
de Bruin, Kelly C.; Dellink, Rob B.; Tol, Richard S.J.

Working Paper

International cooperation on climate change
adaptation from an economic perspective

ESRI Working Paper, No. 323

Provided in Cooperation with:
The Economic and Social Research Institute (ESRI), Dublin

Suggested Citation: de Bruin, Kelly C.; Dellink, Rob B.; Tol, Richard S.J. (2009) : International
cooperation on climate change adaptation from an economic perspective, ESRI Working Paper,
No. 323, The Economic and Social Research Institute (ESRI), Dublin

This Version is available at:
https://hdl.handle.net/10419/50142

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/50142
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

 
www.esri.ie 

 

 
Working Paper No. 323 

 

October 2009 
 

International Cooperation on Climate Change Adaptation 
from an Economic Perspective 

Kelly C. de Bruina, Rob B. Dellinkb and Richard S.J. Tolc,d,e. 

Abstract: This paper investigates the economic incentives of countries to 
cooperate on international adaptation financing. Adaptation is generally 
implicitly incorporated in the climate change damage functions as used in 
Integrated Assessment Models. We replace the implicit decision on adaptation 
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International Cooperation on Climate Change Adaptation 
from an Economic Perspective 

 

1 Introduction 
 
Climate policy comprises both adaptation and mitigation. Mitigation abates climate 

change by reducing emissions or capturing carbon. Adaptation involves adjusting 

behaviour and infrastructure to better fit the new climate, thereby reducing the 

damages from climate change or increasing the benefits of climate change. To set 

optimal policies, Integrated Assessments Models (IAMs) have been developed to 

study the full cause and effect chain of climate change. In many such models, the 

damages of climate change are monetised and can be compared with the costs of 

mitigation options. Thus a cost-benefit approach can be applied to study climate 

change and formulate optimal climate change policies.  

 
The climate change damage functions used in these models, however, generally 

assume optimal adaptation and incorporate adaptation implicitly in the damage 

functions. This means that adaptation cannot be studied in itself as a decision variable, 

let alone in a suboptimal setting. To be able to better understand the role and 

importance of adapting, an economic assessment of the costs and benefits of 

adaptation, by making adaptation explicit in IAMs, is essential.  In this context, de 

Bruin et al. (2009a) have introduced the concept of an “adaptation cost curve”, that 

summarises the macroeconomic costs and impacts of adaptation efforts, and have 

subsequently adjusted the DICE model (Nordhaus and Boyer 2000), now called AD-

DICE, to include an explicit adaptation choice variable. They find that when setting 

adaptation at its optimal level in the AD-DICE model, the results with respect to 

mitigation policies remain the same as in the original DICE model. This is obvious for 

the base case, as residual damage and adaptation costs are calibrated to the implicit 

optimum in DICE. However, the same result holds in sensitivity analyses (without re-

calibration). That is, DICE’s implicit assumptions on adaptation do not bias its policy 

advice on mitigation. 
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The DICE model is, however, a global model, with one benevolent leader maximising 

the utility of the globe. In a multiregional setting there are numerous players who can 

choose to cooperate on climate change (in different degrees) or to act solely in self 

interest. The first aim of this paper is to analyse whether the results of de Bruin et al. 

(2009a) are valid in a multi-regional setting with various forms of cooperation.  

 
Both the UNFCCC and IPCC WGIII TAR (IPCC, 2007) stress the role of financial 

transfers for the sake of mitigation as well as adaptation (e.g. in the form of an 

adaptation fund) as policy tools that can be used to build political support for 

international climate action. The topic of international adaptation financing, and 

which regions should receive funds from it and which should pay into it, has been 

discussed in recent literature (e.g. Burton et al. 2002, Bouwer and Aerts, 2006, 

Paavola and Adger, 2006; Dellink et al., 2009); Van Drunen et al. (2009) provide a 

systematic overview of existing and suggested financing mechanism. Especially in a 

policy setting adaptation funding has had a lot of attention, where it was an important 

topic of the recent UNFCCC meeting in Bali (UNFCCC, 2007) and an important 

point on the agenda for Copenhagen.  

 

Also the effects of monetary transfers on the incentives to join a coalition have been 

studied (e.g. Chander and Tulkens, 1997; Barrett, 2001; Carraro et al., 2006; 

Nagashima et al., 2009; Bosetti et al., 2009). Furthermore, transfers have been 

introduced into IAMs such as the EPPA model (Jacoby et al., 2004) in the form of 

financial transfers and in the RICE model in the form of technological transfers (Yang 

and Nordhaus, 2006). To our knowledge the only instance where adaptation transfers 

are considered in an IAM setting is in Hof et al. (forthcoming), which looks at the 

feasibility of financing adaptation needs in developing regions through a tax on Clean 

Development Mechanism (CDM) projects. The second aim of this paper is therefore 

to study what effects adaptation transfers will have on (i) domestic adaptation and (ii) 

the optimal mitigation path.  

 
To study our two objectives, we first present an analytical model of climate-economy 

interactions that focuses on the economic aspects of adaptation. We introduce 

adaptation costs and benefits in our model, and investigate the role that international 

financing of adaptation can play. Next, the AD-RICE model is presented, including its 
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calibration to RICE. The numerical AD-RICE model is used to study the magnitude 

of the effects and to investigate questions that cannot be solved analytically. We look 

at three forms of cooperation; Nash (no cooperation), Climate cooperation (regional 

differences in climate change damages are considered) and Full cooperation (regional 

differences in income per capita are considered). 

 
We show for all forms of cooperation that when adaptation is assumed optimal, 

making adaptation implicit in the net damage function will not affect the mitigation 

results. We also show that if adaptation is not optimal, mitigation will be affected and 

adaptation and mitigation can compensate for suboptimal levels of each other. Note 

that we assume that adaptation efforts will only benefit the region where they are 

undertaken and there will be no spillover benefits or costs to other regions. Thus the 

optimal level of adaptation investments undertaken in a region by that region will not 

differ in the cooperative and non-cooperative case. We show that adaptation transfers 

will fully crowd out domestic adaptation expenditures in the equilibrium (where 

adaptation and mitigation are set at their optimal levels), but not necessarily when 

domestic adaptation is sub-optimal. Furthermore transfers will only take place in the 

cases of climate cooperation (running from low impact to high impact regions) and 

full cooperation (running from rich to poor regions). Our numerical model shows that 

emissions may increase slightly due to adaptation transfers.   

 
This paper is structured as follows. The second section describes the simplified 

integrated assessment model we use. The third section presents our propositions. The 

fourth section describes the calibration of our numerical model (AD-RICE) and 

studies the magnitude of the effects found in section three. The final section 

concludes. 

 

2 An explicit model of adaptation 
 
In this section we describe a simple integrated assessment model, where economic 

growth and climate change are linked. We first introduce a basic model with implicit 

adaptation. In this model there is one control variable, namely mitigation ( tj ,μ ). We 

then develop a second model which includes a damage function with explicit 

adaptation. When adaptation is explicit, gross damages can be reduced through 
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adaptation efforts. In this model there are two control variables; mitigation ( tj ,μ ) and 

adaptation ( ).We extend this model further to be able to include international 

adaptation transfers.  

tjP ,

 

The basic model  

For simplicity, we assume that there are 2 regions, j=H,D, although the main 

conclusions can easily be extended to more regions. We furthermore assume, without 

loss of generality, that each region is of the same size in terms of population and that 

populations are constant over time. Moreover all parameters are non-zero. 

 
Regions produce output , which is given exogenously, causing emissions. 
Emissions are a linear function of output (with coefficient

,j tY

jΩ ). Emissions can be 
reduced through mitigation efforts ( tj ,μ ). Thus net emissions depend on both output 
and mitigation: 

, , (1j t , )j t j j tE Y μ= Ω ⋅

,j t

− . (1) 

MMitigation efforts come at a cost. The associated mitigation costs ( C ) are given as 

follows: 

 

2, ,,
1, ,

j tj t
t

MC θ

t

,j t jθ μ= ⋅ .           (2) 
,j tY

Net damages as percentage of GDP ( ) are caused by cumulative global emissions 

(

,j tD

1

, 0
1 1

t J

t j s
s j

M ): M E M
−

= =

⎛ ⎞
≡ +⎜ ⎟
⎝ ⎠
∑∑ ; for simplicity we assume that this is a linear 

relationship described as follows1: 

,

,

j t
j

j t

D
tM

Y
ϕ= ⋅

                                                

.            (3) 

 
In our model output equals (national) income and regions can consume their output 

minus the sum of net damages of climate change and the costs of mitigation as 

follows: 

 

 
1 Dellink et al. (forthcoming) show that a linear relationship is a reasonable approximation for this 
relationship.  
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, , ,j t j t j t j tC Y D MC= − − , .          (4) 
 
 
Finally regional utility ( ) is derived from the discounted sum of consumption in 

each period over the planning horizon T  (as we have a constant population, this 

implicitly maximises consumption per capita).  Consumption is discounted over time 

using a discount factor (

jU

tρ ): 

 

( ),
1

T

j t
t

U Cρ
=

= ⋅∑ j t .                    (5) 

 
The regional utilities are weighted to create a global social welfare function (SWF): 

 

1

J

j j
j

SWF Uν
=

= ∑ .                     (6) 

 
Maximising SWF involves choosing optimal values for the mitigation and adaptation 

levels, denoted by *
,j tμ and , respectively. Using different regional utility weights 

yields different solutions; this will be explored in more detail in Section 2.3. 

