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PRELIMINARY AND INCOMPLETE

1 Introduction

In a recent paper, Weintraub, Benkard, and Van Roy (2008b) propose an approximation method for analyzing

Ericson and Pakes (1995)-style dynamic models of imperfect competition. In that paper, we defined a

new notion of equilibrium, oblivious equilibrium (henceforth, OE), in which each firm is assumed to make

decisions based only on its own state and knowledge of the long-run average industry state, but where firms

ignore current information about competitors’ states. The great advantage of OE is that they are much

easier to compute than are Markov perfect equilibria (henceforth, MPE). Moreover, we showed that an OE

provides meaningful approximations of long-run Markov perfect dynamics of an industry with many firms

if, alongside some technical requirements, the equilibrium distribution of firm states obeys certain “light-tail

condition”.

To facilitate using OE in practice, in Weintraub, Benkard, and Van Roy (2008a) we provide a computa-

tional algorithm for solving for OE, and approximation bounds that can be computed to provide researchers

with a numerical measure of how close OE is to MPE in their particular application. We also provided com-

putational evidence supporting the conclusion that OE often yields good approximations of MPE behavior

for industries like those that empirical researchers would like to study.

While our computational results suggest that OE will be useful in many applications on its own, we

believe that a major contribution of OE will be as a starting point with which to build even better approxi-

mations. As a matter of fact, in Weintraub, Benkard, and Van Roy (2008a) we extended our base model as

well as algorithms for computing OE and error bounds to incorporate aggregate shocks common to all firms.
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Such an extension is important, for example, when analyzing the dynamic effects of industry-wide business

cycles.

In this paper we introduce another important extension to OE. OE offers a way to approximate long-

run Markov perfect industry dynamics with many firms, and it could be used if one is interested in long-

run economic indicators, such as long-run average investment. These quantities are independent of the

initial state of the industry. In other cases, one may be interested in the short-run dynamic behavior of

an industry starting from a given initial condition. For example, one may want to asses how an industry

would evolve over a few years after a policy or environmental change. With this motivation, we introduce

a nonstationary notion of OE in which every firm knows the industry state in the initial period but does

not update this knowledge after that point. We call this new equilibrium concept, nonstationary oblivious

equilibrium (henceforth, NOE). NOE is based on the same idea as oblivious equilibrium but it offers a way

to approximate short-run transitional dynamics that may result, for example, from shocks or policy changes.

The model and assumptions in this paper are the same as in Section 3 of Weintraub, Benkard, and Van

Roy (2008b). For the sake of completeness, we present the model in the Appendix.

In Section 2 we define nonstationary oblivious equilibrium (henceforth, NOE). Moreover, in our com-

putational experiments we focus on NOE that become stationary as time progresses. In Section 2 we also

show that under mild technical conditions such NOE exist. In the following sections we present algorithms

and results for NOE in a similar spirit to those presented in Weintraub, Benkard, and Van Roy (2008b) and

Weintraub, Benkard, and Van Roy (2008a) for OE.

In Section 3 we provide an algorithm to compute NOE that become stationary as time progresses. The

algorithm is computationally efficient; it can compute NOE in few minutes even for industries with hundreds

of firms.

In Section 4 we provide an efficient simulation-based algorithm to compute a bound on approximation

error. Error here is measured in terms of the expected incremental value that an individual firm in the industry

can capture by unilaterally deviating from the NOE strategy. The algorithm for bounding approximation

error allow us to verify accuracy of NOE as an approximation for each problem instance.

In Section 5 we provide a computational study and, using the error bounds, show that NOE offers useful

approximations for relevant models of industries with hundreds or even tens of firms. We also show that

NOE can endogenously generate industry dynamics, like industry shake-outs, similar to those observed in

data sets. Our results show that by using NOE it is possible to further expand the set of dynamic industries

that can be analyzed computationally.

While the previous results provide support for using NOE in practice, in Section 6 we provide an asymp-
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totic result that provides a theoretical justification for the approximation. We show that, if alongside some

technical requirements, the equilibrium distribution of firm states obeys certain “light-tail” condition, then

the approximation error vanishes as the market sizes grows. We note that important parts of the proof of this

result require different techniques to the ones used in its analog theorem for OE in Weintraub, Benkard, and

Van Roy (2008b).

Finally, in Section 7 we provide conclusions and some thoughts for future research.

2 Nonstationary Oblivious Equilibrium

Oblivious equilibrium, offers a way to approximate long-run Markov perfect industry dynamics. In this

section we introduce a new equilibrium concept, nonstationary oblivious equilibrium, that can be used to

approximate the short-run dynamic behavior of an industry starting from an initial state of interest.

Recall that an oblivious equilibrium was based on the idea that when there are a large number of firms

(and no aggregate shocks), simultaneous changes in individual firm quality levels can average out such that

in the long-run the industry state remains roughly constant over time. Based on a similar idea we introduce

a method to approximate the short-run behavior of an industry that starts from a given state of interest. If

there are a large number of firms (and no aggregate shocks), the industry state starting from a given initial

state roughly follows a deterministic trajectory. In this setting, each firm can make near-optimal decisions

based only on its own quality level and by knowing the deterministic trajectory followed by the industry

state. With this motivation, we consider restricting firm strategies so that each firm’s decisions depend only

on the firm’s quality level and the time period. We call such restricted strategies nonstationary oblivious

since they involve decisions made without full knowledge of the circumstances — in particular, the state

of the industry. Note that nonstationary oblivious strategies differ from oblivious strategies because they

depend on the time period. To simplify notation we assume that the industry is at the initial state of interest

at time period t = 0.

2.1 Nonstationary Oblivious Strategies and Entry Rate Functions

Let M̃ns = M̃∞ ⊂ M∞ and Λ̃ns = Λ̃∞ ⊂ Λ∞ denote the set of nonstationary oblivious strategies and

the set of nonstationary oblivious entry rate functions.1 A nonstationary oblivious strategy is a sequence

1Recall that M̃ ⊂ M and Λ̃ ⊂ Λ denote the set of oblivious strategies and the set of oblivious entry rate functions;M and Λ
are the set of Markov strategies and the set of entry rate functions (see Weintraub, Benkard, and Van Roy (2008b)). The set X∞ is
the infinite cross product of X , i.e. X∞ = X ×X ×X....
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of oblivious strategies. Hence, if µ ∈ M̃ns is a nonstationary oblivious strategy, then µ = {µ0, µ1, ...},

where for each time period t ≥ 0, µt ∈ M̃ is an oblivious strategy. For example, if firm i uses strategy

µ ∈ M̃ns then at time period t, firm i takes action µt(xit), where xit is the state of firm i at time t (so the

action depends both on the time period and the state). In a NOE firms will make decisions assuming that

the industry state evolves deterministically. Moreover, firms will assume the industry state at time period t

is the expected industry state after t time periods of evolution given the competitors’ strategy and starting

from the industry state of interest. Therefore, under this assumption, the time period determines the industry

state.

