funding body which do not conduct research on its own. Furthermore we only allow NRA to finance universities; whereas LDFs and DBFs have others source of funding (production of new drugs and licensing).

The allocation process of NRA’s funding is designed as follow. Universities can apply for funding both for own research projects and for joint research projects with other universities. If they want to undertake a joint research project, universities will start to look for partners according to their partnership strategies. Afterwards (or as a first step in case of own research project) a project proposal has to be set up. The project proposal is built up mixing part of the agents’ kenes that constitutes the project knowledge base. Then all the proposals are sent to the NRA. The agency has an exogenously fixed annual budget, which is divided in two parts. The largest one is designated to finance basic research projects (whose average research direction value is equal or less than an exogenously set threshold), and the smallest one is set aside for applied research projects. The former is bigger than the latter due to the specific aim of the NRA to support and provide incentives for basic research. Within the two budgets not all the proposals are accepted and financed. First the proposals are assigned to their respective budget category (either basic or applied) than they are ranked according to the number of different capabilities each proposal contains. In this way incremental and radical research projects can be distinguished. For every budget categories only a selected number of incremental and radical (basic or applied) research projects are financed. Figure A.1 illustrates on this process.

A.2 ‘Value of success’ and ‘probability of success’ for own research projects

The ‘value of success’ and ‘probability of success’ for own research projects depend on four knowledge variables: (i) the knowledge distance among the IH’s quadruples, used as a measure of the un-relatedness of the knowledge applied in the project; (ii) a ‘research direction factor’, which accounts for the IH’s quadruples average research direction, (iii) a so-called ‘technical factor’ and (iv) the experience of the actor. Before we introduce to the ‘value of success’, and ‘probability of success’ functions we briefly explain these four variables.

The distance between two kene elements is calculated as follow:

\[
d = \alpha \cdot |C_1 - C_2| + \beta \cdot |A_1 - A_2|
\]

(1)

Where \(d\) is the distance and \(\alpha\) and \(\beta\) are used to weight the single distances between the kene elements. The average of all the distances \(d\) between all kene elements can be interpreted as a measure of the un-relatedness of project’s knowledge, i.e. of the heterogeneity of project’s innovation hypothesis quadruples.
The research direction factor, to be included in the ‘value of success’ and in the ‘probability of success’ formulas is calculated as:

\[
RD_{fac} = e^{-\frac{10}{9}avRD} \cdot \frac{1}{2}
\]

(2)

Where ‘avRD’ is the average research direction of the project’s key elements. Figure A.2 graphically shows the relationships between ‘avRD’ and ‘RD_{fac}’.

Figure A.2: The Research Direction factor

The figure shows that the higher the average research direction of a project is, the higher the RD factor becomes, which leads to a higher value of success (see (3)).

For an evaluation of own research projects we also account for a technological factor. When actors decide to go-it-alone, they can only rely on their own resources. Although some exceptions exist, in general universities have less valuable and sophisticated technical instruments and machineries than firms. Furthermore, they do not have the competences to improve the research devices on their own. Due to the higher amount of financial resources, LDFs have more powerful and accurate research instruments. Therefore we introduced a technological factor in the ‘value of success’ function for own research projects, in order to account for the differences in the technical equipment of actors. In particular, the relationship is as follow: the higher the technological factor, the higher the value of success. It has to be noticed that differences in the technical equipment no longer matter once actors decide to undertake research in cooperation with other agents. The technological factor (TF) for each agent class have been calibrated relying on a sensitive analysis and can be found in Table A.1.