*
,j tP

 

Adaptation 

We now introduce adaptation into our model. The damage equation (3) with implicit 

adaptation is replaced by the more elaborate system of equations (7)-(9) and income 

equation (11) replaces equation (4); the other equations remain unchanged.  

 

We assume gross damages ( ), i.e. potential climate change damages without 
adapting, have a linear relationship to cumulative emissions: 

tjGD ,

,j tGD

,
j t

j t

M
Y

ω= ⋅ .           (7) 

Residual damages ( ,j tRD ) are a function of adaptation ( ) and gross damages, 

where  represents the fraction by which gross damages are reduced: 

tjP ,

,0 1j tP≤ ≤

R , , ,(1 )j t j t j tD P GD= − ⋅

,j tP
.          (8) 

Equation (8) shows that regional adaptation  will only decrease gross damages in 

the own region, i.e. we assume there are no spillovers (externalities) from adaptation 

to other regions. 
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Adaptation costs ( ) are given by: ,j tPC
 

2,,
1, ,

,

jj t
j j t

j t

PC
P

Y
γγ= ⋅ .          (9) 

 
As the damage function in the base model implicitly assumed optimal adaptation , 

it follows that

,

*
j t

P

,

, *
, ,

,

( ) ( )
j t j t

j t
j t j t

j t

D
,

*RD P PC P
Y

≡ + , where the asterix indicates the optimal 

level. 

 
Consumption is still given as output minus all climate change costs: 

, , , ,j t j t j t j t j tC Y RD PC MC= − − − ,

D

, , ,

.       (11) 
 

Adaptation transfers 

 
We now introduce an adaptation fund to our model. Firstly we define region D  as the 

donor region and region  as the host region. An adaptation transfer is financed from 

the consumption function of the donor region. Hence for region  we augment the 

income equation (11) and replace it by 

H

, ,D t DY= −t D t D t D t tC RD PC MC TA− − −

t D H

H

,                  (12)
     

where TA  is the financial transfer for adaptation from region  to region . 

 
We assume that this transfer will solely be used for adaptation purposes in region . 

Hence adaptation cost equation (9) will be replaced in the host region by 

2,,
1, ,

,

HH t tPC TA
P γγ

+
= ⋅H H t

H tY
.                    (13) 

A drawback of the simple utility function (5) is that utility increases linearly with the 

income level, and thus marginal utility is constant in income and consumption. This 

affects the analysis when comparing countries with different income levels. To be 

able to capture the differences in marginal utility across regions we replace the utility 

function in the base model with one that uses a log function over consumption. This 

entails that the marginal effect of consumption increases on utility are lower when 

consumption is high than when it is low. Equation (5) is replaced by 
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( ),
1

ln
T

j t
t

U Cρ
=

= ⋅∑ j t .                     (14) 

  
This model allows us to investigate 3 cooperation scenarios:  

i) Nash (no cooperation). In the uncooperative Nash case each region optimises its 

own utility taking the emissions of the other regions as given. The social welfare 

function weights are then the inverse of marginal utility 
,

1

j tC
 yielding the competitive 

solution (Negishi 1960). In this case the shadow prices of capital in all regions are 

equalised and monetary transfers will not increase social welfare: any welfare increase 

from higher income in the host region will be matched exactly by an equivalent 

welfare loss in the donor region. 

ii) Climate cooperation: differences in climate change impacts are considered. In this 

case, the social welfare function weights are given by the inverse marginal utility of 

income before climate change damages are subtracted, i.e. 
,

1

j tY
. In this case shadow 

prices are equalised when there are no damages from climate change. 2 Monetary 

transfers will thus only be desirable from a social welfare perspective if damages 

among regions are unequal: compensation of damages in a high impact region by a 

low impact region will boost global welfare.  

iii) Full cooperation: differences in income are considered. In the case of full 

cooperation, all regions have the same welfare weight. In this case summed utility of 

all regions is maximised, shadow prices will only be equalised across countries if 

consumption levels are equal across countries and monetary transfers will increase 

social welfare if they flow from a high income region to a low income region (this 

depends on the assumption that marginal utility decreases in income levels). 

 

3 Adaptation-mitigation interactions and the role of adaptation 
financing 

 
In this section we shortly discuss the key analytical insights obtained from each of our 

model settings presented in Section 2. These insights are summarised in a series of 

                                                 
2 This is because this weight will result in the competitive equilibrium in the case of no damages of 
climate change. 
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propositions. The formal results are given in Appendix A (base model) and Appendix 

B (model with transfers) and proofs are given in Appendix C. 

 

Optimal levels of adaptation and mitigation 

 
First, solving our base model (as discussed in 2.1) using the Nash cooperation 

scenario, we can gain insights in the drivers of the control variables. The optimal level 

of mitigation with implicit adaptation equals3: 

 

( ) 2, ,

,

1
1

,
* 1

2, , 1, ,

j t

j t

T

j j s s j
s t

j t j t

Y
θ

ϕ ρ
μ

θ θ

−

= +

⎛ ⎞⋅ ⋅ ⋅Ω⎜ ⎟
⎜ ⎟=

⋅⎜ ⎟

∑

⎜ ⎟
⎝ ⎠

.                  (15) 

This result is intuitive: mitigation efforts increase as discounted value of future 

climate change damages increases ( ,j j s sYϕ ρ⋅ ⋅ ) and as the production emission 

coefficient increases ( ). Together, these two elements determine the effectiveness 

of mitigation through a stream of reduced damages. Furthermore, the level of 

mitigation effort decreases as the cost parameters of mitigation increase (

jΩ

2, , 1, ,,j t j tθ ). θ

 

Second, when including an explicit adaptation control variable (i.e. using the model 

with explicit adaptation from section 2.2), the optimal level of adaptation is as 

follows: 

2,

1
1

*
,

j

j t
j t

M
P

γ
ω

−⎛ ⎞
⋅⎜ ⎟= ⎜ ⎟

2, 1,j jγ γ⎜ ⎟⋅⎝ ⎠

j t

.                     (16) 

The optimal level of adaptation thus increases when the gross damages increase 

( M⋅ 2, 1,,j j) and decreases when the adaptation costs coefficients (ω γ γ

                                                

) increase. As 

 
3 Note that we assume that both regions experience positive gross damages from climate change, this is 
the case for most regions in the world, especially in the longer term. Some regions may, however, 
experience gross benefits from climate change. In our numerical AD-RICE model we include this 
possibility and model adaptation in such a way that it increases net gross benefits of climate change and 
decreases gross damages (see appendix). Here we focus on the case of gross damages, where 
adaptation can decrease gross damages to residual damages.  
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with mitigation, higher damages, relative to the marginal adaptation costs, make 

adaptation more effective and hence increase its optimal level.   
 

The associated optimal level of mitigation with explicit adaptation is: 

( ) 2, ,

,

1
1

*
, ,

* 1

2, , 1, ,

(1 )
j t

j t

T

j j s j s s j
s t

j t j t

Y P
θ

ω ρ
μ

θ θ

−

= +

⎛ ⎞⋅ ⋅ − ⋅ ⋅Ω⎜ ⎟
⎜=

⋅⎜
⎜ ⎟
⎝ ⎠

∑
⎟
⎟

.                             (17) 

The intuition of these results remains unchanged: the level of mitigation effort 

decreases as the cost parameters of mitigation ( 2, , 1, ,,j t j tθ θ

*
, (1j j sY

) increase and increases as 

discounted future climate change damages ( , )j sP sω ρ⋅ ⋅ − ⋅ ) and the production 

emission coefficient ( ) increase. What is new in equation (17) is that future 

benefits are now a function of adaptation levels. As future adaptation increases, the 

benefits of mitigation and thus the optimal level of mitigation decreases. 

jΩ

 

Implicit versus explicit adaptation 

 
By comparing the model with explicit adaptation with the base model, we can 

investigate what effect making adaptation explicit will have. This is motivated from 

the fact that in most models of climate change adaptation is assumed implicit. When 

comparing explicit and implicit adaptation we only look at the Nash solution, i.e. we 

solve the optimisation problem for one region given the emissions of other regions. 

The results will hold for all scenarios given the regional characteristics of adaptation, 

i.e. the lack of international externalities.  

 
Proposition 1. Making adaption explicit in the optimum will have no effect on the optimal 
levels of mitigation. 
 
This proposition is based on the idea that once you assume that adaptation will be set 

at its optimal level in the future, you need not consider adaptation explicitly. This is 

because adaptation, when set at its optimal level, can be expressed exogenously and 

making it explicit will not change the optimal level of adaptation and thus also not the 

resulting mitigation level. Furthermore, adaptation is a flow variable only; and there 

are no externalities in adaptation. While, obviously, this proposition hinges on the 

assumption that implicit adaptation levels are optimal, it conveys an important policy 
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message: mitigation results from Integrated Assessment Models that are based on an 

implicit treatment of adaptation, i.e. the vast majority of models presented in the 

literature and for instance in the IPCC assessments, cannot be deemed as biased in 

their mitigation recommendations. Where de Bruin et al. (2009a) stress this same 

result from a global perspective, Proposition 1 extends this to the multi-regional 

specification. 