A nonstationary oblivious entry rate function is a sequence of oblivious entry rate functions. Hence,

if λ ∈ Λ̃ns is a nonstationary oblivious entry rate function, then λ = {λ0, λ1, ...} where for every period

t ≥ 0, λt is real-valued.

2.2 Nonstationary Oblivious Equilibrium

Note that if all firms use a common strategy µ ∈ M̃ns, the quality level of each evolves as an independent

transient non-homogenous Markov chain. Let the transition sub-probabilities of this transient Markov chain

for period t be denoted by Pµt(x, y). If there were an infinite number of firms, though each evolves stochas-

tically, the percentage of firms that transition from any given quality level to another would be deterministic.

Similarly, the percentage of firms that exit would be deterministic. Motivated by this fact, for µ ∈ M̃ns,

λ ∈ Λ̃ns, and s ∈ S we define the following sequence of industry states:

(2.1) s̃t+1(x) =


∑

y∈N Pµt(y, x)s̃t(y) + λt if x = xe∑
y∈N Pµt(y, x)s̃t(y) otherwise,

where s̃0 = s ∈ S. Note that s̃t is the expected industry state at time t given strategy µ and it can be easily

computed by matrix multiplication. For all x ∈ N, we let s̃(µ,λ,s),t(x) = s̃t(x), where for all t ≥ 0, s̃t(x) is

given by equation (2.1).

For nonstationary oblivious strategies µ′, µ ∈ M̃ns, a nonstationary oblivious entry rate function λ ∈

Λ̃ns, and an initial industry state s, we define a nonstationary oblivious value function for period t

(2.2)

Ṽt(x|µ′, µ, λ, s) = Eµ′

[
τi∑
k=t

βk−t
(
π(xik, s̃(µ,λ,s),k)− dιik

)
+ βτi−tφi,τi

∣∣∣xit = x

]
.
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This value function should be interpreted as the expected net present value of a firm that is at quality level

x at time t and follows nonstationary oblivious strategy µ′, under the assumption that, for all t ≥ 0, its

competitors’ state will be given by s̃(µ,λ,s),t at time t. Note that even though the firm’s state trajectory only

depends on the firm’s own strategy µ′, the nonstationary oblivious value function remains a function of the

competitors’ strategy µ and the entry rate λ through the expected industry state trajectory s̃(µ,λ,s),·. We abuse

notation by using Ṽt(x|µ, λ, s) ≡ Ṽt(x|µ, µ, λ, s) to refer to the nonstationary oblivious value function when

firm i follows the same strategy µ as its competitors.

We now define a new solution concept. To avoid pathological behavior in which an entry rate grows

unboundedly large and is followed by massive exit, we restrict all entry rates to be less than a predetermined

upper bound λmax ≥ supx,s π(x, s)/(1 − β) + φ. We introduce the following assumption that is kept

throughout the paper unless otherwise explicitly noted:2

Assumption 2.1. Λ̃ = [0, λmax].

An s−nonstationary oblivious equilibrium consists of a strategy µ ∈ M̃ns and an entry rate function

λ ∈ Λ̃ns that satisfy the following conditions:

1. Firm strategies optimize a nonstationary oblivious value function:

(2.3) sup
µ′∈M̃ns

Ṽ0(x|µ′, µ, λ, s) = Ṽ0(x|µ, λ, s), ∀x ∈ N.

2. At every period of time, the nonstationary oblivious expected value of entry is zero or boundary

conditions are satisfied. For all t ≥ 0,

λt ∈ (0, λmax) implies βṼt+1(xe|µ, λ, s)− κ = 0

βṼt+1(xe|µ, λ, s)− κ < 0 implies λt = 0

βṼt+1(xe|µ, λ, s)− κ > 0 implies λt = λmax .

Note that the optimization of Ṽ0 implies, by dynamic programming principles, that firms optimize Ṽt for all

t ≥ 0.

In this paper, we focus on NOE that become stationary as time progresses. That is, we focus on NOE

(µ, λ) ∈ M̃ns × Λ̃ns that converge to an OE (µ̃, λ̃) ∈ M̃ × Λ̃ as time progresses in the following sense:

2It is simple to show that an OE entry rate must be smaller than λmax. Moreover, in our computational experiments we never
observed NOE entry rates growing unboundedly large and they were always much smaller than λmax. For this reason and to
simplify the explanation, λmax is omitted in the description of the algorithm in Section 3. We make use of λmax, however, in the
existence proof that follows.
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for all x ∈ N, limt→∞ µt(x) = µ̃(x), and limt→∞ λt = λ̃. In the next subsection, we show the existence of

such NOE.

2.3 Existence of NOE that Become Stationary

By Assumptions A.1 and A.2, investments and expected discounted profits are uniformly bounded over all

states by ι̂ and supx,s π(x, s)/(1 − β) + φ, respectively. Therefore, with out loss of generality, we restrict

the range of µ ∈ M̃ to [0, ι̂]× [0, supx,s π(x, s)/(1− β) + φ].

We introduce the following additional assumption.

Assumption 2.2. For all i ∈ N and t ∈ N, xit ≤ xmax.

Assumption 2.2 implies that all the analysis can be restricted to the finite space of quality levels {0, ..., xmax}.

We define the set of converging nonstationary strategies and entry rate functions:

M̂ns = {µ ∈ M̃ns : for which there exists µ ∈ M̃, such that, for all x, lim
t→∞

µt(x) = µ(x)} ,

Λ̂ns = {λ ∈ Λ̃ns : for which there exists λ ∈ Λ̃, such that, lim
t→∞

λt = λ} .

We endowed this sets with the metric compatible with the product topology.

The following is the main result of this section. The proof is provided in the Appendix.

Theorem 2.1. Suppose Assumptions A.1, A.2, A.3, 2.1, and 2.2 hold. Then, there exists a NOE (µ, λ) ∈

M̂ns × Λ̂ns. Moreover, for all x, limt→∞ µt(x) = µ̃(x) and limt→∞ λt = λ̃, where (µ̃, λ̃) ∈ M̃ × Λ̃ is an

OE.

3 Algorithm to Compute NOE

We propose an algorithm to compute NOE that become stationary and converge to OE. We impose this form

of convergence in the algorithm and then solve backwards. In this way, the problem of finding a NOE is

reduced to a finite horizon problem.