Table A.1: The technological factors

<table>
<thead>
<tr>
<th>Agents</th>
<th>TF</th>
</tr>
</thead>
</table>

38
The effects of the knowledge distance, the research direction factor and the technological factor are combined together in the ‘value of success’ function for own research projects, which is introduced in (3):

\[
v = TF \cdot a_1 \cdot \frac{(\text{mind} + \text{maxd}) \cdot \text{avd}}{\tau_1 \cdot \sigma_1} + a_2 \cdot \frac{\text{RDfac}}{\tau_2} + \sigma_1
\]

(3)

‘TF’ is the technological factor, ‘mind’ is the minimum distance in the knowledge-space between the kene elements of the innovation hypothesis, ‘maxd’ is the maximum distance and ‘avd’ is the average distance among the kene elements of the actor’s current work\(^{10}\). \text{RDfac} is the research direction factor. ‘\(\tau_1\)’ and ‘\(\tau_2\)’ standardize the output within the expected knowledge space depending on the research orientation. ‘\(a_1\)’ and ‘\(a_2\)’ weight the contribution of the knowledge distance and the research direction factors, with \(a_1 < a_2\). Finally, \(\delta_1\) is a scaling factor and \(\sigma_1\) is a randomly distributed variable.

Whether the potential outcome from the value of success formula is generated or not is decided by the ‘probability of success’ formula (4). The project is successful – i.e. the output from (3) is generated – if:

\[
\frac{\varnothing E}{a_2 > a_2 + \frac{\text{maxd}}{\tau_1 \cdot \sigma_2} \cdot \frac{\text{RDfac}}{\tau_2} + \sigma_1} > 0.5
\]

and \(v > 0.5\)

(4)

On the left side of the first condition we find the weighted average experience of the contributed quadruples (\(\varnothing E/a_3\)). In order to have a successful project, the experience factor must be higher than the right side of the equation. On the right side we have \(a_2\), which is a Poisson-distributed random variable, \(\sigma_2\) which is a normal-distributed random variable, the knowledge distance factor, standardized with \(\tau_1\) and weighted with \(\delta_2\), and the standardized research direction factor. The second condition to be respected, \(v > 0.5\), has been added in order to specify that some projects can be successful but nevertheless do not generate a patentable output (see § 4.7).

A.3 ‘Value of success’ and ‘probability of success’ for joint research projects

\(^{10}\) For actor’s current work we mean the sum of all the innovation hypothesis applied in all the research project that the actor is simultaneously running in a certain period.
The process through which a joint research project innovation hypothesis is transformed into an outcome is equal to the own research projects and is based on the two functions ‘value of success’ and ‘probability of success’. Nevertheless there are significant modifications in these functions. Moreover, joint research projects are evaluated in two different ways according to the chosen partnerships strategies. Furthermore, another main difference is that the quadruples of the project innovation hypothesis come from different agents’ kenes. This means that there is a greater array of possibilities to improve the project’s IH if the project is not successful, because the new quadruples can come from different actors, i.e. the project knowledge base is larger. This is the main advantage of a joint research project compared to a research project in isolation, together with the opportunity to link complementary competences and research directions and to the expansion of actors’ knowledge base. If the project is successful, in fact, each participating actor will acquire the quadruples of the IH which have been contributed by the project partner(s) in his own kene. The functions for the ‘value of success’ and the ‘probability of success’, for both conservative and progressive strategy, are introduced in the following paragraphs.

Conservative strategy

In the case of conservative strategy the ‘value of success’ function has been designed as follows:

\[
V = \frac{\min d}{\sigma_4} + \frac{\max d}{\sigma_2} + \frac{RDfac}{\sigma_6} + \sigma_5 \cdot \sigma_7
\]

(5)

