Lyons, Seán; Murphy, Liam; Tol, Richard S. J.

Working Paper
Estimating historical landfill quantities to predict methane emissions

ESRI working paper, No. 333

Provided in Cooperation with:
The Economic and Social Research Institute (ESRI), Dublin

Suggested Citation: Lyons, Seán; Murphy, Liam; Tol, Richard S. J. (2009) : Estimating historical landfill quantities to predict methane emissions, ESRI working paper, No. 333

This Version is available at:
http://hdl.handle.net/10419/50033

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Estimating Historical Landfill Quantities to Predict Methane Emissions

Seán Lyons,a Liam Murphya and Richard S.J. Tola,b,c

Abstract: We estimate Irish historical landfill quantities from 1960 -2008 and Irish methane emissions from 1968-2006. A model is constructed in which waste generation is a function of income, price of waste disposal and, household economies of scale. A transformation ratio of waste to methane is also included in the methane emissions model. Our results contrast significantly with the Irish Environmental Protection Agency’s (EPA) figures due to the differences in the underlying assumptions. The EPA’s waste generation and methane emission figures are larger than our estimates from the early 1990s onwards. Projections of the distance to target show that the EPA overestimates the required policy effort.

Key words: methane emissions, landfill, modelling

Corresponding Author: Sean.Lyons@esri.ie

aEconomic and Social Research Institute, Whitaker Square, Sir John Rogerson’s Quay, Dublin 2, Ireland
bInstitute for Environmental Studies, Vrije Universiteit, Amsterdam, The Netherlands
cDepartment of Spatial Economics, Vrije Universiteit, Amsterdam, The Netherlands

ESRI working papers represent un-refereed work-in-progress by members who are solely responsible for the content and any views expressed therein. Any comments on these papers will be welcome and should be sent to the author(s) by email. Papers may be downloaded for personal use only.
Estimating Historical Landfill Quantities to Predict Methane Emissions

Introduction

A substantial amount of methane is emitted by waste decaying in landfills. This is a slow process, with methane being emitted for 25 years or more after waste disposal. Methane is the second-most important anthropogenic greenhouse gas. Emission reduction targets are often formulated relative to 1990. This implies that waste data going back to 1965 are needed to estimate methane emissions from landfill in 1990. In the absence of such data, a model can be used. This paper describes a method for estimating historical disposal of waste in landfills in order to predict historical and future emissions of methane, and it applies the method to data from Ireland.

Articles 4 and 12 of the United Nations Framework Convention on Climate Change (UNFCCC) state that signatory countries must publish their national inventories and removals of all greenhouse gases not controlled by the Montreal Protocol (United Nations 2009). Ireland’s Environmental Protection Agency (EPA) is mandated to report emission data to the UNFCCC. These greenhouse gas inventory levels are particularly important due to Ireland’s commitment to reduce greenhouse gas levels to at least 20% below 1990 levels by 2020. Biodegradable waste disposed of in landfills is an important source of methane, but these emissions are not normally directly measured: they must be imputed by plugging historical waste disposal data into a model of waste decomposition.

The measurement of waste and the gas emissions (in particular greenhouse gas emissions) that the waste emits is not an exact science. There are numerous papers which have cast doubt upon the official greenhouse gas emission figures from waste. Ramirez et al. (2008) consult experts and previous studies on the model parameters to construct a Monte Carlo simulation on GHG emissions. They find that there is up to a 15% uncertainty in Dutch methane emission levels at 95% confidence intervals. They believe the main contributor to uncertainty in methane emissions to be managed solid waste
disposal. Similarly Winiwarter and Rypdal (2001), who use a similar methodology to Ramirez et al. conclude that “the amount of waste stored in landfills was identified as the parameter that contributed most strongly to trend uncertainties.” They find uncertainty in Austrian methane emissions of 48.3% for 1990 and 47.5% for 1997 (again at 95% confidence intervals) which are the only two years analysed. Both papers underline the fact that there is large uncertainty in waste production and greenhouse gas emissions.

In Ireland the historical waste series is incomplete, which implies that we must first estimate waste totals before predicting methane emissions. In the National Inventory Report 2009, the EPA published statistics on Ireland’s generation of BMW and non-BMW from 1990-2007. Actual data is only available in 1995, 1998 and annually from 2001 onwards. Hence we have to make a number of assumptions in order to calculate BMW generations levels for all other years from 1990-2005. Some of these assumptions include:

- Degradable Organic Carbon (DOC) is created by Municipal Solid Waste (MSW), street cleanings and sludge from municipal wastewater treatment;
- MSW per-capita generation rates from 1995, 1998, 2001 and 2004 in addition to those implied by earlier surveys are used to estimate MSW production in all years;
- The ratio of street cleanings to MSW is estimated based on the figures for 1995, 1998 and 2001-2007;
- MSW is assumed to contain DOC in the following proportions: Organics – 15%, Paper – 40% and Textiles – 40%; and
- The DOC contribution of sludge is determined from information on the Biochemical Oxygen Demand (BOD) content, the BOD removal rate and the proportion of sludge disposed to landfill.