Suppose we are mostly interested in the behavior of the industry in the interval between time periods

t = 0 and t = T . Let Ṽ , µ̃, λ̃, s̃ be a (stationary) OE value function, strategy, entry rate, and expected state,

respectively. Let T := min{t|βt−T Ṽ (xe+tw) ≤ δ}, where δ > 0 is a predetermined precision. We assume

there is a finite time horizon of length T , and that after T the NOE coincides with an OE. More specifically,
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for all t > T , µt = µ̃, λt = λ̃, and s̃t = s̃. In addition, for t > T , firms garner profits according to the OE

value function. This simplification should not have a significant impact on the behavior of the industry for

the time periods of interest between t = 0 and t = T . After this reduction computing a NOE is simple; it

requires solving finite-horizon one-dimensional dynamic programming problems.

At each iteration of the algorithm, we (1) compute the strategies that maximize the nonstationary obliv-

ious value functions (step 10) and (2) we compute new entry rates depending on the extent of the violation

of the zero-profit conditions (step 16). Strategies and entry rates are updated “smoothly” (steps 20 and 21).

The parameters N1, N2, γ1, and γ2 are set after some experimentation to speed up convergence.

If δ = 0, ε0 = 0 and the termination condition of the outer loop is satisfied with ε1 = ε2 = 0, we have

an s−nonstationary oblivious equilibrium. Small values of ε0, ε1, and ε2 allow for small errors associated

with limitations of numerical precision.

Algorithm 1 s−Nonstationary Oblivious Equilibrium Solver

1: λt := λ̃, for all t.
2: µt := µ̃, for all t.
3: Define ṼT+1(x|µ∗, µ, λ, s) := Ṽ (x), for all x µ∗, µ, and λ.
4: n := 1.
5: repeat
6: Compute s̃(µ,λ,s),t for t ∈ {0, ..., T}.
7: ∆0 := 0; ∆1 := 0.
8: t := T .
9: repeat

10: Choose µ∗t ∈ M̃ to maximize Ṽt(x|µ∗, µ, λ, s) simultaneously for all x.
11: ψt = βṼt+1(xe|µ∗, µ, λ, s))− κ
12: ∆0 = max(∆0, ψt).
13: if λt > ε0 then
14: ∆1 = max(∆1,−ψt).
15: end if
16: λ∗t := λt(βṼt+1(xe|µ∗, µ, λ, s))/κ.
17: Let t := t− 1.
18: until t = 0.
19: ∆2 :=‖ µ− µ∗ ‖∞.
20: µ := µ+ (µ∗ − µ)/(nγ1 +N1).
21: λ := λ+ (λ∗ − λ)/(nγ2 +N2).
22: n := n+ 1.
23: until ∆0 ≤ ε1 and ∆1 ≤ ε1 and ∆2 ≤ ε2.

We use an s−nonstationary oblivious equilibrium to approximate short-run behavior of an industry that

starts from a given initial state s. In the next section, we provide error bounds that are useful to asses the

accuracy of the approximation for any given applied problem.
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4 Error Bounds

We derive error bounds in this section. To bound approximation error, we first define what is meant by

approximation error in this context. Because an optimal strategy for a firm that unilaterally deviates from a

NOE strategy depends on the time period (since its competitors are using nonstationary strategies), we intro-

duce nonstationary Markov strategies. We defineMns = M∞ and Λns = Λ∞ as the set of nonstationary

Markov strategies and entry rate functions, respectively. A nonstationary Markov strategy is a sequence of

Markov strategies. Hence, if µ ∈Mns is a nonstationary Markov strategy, then µ = {µ0, µ1, ...}, where for

all t ≥ 0, µt ∈M is a Markov strategy. Similarly, a nonstationary entry rate function is a sequence of entry

rate functions. Hence, if λ ∈ Λns is a nonstationary entry rate function, then λ = {λ0, λ1, ...} where for all

t ≥ 0, λt ∈ Λ is an entry rate function. For nonstationary Markov strategies µ′, µ ∈Mns and nonstationary

entry rate function λ ∈ Λns, we define the nonstationary value function,

Vt(x, s|µ′, µ, λ) = Eµ′,µ,λ

[
τi∑
k=t

βk−t (π(xik, s−i,k)− dιik) + βτi−tφi,τi

∣∣∣xit = x, s−i,t = s

]
,

where i is taken to be the index of a firm at quality level x at time t. In an abuse of notation, we will use

the shorthand, Vt(x, s|µ, λ) ≡ Vt(x, s|µ, µ, λ). The nonstationary value function allows for dependence

on nonstationary Markov strategies. We use this value function to evaluate the actual expected discounted

profits garner by a firm that uses a nonstationary Markov strategy. Suppose we are interested in the short-run

dynamic behavior of an industry that starts at state s ∈ S. Let (µ̃, λ̃) be a NOE. We quantify approximation

error at each state x ∈ N by

sup
µ′∈Mns

V0

(
x, s|µ′, µ̃, λ̃

)
− V0

(
x, s|µ̃, λ̃

)
.

Hence, approximation error is the amount by which a firm in state x with competitors in state s can improve

its expected discounted profits by unilaterally deviating from the nonstationary oblivious strategy µ̃ to an

optimal nonstationary (non-oblivious) Markov strategy. We introduce our error bound. We denote [x]+ =

max(x, 0) and x(k) = [x− kw]+.

Theorem 4.1. Let Assumptions A.1, A.2, and A.3 hold. Let µ̃ ∈ M̃ns and λ̃ ∈ Λ̃ns be an s−nonstationary
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oblivious equilibrium. Then, for all x ∈ N,

(4.1) sup
µ′∈Mns

V0

(
x, s|µ′, µ̃, λ̃

)
− V0

(
x, s|µ̃, λ̃

)
≤

Eµ̃,λ̃

[ ∞∑
k=0

βk
[

max
x′∈{x(k),...,x+kw}

(
π(x′, s−i,k)− π(x′, s̃(µ̃,λ̃,s),k)

)]+ ∣∣∣s−i,0 = s

]

+ Eµ̃,λ̃

[
τi∑
k=0

βk
(
π(xik, s̃(µ̃,λ̃,s),k)− π(xik, s−i,k)

) ∣∣∣xi0 = x, s−i,0 = s

]
.

The proofs can be found in the Appendix. Given a NOE, the error bound can be computed using

simulation. It requires simulating the industry evolution under NOE strategies starting from the initial

industry state s.3 It is worth mentioning that the result can be generalized a great deal. In particular, many

of the prior assumptions can be dropped; for instance, most alternative entry processes will not change the

result.

If the dynamics of the model include depreciation, that is, there is a positive probability the quality

level of the firm goes down even if investment is arbitrarily large, tighter bounds can be derived. Let

∆k(y, s) = π(y, s) − π(y, s̃(µ̃,λ̃,s),k). Let µ̂ be a strategy such that the firm never exits the industry and

invests an infinite amount at every state. We have the following result.