 

Adaptation transfers 

 
To obtain insights in the role of adaptation transfers, we applied our model that 

includes transfers as introduced in Section 2.3.  

 
Proposition 2a. Foreign adaptation funding fully crowds out domestic adaptation 
expenditures in the optimum. 
 
When total adaptation expenditures (host and donor) in the host region are set at their 

domestic optimal levels, the host region will have no incentives to increase its level of 

adaptation. Any inflows of financing for adaptation will therefore crowd out host 

adaptation expenditures, as the funds can be spend more effectively on other 

activities. While this is a quite general result, there are potentially relevant feedback 

effects that are not present in our model. For instance, a higher consumption level will 

not imply higher emissions, and thus the additional resources can be used without 

distorting the climate system. 

 
Proposition 2b. Foreign adaptation funding is only effective (i.e. increases total adaptation 
efforts in the host region) if total adaptation expenditures (incl. received transfers) are below 
or equal to the domestic (host) optimum. 
 
Due to the absence of externalities of adaptation, i.e. adaptation benefits are only 

local; the host region will not have an incentive to increase the total level of 

adaptation expenditure in its region above the domestic optimal level. If the host 

region receives foreign adaptation funding, it will only not decrease its level of 

adaptation expenditures if the total level remains below or equal to the domestic (host) 

optimal level. It is easy to see that due to the local nature of adaptation this will be the 

case for all cooperation scenarios. 

 
Proposition 3a. Adaptation transfers will not take place in the competitive Nash equilibrium. 
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This proposition is intuitive; as there are no international spillovers from adaptation 

back to the donor region, it will never have the incentive to fund adaptation 

expenditures in the host region when it acts solely in self interest. 

 
Proposition 3b. Adaptation transfers will be positive in the case of climate cooperation when 
the climate change impacts are higher in the host country than in the donor country. 
 
In the case of climate change cooperation, low impact regions want to compensate 

high impact regions. An adaptation transfer can give low impact regions a means of 

compensating high impact regions, thereby exploiting the higher welfare effect this 

transfer will have. Note that this transfer crowds out adaptation in the high impact 

region (proposition 2a). The transfer compensates the high impact region which is 

beneficial as it reduces damages and therefore also the need for emission reduction. 

 
Proposition 3c. Adaptation transfers will take place in the case of full cooperation when the 
level of consumption is lower in the host country than in the donor country. 
 
When global utility is maximised, due to decreasing marginal utility, high income 

regions will want to compensate low income regions. Through adaptation transfers 

they are able to do so. Thus global welfare will increase as transfers run from low 

marginal utility to high marginal utility regions. Note this transfer crowds out 

adaptation in the low income region (proposition 2a). The transfer is used to 

compensate for differences in income. 

 
None of our cooperation scenarios fully reflect what is likely to happen in the real 

world. They do, however, reflect the three main motivations behind the behaviour of 

regions when cooperating on climate change. Firstly, regions naturally are concerned 

about their own wellbeing. This is reflected in the Nash scenario. Secondly, when 

regions cooperate concerning climate change, they will want to compensate those 

most affected by climate change, this is reflected in the climate cooperation scenario. 

Thirdly, regions also consider the level of income in regions when cooperating. 

Regions generally have some, though low, incentives to compensate low income 

regions. This is reflected in the full cooperation scenario. In a real world context, 

motivations will lie somewhere in between these three extremes and will also likely 

depend on a region’s historical responsibility in contributing to the climate change 

problem.   
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The effect of transfers on mitigation is too complex to study analytically. To illustrate 

the complexity of the issue, we shortly discuss some of the mechanisms at work in 

relationship between adaptation transfers and mitigation levels. Consider the case of 

climate cooperation where funds are transferred to some high-impact region  by a 

low-impact region D  for the purpose of adaptation. Due to increased adaptation in 

region , region  will have lower residual damages and thus more funds for other 

expenditures. Region H  can spend these funds on consumption or on mitigation, 

thereby decreasing emissions or invest in capital, which increases future production 

and thus also emissions. 

H

H H

4 Region  now has fewer funds to invest in mitigation or 

capital but has a new mechanism by which to compensate region  for the effects of 

climate change. Thus region D  can use adaptation transfers instead of mitigation to 

assist region , thus reducing the need for D  to compensate for damages through a 

higher level of mitigation. Consequently, the social planner will trade-off the benefits 

and costs of mitigating versus financing adaptation. The final result of these various 

mechanisms is unclear a priori, and by applying our numerical model we can get a 

better understanding of the net result, which will be done in the next section. 

D

H

H

 

4 Numerical results 
 
The previous section provides several general insights using a simple model. We now 

apply our numerical AD-RICE model to gain insights into the magnitude of the 

mechanisms discussed in section 3 and to unravel secondary mechanisms that could 

not be studied analytically due to the large complexities involved. We first give a 

short description of the model and then discuss the results. 

 

 AD-RICE model 

 
The AD-RICE model incorporates adaptation into the RICE model5, using the same 

method as employed in de Bruin et al. (2009a), i.e. by calibrating an adaptation cost 

curve that describes the marginal costs of adaptation efforts, analogous to a marginal 

abatement cost curve as often used for mitigation efforts. The full model is given in 

Appendix D, where the adaptation components are described in equations A.37-A.39. 

                                                 
4 Note that such investment in capital is not present in our stylised analytical model. 
5 We use the RICE99 model as available online. 
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RICE is a regional version of the Dynamic Integrated Climate and Economy model. It 

consists of 13 regions: Japan, USA, Europe6, Other High Income countries (OHI)7, 

High Income Oil exporting regions (HIO)8, Middle Income countries (MI)9, Russia, 

Low-Middle income countries (LMI)10, Eastern Europe (EE), Low Income countries 

(LI)11, China, India and Africa12.  

 
The AD-RICE model is calibrated such that it best replicates the results of the optimal 

control scenario of the original RICE model when adaptation is assumed to be at its 

optimal level throughout the model horizon. To this end regional adaptation cost 

curves are constructed such that the discounted squared difference between net 

damages ( ) in the original RICE and net damages (,t jD ,t jRD + ) in AD-RICE is 

minimised. It is also assumed that adaptation is set at an optimal level at each point in 

time. We calibrate the parameters of the adaptation cost function and the gross 

damage function. The calibrated parameter values of AD-RICE are given in Appendix 

2. Three regions (EE, OHI and Russia) have been excluded from the calibration 

procedure for the adaptation cost curves as they have very low, near zero, net benefits 

from climate change. For these regions we assume that no adaptation will take place 

as the impacts are so close to zero. Adaptation costs curves are drawn for the 

remaining 10 regions in 

,t jPC

Figure 1, where the x-axis shows the level of adaptation as 

fraction of gross damages reduced and the y-axis shows the associated costs as a 

fraction of output. The line denominated as GLOBAL has been added and represents 

the AD-DICE2007 (de Bruin et al. 2009b) global adaptation cost curve. As can be 

seen the adaptation costs in the different regions vary widely. Especially India, Africa 

and Low Income countries have high adaptation costs, whereas Japan, China and the 

USA have relatively low adaptation costs. 

                                                 
6 Austria, Belgium, Denmark, Finland, France, Germany, Greece, Greenland, Iceland, Ireland, Italy, 
Liechtenstein, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the 
United Kingdom 
7 Includes Australia, Canada, New Zealand, Singapore, Israel, and rich island states   
8 Includes Bahrain, Brunei, Kuwait, Libya, Oman, Qatar, Saudi Arabia, and UAE. 
9 Includes Argentina, Brazil, Korea, and Malaysia.  
10 Includes Mexico, South Africa, Thailand, most Latin American states, and many Caribbean states. 
11 Includes Egypt, Indonesia, Iraq, Pakistan and many Asian states. 
12 Includes all sub Saharan African countries, except Namibia and South Africa 
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Figure 1: Adaptation costs curves implicit in the RICE model. 

 

Explicit versus implicit adaptation 

 
Figure 2 shows the optimal emissions path for our three cooperation scenarios (Nash, 

climate cooperation and full cooperation) with optimal adaptation and without 

adaptation. When adaptation is not possible, more mitigation is undertaken and 

emissions are lower. We also see that in the Nash solution, because there is no 

cooperation, sub-optimal adaptation has little effect on the optimal mitigation path.  In 

the cooperation solutions sub-optimal adaptation has a greater effect as each region 

not only considers that it itself cannot adapt but also the welfare loss from the fact that 

the other regions cannot adapt. The negative externalities of emissions are much 

larger when adaptation is not possible inducing regions to mitigate more when 

cooperating.  
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Figure 2: Optimal emissions paths for the three cooperation scenarios (Nash, climate 
cooperation and full cooperation) with optimal adaptation  and without adaptation. 