Our calculation of EPA’s projected methane emissions are based upon an EPA publication (Environmental Protection Agency 2009). This report does not explicitly project methane emission levels however it does project greenhouse gas emission levels
from waste. We are assuming that methane emissions stay constant as a proportion of greenhouse gas emissions and therefore grow at the same rate.

This paper estimates Ireland’s BMW generation from 1960-2008 (excluding the years where actual data is available for obvious reasons). A simple constant elasticity demand model for waste disposal is applied, using the number of households, income levels, service sector production levels and commercial price levels to predict waste quantities. Model parameters are drawn from previous research; in particular, the elasticities of waste generation with respect to household disposable income and number of persons in the household are used to estimate of residential waste, while the elasticity of demand with respect to collection charges and service sector value added are used to estimate commercial waste generation. Since these behavioural parameters are drawn from studies that used data from different time periods and jurisdictions, they may not be correct today let alone as far back as 1960. Hence it is necessary to carry out a sensitivity analysis of these parameters as a robustness test.

Using the estimates of waste generated, we then predict methane emissions in Ireland from 1968-2006. We model emissions from waste using the same model as applied by the Irish EPA. We then compare our methane emissions estimates to the EPA’s figures.

The paper continues as follows. Section 2 discusses data and methods. Section 3 presents the results. Section 4 concludes.

Data and Methodology

This paper takes the actual observations of waste sent to landfill in 1995, 1998 and 2001-2006 as a staring point to calculate the data for all other years. These figures are taken from the EPA’s National Waste Reports of the relevant years. We assume that residential waste generation, \(RW \), is a function of both the household density elasticity of waste generation \(r \) (the percent change in waste per capita caused by a one percent change in the number of persons per household, \(PPH \)), and the household income elasticity of.
waste generation \(s \) (the percent change in waste generation per household caused by a one percent change in real average disposable income, \(YD \)). For year \(t \), this would be estimated by:

\[
\ln(RW_t) = \alpha + r \ln(PPH_t) + s \ln(YD_t)
\]

The historical household income data is taken from the National Income and Expenditure Accounts which are published by the Central Statistics Office (CSO). The population data is also sourced from the CSO. Future household income data is taken from ESRI forecasts (Bergin et al., 2009).

Commercial waste generation, \(CW \), is assumed to be a function of the price elasticity of demand of waste disposal \(m \), the real price of waste collection \(PC \), the output elasticity of service sector waste demand \(n \) and the value added by the services sector, \(VAS \). Thus, for year \(t \):

\[
\ln(CW_t) = \alpha + m \ln(PC_t) + n \ln(VAS_t)
\]

Unfortunately the CSO does not produce a wholesale price index for refuse disposal. The CSO has however produced a Consumer Price Index for refuse since 1983. We take this to be a proxy for the commercial price of refuse disposal. In the absence of other data, we assume that the real price stayed constant for the period 1960-1983. This series reports a large drop in 1997 due to the abolition of domestic water charges. As this change does not apply to waste charges and has a large effect on the results, the series is adjusted to remove the impact of the abolition of water charges. For future predictions, we assume that the real price of refuse collection is constant from 2008-2020. The level of commercial production is taken from the National Accounts, again published by the CSO. This figure is however only available from 1970-2008.. Previous to this year, the ratio of commercial waste generation to GDP within the economy is assumed constant and the actual figure is deflated for the relevant lower GDP over the 1960-1969 period. Gross Domestic Product (GDP) figures for this early period are sourced from the World Resources Institute. Post 2008 figures for VAS are taken from forecasts by the ESRI (Bergin et al., 2009).
The main waste parameter values are from a variety of previous papers. The household income elasticity of waste generation is taken from Curtis et al. (2009). This paper analysed panel data from 2003-2006 across the local authorities of Ireland. The data shows a household income elasticity of waste generation of 1.08. Although this figure is well above previous international studies, we feel it is more relevant as the figure is calculated on Irish data. The sensitivity analysis below does consider different parameter values. Choe and Fraser (1998) report income elasticities of waste generation from several US studies and do not find a level higher than 0.6, so testing a lower figure than the unit elasticity estimated from Irish data seems appropriate. We choose a value of 0.5. The commercial price elasticity of demand parameter is taken from Jenkins (1993) who carried out a study on nine American communities and found a result of -0.27. Another study of American data carried out by Wertz (1976) found a result of -0.15 and other experts have argued that the absolute cost of refuse disposal is so low that the commercial price elasticity of demand for waste generation is effectively zero. A sensitivity analysis of the model to price elasticity changes is undertaken below by setting the price elasticity to zero. The parameter pertaining to household economies of scale is taken from Scott and Watson (2006). They carry out a study on the imposition of waste charges in Ireland and use household numbers as a control variable. From the coefficient of this variable the household elasticity of waste generation figure can be formed. This figure is 0.486. In the sensitivity analysis, the household density elasticity of waste generation is set to 0. Finally, we assume that commercial waste has a unit elasticity with respect to the sector’s value added. This represents a default position, since no direct estimates were available for Ireland.