Theorem 4.2. Let Assumptions A.1, A.2, and A.3 hold. Let µ̃ ∈ M̃ns and λ̃ ∈ Λ̃ns be an s−nonstationary

oblivious equilibrium. Suppose that, for all s ∈ S and for all k ≥ 0, the function ∆k(y, s)+ is nondecreasing

in y. Then, for all x ∈ N,

(4.2) sup
µ′∈Mns

V0

(
x, s|µ′, µ̃, λ̃

)
− V0

(
x, s|µ̃, λ̃

)
≤
∞∑
k=0

βkEµ̂,µ̃,λ̃

[[
π(xik, s−i,k)− π(xik, s̃(µ̃,λ̃,s),k)

]+ ∣∣∣xi0 = x, s−i,0 = s

]

+ Eµ̃,λ̃

[
τi∑
k=0

βk
(
π(xik, s̃(µ̃,λ̃,s),k)− π(xik, s−i,k)

) ∣∣∣xi0 = x, s−i,0 = s

]
.

Note that xit is controlled by strategy µ̂, therefore, it is independent of everything else. If there is

depreciation and ∆k(y, s)+ is nondecreasing in y, bound (4.2) is generally tighter than bound (4.1). The

latter takes a maximum over achievable states in the first sum. The former takes an expectation with respect

to µ̂ and because of depreciation, larger achievable states have smaller weights, reducing the magnitude of

the bound.
3Note that under our assumptions, for all t > T , s̃t = s̃, µ̃t = µ̃, and λ̃t = λ̃.
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The expectation over xik can be written in closed form for the model in Section 6.1 of Weintraub,

Benkard, and Van Roy (2008a) where firms can change their state by at most one quality level per time

period facilitating its computation.

Corollary 4.1. Let Assumptions A.1, A.2, and A.3 hold. Consider the industry model in Section 6.1 of

Weintraub, Benkard, and Van Roy (2008a) where firms can change their state by at most one quality level

per time period. Let µ̃ ∈ M̃ns and λ̃ ∈ Λ̃ns be an s−nonstationary oblivious equilibrium. Suppose that,

for all s ∈ S and for all k ≥ 0, the function ∆k(y, s)+ is nondecreasing in y. Then, for all x ∈ N,

(4.3) sup
µ′∈Mns

V0

(
x, s|µ′, µ̃, λ̃

)
− V0

(
x, s|µ̃, λ̃

)
≤
∞∑
k=0

βk
∑

y∈{x,...,x+k}

(
k

y − x

)
(1− δ)y−xδk−(y−x)E

[[
π(y, s−i,k)− π(y, s̃(µ̃,λ̃,s),k)

]+ ∣∣∣s−i,0 = s

]

+ Eµ̃,λ̃

[
τi∑
k=0

βk
(
π(xik, s̃(µ̃,λ̃,s),k)− π(xik, s−i,k)

) ∣∣∣xi0 = x, s−i,0 = s

]
.

5 Computational Experiments

In this section we conduct some computational experiments to evaluate how NOE performs in practice.

In particular, we use NOE to analyze the short-run transitional industry dynamics from one long-run OE

to another after a profit shock. More specifically, we compute OE for a given industry model. Then, we

increase the market size by 25% and compute the new OE. We compute a NOE that converges to the new OE

and for which the initial state is the original OE expected state. Figure 1 schematizes the industry evolution.

We use the same model as in Section 6 of Weintraub, Benkard, and Van Roy (2008a). In Section 5.1 we

study the behavior of the error bound for different parameter specifications. In Section 5.2 we show the

different dynamics that NOE can generate.

5.1 Behavior of the Bound

Our first set of results investigate the behavior of the approximation error bound under several different

model specifications. We use the same parameters as in Section 6.2 of Weintraub, Benkard, and Van Roy

(2008a) with the “almost deterministic” entry process. We consider two different values of θ1 and the

investment cost d: (θ1, d) = (0.2, 0.2) and (θ1, d) = (0.7, 0.7). The former (“Low”) is a situation where
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the level of vertical differentiation is low and it is inexpensive to invest to improve quality. The latter

(“High”) is the opposite.

For each set of parameters, we compute a NOE where the starting state is the OE expected state.4 We

then use the approximation error bound in Theorem 4.2 to compute an upper bound on the percentage error

in the value function,
supµ′∈Mns

V0(x,s|µ′,µ̃,λ̃)−V0(x,s|µ̃,λ̃)
Ṽ0(x|µ,λ,s) , where (µ̃, λ̃) are the NOE strategy and entry rate,

respectively.5 Percentage error is taken with respect to the nonstationary oblivious value function. We esti-

mate the expectations using simulation.6 We compute the previously mentioned percentage approximation

error bound for different market sizes. As the market size increases, the expected number of firms in the

original OE (and hence in the initial state) increases, and the approximation error bound decreases.

In Figure 2 (see Appendix) we present the percentage approximation error bound as a function of the

number of firms at the initial state for the two levels of vertical differentiation. For the low vertical differ-

entiation case it takes around 60 firms to bring the bound down to around 2%, and 200 firms to bring it to

around 1%. For the high case it takes around 100 firms to bring the bound to 3% and 200 firms to bring it to

2%.

Most economic applications would involve from less than ten to several hundred firms. These results

show that the approximation error bound may sometimes be small (<2%) in these cases, though this would

depend on the model and parameter values for the industry under study.

5.2 Short-Run Transitional Industry Dynamics

In this section we study transitional dynamics that NOE can generate. We consider the same model and

parameters as in the previous section with two variants: m = 750, θ1 = 0.5, d = 0.5, andm = 1500, θ1 =

2, d = 1.7 In the same spirit as above, we refer to the former as a case of low level of vertical differentiation,

and to the latter as a case of high level of vertical differentiation.

Figure 3 shows the evolution for the case of low level of vertical differentiation. First, note that because

the market size increases the new OE holds more firms than the original OE. Potential entrants realize
4We round fractional numbers in the OE expected state to the closest integer.
5While we are not able to show that ∆k(y, s)+ is nondecreasing in y, we check it computationally for all sampled states in the

simulation.
6The bound is estimated with a relative precision of at most 10% and a confidence level of 98% (in cases where the bound is

very small it is difficult to achieve better precision than this). Note that the percentage approximation error bound depends on the
state x so for the purposes of this section we consider the percentage bound evaluated at the entry state. For the computations we
took the maximum achievable state, xmax, to be a state such that the expected number of visits of a firm using the OE strategy was
at most 10−5. In computing the bounds, we assumed that the maximum achievable state under the best response (non-oblivious)
strategy was also xmax.