 

Adaptation transfers 

 
In Section 3.3 we showed that financial transfers to fund adaptation in other regions 

will only take place in the cooperative cases. Here we use our numerical model to 

investigate the adaptation transfer magnitudes and directions in the more elaborate 

setting with multiple heterogeneous regions.13 Comparing the scenarios can give us an 

idea of which regions, according to this model, should receive (give) funding based on 

their relatively high damages and which should receive (give) based on their relatively 

low incomes.  

 

In the case of climate cooperation, transfers will flow from low impact to high impact 

regions as shown in the previous section. We look at two cases; in the first case 

adaptation is set at its optimal level, in the second case adaptation expenses is limited 

in developing countries14, by assuming adaptation expenditures cannot be more than 

half of what would be optimal. We do this as it does not seem likely that optimal 

adaptation will be attainable in the real world, especially so for developing regions 
                                                 
13 Clearly, our specification of international cooperation is too stylised to be able to provide numerical 
results that can be used for policy recommendations. Our aim is merely to understand the magnitude 
and direction of flows using our two cooperation scenarios. Clearly, this setting abstracts from issues 
such as historical responsibility for climate change, and cannot be viewed as a policy recommendation 
14 We categorise HIO, MI, LMI, LI, China, India and Africa as developing regions. 
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(cf. de Bruin and Dellink, 2009). In Figure 3 the total amount of adaptation funding is 

given over time for the climate cooperation case. In the case of optimal adaptation, the 

small levels of financing arise because of the steeply increasing adaptation costs, 

when adaptation is set at its locally optimal level, compensating for differences in 

climate impacts through financing of additional adaptation will be quite costly. In the 

case of limited adaptation in developing countries, transfers will be larger, as more 

cost-effective adaptation options are unused. The amount of funding increases sharply 

over time. Figure 4 presents the regional shares in the adaptation for the host and 

donor regions for the case of optimal and limited adaptation in developing regions. 

The total amount of funding from donors equates the total amount of funding received 

by hosts. In the case of optimal adaptation only Russia and China provide funding. 

Although the two donors of adaptation financing may seem counter-intuitive at first 

sight, their profile fits the solution concept used: income differences are irrelevant 

except for damages caused by climate change. Thus, these two regions, that are 

expected to have relatively low damage levels, will compensate regions that are hit 

more severely by climate change. When adaptation in developing countries is limited, 

more funding needs to be provided, and our simulations show that Russia, Eastern 

Europe, Other high income countries and China are the donors in the case of climate 

cooperation. Again, these are the regions with the lowest damages (or highest 

benefits) from climate change. The most vulnerable regions India, Low income 

countries, Low middle income countries, Africa, and Middle income countries receive 

the most funding.  

Figure 3: Total adaptation transfers to regions in percentage of global GDP for the 
case of climate cooperation. 

Host regions (optimal)

USA
EUROPE
OHI
HIO
MI
LMI
LI
INDIA
AFRICA

Donor regions (optimal)

RUSSIA

CHINA
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Figure 4: Regional composition of adaptation funding for the case of climate 
cooperation with optimal adaptation and with adaptation expenditures limited to 50% 
of optimal, where host regions receive funding and donor regions give funding15. 

 
 
Figure 5 and 6 show the adaptation transfers in the case of full cooperation over time. 

Introducing an adaptation fund gives regions a way to transfer money in order to 

equalise marginal utilities across regions. Because in this setting adaptation funding is 

not only compensating for climate change damages, but is also used as a development 

fund, both the magnitude of the flows  (cf. Figures 5 and 3) and the division between 

hosts and donors is radically different (cf. Figures 6 and 4). In the full cooperation 

case we see that the richest regions, notably USA, Japan and Other High Income, 

transfer to the poorest regions, with a large part flowing to Africa. Once again these 

results confirm our insights of Section 3. Furthermore, limiting adaptation increases 

transfers but this increase is very small relative to the size of the transfers under 

optimal adaptation. We see thus that there are huge differences between the climate 

cooperation and full cooperation solutions. As Nordhaus and Yang (2006) mention, 

the full cooperation case is often used to investigate climate change cooperation as it 

easy to implement and justify. In the full cooperation scenario funds will stream from 

high income to low income regions due to differences in marginal utility. One can 

think of this as interconnected reservoirs with different water levels. When the 

connectors are opened, water will flow from high to low levels. An adaptation transfer 

gives regions a way to open these connectors. Applying a full cooperation scenario 

can therefore be misleading from the perspective of a focused climate policy impact 

                                                 
15 Note that regions with a share of less than 1% in adaptation funding are omitted from the figure.  
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analysis as it incorporates development assistance as well as climate change 

cooperation.  
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Figure 5: Total adaptation transfers to regions in percentage of global GDP for the 
case of full cooperation. 
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Figure 6: Regional composition of adaptation funding for the case of full cooperation 
with optimal adaptation and with adaptation expenditures limited to 50% of optimal, 
where host regions receive funding and donor regions give funding 

Transfers and mitigation 

 
Our complex applied model can also be used to investigate a number of mechanisms 

that could not be dealt with in the analytical model. One important issue is that of the 

effect of transfers on mitigation. 

 

The overall effect of transfers on mitigation can be seen in Figure 7 for the two 

cooperative solutions. We see that emissions increase and thus mitigation decreases 

considerably in the case of full cooperation. In the case of climate cooperation 

emissions are almost the same, implying overlapping lines in the figure. It is logical 

that the effects are higher in the full cooperation scenario, as the transfers too are 

much higher compared to the climate cooperation scenario. The results for the 

individual regions (omitted here) indicate that emissions increase in all regions when 

adaptation transfers are introduced except in Africa in the case of full cooperation. As 

transfers grow, so does the amount of disposable funds. It is most beneficial for Africa 

to spend these funds on mitigation (even though there is increased adaptation) as 

opposed to other investments, this also due to the externalities of mitigation.    
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Figure 7: Optimal emissions paths for the 3 solution concept (Nash, climate cooperation and 
full cooperation) with and without transfers (with optimal adaptation). 

 

5 Conclusions 
 
This paper investigated two main issues; firstly what is the effect of making 

adaptation explicit in an integrated assessment modeling framework in a multi 

regional setting. We look at three forms of cooperation between regions: Nash (no 

cooperation), Climate cooperation (regional differences in climate change damages 

are considered) and Full cooperation (regional differences in income per capita are 

considered). We find that explicitly including adaptation as a control option, will not 

affect the resulting mitigation policy outcomes in a first best world where adaptation 

is set at its optimal level, i.e. policies of mitigation and adaptation are separable in a 

multi-regional first best setting. Making adaptation explicit makes it possible, 

however, to study other states of the world. When policies are not optimal, mitigation 

and adaptation can compensate for sub-optimal levels of each other. Here, adaptation 

and mitigation are not separable and sub-optimal adaptation will affect the optimal 

mitigation path. Our numerical model (AD-RICE) shows that the mitigation path can 

be affected considerably. We conclude that the assumption of optimal implicit 

adaptation needs to be reconsidered to create sound mitigation policy conclusions. 
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 Secondly this paper aimed to answer questions concerning adaptation transfers. For 

each form of cooperation, we study if transfers will take place and what effects 

adaptation transfers will have on (i) domestic adaptation and (ii) the optimal 

mitigation path. We find that in a first best world foreign adaptation funding will 

crowd out domestic adaptation expenditures. When ensuring that crowding out is not 

possible we see that adaptation transfers will run from low climate change impact 

regions to high climate change impact regions. In the case of full cooperation 

adaptation transfers run from high income to low income regions and serve as a form 

of development assistance, attempting to equalise consumption per capita over 

regions. Transfers are thus much larger in full cooperation than in climate 

cooperation. We also see that transfers increase tremendously when adaptation in 

limited in developing regions. The magnitude and direction of transfers are very 

different in the different forms of cooperation. When setting policies, one needs to 

carefully understand the distributional effects and assumptions underlying modelling 

results. The overall effect that adaptation transfers may have on mitigation is 

dominated by several mechanisms. A transfer will increase the budget of the receiving 

region which may decrease emissions (when more is invested in mitigation) or 

increase emissions (when more is invested in capital). A transfer will decrease the 

budget of donating region, decreasing mitigation investments and/or capital 

investments. As both adaptation and mitigation can be used by a low impact region to 

compensate a high impact region, having the new option of an adaptation transfer can 

therefore also decrease mitigation efforts. In the case of climate cooperation, we see 

that emissions increase slightly. In the case of full cooperation, emissions increase by 

much more. This is because of an over-investment of adaptation in adaptation funds 

receiving regions creating low incentives to mitigate. 

 

This study is subject to several limitations. Firstly the model used here is based on the 

RICE model and therefore has the same limitations of that model. It does not consider 

irreversibility and uncertainties and simplifies many relations in the climate and 

economy. Furthermore, the formulation of adaptation in the model is a flow approach, 

i.e. adaptation is essentially seen as reactive. A more elaborate stock-and-flow 

approach may be able to reflect the anticipatory nature of certain types of adaptation 

measures better. Finally the data used in this study to understand the cost and benefits 
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of adaptation is limited due to the general lack of estimates in this field. More detailed 

estimates can give us a better understanding of the issues studied here. 