Once the waste levels have been estimated, we predict the related methane emissions. The DOC in MSW, MSW, MSW to Landfill, Sludge and Street Cleaning figures are taken from McGettigan et al (2009). For predictive purposes, the future levels of management of DOC and the DOC in MSW are assumed to stay constant at 2008 levels (95% of DOC managed and DOC comprising approximately 20% of MSW). It is assumed that 0.6 of the DOC is dissimilated and that half of the methane remains in the landfill (i.e. does not enter the atmosphere). The methane correction factor (MCF)
managed level is assumed to be 1 and the MCF unmanaged level is assumed to be 0.4. The transformation from DOC to methane is taken to be 1.33 (but see the sensitivity analysis). These parameters are taken from the National Inventory Report 2009. So while this paper uses quite a different methodology to calculate waste generation, given that level of waste generation the approach to calculate methane emissions is identical to the approach used by the EPA. Using these assumptions, it is possible to estimate the total managed and unmanaged methane emissions over the period.

Results
Table A1 shows the actual and estimated waste generation figures for Ireland from 1960-2008 using the parameters as described above. Throughout the period, total waste (BMW and non-BMW) followed an upward trend. Over the entire time period, total waste increased by 369% from its 1960 base.

The following graphs show the sensitivity of the models to changes in selected parameters. For each sensitivity test, the model was run varying a single parameter of interest. Table 1 shows the parameter values of each of the adjusted models. Model YED shows the effect of reducing the assumed elasticity of household waste demand with respect to income from the baseline level of 1.08 to 0.5. Model PED reduces the price elasticity of commercial waste demand equal to 0. This change would imply that commercial waste generation is solely a function of the level of value added by the services sector. Model Econ_Scale reduces the household economies of scale parameter to zero. Model Trans_Ratio adjusts the transformation ratio of Dissolved Organic Carbon to Methane to 1.

Figure 1 shows the total waste generation as predicted by the baseline and adjusted models and the Irish Environmental Protection Agency (EPA). The Trans_Ratio model is not included in this graph as the adjusted parameter has no influence upon the waste generated (hence the values would have been identical to the baseline model). Because the model is based on recent data and predicts earlier values, the baseline and adjusted
figures converge in recent times. Although there is some divergence in the past, this is not particularly large considering the timeframe involved. The baseline and adjusted models are lower than the EPA estimates from 1990 onwards.

Figure 2 shows the baseline and adjusted models’ predicted methane emissions versus the EPA’s methane estimates. The base model produces estimates quite similar to three of the sensitivity test models: YED, PED and Econ_Scale. Predicted methane emissions are not very sensitive to changes in these parameters. The EPA’s estimates are lower than our model up until the early 1990s and higher after this point. There are substantial differences between annual methane predictions from our model and the EPA series, reaching more than 15,000 tonnes in some years.

The scenario that tests a unit value for the Transformation Ratio ("Trans_Ratio") leads to significantly lower predicted methane emissions. Methane emissions are highly sensitive to changes in the assumed value of the Transformation Ratio parameter.

Figure 3 shows the percentage difference between the estimated level of methane emissions from 1990-2020 and the target level of methane emissions for 2020 (20% below 1990 emission levels). There is no Trans-Ratio series in this graph as the series is identical to the baseline series. In all cases, estimated emissions exceed the target. The EPA estimates are generally higher than our baseline estimates. That is, the EPA overestimates the required emission reduction effort, because the EPA overestimates the amount of waste in the past. In 2020, our estimate of the distance to target almost coincides with the EPA estimate. This is because we project a faster increase in waste than the EPA does (consistent with our faster increase in the past). In the short- and medium term, the EPA overstates the methane-from-waste problem, but it understates it in the long term.

Our baseline projection of the distance to target is very similar to the three alternative projections (Econ_Scale, PED, YED). The alternative parameter values do not have a large influence on the policy required to achieve the commitments.
Conclusion
This paper set out to estimate the levels of waste generated by Ireland from 1960-2008 in the years where actual observations were unavailable, as a means of estimating related methane emissions. Using assumed demand functions and behaviour parameters we estimated the total quantities of municipal waste produced in Ireland from 1960-2008 and methane emitted from 1968-2006.

We carried out sensitivity tests on selected parameters in the model. There was little change in the absolute waste generation levels due to changes in any parameter. The predicted methane emissions are also quite insensitive to changes in all the parameters with the exception of the Transformation Ratio. The value used for this parameter in the baseline model is in line with international standards, so its sensitivity is not a matter for concern *per se*. However, if future research were to indicate that a different value was more appropriate, it is important that this information be taken into account in emission prediction models. Overall, these sensitivity tests provide some comfort as to the robustness of the model. However, other aspects of the model such as the functional form assumed for each source of demand, is less amenable to sensitivity testing. Further research should help cast light of the sensitivity of predicted landfill methane emissions to such model design decisions.