7In the latter, we also included an additional noise term, εit, to the firm’s evolution, which is independent of everything else. The
noise term allows for random appreciation and depreciation in the following way: P[εit = 1] = 0.25, P[εit = 0] = 0.5, P[εit =
−1] = 0.25. The noise term generates richer dynamics.
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the existence of this profitable opportunity and the NOE entry rate is high at the beginning. Then, after

approximately ten periods, it converges to the new OE entry rate. As a consequence, the NOE expected total

number of firms increases very quickly and in five periods is very close to converge to the new OE expected

total number of firms.

Figure 4 shows the evolution for the case of high level of vertical differentiation. Again, the new OE

holds more firms than the original, firms realize this profitable opportunity and the NOE entry rate is high at

the beginning and then converges to the new OE entry rate. However, in this case there is “too much” entry

at the beginning. Because the level of vertical differentiation is high, becoming one of the largest firms in the

industry entails huge profits and too many firms enter the industry hoping to become dominant. However,

only some of them receive favorable idiosyncratic shocks and the rest slowly starts exiting. Hence, after a

burst of entry the industry exhibits a shake-out until it converges to the new OE expected state.

In summary, NOE generates different dynamics depending on the model. In a case of low level of

vertical differentiation, the number of firms in the NOE increases and exhibits a quick convergence to the

new long-run OE. In a case of high level of vertical differentiation, the NOE exhibits too much entry at the

beginning and the industry exhibits a slow shake-out until it converges to the new long-run OE.

6 Asymptotic Theorem

In this section we establish an asymptotic result that provides conditions under which approximation error

converges to zero as the market size grows. The main condition is that the sequence of NOE generates firm

size distributions that are “light-tailed” in a sense that we will make precise. The result provides a theoretical

justification for using NOE to approximate short-run industry dynamics.

The model in Section A does not explicitly depend on market size. However, market size would typ-

ically enter the profit function, π(xit, s−i,t), through the underlying demand system; in particular, profit

for a firm at a given state (x, s) would typically increase with market size. Therefore, in this section we

consider a sequence of markets indexed by market sizes m ∈ <+. All other model primitives are assumed

to remain constant within this sequence except for the profit function, which depends on m. To convey this

dependence, we denote profit functions by πm.

We index functions and random variables associated with market size m with a superscript (m). For our

asymptotic analysis, we consider a sequence of initial states s̃(m)
0 that are indexed by the market size m, and

for which
∑

x s̃
(m)
0 (x) = Θ(m).8 Hence, the number of firms at s̃(m)

0 increases proportionally to the market
8In this notation f(m) = Θ(m) means that there exists c1, c2 > 0 and m such that, c1m < f(m) < c2m, for all m > m.
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size asymptotically. We do not impose further restrictions on s̃(m)
0 ; for example, s̃(m)

0 could have firms at

higher quality levels in larger markets. We let (µ(m), λ(m)) denote a NOE for market size m. Let V (m)
t and

Ṽ
(m)
t represent the nonstationary value function and nonstationary oblivious value function, respectively.

The random vector s(m)
t denotes the industry state at time t when every firm uses strategy µ(m), the entry

rate function is λ(m), and the initial state is s̃(m)
0 . Note that s(m)

0 = s̃
(m)
0 .

It will be helpful to decompose s(m)
t according to s(m)

t = f
(m)
t n

(m)
t , where f (m)

t is the random vec-

tor that represents the fraction of firms in each state, and n(m)
t is the total number of firms, respectively.

Let ñ(m)
t ≡ E[n(m)

t ] =
∑

x s̃
(m)
t (x) denote the expected number of firms at time period t. Let f̃ (m)

t =

s̃
(m)
t /ñ

(m)
t denote the normalized expected industry state. With some abuse of notation, we define

πm(xit, f−i,t, n−i,t) ≡ πm(xit, n−i,t · f−i,t).

6.1 Assumptions about the Sequence of Profit Functions

In addition to Assumption A.1, which applies to individual profit functions, we will make the following

assumptions, which apply to sequences of profit functions. Let S1 = {f ∈ S|
∑

x∈N f(x) = 1} and

S1,z = {f ∈ S1|∀x > z, f(x) = 0}.

Assumption 6.1.

1. supx∈N,s∈S πm(x, s) = O(m).9

2.

sup
m∈<+,x∈N,f∈S1,n>0

∣∣∣∣d lnπm(x, f, n)
d lnn

∣∣∣∣ <∞.
3. For all c > 0 and m ∈ N, there exists a function π : N→ <+, such that, for all sequences n : N 7→ N

satisfying n(m) ≥ cm for all m > m,

sup
m∈<+,f∈S1

πm(x, f, n(m)) ≤ π(x),∀x ∈ N.

Moreover, for all x ∈ N,

sup
µ∈M

Eµ

[ ∞∑
k=t

βk−tπ(xik)
∣∣∣xit = x

]
<∞.

4. For all z ∈ N, there exists c > 0 and m ∈ N, such that, if n(m) < cm and m > m, then,

πm(xe, f, n(m)) > κ/β + 1, ∀f ∈ S1,z.

Assumption 6.1.1, which states that profits increase at most linearly with market size, should hold for vir-

tually all relevant classes of profit functions. It is satisfied, for example, if the total disposable income of the

9In this notation, f(m) = O(m) denotes lim supm
f(m)
m

<∞.
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consumer population grows linearly in market size.10 Assumption 6.1.2 requires that profits are “smooth”

with respect to the number of firms and, in particular, states that the relative rate of change of profit with

respect to relative changes in the number of firms is uniformly bounded. Roughly speaking, Assumption

6.1.3 states that if number of firms grow at least linearly with the market size, maximum achievable ex-

pected discounted profits remain uniformly bounded over all market sizes. Assumption 6.1.4 states that if

the number of firms is smaller than a fraction of the market size and the market size is large, then firm’s

profit at the entry state become large. The assumptions hold, for example, for a single-period profit function

derived from a demand system given by a logit model where the spot market equilibrium is Nash in prices.

6.2 Asymptotic Nonstationary Markov Equilibrium Property

Our aim is to establish that, under certain conditions, NOE provides an accurate approximation as the market

size grows. Motivated by our definition of approximation error, we define the following concept to formalize

the sense in which this approximation becomes exact.

Definition 6.1. A sequence (µ(m), λ(m)) ∈ Mns × Λns possesses the asymptotic nonstationary Markov

equilibrium (ANME) property if for all x ∈ N,

lim
m→∞

sup
µ′∈Mns

V
(m)
0 (x, s(m)

0 |µ′, µ(m), λ(m))− V (m)
0 (x, s(m)

0 |µ(m), λ(m)) = 0 .