 
 

Appendix A: AD-RICE Model and parameter calibration 
 
 
In this section we describe the AD-RICE model. This model is based on the RICE99 

model as described in Nordhaus and Boyer (2000), with a revised damage module, 

which incorporates adaptation explicitly.  

The AD-RICE model consists of J regions, where each region is indexed by 

j=1,2,…J. Furthermore, there is a planning period indexed by t=1,2,…T. Each time 

step is 10 years starting at 1995. The social welfare function is defined as; 

1

J

j jSWF Wν= ⋅∑ .                 (A.1) 
j=

jWWhere is the welfare over the planning period for each region j . The region 

specific weights are given by jν . Thus the social welfare is given by the sum of the 

weighted total utility of all regions. 

 
Next we define the welfare for each region j, which is the utility summed and 

discounted over all periods; 

,

T

j j tW U= ⋅∑
0

t
t

R
=

,                 (A.2) 

 
tR  represents the discount factor which is given by;  

 
10[1 ( )]

t

tR vρ −= +∏
v o=

( ) (0)exp( )tt g

.                 (A.3) 

 
Furthermore;  
 

ρρ ρ= − .                (A.4) 
 
Next utility in each region for each period is given as: 
 

,
, ,ln j t

j t j t

C
U L

L
⎛ ⎞

= ⋅⎜ ⎟⎜ ⎟
,j t⎝ ⎠

.                 (A.5) 
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This is the population weighted natural logarithm of consumption per capita, i.e. total 

consumption divided by the population; ,
,

,

ln j t
j t

j t

C
L

L
⎛ ⎞

⋅⎜ ⎟⎜ ⎟
⎝ ⎠

; 

The population is given by; 
 

, ,0 ,
0

exp
t

pop
j t j j tL L g

⎛ ⎞
= ⋅ ⎜ ⎟

⎝ ⎠
∫                 (A.6) 

 
Where; 
 

, ,0 ,exp( )pop pop pop
j t j j tg g= ⋅ −∂ .                (A.7) 

         
Output is a Cobb Douglas function of capital , labour ( ) and energy services 

from carbon fuels ( ).The total factor productivity per region per time period 

( ) is given by:  

,j tK ,j tL

,j tES

tjA ,

 

{ }1
, , , , , , ,

j j E
j t j t j t j t j t j t j t j tY A K L ES c Eβ γ βγ − −= Ω ⋅ ⋅ ⋅ ⋅ − ⋅ ,S

,j t

, , ,j t j t j t

,                (A.8) 

 
  
Where  is the change damage factor and  are the costs of carbon energy, these 

depend on the market price ( ) plus a transport cost markup: 

,j tΩ ,
E
j tc

tq

 

,
E E
j t t jc q markup= + .                             (A.9) 

Carbon services are linked to emissions ( ):  E

 
ES Eς= ⋅

,j t

.               (A.10) 

 

ς  is given by; Furthermore the change in 

, ,0
0

exp Z
j t j j tgς ς= ⋅ ⎜ ⎟

⎝ ⎠
∫ ,

t⎛ ⎞

, ,0 ,exp( )Z Z Z
j t j j tg g= ⋅ −∂

tjA ,

 .              (A.11) 

 

Where  
.               (A.12) 

Total factor productivity ( ) is defined as: 
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, ,0 ,
0

exp
t

A
j t j j tA A g

⎛ ⎞
= ⋅ ⎜ ⎟

⎝ ⎠
∫  .              (A.13) 

Where 

, ,0 ,j t j j t

, , ,j t j t j tC Y I= −

, 1 , , ,(1 )j t k j j t j tK K I

exp( )A A Ag g= ⋅ −∂ .                           (A.14) 

 
The consumption function is given by: 
 

                (A.15) 
 

Capital accumulation is defined as: 

δ+ = − + .              (A.16) 

 
Where ,k jδ  is the depreciation rate and ,j tI  the investments in capital. Furthermore it 

is assumed that capital is immobile between regions.  

The first period capital is given: 
*

,0j jK K=                 (A.17) 

 

Global industrial emissions are the sum of regional industrial emissions: 

 

,
1

t j t
j=

, ,
1

t j t j t
j=

, ,0 (1 )t
j t j lLU LU

J

E E=∑ .                (A.18) 

 
Total global emissions are the sum of industrial emissions and land-use carbon 

emissions: 

( )
J

ET E LU= +∑ .              (A.19) 

Where 
 

δ= ⋅ −

1t t tCumC CumC E+ = +

The market price of carbon energy depends on the cumulative industrial emissions: 

.                                  (A.20) 

 

Cumulative emissions are given as: 
 

.                          (A.21) 
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3*
1 2 [ / ]t tq CumC CumC ξξ ξ= + ⋅ .             (A.22) 

Initial atmospheric concentrations are given: 

*
,0AT ATM M= .                (A.23) 

Atmospheric carbon concentrations depend on previous concentrations in the 

atmosphere an

, 1 11 , 1 21 , 1AT t t AT t UP tM ET M Mφ φ− − −= + + .                         (A.24) 

 

2 , 1 32 , 1UP t AT t LO tM Mφ φ φ

d upper oceans and on total emissions: 

  

Carbon concentrations in the upper oceans de

tmosphere, upper oceans and lower oceans; 

pend on previous concentrations in the 

a

 

, 22 , 1 1UP tM M − − −+ .            (A.25) 

 
Initial carbon concentration in the upper oceans is given: 

= +

 

*
,0UP UPM M= .                       

(A.26)  
Carbon concentrations in the lower oceans depend on previous conce ration in the

, 33 , 1LO t LO tM M M

nt s  

upper oceans and lower oceans; 

, 1φ φ

 

23 UP t− − .           (A.27) 

 

on in the lower oceans is given: 

*

= +   

Initial carbon concentrati

,0LO LOM M= .                (A.28) 

Radiative forcing ( tF ) is a function of the ratio of atmospheric concentrations to pre-

PIindustrial atmospheric concentrations of carbon ( /AT ATM M⎡ ⎤⎣ ⎦ ) plus exogenous 

radiative forcing growth ( tO ). 

26 



 { }log / / log(2)PI
t AT ATF M Mη ⎡ ⎤= ⋅ +⎣ ⎦ tO

t

{

.            (A.29) 

Furthermore; 

0.1965 0.13465 11tO t= − + ⋅ <
1.15 10t= >

                (A.30) 

Temperature change compared to pre-industrial level is given as: 

}1 1 1 2 1 , 1t t t LO tF T T Tσ λ σ− − − −t tT T ⎡ ⎤= + ⋅ − ⋅ − ⋅ −            (A.31) ⎣ ⎦

,LO tT

*
0T T=

1 1 , 1t LO tT T− − −⎡ ⎤−⎣ ⎦

*
,0

Where  is the lower ocean temperature. 

Initial temperature change is given: 

.                (A.32) 
Lower ocean temperature depends on previous period temperature in the lower ocean 

and atmosphere. 

, ,LO t LO tT T= +               (A.33) 

Initial temperature change is given: 

 

LO LOT T=                             (A.34) 

The climate change damage factor is given as:  

,
,

1
1j t

j tD
Ω =

+

,j tD

tj ,

3,
, 1, 2,

j
j t j t j tGD T T

                (A.35) 

 is the damage due to climate change and is given as a function of temperature 

change in the atmosphere. 

We define gross damages of climate change as a percentage of output (GD ) as a 

function of the temperature change as shown in the following equation; 

ββ β= +               (A.37) 

 
The residual damages of climate change are the damages after adaptation to climate 

change has taken place. Regions can change economic, social and cultural structures 

to decrease the damages or increase benefits of climate change in their region, that is 
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adapt. Residual damages as a percentage of output ( ,j tRD ) are a function of 

a tatio tj , and ,j tPR ) and gross damages ( GD , ,(0 1)j t j tP P≤ ≥  

represents the fraction by which gross damages ar ,(0 1)t j tPR≤ ≥  

represents the fraction by which gross benefits are increased, this is given in e

dap n ( ), where 

e

quation 

A.38. 

, , , ,j t j t j t j t

                                                     (A.38) 

P t,

uced an

j

 red d PR ,j

, , , ,(1 ) 0

(1 ) 0
j t j t j t j tRD P GD GD

RD PR GD GD

= − ⋅ >

= − ⋅ <

 
Adaptation comes at a cost though; the adaptation costs as a function of t 

( ,j tPC ) are the costs of adap n. T ost function is a function of tjP ,  and ,j tPR  . 

outpu

tatio

j,1

he c

Where the coefficients are γ and j,2γ  are different across regions, furthermore 

0,1 >jγ  and 1,2 >jγ : 

2,
,( ) j

j tR,j t 1, ,j j tPC P P γγ= ⋅ + .              (A.39) 

Finally: 

, ,j t j t j tD RD PC= +                                                             (A.40)

aptation costs and mitigatio osts together represent the total costs of 

,   

 
The residual damages together with the adaptation costs form the net climate change 

damages defined as ,j tD  in the original RICE model. Furthermore the residual 

damages, the ad n c

climate change , , , ,(( ) )j t j t j t j tRD PC MC Y+ + ⋅ .  

In the model the regions can choose different levels of consumption, capital 

investment, mitigation and adaptation to fulfil their objectives.  