The levels of waste generation and methane emissions estimated by our model are different from the EPA’s estimates; in particular, our estimates suggest that methane emissions from landfill are significantly lower than figures reported by the EPA. This suggests that the distance to Kyoto targets may be less than currently thought, at least in the medium term. However, such variations are to be expected given the uncertainty about past waste emissions, as previously highlighted by Ramirez *et al.* (2008) and Winiwarter and Rypder (2001).
References

Appendix A

Table A1: Waste Generation in Ireland 1960-2008 (Figures in Bold are Official EPA Recordings) – Baseline Parameters

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Services Waste, Total</td>
<td></td>
</tr>
<tr>
<td>Residential Waste, Total</td>
<td>161646</td>
<td>175684</td>
<td>154142</td>
<td>161646</td>
</tr>
<tr>
<td>BMW+nonBMW Services Waste, Landfilled</td>
<td>522140</td>
<td>549731</td>
<td>568595</td>
<td>583486</td>
<td>594393</td>
<td>609959</td>
<td>653637</td>
<td>655617</td>
<td>665657</td>
<td>671566</td>
<td>711342</td>
<td>739350</td>
<td>765202</td>
<td>819977</td>
<td>885696</td>
<td>916147</td>
</tr>
<tr>
<td>DOC in MSW</td>
<td></td>
</tr>
<tr>
<td>Potential Methane Managed</td>
<td></td>
</tr>
<tr>
<td>Potential Methane Unmanaged</td>
<td></td>
</tr>
<tr>
<td>Residential Waste, Landfilled</td>
<td>522140</td>
<td>549731</td>
<td>568595</td>
<td>583486</td>
<td>594393</td>
<td>609959</td>
<td>653637</td>
<td>655617</td>
<td>665657</td>
<td>671566</td>
<td>711342</td>
<td>739350</td>
<td>765202</td>
<td>819977</td>
<td>885696</td>
<td>916147</td>
</tr>
<tr>
<td>BMW+nonBMW Services Waste, Landfilled</td>
<td>522140</td>
<td>549731</td>
<td>568595</td>
<td>583486</td>
<td>594393</td>
<td>609959</td>
<td>653637</td>
<td>655617</td>
<td>665657</td>
<td>671566</td>
<td>711342</td>
<td>739350</td>
<td>765202</td>
<td>819977</td>
<td>885696</td>
<td>916147</td>
</tr>
<tr>
<td>DOC in MSW</td>
<td></td>
</tr>
<tr>
<td>Potential Methane Managed</td>
<td></td>
</tr>
<tr>
<td>Potential Methane Unmanaged</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>410831</td>
<td>4300093</td>
<td>441094</td>
<td>434420</td>
<td>466288</td>
<td>477281</td>
<td>479820</td>
<td>494639</td>
<td>502712</td>
<td>507002</td>
<td>532275</td>
<td>575984</td>
<td>599526</td>
<td>607803</td>
<td>601516</td>
<td>640121</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Services Waste, Total</td>
<td>494639</td>
<td>502712</td>
<td>476921</td>
<td>460798</td>
<td>469714</td>
<td>469714</td>
<td>469235</td>
<td>467024</td>
<td>496266</td>
<td>967861</td>
<td>971207</td>
<td>1142526</td>
<td>1282634</td>
<td>1304662</td>
<td>1436312</td>
<td>1523260</td>
<td></td>
</tr>
<tr>
<td>Residential Waste, Total</td>
<td>1006887</td>
<td>975562</td>
<td>1026251</td>
<td>1078805</td>
<td>1026251</td>
<td>1078805</td>
<td>1132889</td>
<td>1163219</td>
<td>1218554</td>
<td>1232132</td>
<td>1239743</td>
<td>1425999</td>
<td>1416680</td>
<td>1524097</td>
<td>1562484</td>
<td>1826892</td>
<td>1947634</td>
</tr>
<tr>
<td>BMW+nonBMW Services Waste, Landfilled</td>
<td>1510252</td>
<td>1478274</td>
<td>1501512</td>
<td>1638604</td>
<td>1501512</td>
<td>1638604</td>
<td>1782603</td>
<td>1852424</td>
<td>1892578</td>
<td>2199098</td>
<td>2297604</td>
<td>2398770</td>
<td>2595366</td>
<td>2861311</td>
<td>2867146</td>
<td>3066254</td>
<td>3470894</td>
</tr>
<tr>
<td>DOC in MSW</td>
<td></td>
</tr>
<tr>
<td>Potential Methane Managed</td>
<td></td>
</tr>
<tr>
<td>Potential Methane Unmanaged</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>565165</td>
<td>513233</td>
<td>743666</td>
<td>774572</td>
<td>778774</td>
<td>764588</td>
<td>791191</td>
<td>736761</td>
<td>737656</td>
<td>743344</td>
<td>763278</td>
<td>769969</td>
<td>791505</td>
<td>823811</td>
<td>834477</td>
<td>836162</td>
<td>836162</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Services Waste, Total</td>
<td></td>
</tr>
<tr>
<td>Residential Waste, Total</td>
<td></td>
</tr>
<tr>
<td>BMW+nonBMW Services Waste, Landfilled</td>
<td></td>
</tr>
<tr>
<td>DOC in MSW</td>
<td></td>
</tr>
<tr>
<td>Potential Methane Managed</td>
<td></td>
</tr>
<tr>
<td>Potential Methane Unmanaged</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Services Waste, Total</td>
<td></td>
</tr>
<tr>
<td>Residential Waste, Total</td>
<td></td>
</tr>
<tr>
<td>BMW+nonBMW Services Waste, Landfilled</td>
<td></td>
</tr>
<tr>
<td>DOC in MSW</td>
<td></td>
</tr>
<tr>
<td>Potential Methane Managed</td>
<td></td>
</tr>
<tr>
<td>Potential Methane Unmanaged</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