As usual, \(\tau_2\), \(\tau_3\) and \(\tau_4\) are used to standardize the output within the knowledge space, \(\sigma_4\), \(\sigma_5\), \(\sigma_6\) and \(\sigma_7\) weight the contributions of the different elements and \(\sigma_L\) is a Poisson-distributed random variable. The variable ‘\(\min d\)’ is the minimum distance between the innovation hypothesis kene elements of the joint research project, whereas ‘\(\max d\)’ is the maximum distance. Finally \(RDfac\) is as in (2). Compared to own research projects, here the interpretation and the importance of the minimum and the maximum distance is different, because the project involves many actors. The ‘shortest’ distance is the distance between the two most related quadruples of two actors and can be interpreted as a proxy of the *absorptive capacity*. Instead, the ‘longest’ distance is the largest distance between two quadruples in the knowledge space of two actors and can be interpreted as a measure of the knowledge un-relatedness. As Pyka and Scholz (2008) argue, if two actors have very related knowledge in parts of their kenes, the shortest distance is small. Thus, the absorptive capacity is high and, accordingly, they should be able to communicate easily with each other. Consequently, the ‘value of success’ is likewise high. On the other hand, combining un-related knowledge (i.e. high ‘longest’ distance) also increases the potential magnitude of the project output. If the agents select their partners following the conservative strategy, they try to minimize the knowledge distance between them, therefore we can assume that they consider absorptive capacity to be more
important than knowledge heterogeneity. Consequently in the ‘value of success’ functions for the conservative strategy the contribution of the ‘\(\min d \)’ term is larger than that of ‘\(\max d \)’ (\(a_4 > a_5 \)).

The ‘probability of success’ for the conservative strategy is as follows:

\[
\frac{\phi^E}{a_5} \cdot \sqrt{\phi^{net}} > \sigma_2 + \sigma_4 \cdot \frac{\min d}{t_5}
\]

and \(v > 0.5 \).

The standardization factor (\(a_5 \)) and the random variables (\(\sigma_2 \) and \(\sigma_4 \)) are the same as in (4). The most interesting difference with the research project in isolation is the presence of ‘\(\phi^{net} \)’, which stands for the average value of the networking experience of the cooperating agents. It is important to notice that this term is always larger than 1, therefore if agents decide to cooperate, they always have a higher probability of success than if they would have undertaken the same research project alone. In fact, the left side of the equation in (6) is always greater than in (3), *ceteris paribus.* Furthermore the right side of (6) is smaller than in (3) because in the ‘probability of success’ for the joint research project we do not account for the RD factor. In fact, we assume that, when it comes to collaborate with other agents, the knowledge distance between partners is much more important than the research direction to decide whether a project is successful or not (nevertheless the research direction is still crucial for the value of success).

Progressive strategy

The ‘value of success’ and ‘probability of success’ functions for the progressive strategy have been designed as follows:

\[
v = \frac{\min d}{t_5 - t_6} \cdot a_6 + \frac{\max d}{t_5 - t_6} \cdot a_8 + \frac{RDfac}{t_2} \cdot a_{10} + \sigma_1 \cdot a_{11}
\]

\[
\frac{\phi^E}{a_5} \cdot \sqrt{\phi^{net}} > \sigma_2 + \sigma_4 \cdot \frac{\min d}{t_5 - t_6}
\]

and \(v > 0.5 \).

Besides minor changes in the standardization factors, the most important difference between (5) and (6) is that the contribution of \(\max d \) is larger than that of \(\min d \) (\(a_8 > a_7 \)). In fact, when agents apply a progressive strategy, they aim to collaborate with very dissimilar partners. Consequently, we assume that they consider un-relatedness of the knowledge (\(\max d \)) to be more important than absorptive capacity (\(\min d \)).