The calibrated parameter values for equations A.37 and A.39 are given in table A1. 
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Table A1: Parameter values from AD-RICE in the optimal scenario calibration. 

 
1β  2β  3β  1γ  2γ  

JAPAN -0.0028 0.0012 2.65 0.031 3.26 

USA -0.0010 0.0004 4.06 0.016 10.21 

EUROPE -0.0002 0.0046 2.29 0.341 4.24 

HIO - 0.0070 1.53 0.315 5.19 

MI - 0.00587 1.49 0.216 3.97 

LMI - 0.00571 1.85 0.332 5.06 

LI - 0.01091 1.55 0.502 5.18 

CHINA -0.0022 0.00064 2.97 0.0225 6.29 

INDIA - 0.01512 1.70 0.783 5.28 

AFRICA - 0.02152 1.21 0.751 5.12 

 

Appendix B: Optimal mitigation levels 
 

In the following we derive the optimal levels of mitigation for the different model 

specifications as described in Section 3.  

 

B.1. Application to the model with implicit adaptation 

 

The simplest specification, with implicit adaptation can be solved using the Pontryagin 

maximum principle (Pontryagin 1962) for a dynamic optimisation problem with 1 control 

variable, mitigation (μ ), and a state variable, total cumulative emissions ( M ). Although our 

problem includes multiple regions, we omit regional subscripts here as we derive the Nash 

solution. In this case each region optimises only its own consumption given the level of 

emissions by the other players.  

In the dynamic solution each region maximizes: 

1
1

1

( )T
T

t

F Mρ +
+

=

1 ( )t t tM M f

( , )
T

t tV Mρ μ⋅ +∑ .             (A.41) 

Subject to the following equation of motion and start value of the state variable. 

μ+ − =                (A.42) 
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1M M=                 (A.43) 

 

Using the Pontryagin maximum principle, the corresponding discrete time current 
value Hamiltonian is:  
 

1 1( , , ) (.) (.)t t t t tH M V fμ λ ρ λ+ += + ⋅                (A.44) 

 
The corresponding first order conditions of the maximum principle are as follows: 
 

1 1
(.) ,H

1( )t
t t

M M∂
= =

ρ λ+
+∂ ⋅

M                                                                                       (A.45) 

(.)H∂
1t tρ λ + t

t

λ⋅ −
M

= −
∂

                             (A.46) 

(.) 0
t

H
μ

∂
=

∂

2,t
t t tYθμ ϕ θ μ= − ⋅ ⋅ − ⋅ ⋅

1 )t t

                              (A.47) 

 
 
The value function is simply the instantaneous utility function, which in our simple 

model diminishes to consumption as the residual of income after climate costs 

(damages and mitigation costs): 

1,( , )t t t t tV M Y M Y .                          (A.48) 
 

 Furthermore the equation of motion is given by the build-up of the stock of CO2 over 

time, which depends on emissions after mitigation: 

( ) (t tf Y Exμ μ− += Ω ⋅ ⋅ .                                       (A.49) 
 

Where Ex is are exogenous emissions (emissions from other players). 

 
We also impose  

1
1

(.) 0T
T

F
M

λ +
+

∂
= =
∂

,                                                                (A.50) 

 
i.e. the impact of CO2 stocks beyond the model horizon are not taken into account 

(which is not a major problem if the model horizon is sufficiently long). 
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The first order conditions then result in: 

1t t t (1 )t tM M Y Exμ= +Ω⋅ − +                          (A.51) +

1t t t tYρ λ λ ϕ+⋅ − = ⋅                            (A.52) 

2, 1
2, 1, 1 ( 1) 0t

t t t t t t tY Yθθ θ μ ρ λ−
+− ⋅ ⋅ ⋅ + ⋅ ⋅ − ⋅Ω ⋅ =                         (A.53) 

 
 
Rewriting (A.53) we find the optimal level of mitigation: 
 

2,* 1
* 1

2, 1,

t
t t

t
t t

θρ λμ
θ θ

−
+

⎛ ⎞− ⋅ ⋅Ω
= ⎜ ⎟⎜ ⎟⋅⎝ ⎠

1 0T

1

,                                                  (A.54) 

 
where the asterix refers to the optimal levels. 

Condition (A.10) states that = , and thus by solving recursively, we can express λ +

*tλ  as follows: 

 

( )*
t

T

s sY
s t

ϕ ρ= − ⋅ ⋅∑
=

( )

λ .                           (A.55) 

 
Substituting (A.55) in (A.54) yields; 
 

2,

1
1

* 1

t
T

s s
s t

Y
θ

ϕ ρ
μ

−

= +

⎛ ⎞⋅ ⋅ ⋅Ω⎜ ⎟
⎜=
∑

2, 1,
t

t tθ θ
⎟

⋅⎜ ⎟
⎜ ⎟
⎝ ⎠

2, 2
1 1, 1( , , ) (1 ) t

t t t t t t t t t t t tV P M Y M Y P Y P Yθ γμ ω θ μ γ= − ⋅ ⋅ ⋅ − − ⋅ ⋅ − ⋅ ⋅

                                                

                                                                          (A.56) 

 

B.2. Application to the model with explicit adaptation 

 
Here we present the optimal level of mitigation and adaptation for the case where we 

include an explicit adaptation variable.16  

The value function now includes adaptation efforts, , as an additional control 

variable and adaptation costs as a competing claim to income;  

P

 

 .                     (A.57) 

 
16 Again we omit regional subscripts as we are calculating the Nash solution. 
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The equation of motion is still given by equation A.49: 

 

t( ) (1 )t t tf Y Exμ μ= Ω ⋅ ⋅ − + .       

iple (A.51) and (A.53)  and condition 

(A.50) are unchanged, A.52 changes into A.58; 

 

The first order conditions of the maximum princ

1 (1 )t t t t tY Pρ λ λ ω+⋅ − = ⋅ ⋅ − .                          (A.58) 

 And an additional equation governs the optimal level of adaptation: 

(.) 0H
P

∂
=                             (A.59) 

1 (1 )t t t t tY P

∂

These conditions result in: 

ρ λ λ ω+⋅ − = ⋅ ⋅ −                           (A.60) 

2 1 0t tP Yγγ −⋅ ⋅ =     
    

inding the optimal level of adaptation: 

2 1t tM Yω γ⋅ ⋅ − ⋅

We can rewrite (A.61), f

                     (A.61)
 

2

1
1

*

2 1

t
t

MP
γ

ω

γ γ

−⎛ ⎞
⋅⎜ ⎟=

⎜ ⎟⎜ ⎟⋅
.                         (A.62) 

The corresponding optimal level of adaptation costs (PC) is given as: 

⎝ ⎠

2 2

2 2

1
1 1

1 1

2 1

t t
t

M MY

γ γ

*

2 1

( )t tPC P Y
γ γ

ω ωγ γ
γ γ

− −
⎡ ⎤
⎛ ⎞ ⎛ ⎞⎢ ⎥⋅ ⋅⎜ ⎟ ⎜ ⎟= ⋅ ⋅⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟⋅ ⋅⎝ ⎠ ⎝ ⎠⎢ ⎥

                      (A.63) 

he vel of mitigation is still given by equation A.54: 
 

γ γ
= ⋅ ⋅

⎣ ⎦
 
T optimal le

2,

1
* 1

* 1

2, 1,

t
t t

t
t t

θρ λμ
θ θ

−
+

⎛ ⎞− ⋅ ⋅Ω
= ⎜ ⎟⎜ ⎟⋅⎝ ⎠

                         

 

sing 1 0T

 
U λ + =  and solving recursively, we can express tλ  as follows: 
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( )* *(1 )
t

T

s s s
s t

Y Pλ ω ρ
=

= − ⋅ ⋅ − ⋅∑ .                         (A.64) 

ubstituting (A.64) in (A.54) yields the optimal level of mitigation with explicit adaptation; 
 

 
S

( ) 2,

1
1

*

* 1

2, 1,

(1 )
t

t

T

s s s
s t

t t

Y P
θ

ω ρ
μ

θ θ

−

= +

⎛ ⎞⋅ ⋅ − ⋅ ⋅Ω⎜ ⎟
⎜ ⎟=

⋅⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
                        (A.65) 

 

 

ppendix C: Cooperative solutions with transfers 

ot change the solution but is needed to ensure that transfers 

problem with 5 control variable, mitigation for each region (

 

A
 

When introducing transfers we no longer use the level of adaptation as a decision 

variable but use the level of adaptation costs instead. Since these two variables are 

linked directly this will n

are spent on adaptation. 

In its most simple form the problem can be solved for 2 regions ( D  and H ) using the 

Pontryagin maximum principle (Pontryagin 1962) for a dynamic optimisation 

,D Hμ μ ), adaptation costs 

for each region  ( ,D HPC PC ) and an adaptation transfers from D  to ) and a H (TA

state variable, total cumulative emissions ( M ).  

1, , , , 1
1

( , , , , , ) ( )Tt D t H t D t H t t t T
t

V PC PC TA M F Mρ μ μ ρ + +
=

⋅ +∑ .           (A.66) 

otion and start value of the state variable as in 

In the dynamic solution the regions maximizes: 
T

 

Subject to the following equation of m

Appendix B: (A.42) and (A.43). 