11
Table 1 – Parameter Values

<table>
<thead>
<tr>
<th></th>
<th>Base</th>
<th>YED</th>
<th>PED</th>
<th>Econ_Scale</th>
<th>Trans_Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income Elasticity of Demand</td>
<td>1.08</td>
<td>0.50</td>
<td>1.08</td>
<td>1.08</td>
<td>1.08</td>
</tr>
<tr>
<td>Price Elasticity of Demand</td>
<td>-0.27</td>
<td>-0.27</td>
<td>0.00</td>
<td>-0.27</td>
<td>-0.27</td>
</tr>
<tr>
<td>Economies of Scale for the Household</td>
<td>0.49</td>
<td>0.49</td>
<td>0.49</td>
<td>0.00</td>
<td>0.49</td>
</tr>
<tr>
<td>Transformation from dissolved organic carbon to methane</td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Figure 1 - Total Waste Estimates
Figure 2 - Methane Emissions from landfill 1990 – 2006

Figure 3 - Difference Between Methane Emissions and 2020 Target
<table>
<thead>
<tr>
<th>Year</th>
<th>Number</th>
<th>Title/ Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>332</td>
<td>International Climate Policy and Regional Welfare Weights
 Daiju Narita, Richard S. J. Tol and David Anthoff</td>
</tr>
<tr>
<td></td>
<td>331</td>
<td>A Hedonic Analysis of the Value of Parks and
 Green Spaces in the Dublin Area
 Karen Mayor, Seán Lyons, David Duffy and Richard S.J. Tol</td>
</tr>
<tr>
<td></td>
<td>330</td>
<td>Measuring International Technology Spillovers and Progress Towards the European Research Area
 Iulia Siedschlag</td>
</tr>
<tr>
<td></td>
<td>329</td>
<td>Climate Policy and Corporate Behaviour
 Nicola Commins, Seán Lyons, Marc Schiffbauer, and Richard S.J. Tol</td>
</tr>
<tr>
<td></td>
<td>328</td>
<td>The Association Between Income Inequality and Mental Health: Social Cohesion or Social Infrastructure
 Richard Layte and Bertrand Maître</td>
</tr>
<tr>
<td></td>
<td>327</td>
<td>A Computational Theory of Exchange: Willingness to pay, willingness to accept and the endowment effect
 Pete Lunn and Mary Lunn</td>
</tr>
<tr>
<td></td>
<td>326</td>
<td>Fiscal Policy for Recovery
 John Fitz Gerald</td>
</tr>
<tr>
<td></td>
<td>325</td>
<td>The EU 20/20/2020 Targets: An Overview of the EMF22 Assessment
 Christoph Böhringer, Thomas F. Rutherford, and Richard S.J. Tol</td>
</tr>
<tr>
<td></td>
<td>324</td>
<td>Counting Only the Hits? The Risk of Underestimating the Costs of Stringent Climate Policy
 Massimo Tavoni, Richard S.J. Tol</td>
</tr>
<tr>
<td></td>
<td>323</td>
<td>International Cooperation on Climate Change Adaptation from an Economic Perspective
 Kelly C. de Bruin, Rob B. Dellink and Richard S.J. Tol</td>
</tr>
<tr>
<td></td>
<td>322</td>
<td>What Role for Property Taxes in Ireland?</td>
</tr>
</tbody>
</table>
T. Callan, C. Keane and J.R. Walsh

321 The Public-Private Sector Pay Gap in Ireland: What Lies Beneath?
Elish Kelly, Seamus McGuinness, Philip O'Connell

320 A Code of Practice for Grocery Goods Undertakings and An Ombudsman: How to Do a Lot of Harm by Trying to Do a Little Good
Paul K Gorecki