A.3 List of (exogeneous) parameters and standard scenario’s settings
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Equation</th>
<th>Meaning</th>
<th>Range</th>
<th>Standard scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Distance between kene elements (1)</td>
<td>Weight the distances between the kene elements</td>
<td>0-1</td>
<td>0.5</td>
</tr>
<tr>
<td>β</td>
<td>Distance between kene elements (1)</td>
<td>Weight the distances between the kene elements</td>
<td>0-1</td>
<td>0.5</td>
</tr>
<tr>
<td>TF</td>
<td>Value of success for own research project (3)</td>
<td>Technological factor</td>
<td>0.5-1.5</td>
<td>UNIs=0.9; DBFs=1.1; LDFs=1.2</td>
</tr>
<tr>
<td>a_1</td>
<td>Value of success for own research project (3)</td>
<td>Weight the contribution of the knowledge distance</td>
<td>0-1</td>
<td>0.4</td>
</tr>
<tr>
<td>a_2</td>
<td>Value of success for own research project (3)</td>
<td>Weight the contribution of the research direction</td>
<td>0-1</td>
<td>0.6</td>
</tr>
<tr>
<td>a_3</td>
<td>Probability of success for own research project (4)</td>
<td>Weight the contribution of the experience level</td>
<td>0-1</td>
<td>0.25</td>
</tr>
<tr>
<td>a_4</td>
<td>Value of success for joint research project – conservative strategy (5)</td>
<td>Weight the contribution of the minimum distance</td>
<td>0-1</td>
<td>0.3</td>
</tr>
<tr>
<td>a_5</td>
<td>Value of success for joint research project – conservative strategy (5)</td>
<td>Weight the contribution of the maximum distance</td>
<td>0-1</td>
<td>0.2</td>
</tr>
<tr>
<td>a_6</td>
<td>Value of success for joint research project – conservative strategy (5)</td>
<td>Weight the contribution of the research direction</td>
<td>0-1</td>
<td>0.3</td>
</tr>
<tr>
<td>a_7</td>
<td>Value of success for joint research project – conservative strategy (5)</td>
<td>Weight the contribution of the random variable</td>
<td>0-1</td>
<td>0.2</td>
</tr>
<tr>
<td>a_8</td>
<td>Value of success for joint research project – progressive strategy (7)</td>
<td>Weight the contribution of the minimum distance</td>
<td>0-1</td>
<td>0.2</td>
</tr>
<tr>
<td>a_9</td>
<td>Value of success for joint</td>
<td>Weight the contribution</td>
<td>0-1</td>
<td>0.3</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td>Value of success</td>
<td>Contribution Weight</td>
<td>Value</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>-------</td>
</tr>
<tr>
<td>a_{10}</td>
<td>Value of success for joint research project – progressive strategy (7)</td>
<td>-</td>
<td>Weight the contribution of the research direction</td>
<td>0-1</td>
</tr>
<tr>
<td>a_{11}</td>
<td>Value of success for joint research project – progressive strategy (7)</td>
<td>-</td>
<td>Weight the contribution of the random variable</td>
<td>0-1</td>
</tr>
<tr>
<td>v_A</td>
<td>Value of success Threshold for A-class patents</td>
<td>-</td>
<td>-</td>
<td>0-1</td>
</tr>
<tr>
<td>v_B</td>
<td>Value of success Threshold for B-class patents</td>
<td>-</td>
<td>-</td>
<td>0-1</td>
</tr>
<tr>
<td>v_C</td>
<td>Value of success Threshold for C-class patents</td>
<td>-</td>
<td>-</td>
<td>0-1</td>
</tr>
</tbody>
</table>

A.4 List of initial conditions
<table>
<thead>
<tr>
<th>Initial condition</th>
<th>Parameter</th>
<th>Standard scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>Number of UNIs</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Number of DBFs</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>Number of LDFs</td>
<td>14</td>
</tr>
<tr>
<td>NRA settings</td>
<td>Research direction basic/applied threshold</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Number of incremental basic research project financed by the NRA per period</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Number of radical basic research project financed by the NRA per period</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Number of incremental applied research project financed by the NRA per period</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Number of radical applied research project financed by the NRA per period</td>
<td>1</td>
</tr>
<tr>
<td>Sponsorship settings</td>
<td>University research direction required by LDF to sponsor</td>
<td>≥ 4</td>
</tr>
</tbody>
</table>