6.3 A Light-Tail Condition Implies ANME

Even when there are a large number of firms, if the market tends to be concentrated — for example, if the

market is usually dominated by few firms — the ANME property is unlikely to hold. A strategy that does

not keep track of the dominant firms will perform poorly. To ensure the ANME property, we need to impose

a “light-tail” condition that rules out this kind of market concentration. In this section, we establish that

under an appropriate light-tail condition the sequence of NOE possesses the ANME property.

Note that d lnπm(y,f,n)
df(x) is the semi-elasticity of one period profits with respect to the fraction of firms in

state x. We define the maximal absolute semi-elasticity function:

g(x) = max
m∈<+,y∈N,f∈S1,n>0

∣∣∣∣d lnπm(y, f, n)
df(x)

∣∣∣∣ .
For each x, g(x) is the maximum rate of relative change of any firm’s single-period profit that could result

10For example, if each consumer has income that is less than some upper bound Y then total disposable income of the consumer
population (an upper bound to firm profits) is always less than m · Y .
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from a small change in the fraction of firms at quality level x. Since larger competitors tend to have greater

influence on firm profits, g(x) typically increases with x, and can be unbounded.

Finally, we introduce our light-tail condition. For each m and t, let x̃(m)
t ∼ f̃

(m)
t , that is, x̃(m)

t is

a random variable with probability mass function f̃ (m)
t . Recall that f̃ (m)

t is a vector that represents the

normalized expected industry state at time t for market size m.

Assumption 6.2. For all quality levels x, g(x) <∞. For all ε > 0, there exists a quality level z such that

E
[
g(x̃(m)

t )1{x̃(m)
t >z}

]
≤ ε,

for all market sizes m, and all time periods t > 0.

Put simply, the light tail condition requires that the number of firms in states where a small change in the

fraction of firms has a large impact on the profits of other firms, must be relatively small in the sequence of

expected states. In practice this typically means that very large firms (and hence high concentration) rarely

occur when the industry starts from the chosen initial state.11

In Assumption 2.1, for each market size, we established an upper bound for entry rates, λmax. This

upper bound can vary with the market size. In the next assumption, we establish that the upper bound on

entry rates λ(m)
max grows at the same rate as the market size asymptotically. The assumption simplifies our

asymptotic analysis.

Assumption 6.3. For each market size m, there is an upper bound on entry rates given by λ(m)
max. Moreover,

λ
(m)
max = Θ(m).

In the next result, we establish that, for all time periods, the expected number of firms grows at least

linearly in the market size asymptotically.

Proposition 6.1. Let Assumptions A.1, A.2, A.3, 6.1.4, 6.2, and 6.3 hold. Then, there exists c > 0 and m,

such that, for all t > 0 and for all m > m, ñ(m)
t /m ≥ c.

All proofs of this section can be found in the Appendix. The result implies that if the light-tail condition

is satisfied, then the expected number of firms under NOE strategies in each time period grows to infinity as

the market size grows.
11Note that the quality level z in the light-tail assumption above is the same for all market sizesm and time periods t. The results

in this section allow for any sequence of NOE. We conjecture that if we constraint the results to sequences of NOE that become
stationary as time progresses (Section 2.3), then we could weaken the light-tail assumption and allow z to vary with t. Also note
that the light tail condition is not assumed at t = 0; we do not need that condition to prove our results because at the initial period
there is no uncertaity about the industry state.
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The next result, establishes a form of convergence for the normalized industry states. First, we define

‖f‖1,g =
∑

x |f(x)|g(x).

Proposition 6.2. Let Assumptions A.1, A.2, A.3, 6.1, 6.2, and 6.3 hold. Then, for all t > 0, n(m)
t /ñ

(m)
t →p 1

and ‖f (m)
t − f̃ (m)

t ‖1,g →p 0, as m grows.12

The light-tail condition is key to prove the second part of the result, namely, convergence of the normal-

ized industry states in the ‖ · ‖1,g weighted-norm. We also note that this part of the result requires a very

different proof technique to its analog for OE in Weintraub, Benkard, and Van Roy (2008b). This form of

convergence allows us to ensure the ANME property, which leads to the main result of this section.

Theorem 6.1. Under Assumptions A.1, A.2, A.3, 6.1, 6.2, and 6.3 the sequence {µ(m), λ(m)} of NOE pos-

sesses the ANME property.

7 Closing Remarks

In this paper we introduced nonstationary oblivious equilibrium as a way to approximate short-run tran-

sitional dynamics that may result, for example, from shocks or policy changes. We provided an efficient

algorithm to compute NOE and an efficient simulation-based algorithm to compute a bound on approxi-

mation error. The algorithm for bounding approximation error allow us to verify accuracy of NOE as an

approximation for each problem instance. Using these methods, we provided a computational study and

showed that NOE offers useful approximations for relevant models of industries with hundreds or even tens

of firms. We also showed that NOE can endogenously generate interesting industry dynamics, like industry

shake-outs. Our results show that by using NOE it is possible to further expand the set of dynamic industries

that can be analyzed computationally.

While the previous results provide support for using NOE in practice, we also provided an asymptotic

result that provides a theoretical justification for the approximation. We showed that, if alongside some

technical requirements, the equilibrium distribution of firm states obeys certain “light-tail” condition, then

the approximation error vanishes as the market sizes grows.

The previous result suggests that OE and NOE will not provide accurate approximations for industries

with few dominant firms that have a significant market share. In Weintraub, Benkard, and Van Roy (2007)

we develop an extended notion of nonstationary oblivious equilibrium that allows for there to be a set of
12We use→p to denote convergence in probability.
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“dominant firms”, whose firm states are always monitored by every other firm. Our hope is that the dominant

firm nonstationary OE will provide better approximations for more concentrated industries. Testing these

approximations in empirical applications is the matter of current and future research.

A A Dynamic Model of Imperfect Competition

In this section we formulate a model of an industry in which firms compete in a single-good market. The

model is general enough to encompass numerous applied problems in economics. Indeed, a blossoming

recent literature on EP-type models has applied similar models to advertising, auctions, collusion, consumer

learning, environmental policy, international trade policy, learning-by-doing, limit order markets, mergers,

network externalities, and other applied problems.

Our model is close in spirit to that of Ericson and Pakes (1995), but with some differences. Most notably,

we modify the entry and exit processes in Ericson and Pakes (1995) so as to make them more realistic when

there are a large number of firms. Additionally, the asymptotic theorem in this paper does not hold when

there are aggregate industry shocks, so our model includes only idiosyncratic shocks.13

A.1 Model and Notation

The industry evolves over discrete time periods and an infinite horizon. We index time periods with non-

negative integers t ∈ N (N = {0, 1, 2, . . .}). All random variables are defined on a probability space

(Ω,F ,P) equipped with a filtration {Ft : t ≥ 0}. We adopt a convention of indexing by t variables that are

Ft-measurable.