319 Negative Equity in the Irish Housing Market
David Duffy

318 Estimating the Impact of Immigration on Wages in Ireland
Alan Barrett, Adele Bergin and Elish Kelly

Seamus McGuinness, Elish Kelly, Philip O'Connell, Tim Callan

316 Mismatch in the Graduate Labour Market Among Immigrants and Second-Generation Ethnic Minority Groups
Delma Byrne and Seamus McGuinness

315 Managing Housing Bubbles in Regional Economies under EMU: Ireland and Spain
Thomas Conefrey and John Fitz Gerald

314 Job Mismatches and Labour Market Outcomes
Kostas Mavromaras, Seamus McGuinness, Nigel O'Leary, Peter Sloane and Yin King Fok

313 Immigrants and Employer-provided Training
Alan Barrett, Séamus McGuinness, Martin O'Brien and Philip O'Connell

312 Did the Celtic Tiger Decrease Socio-Economic Differentials in Perinatal Mortality in Ireland?
Richard Layte and Barbara Clyne

311 Exploring International Differences in Rates of Return to Education: Evidence from EU SILC
Maria A. Davia, Seamus McGuinness and Philip, J.
310 Car Ownership and Mode of Transport to Work in Ireland
Nicola Commins and *Anne Nolan*

309 Recent Trends in the Caesarean Section Rate in Ireland 1999-2006
Aoife Brick and *Richard Layte*

308 Price Inflation and Income Distribution
Anne Jennings, *Seán Lyons* and *Richard S.J. Tol*

307 Overskilling Dynamics and Education Pathways
Kostas Mavromaras, Seamus McGuinness, *Yin King Fok*

306 What Determines the Attractiveness of the European Union to the Location of R&D Multinational Firms?
Iulia Siedschlag, Donal Smith, Camelia Turcu, Xiaoheng Zhang

305 Do Foreign Mergers and Acquisitions Boost Firm Productivity?
Marc Schiffbauer, Iulia Siedschlag, Frances Ruane

304 Inclusion or Diversion in Higher Education in the Republic of Ireland?
Delma Byrne

303 Welfare Regime and Social Class Variation in Poverty and Economic Vulnerability in Europe: An Analysis of EU-SILC
Christopher T. Whelan and *Bertrand Maître*

302 Understanding the Socio-Economic Distribution and Consequences of Patterns of Multiple Deprivation: An Application of Self-Organising Maps
Christopher T. Whelan, Mario Lucchini, Maurizio Pisati and *Bertrand Maître*

301 Estimating the Impact of Metro North
Edgar Morgenroth

300 Explaining Structural Change in Cardiovascular Mortality in Ireland 1995-2005: A Time Series Analysis
Richard Layte, Sinead O’Hara and Kathleen Bennett

299 EU Climate Change Policy 2013-2020: Using the Clean
Development Mechanism More Effectively
Paul K. Gorecki, Seán Lyons and Richard S.J. Tol

Irish Public Capital Spending in a Recession
Edgar Morgenroth

Exporting and Ownership Contributions to Irish Manufacturing Productivity Growth
Anne Marie Gleeson, Frances Ruane

Eligibility for Free Primary Care and Avoidable Hospitalisations in Ireland
Anne Nolan

Managing Household Waste in Ireland: Behavioural Parameters and Policy Options
John Curtis, Seán Lyons and Abigail O’Callaghan-Platt

Labour Market Mismatch Among UK Graduates; An Analysis Using REFLEX Data
Seamus McGuinness and Peter J. Sloane

Towards Regional Environmental Accounts for Ireland
Richard S.J. Tol, Nicola Commins, Niamh Crilly, Sean Lyons and Edgar Morgenroth

EU Climate Change Policy 2013-2020: Thoughts on Property Rights and Market Choices
Paul K. Gorecki, Sean Lyons and Richard S.J. Tol

Measuring House Price Change
David Duffy

Intra- and Extra-Union Flexibility in Meeting the European Union’s Emission Reduction Targets
Richard S.J. Tol

The Determinants and Effects of Training at Work: Bringing the Workplace Back In
Philip J. O’Connell and Delma Byrne

Climate Feedbacks on the Terrestrial Biosphere and the Economics of Climate Policy: An Application of FUND
Richard S.J. Tol

The Behaviour of the Irish Economy: Insights from the
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>286</td>
<td>Mapping Patterns of Multiple Deprivation Using Self-Organising Maps: An Application to EU-SILC Data for Ireland</td>
<td>Maurizio Pisati, Christopher T. Whelan, Mario Lucchini and Bertrand Maître</td>
</tr>
<tr>
<td>284</td>
<td>Policy Options to Reduce Ireland’s GHG Emissions</td>
<td>Thomas Legge and Sue Scott</td>
</tr>
<tr>
<td>283</td>
<td>Accounting for Taste: An Examination of Socioeconomic Gradients in Attendance at Arts Events</td>
<td>Pete Lunn and Elish Kelly</td>
</tr>
<tr>
<td>280</td>
<td>Advertising to boost energy efficiency: the Power of One campaign and natural gas consumption</td>
<td>Seán Diffney, Seán Lyons and Laura Malaguzzi Valeri</td>
</tr>
<tr>
<td>279</td>
<td>International Transmission of Business Cycles Between Ireland and its Trading Partners</td>
<td>Jean Goggin and Iulia Siedschlag</td>
</tr>
<tr>
<td>278</td>
<td>Optimal Global Dynamic Carbon Taxation</td>
<td>David Anthoff</td>
</tr>
<tr>
<td>277</td>
<td>Energy Use and Appliance Ownership in Ireland</td>
<td>Eimear Leahy and Seán Lyons</td>
</tr>
</tbody>
</table>
276 Discounting for Climate Change
David Anthoff, Richard S.J. Tol and Gary W. Yohe