A.5 Initial distribution of agent’s kene elements
<table>
<thead>
<tr>
<th>Agents</th>
<th>Kene quadruple's element</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIs</td>
<td>RD</td>
<td>70% of UNIs’ kene quadruples have a research direction randomly distributed within the range 1 and 3; 30% of UNIs’ kene quadruples have a research direction randomly distributed within the range 2 and 7.</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>80% of UNIs’ kene quadruples are distributed around 3 to 5 capabilities focal points, the rest is randomly spread.</td>
</tr>
<tr>
<td>DBFs</td>
<td>RD</td>
<td>10% of DBFs’ kene quadruples have a research direction randomly distributed within the range 1 and 4; 80% of DBFs’ kene quadruples have a research direction randomly distributed within the range 3 and 6; 10% of DBFs’ kene quadruples have a research direction randomly distributed within the range 5 and 9.</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>90% of DBFs’ kene quadruples are randomly distributed within the range of capabilities from 1 to 60; 80% of this 90% is distributed around a +/- 5% range of the first capability; 10% of DBFs’ kene quadruples are randomly distributed over the whole range of capabilities (1-100)</td>
</tr>
<tr>
<td>LDFs</td>
<td>RD</td>
<td>20% of LDFs’ kene quadruples have a research direction randomly distributed within the range 1 and 9; 10% of LDFs’ kene quadruples have a research direction randomly distributed within the range 2 and 4; 70% of LDFs’ kene quadruples have a research direction randomly distributed within the range 5 and 9.</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>60% of LDFs’ kene quadruples are distributed within the range of capabilities from 61 to 100 with focal points with group 3-5 kene elements; 40% are distributed over the whole range of capabilities (1-100) with focal points with group 3-5 kene elements.</td>
</tr>
</tbody>
</table>

A.6 Empirical validation of the results
Figure A.3: Classification of A/B/C drugs from the Food and Drugs Administration (Source: own elaboration of FDA’s data available at www.fda.gov)

Figure A.4: Generation of A/B/C patents in the model’s standard scenario

References

FZID Discussion Papers

Competence Centers:

IK: Innovation and Knowledge
ICT: Information Systems and Communication Systems
CRFM: Corporate Finance and Risk Management
HCM: Health Care Management
CM: Communication Management
MM: Marketing Management
ECO: Economics
SE: Sustainability and Ethics

Download FZID Discussion Papers from our homepage: https://fzid.uni-hohenheim.de/71978.html