Each firm that enters the industry is assigned a unique positive integer-valued index. The set of indices

of incumbent firms at time t is denoted by St. At each time t ∈ N, we denote the number of incumbent firms

as nt.

Firm heterogeneity is reflected through firm states. To fix an interpretation, we will refer to a firm’s state

as its quality level. However, firm states might more generally reflect productivity, capacity, the size of its

consumer network, or any other aspect of the firm that affects its profits. At time t, the quality level of firm

i ∈ St is denoted by xit ∈ N.

We define the industry state st to be a vector over quality levels that specifies, for each quality level

x ∈ N, the number of incumbent firms at quality level x in period t. We define the state space S =
13In Weintraub, Benkard, and Van Roy (2008a) we extend the model and analysis to include aggregate shocks.
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{
s ∈ N∞

∣∣∣∑∞x=0 s(x) <∞
}

. Though in principle there are a countable number of industry states, we will

also consider an extended state space S =
{
s ∈ <∞+

∣∣∣∑∞x=0 s(x) <∞
}

. This will allow us, for example,

to consider derivatives of functions with respect to the industry state. For each i ∈ St, we define s−i,t ∈ S

to be the state of the competitors of firm i; that is, s−i,t(x) = st(x) − 1 if xit = x, and s−i,t(x) = st(x),

otherwise. Similarly, n−i,t denotes the number of competitors of firm i.

In each period, each incumbent firm earns profits on a spot market. A firm’s single period expected

profit π(xit, s−i,t) depends on its quality level xit and its competitors’ state s−i,t.

The model also allows for entry and exit. In each period, each incumbent firm i ∈ St observes a positive

real-valued sell-off value φit that is private information to the firm. If the sell-off value exceeds the value of

continuing in the industry then the firm may choose to exit, in which case it earns the sell-off value and then

ceases operations permanently.

If the firm instead decides to remain in the industry, then it can invest to improve its quality level. If a

firm invests ιit ∈ <+, then the firm’s state at time t+ 1 is given by,

xi,t+1 = max (0, xit + w(ιit, ζi,t+1)) ,

where the function w captures the impact of investment on quality and ζi,t+1 reflects uncertainty in the

outcome of investment. Uncertainty may arise, for example, due to the risk associated with a research and

development endeavor or a marketing campaign. Note that this specification is very general as w may take

on either positive or negative values (e.g., allowing for positive depreciation). We denote the unit cost of

investment by d.

In each period new firms can enter the industry by paying a setup cost κ. Entrants do not earn profits

in the period that they enter. They appear in the following period at state xe ∈ N and can earn profits

thereafter.14

Each firm aims to maximize expected net present value. The interest rate is assumed to be positive and

constant over time, resulting in a constant discount factor of β ∈ (0, 1) per time period.

In each period, events occur in the following order:

1. Each incumbent firms observes its sell-off value and then makes exit and investment decisions.

2. The number of entering firms is determined and each entrant pays an entry cost of κ.

3. Incumbent firms compete in the spot market and receive profits.

4. Exiting firms exit and receive their sell-off values.
14Note that it would not change any of our results to assume that the entry state was a random variable.
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5. Investment outcomes are determined, new entrants enter, and the industry takes on a new state st+1.

A.2 Model Primitives

Our model above allows for a wide variety of applied problems. To study any particular problem it is

necessary to further specify the primitives of the model, including the profit function π, the distribution of

the sell-off value φit, the investment impact function w, the distribution of the investment uncertainty ζit,

the unit investment cost d, the entry cost κ, and the discount factor β.

Note that in most applications the profit function would not be specified directly, but would instead result

from a deeper set of primitives that specify a demand function, a cost function, and a static equilibrium

concept. An important parameter of the demand function (and hence the profit function) that we will focus

on below, is the size of the relevant market, which we will denote as m. Later on in the paper we subscript

the profit function with the market size parameter, πm, to explicitly recognize the dependence of profits on

market size. For expositional clarity, the subscript is omitted in the assumptions listed below, implying that

the market size is being held fixed.

A.3 Assumptions

We make several assumptions about the model primitives, beginning with the profit function. An industry

state s ∈ S is said to dominate s′ ∈ S if for all x ∈ N,
∑

z≥x s(z) ≥
∑

z≥x s
′(z). We will denote this

relation by s � s′. Intuitively, competition associated with s is no weaker than competition associated with

s′.

Assumption A.1.

1. For all s ∈ S, π(x, s) is increasing in x.

2. For all x ∈ N and s, s′ ∈ S, if s � s′ then π(x, s) ≤ π(x, s′).

3. For all x ∈ N and s ∈ S, π(x, s) > 0, and supx,s π(x, s) <∞.

4. For all x ∈ N, the function lnπ(x, :) : S → <+ is continuously Fréchet differentiable. Hence, for all
x ∈ N, y ∈ N, and s ∈ S , lnπ(x, s) is continuously differentiable with respect to s(y). Further, for
any x ∈ N, s ∈ S, and h ∈ S such that s+ γh ∈ S for γ > 0 sufficiently small, if∑

y∈N
h(y)

∣∣∣∣∂ lnπ(x, s)
∂s(y)

∣∣∣∣ <∞,
then

d lnπ(x, s+ γh)
dγ

∣∣∣
γ=0

=
∑
y∈N

h(y)
∂ lnπ(x, s)
∂s(y)

.
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The assumptions are fairly weak. Assumption A.1.1 ensures that increases in quality lead to increases in

profit. Assumption A.1.2 states that strengthened competition cannot result in increased profit. Assumption

A.1.3 ensures that profits are positive and bounded. Assumption A.1.4 is technical and requires that log-

profits are Fréchet differentiable. Note that it requires partial differentiability of the profit function with

respect to each s(y). Profit functions that are “smooth”, such as ones arising from random utility demand

models like the logit model, will satisfy this assumption.

We also make assumptions about investment and the distributions of the private shocks:

Assumption A.2.

1. The random variables {φit|t ≥ 0, i ≥ 1} are i.i.d. and have finite expectations and well-defined
density functions with support <+.

2. The random variables {ζit|t ≥ 0, i ≥ 1} are i.i.d. and independent of {φit|t ≥ 0, i ≥ 1}.

3. For all ζ, w(ι, ζ) is nondecreasing in ι.

4. For all ι > 0, P[w(ι, ζi,t+1) > 0] > 0.

5. There exists a positive constant w ∈ N such that |w(ι, ζ)| ≤ w, for all (ι, ζ). There exists a positive
constant ι such that ιit < ι, ∀i,∀t.