275 Projecting the Future Numbers of Migrant Workers in the Health and Social Care Sectors in Ireland
Alan Barrett and Anna Rust

274 Economic Costs of Extratropical Storms under Climate Change: An application of FUND
Daiju Narita, Richard S.J. Tol, David Anthoff

273 The Macro-Economic Impact of Changing the Rate of Corporation Tax
Thomas Conefrey and John D. Fitz Gerald

272 The Games We Used to Play
An Application of Survival Analysis to the Sporting Life-course
Pete Lunn

2008

271 Exploring the Economic Geography of Ireland
Edgar Morgenroth

270 Benchmarking, Social Partnership and Higher Remuneration: Wage Settling Institutions and the Public-Private Sector Wage Gap in Ireland
Elish Kelly, Seamus McGuinness, Philip O’Connell

269 A Dynamic Analysis of Household Car Ownership in Ireland
Anne Nolan

268 The Determinants of Mode of Transport to Work in the Greater Dublin Area
Nicola Commins and Anne Nolan

267 Resonances from Economic Development for Current Economic Policymaking
Frances Ruane

266 The Impact of Wage Bargaining Regime on Firm-Level Competitiveness and Wage Inequality: The Case of Ireland
Seamus McGuinness, Elish Kelly and Philip O’Connell

265 Poverty in Ireland in Comparative European Perspective
Christopher T. Whelan and Bertrand Maître

264 A Hedonic Analysis of the Value of Rail Transport in the Greater Dublin Area
Karen Mayor, Seán Lyons, David Duffy and Richard S.J. Tol

263 Comparing Poverty Indicators in an Enlarged EU
Christopher T. Whelan and Bertrand Maître

262 Fuel Poverty in Ireland: Extent, Affected Groups and Policy Issues
Sue Scott, Seán Lyons, Claire Keane, Donal McCarthy and Richard S.J. Tol

261 The Misperception of Inflation by Irish Consumers
David Duffy and Pete Lunn

260 The Direct Impact of Climate Change on Regional Labour Productivity

259 Damage Costs of Climate Change through Intensification of Tropical Cyclone Activities: An Application of FUND
Daiju Narita, Richard S. J. Tol and David Anthoff

258 Are Over-educated People Insiders or Outsiders? A Case of Job Search Methods and Over-education in UK
Aleksander Kucel, Delma Byrne

257 Metrics for Aggregating the Climate Effect of Different Emissions: A Unifying Framework
Richard S.J. Tol, Terje K. Berntsen, Brian C. O’Neill, Jan S. Fuglestvedt, Keith P. Shine, Yves Balkanski and Laszlo Makra

256 Intra-Union Flexibility of Non-ETS Emission Reduction Obligations in the European Union
Richard S.J. Tol

255 The Economic Impact of Climate Change
Richard S.J. Tol

254 Measuring International Inequity Aversion
Richard S.J. Tol

253 Using a Census to Assess the Reliability of a National Household Survey for Migration Research: The Case of Ireland
Alan Barrett and Elish Kelly

David Anthoff, Richard S.J. Tol and Gary W. Yohe

251 The Impact of a Carbon Tax on Economic Growth and Carbon Dioxide Emissions in Ireland
Thomas Conefrey, John D. Fitz Gerald, Laura Malaguzzi Valeri and Richard S.J. Tol

250 The Distributional Implications of a Carbon Tax in Ireland
Tim Callan, Sean Lyons, Susan Scott, Richard S.J. Tol and Stefano Verde

249 Measuring Material Deprivation in the Enlarged EU
Christopher T. Whelan, Brian Nolan and Bertrand Maître

248 Marginal Abatement Costs on Carbon-Dioxide Emissions: A Meta-Analysis

247 Incorporating GHG Emission Costs in the Economic Appraisal of Projects Supported by State Development Agencies
Richard S.J. Tol and Seán Lyons

246 A Carton Tax for Ireland
Richard S.J. Tol, Tim Callan, Thomas Conefrey, John D. Fitz Gerald, Seán Lyons, Laura Malaguzzi Valeri and Susan Scott