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Autor</th>
<th>Titel</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-2009</td>
<td>Julian P. Christ</td>
<td>NEW ECONOMIC GEOGRAPHY RELOADED: Localized Knowledge Spillovers and the Geography of Innovation</td>
<td>IK</td>
</tr>
<tr>
<td>02-2009</td>
<td>André P. Slowak</td>
<td>MARKET FIELD STRUCTURE & DYNAMICS IN INDUSTRIAL AUTOMATION</td>
<td>IK</td>
</tr>
<tr>
<td>03-2009</td>
<td>Pier Paolo Saviotti and Andreas Pyka</td>
<td>GENERALIZED BARRIERS TO ENTRY AND ECONOMIC DEVELOPMENT</td>
<td>IK</td>
</tr>
<tr>
<td>04-2009</td>
<td>Uwe Focht, Andreas Richter, and Jörg Schiller</td>
<td>INTERMEDIATION AND MATCHING IN INSURANCE MARKETS</td>
<td>HCM</td>
</tr>
<tr>
<td>05-2009</td>
<td>Julian P. Christ and André P. Slowak</td>
<td>WHY BLU-RAY VS. HD-DVD IS NOT VHS VS. BETAMAX: THE CO-EVOLUTION OF STANDARD-SETTING CONSORTIA</td>
<td>IK</td>
</tr>
<tr>
<td>06-2009</td>
<td>Gabriel Felbermayr, Mario Larch, and Wolfgang Lechthaler</td>
<td>UNEMPLOYMENT IN AN INTERDEPENDENT WORLD</td>
<td>ECO</td>
</tr>
<tr>
<td>07-2009</td>
<td>Steffen Otterbach</td>
<td>MISMATCHES BETWEEN ACTUAL AND PREFERRED WORK TIME: Empirical Evidence of Hours Constraints in 21 Countries</td>
<td>HCM</td>
</tr>
<tr>
<td>08-2009</td>
<td>Sven Wydra</td>
<td>PRODUCTION AND EMPLOYMENT IMPACTS OF NEW TECHNOLOGIES – ANALYSIS FOR BIOTECHNOLOGY</td>
<td>IK</td>
</tr>
<tr>
<td>09-2009</td>
<td>Ralf Richter and Jochen Streb</td>
<td>CATCHING-UP AND FALLING BEHIND KNOWLEDGE SPILLOVER FROM AMERICAN TO GERMAN MACHINE TOOL MAKERS</td>
<td>IK</td>
</tr>
<tr>
<td>Nr.</td>
<td>Autor</td>
<td>Titel</td>
<td>CC</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>--</td>
<td>----</td>
</tr>
<tr>
<td>10-2010</td>
<td>Rahel Aichele and Gabriel Felbermayr</td>
<td>KYOTO AND THE CARBON CONTENT OF TRADE</td>
<td>ECO</td>
</tr>
<tr>
<td>11-2010</td>
<td>David E. Bloom and Alfonso Sousa-Poza</td>
<td>ECONOMIC CONSEQUENCES OF LOW FERTILITY IN EUROPE</td>
<td>HCM</td>
</tr>
<tr>
<td>12-2010</td>
<td>Michael Ahlheim and Oliver Frör</td>
<td>DRINKING AND PROTECTING – A MARKET APPROACH TO THE PRESERVATION OF CORK OAK LANDSCAPES</td>
<td>ECO</td>
</tr>
<tr>
<td>13-2010</td>
<td>Michael Ahlheim, Oliver Frör, Antonia Heinke, Nguyen Minh Duc, and Pham Van Dinh</td>
<td>LABOUR AS A UTILITY MEASURE IN CONTINGENT VALUATION STUDIES – HOW GOOD IS IT REALLY?</td>
<td>ECO</td>
</tr>
<tr>
<td>14-2010</td>
<td>Julian P. Christ</td>
<td>THE GEOGRAPHY AND CO-LOCATION OF EUROPEAN TECHNOLOGY-SPECIFIC CO-INVENTORSHIP NETWORKS</td>
<td>IK</td>
</tr>
<tr>
<td>15-2010</td>
<td>Harald Degner</td>
<td>WINDOWS OF TECHNOLOGICAL OPPORTUNITY DO TECHNOLOGICAL BOOMS INFLUENCE THE RELATIONSHIP BETWEEN FIRM SIZE AND INNOVATIVENESS?</td>
<td>IK</td>
</tr>
<tr>
<td>16-2010</td>
<td>Tobias A. Jopp</td>
<td>THE WELFARE STATE EVOLVES: GERMAN KNAPPSCHAFTEN, 1854-1923</td>