 

1 ,( ,t t D t HM M f ,

1

)t

M M

μ μ+ − =

=
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Using the Pontryagin maximum principle the corresponding discrete time current 

)f

value Hamiltonian is:  

, , , , 1 1( , , , , , , ) (.) (.D t H t D t H t t t t tH PC PC TA M Vμ μ λ + +ρ λ= + ⋅            (A.67) 

The corresponding first order c nditions of the maximum principle are as follows : o

1 1
(.) ,t

H

1( )t t

M M M+
∂

= = , 
ρ λ +∂ ⋅

                                                     as in (A.45).                                

1
)

t t t
(.

t

H
M

ρ λ λ+⋅ − − , 
∂

=
∂

as in (A.46).                               

,

(.)H∂ 0
D tμ

=
∂

                  (A.68) 

,

(.) 0
H t

H
μ

∂
=

∂
                              (A.69) 

,

(.) 0H∂
=                   (A.70) 

D tPC∂

,

(.) 0
H t

H
PC
∂

=
∂

                  (A.71) 

(.) 0
t

H
TA

∂
=

∂
                (A.72) 

2,
2, ,

2,

, , , ,

1

,
, , 1, , , , ,

1, ,

1

,

( , , , , , )

log 1

log 1

D
D t

P

D t H t D t H t t t

D t

, ,
1, ,

D D t D t D t D t D t D t D t t
D D t

H t t

V PC PC TA M

PC
Y M Y Y PC TA

Y

PC TA
Y M Y

γ
θ

γ

H H t H t H t
H H tY

μ μ =

ν ω θ μ
γ

ν ω
γ

⎛ ⎞⎡ ⎤
⎛ ⎞⎜ ⎟⎢ ⎥⋅ − ⋅ ⋅ ⋅ − − ⋅ ⋅ − −⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⋅⎝ ⎠⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

⎡ ⎤
⎛ ⎞+⎢ ⎥− ⋅ ⋅ ⋅ −⎜ ⎟ 2, ,H t+ ⋅ ⎢ ⎜ ⎟⋅⎝ ⎠⎢⎣ ⎦

1, , , , ,H t H t H t H t⎥
⎜ ⎟⎥⎝ ⎠

 

Y PCθθ μ
⎛ ⎞
⎜ ⎟− ⋅ ⋅ −⎜ ⎟

(A.73) 
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 Furthermore the equation of motion is given by the build-up of the tock o

fter mitigation: 

)

 s f CO2 over 

time, which depends on emissions a

, , , , , ,( , ) (1 ) (1D t H t D D t D t H H t H tf Y Yμ μ μ= Ω ⋅ ⋅ − +Ω ⋅ ⋅ − .μ  

We also impose as in (A.50):  

          (A.74) 

1
1

(.) 0T
T

F
M

λ +
+

∂
= =
∂

                    

i.e. the impact of CO2 stocks beyond the model horizon are not taken into account 

on is sufficiently long). 

, )H t

(which is not a major problem if the model horiz

The first order condition (A.45) then result in: 

1 , , ,(1 ) (1t t D D t D t H H tM M Y Yμ μ            (A.75) 

 

+ = +Ω ⋅ ⋅ − +Ω ⋅ ⋅ −

The first order condition (A.46) then result in: 

2,
2, ,

2,

2

1

1

,
, , 1, , , , ,

1, ,

1

,
,

1, ,

1

,
, ,

1, ,

1

1

1

1

1

D
D t

D

t t t

D t
D t D t D t D t D t D t D t t

D D t

D t
D t D t

D D t

H t t
H t H t H t

H H t

PC
Y M Y Y PC T

Y

PC
M Y

Y

PC TA
Y M Y

Y

γ
θ

γ

γ

A

ρ λ λ

ω θ μ
γ

ω
γ

ω
γ

+⋅ − =

⎡ ⎤
⎛ ⎞⎢ ⎥− ⋅ ⋅ ⋅ − − ⋅ ⋅ − −⎜ ⎟⎜ ⎟⎢ ⎥⋅⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤
⎛ ⎞⎢ ⎥⋅ ⋅ ⋅ ⋅ − ⎜ ⎟⎢ ⎥⎜ ⎟⋅⎝ ⎠⎢ ⎥⎣ ⎦

+
⎛ ⎞+

− ⋅ ⋅ ⋅ − ⎜ ⎟⎜ ⎟⋅⎝ ⎠

,
2, ,

1, , , , ,

H
H t

1

,
,

1, ,

1

H t H t H t H tY PCθθ μ
⎡ ⎤
⎢ ⎥ − ⋅ ⋅ −⎢ ⎥
⎢ ⎥⎣ ⎦

 
H

H t t
H H t

H H t

PC TA
Y

Y

γ

ω
γ

⎡ ⎤
⎛ ⎞+⎢ ⎥⋅ ⋅ ⋅ − ⎜ ⎟⎢ ⎥⎜ ⎟⋅⎝ ⎠⎢ ⎥⎣ ⎦

2,

1

,
,

, 1,

2,

,

1

,

1 1

1

D

H

D t
D t D t

D t D D t

H t t

PC
M Y

C Y

PC TA

γ

γ

ω
γ

⎡ ⎤
⎛ ⎞⎢ ⎥= ⋅ ⋅ ⋅ ⋅ − ⎜ ⎟⎢ ⎥⎜ ⎟⋅⎝ ⎠⎢ ⎥⎣ ⎦

,
, 1, ,

1H H t
H t H H t

Y
C Y

ω
γ

⎡ ⎤
⎛ ⎞+⎢ ⎥+ ⋅ ⋅ ⋅ − ⎜ ⎟⎢ ⎥⎜ ⎟⋅⎝ ⎠⎢ ⎥⎦

                                                             (A.76) 

⎣

35 



The first order condition (A.68) then result in: 

2, , 1
2, , 1, , , , 1 ,

,D tC
1 ( 1) 0D t

D t D t D t D t t t D D tY Yθθ θ μ ρ λ−
+⋅− ⋅ ⋅ ⋅ + ⋅ ⋅ − ⋅Ω ⋅ =            (A.77) 

The first order condition (A.60) then result in: 

,R tC
1

⋅ 2, , 1
2, , 1, , , , 1 ,( 1) 0H t

H t H t H t H t t t H H tY Yθθ θ μ ρ λ−
+− ⋅ ⋅ ⋅ + ⋅ ⋅ − ⋅Ω ⋅ =          (A.78) 

The first order condition (A.70) then result in: 

2,

1 1

,

1, 2, 1, ,D D D D tYγ γ γ⋅ ⋅⎝ ⎠
1

D
D tD t PCM γω

−
⎛ ⎞⋅
⋅ =⎜ ⎟⎜ ⎟              (A.79) 

The first order condition (A.71) then result in: 

2,

1 1

,

1, 2, 1, ,

1
H

H t tH

γ γ⋅
t

H H H H t

PC TAM
Y

γω
γ

−
⎛ ⎞+⋅
⋅ =⎜ ⎟⎜ ⎟⋅⎝ ⎠

                                                          

(A.80) 

The first order condition (A.72) then result in: 

2,

1 1

,1 1H
H t tH t

H
, 1, 2, 1, , ,

D

PC TAM γω

H t H H H H t D tC Y C
ν ν

−
⎛ ⎞+⋅

⋅ ⋅ ⋅ = ⋅⎜ ⎟⎜ ⎟                                       (A.81) 

ng optimal level of 

γ γ γ⋅ ⋅⎝ ⎠
 
The correspondi ,H tPC is given by rewriting (A.80): 
 

2,

2, 1
1, 2,

, 1, ,

H

HH H
H t H H t t

H tMω ⋅⎝ ⎠
PC Y TA

γ
γγ γ

γ
−⋅⎛ ⎞

= ⋅ ⋅ −⎜ ⎟                                                           (A.82) 

The corresponding optimal level of t is given by rewriting (A.82): 
                                   

 
TA

2,

2, 1

, 1, 2,
1, , ,

,

1

1

H

H

D
D t H H

t H H t H t
H t

H
H t

C
TA Y PC

M
C

γ
γ

ν
γ γ

γ
ων

−⎛ ⎞⋅⎜ ⎟⋅⎜ ⎟= ⋅ ⋅ ⋅ −
⋅⎜ ⎟⋅⎜ ⎟

⎝ ⎠

                                         (A.83) 
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Appendix D. Proofs 
 
Proof of Proposition 1. To proof that making adaptation explicit in the optimum will 

 need to show that the optimal 

vel of mitigation can be expressed in only terms of mitigation and exogenous 

param

When ,j t  is set at its optimal level it can be expressed  as; 

have no effect on the optimal levels of mitigation; we

le

eters. 

P

 

2, 1

*

2, 1,

j

j t

j j

M
P

γ
ω

γ γ

−⎛ ⎞
⋅⎜ ⎟=

⎟⋅ ⎠
 
Since we assume that 

1

,j t ⎜ ⎟
⎜
⎝

. 

1M M= ( A.43) and 1 , ,(1 )t t j j t j t tM M Y Exμ+ = +Ω ⋅ − +

itigation path through forward induction.