245 Non-cash Benefits and the Distribution of Economic Welfare
Tim Callan and Claire Keane

244 Scenarios of Carbon Dioxide Emissions from Aviation
Karen Mayor and Richard S.J. Tol

243 The Effect of the Euro on Export Patterns: Empirical Evidence from Industry Data
Gavin Murphy and Iulia Siedschlag
242 The Economic Returns to Field of Study and Competencies Among Higher Education Graduates in Ireland
Elish Kelly, Philip O’Connell and Emer Smyth

241 European Climate Policy and Aviation Emissions
Karen Mayor and Richard S.J. Tol

240 Aviation and the Environment in the Context of the EU-US Open Skies Agreement
Karen Mayor and Richard S.J. Tol

239 Yuppie Kvetch? Work-life Conflict and Social Class in Western Europe
Frances McGinnity and Emma Calvert

Alan Barrett and Yvonne McCarthy

237 How Local is Hospital Treatment? An Exploratory Analysis of Public/Private Variation in Location of Treatment in Irish Acute Public Hospitals
Jacqueline O’Reilly and Miriam M. Wiley

236 The Immigrant Earnings Disadvantage Across the Earnings and Skills Distributions: The Case of Immigrants from the EU’s New Member States in Ireland
Alan Barrett, Seamus McGuinness and Martin O’Brien

235 Europeanisation of Inequality and European Reference Groups
Christopher T. Whelan and Bertrand Maître

234 Managing Capital Flows: Experiences from Central and Eastern Europe
Jürgen von Hagen and Iulia Siedschlag

Charlie Karlsson, Gunther Maier, Michaela Trippl, Iulia Siedschlag, Robert Owen and Gavin Murphy

232 Welfare and Competition Effects of Electricity
Interconnection between Great Britain and Ireland
Laura Malaguzzi Valeri

231
Is FDI into China Crowding Out the FDI into the European Union?
Laura Resmini and Iulia Siedschlag

230
Estimating the Economic Cost of Disability in Ireland
John Cullinan, Brenda Gannon and Seán Lyons

229
Controlling the Cost of Controlling the Climate: The Irish Government's Climate Change Strategy
Colm McCarthy, Sue Scott

228
The Impact of Climate Change on the Balanced-Growth-Equivalent: An Application of FUND
David Anthoff, Richard S.J. Tol

227
Changing Returns to Education During a Boom? The Case of Ireland
Seamus McGuinness, Frances McGinnity, Philip O'Connell

226
‘New’ and ‘Old’ Social Risks: Life Cycle and Social Class Perspectives on Social Exclusion in Ireland
Christopher T. Whelan and Bertrand Maître

225
The Climate Preferences of Irish Tourists by Purpose of Travel
Seán Lyons, Karen Mayor and Richard S.J. Tol

224
A Hirsch Measure for the Quality of Research Supervision, and an Illustration with Trade Economists
Frances P. Ruane and Richard S.J. Tol

223
Environmental Accounts for the Republic of Ireland: 1990-2005
Seán Lyons, Karen Mayor and Richard S.J. Tol

2007
222
Assessing Vulnerability of Selected Sectors under Environmental Tax Reform: The issue of pricing power
J. Fitz Gerald, M. Keeney and S. Scott

221
Climate Policy Versus Development Aid
Richard S.J. Tol

220 Exports and Productivity – Comparable Evidence for 14 Countries
The International Study Group on Exports and Productivity

219 Energy-Using Appliances and Energy-Saving Features: Determinants of Ownership in Ireland
Joe O’Doherty, Seán Lyons and Richard S.J. Tol

218 The Public/Private Mix in Irish Acute Public Hospitals: Trends and Implications
Jacqueline O’Reilly and Miriam M. Wiley

217 Regret About the Timing of First Sexual Intercourse: The Role of Age and Context
Richard Layte, Hannah McGee

216 Determinants of Water Connection Type and Ownership of Water-Using Appliances in Ireland
Joe O’Doherty, Seán Lyons and Richard S.J. Tol

215 Unemployment – Stage or Stigma?
Being Unemployed During an Economic Boom
Emer Smyth

214 The Value of Lost Load
Richard S.J. Tol

213 Adolescents’ Educational Attainment and School Experiences in Contemporary Ireland
Merike Darmody, Selina McCoy, Emer Smyth

212 Acting Up or Opting Out? Truancy in Irish Secondary Schools
Merike Darmody, Emer Smyth and Selina McCoy

211 Where do MNEs Expand Production: Location Choices of the Pharmaceutical Industry in Europe after 1992
Frances P. Ruane, Xiaoheng Zhang

210 Holiday Destinations: Understanding the Travel Choices of Irish Tourists
Seán Lyons, Karen Mayor and Richard S.J. Tol
209 The Effectiveness of Competition Policy and the Price-Cost Margin: Evidence from Panel Data
Patrick McCloughan, *Seán Lyons* and William Batt

208 Tax Structure and Female Labour Market Participation: Evidence from Ireland
Tim Callan, A. Van Soest, *J.R. Walsh*