<td>HCM</td>
</tr>
<tr>
<td>17-2010</td>
<td>Stefan Kir (Ed.)</td>
<td>PROCESS OF CHANGE IN ORGANISATIONS THROUGH eHEALTH</td>
<td>ICT</td>
</tr>
<tr>
<td>18-2010</td>
<td>Jörg Schiller</td>
<td>ÖKONOMISCHE ASPEKTE DER ENTLOHNUNG UND REGULIERUNG UNABHÄNGIGER VERSICHERUNGSVERMITTLER</td>
<td>HCM</td>
</tr>
<tr>
<td>19-2010</td>
<td>Frauke Lammers and Jörg Schiller</td>
<td>CONTRACT DESIGN AND INSURANCE FRAUD: AN EXPERIMENTAL INVESTIGATION</td>
<td>HCM</td>
</tr>
<tr>
<td>20-2010</td>
<td>Martyna Marczak and Thomas Beissinger</td>
<td>REAL WAGES AND THE BUSINESS CYCLE IN GERMANY</td>
<td>ECO</td>
</tr>
<tr>
<td>21-2010</td>
<td>Harald Degner and Jochen Streb</td>
<td>FOREIGN PATENTING IN GERMANY, 1877-1932</td>
<td>IK</td>
</tr>
<tr>
<td>22-2010</td>
<td>Heiko Stüber and Thomas Beissinger</td>
<td>DOES DOWNWARD NOMINAL WAGE RIGIDITY DAMPEN WAGE INCREASES?</td>
<td>ECO</td>
</tr>
<tr>
<td>23-2010</td>
<td>Mark Spoerer and Thomas Beissinger</td>
<td>GUNS AND BUTTER – BUT NO MARGARINE: THE IMPACT OF NAZI ECONOMIC POLICIES ON GERMAN FOOD CONSUMPTION, 1933-38</td>
<td>ECO</td>
</tr>
<tr>
<td>Nr.</td>
<td>Autor</td>
<td>Titel</td>
<td>CC</td>
</tr>
<tr>
<td>-----</td>
<td>------------------------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>24-2011</td>
<td>Dhammika Dharmapala and Nadine Riedel</td>
<td>EARNINGS SHOCKS AND TAX-MOTIVATED INCOME-SHIFTING: EVIDENCE FROM EUROPEAN MULTINATIONALS</td>
<td>ECO</td>
</tr>
<tr>
<td>25-2011</td>
<td>Michael Schuele, Stefan Kirn</td>
<td>QUALITATIVES, RÄUMLICHES SCHLIEßEN ZUR KOLLISIONSERKENNUNG UND KOLLISIONSVERMEIDUNG AUTONOMER BDI-AGENTEN</td>
<td>ICT</td>
</tr>
<tr>
<td>26-2011</td>
<td>Marcus Müller, Guillaume Stern, Anser Jacob and Stefan Kirn</td>
<td>VERHALTENSMODELLE FÜR SOFTWAREAGENTEN IM PUBLIC GOODS GAME</td>
<td>ICT</td>
</tr>
<tr>
<td>27-2011</td>
<td>Monnet Benoit, Patrick Gbakoua and Alfonso Sousa-Pozab</td>
<td>ENGEL CURVES, SPATIAL VARIATION IN PRICES AND DEMAND FOR COMMODITIES IN CÔTE D’IVOIRE</td>
<td>ECO</td>
</tr>
<tr>
<td>28-2011</td>
<td>Nadine Riedel and Hannah Schildberg-Hörisch</td>
<td>ASYMMETRIC OBLIGATIONS</td>
<td>ECO</td>
</tr>
<tr>
<td>29-2011</td>
<td>Nicole Waidlein</td>
<td>CAUSES OF PERSISTENT PRODUCTIVITY DIFFERENCES IN THE WEST GERMAN STATES IN THE PERIOD FROM 1950 TO 1990</td>
<td>IK</td>
</tr>
<tr>
<td>30-2011</td>
<td>Dominik Hartmann, Atilio Arata</td>
<td>MEASURING SOCIAL CAPITAL AND INNOVATION IN POOR AGRICULTURAL COMMUNITIES. THE CASE OF CHÁPARRA - PERU</td>
<td>IK</td>
</tr>
<tr>
<td>31-2011</td>
<td>Peter Spahn</td>
<td>DIE WÄHRUNGSKRISENUNION DIE EURO-VERSCHULDUNG DER NATIONALSTAATEN ALS SCHWACHSTELLE DER EWU</td>
<td>ECO</td>
</tr>
<tr>
<td>32-2011</td>
<td>Fabian Wahl</td>
<td>DIE ENTWICKLUNG DES LEBENSSTANDARDS IM DRITTEN REICH – EINE GLÜCKSÖKONOMISCHE PERSPEKTIVE</td>
<td>ECO</td>
</tr>
</tbody>
</table>