 (A.51) 

and is given, we can find the optimal m  tEx

Thus tM  only depends on mitigation (μ ) as follows: 

1
t t t t

t

(1 )
t

M M Y Exμ
=

= + Ω⋅ − +∑  

and therefore mitigation can be expressed in exogenous parameters and mitigation as 

follows (substituting  in ): 

2,

2,

1
1 1

1

1*

12, 1,
2, 1,j j⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

 

 

(1 )
1 1

t

j

t

t

j t t tT
t

s s
s tt t

M Y Ex
Y

θ
γ

ω μ
μ ω ρ

θ θ γ γ

−
−

=

= +

⎛ ⎞⎛ ⎞⎛ ⎞
⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⋅ + Ω⋅ − +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟= ⋅ ⋅ ⋅ ⋅ −⎜ ⎟⎜ ⎟
⎜ ⎟⋅⎜ ⎟⎜ ⎟⎜ ⎟⋅

∑
∑

         (A.85) 

y crowd 

 that  

are set at their optimal levels, the derivative o  PC to TA is - .  

When introducing an adaptation transfer to region optimal level of adaptation 
FPC ) are as follows (see equation A.82): 

⋅Ω . 

Proof of Proposition 2a. To proof that foreign adaptation funding will full

out domestic adaptation funding, we will show  when host adaptation expenditures

f 1

 P, the 
expenditures in region when transfers are present (

2,

2, 1
*

, 1, ,
1,

( ) H t
F H t H H t t

H H

PC P Y TAγ
γ γ

= ⋅ ⋅ −⎜ ⎟⎜ ⎟⋅⎝ ⎠
.                               (21) 

2,

H

HM
γ
γω −⎛ ⎞⋅
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*
,( )

1F H tPC P
TA

= −
∂

 

l dollar of foreign funding, domestic adaptation expenditure 

will decrease by one dollar. 

 
Proof of 

∂

t

Thus for every additiona

Proposition 2b. To proof that adaptation will not be crowded out when 

we have to show that the marginal benefits of

at that point, i.e. given that level of adaptation 

transfers. 

*
, ,( )H t t F HPC TA PC P+ <  adaptation 

will exceed or equal the marginal costs 

t  

We will prove that for 
, ,

H H

H t H t

D
PC PC∂ ∂

to hold  must hold. 

To prove this we assume the contrary;  

We find applying (A.63) that when 

C R∂ ∂
≤

*
, ,( )H t t F H tPC TA PC P+ <

*
, ,( )H t t H tPC TA PC P+ ≥ . 

2,

2, 1
*

, , 1, ,
1, 2,

( )

H

H
H t

H t t F H t H H t
H H

MPC TA PC P Y

γ
γωγ

γ γ

−⎛ ⎞⋅
+ = = ⋅ ⋅⎜ ⎟⎜ ⎟⋅⎝ ⎠

 , 

2, 2,

2,

2,

1 1

1
1 1 1, ,

1, 2,,

1, 2, 1, , 1, 2, 1, ,

1

H H

H

H

H t
H H t

H HH t tH t PCMω ⎛⋅
→ ⋅⎜ ⎟ H t

H H H H t H H H H t

MY
TA M

Y Y

γ γ
γ

γ

ωγ
γ γω

γ γ γ γ γ γ

−

−

−

⎛ ⎞
⎛ ⎞⋅⎜ ⎟⋅ ⋅ ⎜ ⎟⎜ ⎟⎜ ⎟⋅⎞+ ⋅ ⎝ ⎠⎜ ⎟= ⋅ =⎜ ⎟ ⎜ ⎟⋅ ⋅ ⋅ ⋅⎝ ⎠ ⎜ ⎟

⎜ ⎟
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Furthermore when *

, ,( )H t t H tPC TA PC P+ >  

2,

1 1
HPC TAM γω ,

1, 2, ,

1 H t tH t

H H H tγ γ

−
⎛ ⎞+⋅

1,H Yγ
→ > ⋅⎜ ⎟⎜ ⎟⋅ ⋅ ⎠

 
⎝

H H

t t

C RD
PC PC
∂ ∂

>
∂ ∂

 

*
, ,( )H t t F HPC TA PC P+ <Which is a contradiction, which proves that t  must hold for  

, ,

H H

H t H t

C RD
PC PC
∂ ∂

≤
∂ ∂

 to hold. 
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Proof of Proposition 3a. To proof that adaptation transfers will not take place in the 

competitive Nash equilibrium, we show that the  zero when 

optimising the SWF function using Negishi weights. 

optimal transfer is

 
2,

2, 1

1, , ,
, 1, 2,

/
/

H

H
H t

t H H t H t
H H t H H

C MTA Y PC
C

γ
γν ωγ

ν γ γ

−⎛ ⎞⋅
= ⋅ ⋅ ⋅ −⎜ ⎟⎜ ⎟⋅⎝ ⎠

,   
* ,D D t

             
where 1ν , 2ν  are the welfare weights. These are equal to the inverse of the marginal 

sumption in the competitive equilibrium (Negishi 1960), giving utility of con

, ,

,,

j

j t

1 1
1j t j t

j t

C

C
U
C

ν = = = .   

This results in 

 

∂
∂

2,

2,

2,

2,

, 1, 2,

1

/
H

H

H H t H H
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C C

M γ

γ γ

ω −

⋅⎝ ⎠
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1
* ,

1, , ,
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1, 2,

/
H

H
D D t H t

t H H t H t

H H t H t
H H

C C MY PC
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γ
γ

γ

ωγ

γ
γ γ

−⎛ ⎞⋅
= ⋅ ⋅ ⋅ −⎜ ⎟⎜ ⎟

= ⋅ ⋅ −⎜ ⎟⎜ ⎟⋅⎝ ⎠
 
When adaptation expenditures are set at the internally optimal levels in region P, 

TA

PC , will be set at the level as in (A.63): ,H t

2,

2, 1

, 1, ,
1, 2,

H

H
H t

H t H H t
H H

MPC Y

γ
γωγ

γ γ

−⎛ ⎞⋅
= ⋅ ⋅⎜ ⎟⎜ ⎟⋅⎝ ⎠

. 

 
esulting in  R

 
2, 2,

2, 2,1 1
*

1, , 1, ,
1, 2, 1, 2,

0

H H

H H
H t H t

t H H t H H t
H H H H

M MTA Y Y

γ γ
γ γω ωγ γ

γ γ γ γ

ill be positive in the 

− −⎛ ⎞ ⎛ ⎞⋅ ⋅
= ⋅ ⋅ − ⋅ ⋅ =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⋅ ⋅⎝ ⎠ ⎝ ⎠

 

 
 
Proof of Proposition 3b. We prove that adaptation transfers w

case of climate cooperation when there are differences in impacts across regions and 

transfers will run from low impact to high impact regions. We show that using the 
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climate cooperation welfare weight, transfers indeed will take place when there are 

differences in impacts and run from low to high impact regions. 

The SWF is now maximised using the we

 

lfare weights in the case that there are no 

amages from climate change. The logic here is that countries should receive the 

same weight as they would have in the competitive equilibrium when climate change 

did not occur. The welfare weights equal the inverse of the marginal utility of 

onsumption when there are no damages from climate change. 

d

, ,j t j tYν = .  This results c

in an optimal adaptation transfer given by: 
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2, 1
* ,
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, 1, 2,

/
/
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H
D D t H t

t H H t
H H t H H

Y C MTA Y PC
Y C

γ
γωγ

γ γ

−⎛ ⎞⋅
= ⋅ ⋅ ⋅ −⎜ ⎟⎜ ⎟⋅⎝ ⎠

 H t

 
When adaptation expenditures are set at the internal optimal levels in region H, ,H tPC  

will be set at the level as given in Proposition 2a (A.63): 
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1, 2,

H

H H

γ

γ γ

2, 1

, 1, ,

H
H t

H t H H t
MPC Y

γωγ
−⎛ ⎞⋅

= ⋅ ⋅⎜ ⎟ . 

ransfers will thus take place from region D to H only in the case where

⎜ ⎟⋅⎝ ⎠
, ,

, ,

/
1

/
D t D t

H t H t

Y C
Y C

< , T

as 2,2 0
1 2,2

γ

γ
<

−
. This is only the case if , ,

, ,

D t H t

D t H t

Y Y
C C

< . This entails that the negative 
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Proof of Proposition 3c. We prove that adaptation transfers will take place when 

global utility is maximised when there are differences between income consumption 

levels across regions and that transfers will run from high income regions to low 

income regions. To do this we show that when using equal welfare weights this is the 

ase.  

hen global utility is maximised the welfare weights take the value of 1 for all 
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When adaptation expenditures are set at the internally optimal levels in region 

H, ,P tPC  will be set at the level as given in (A.63): 

2,Hγ

2, 1

, 1, ,
1, 2,

H
H t

H t H H t
H H

MPC Y
γωγ

γ γ

−⎛ ⎞⋅
= ⋅ ⋅⎜ ⎟⎜ ⎟⋅⎝ ⎠

. 

ransfers will thus take place from region D to region H only in the case T

where , 1D tC
>

,H tC
, i.e. when consumption is higher in region D. 
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