6. For all k ∈ {−w, . . . , w}, P[w(ι, ζi,t+1) = k] is continuous in ι.

7. The transitions generated by w(ι, ζ) are unique investment choice admissible .

Again the assumptions are natural and fairly weak. Assumptions 3.2.1 and 3.2.2 imply that investment

and exit outcomes are idiosyncratic conditional on the state. Assumptions 3.2.3 and 3.2.4 imply that in-

vestment is productive. Note that positive depreciation is neither required nor ruled out. Assumption 3.2.5

places a finite bound on how much progress can be made or lost in a single period through investment. As-

sumption 3.2.6 ensures that the impact of investment on transition probabilities is continuous. Assumption

3.2.7 is an assumption introduced by Doraszelski and Satterthwaite (2007) that ensures a unique solution to

the firms’ investment decision problem. It is used to guarantee existence of an equilibrium in pure strategies,

and is satisfied by many of the commonly used specifications in the literature.

We assume that there are a large number of potential entrants who play a symmetric mixed entry strategy.

In that case the number of actual entrants is well approximated by the Poisson distribution (see the appendix

for a derivation of this result). This leads to the following assumptions:

Assumption A.3.

1. The number of firms entering during period t is a Poisson random variable that is conditionally
independent of {φit, ζit|t ≥ 0, i ≥ 1}, conditioned on st.

2. κ > β ·φ, where φ is the expected net present value of entering the market, investing zero and earning
zero profits each period, and then exiting at an optimal stopping time.
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We denote the expected number of firms entering at industry state st, by λ(st). This state-dependent

entry rate will be endogenously determined, and our solution concept will require that it satisfies a zero

expected discounted profits condition. Modeling the number of entrants as a Poisson random variable has

the advantage that it leads to more elegant asymptotic results. Assumption 3.3.2 ensures that the sell-off

value by itself is not sufficient reason to enter the industry.

B Proof Theorem 2.1

B.1 Preliminaries

In an abuse of notation, we consider a restricted state space S =
{
s ∈ <∞+

∣∣∣∑xmax
x=0 s(x) < N

}
.15 We

endowed the set S with a metric for which single-period profit functions are continuous for all s ∈ S.16

We define a set S∞ = {(s0, s1, s2, ...) : st ∈ S; for which there exists s ∈ S, limt→∞ st = s},

endowed with the metric compatible with the product topology.17 The elements of S∞ are denoted by

S = {s0, s1, ...}.

We define a new set of strategiesMS : N ∩ [0, xmax]×S∞ → [0, ι̂]× [0, supx,s π(x, s)/(1− β) + φ].

Similarly, in an abuse of notation, for all µ ∈ MS , x ∈ N ∩ [0, xmax] and S ∈ S∞, we define a new value

function,

V (x, S|µ) = Eµ

[
τi∑
k=0

βk (π(xik, sk)− dιik) + βτi−tφi,τi

∣∣∣xi0 = x

]
.

Let V (x, S) = supµ∈MS V (x, S|µ), ∀x ∈ N ∩ [0, xmax], ∀S ∈ S∞. Note that the state space of this

dynamic programming problem is uncountable. However, because single-period profits, investments, and

expected sell-off value are bounded, the supremum can always be attained simultaneously for all x and S

by a common strategy µ (Bertsekas (2001)).

We define a translation operator G : S∞ → S∞, such that, G(S) = {s1, s2, ...}.

We define the following Bellman operator:

(B.1) TV (x, S) = π(x, s0) + E

[
max

{
φit, sup

ι∈[0,ι̂]
(−dι+ βE [V (xi,t+1, G(S))|xit = x, ιit = ι])

}]
,

for all x ∈ N ∩ [0, xmax] and s ∈ S∞.

15Under our assumptions, this restriction is done without loss of generality for N large enough.
16In general, in our case this is the metric defined by the ‖ · ‖1,g norm. Since now we are restricting the state space to be finite

dimensional, single period profits are continuous in any norm.
17Note that limt→∞ st = s is defined with the metric for which single-period profit functions are continuous for all s ∈ S.
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We define ι : N ∩ [0, xmax]× S∞ → <+ as the greedy policy with respect to V . That is,

(B.2) ι(x, S) = argmax
ι∈[0,ι̂]

(
−dι+ βE

[
V (xi,t+1, G(S))|xit = x, ιit = ι

])
.

By assumption A.2, ι(x, S) exists and is unique for all x ∈ N ∩ [0, xmax] and s ∈ S∞. We also define the

exit strategy ρ : N ∩ [0, xmax]× S∞ → <+ as

(B.3) ρ(x, S) = max
ι∈[0,ι̂]

(
−dι+ βE

[
V (xi,t+1, G(S))|xit = x, ιit = ι

])
.

Finally, we denote µ(x, S) = (ι(x, S), ρ(x, S)).

For all µ ∈ M̂ns and λ ∈ Λ̂ns we define the following operator:

H1(µ, λ) = ({st}∞t=0, λ) , where

(B.4) st+1 = stPµt + 1xeλt,

s0 is the initial state in the NOE, and 1x(y) = 1, if y = x and 1x(y) = 0, otherwise.

The first component of the operator H1 maps a sequence of strategies and entry rates into a sequence of

expected states. The second component applies the identity to the sequence of entry rates.

For all S ∈ S∞ and λ ∈ Λ̂ns, we define the following operator

H2(S, λ) =
{
µ(·, Gt(S)),max{0,min{λt + βV (xe, Gt+1(S))− κ, λmax}}

}∞
t=0

.

The operator H2 maps a sequence of states S and entry rates λ into a sequence of optimal strategies and

updated entry rates.

B.2 Outline of Proof

We prove Theorem 2.1 at the end of the section. In Section B.3, we prove useful lemmas. We provide

an outline here. For µ ∈ M̂ns and λ ∈ Λ̂ns, define the operator H(µ, λ) = H2 ◦ H1(µ, λ). Note that a

fixed point of H is a NOE. The proof uses Brouwer-Schauder-Tychonoff’s theorem (Aliprantis and Border

(2006)) to show that a fixed point of H exists in M̂ns× Λ̂ns. The main steps of the proof are the following:

1. Prove that H1 is a continuous operator (Lemma B.1).
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2. Prove that H2 is a continuous operator (Lemma B.4).

3. Prove that H2 ◦H1 maps elements from M̂ns × Λ̂ns into itself (Lemmas B.1 and B.4 together).

4. Show that if NOE strategies and entry rates converge as time progresses, they converge to OE strate-

gies and entry rate.

B.3 Lemmas

The assumptions in Theorem 2.1 hold throughout this section.

Lemma B.1. The operator H1 maps elements from M̂ns × Λ̂ns into S∞ × Λ̂ns and is continuos.

Proof. First, we prove that the first component ofH1 maps elements from M̂ns×Λ̂ into S∞, that is, {st}∞t=0

in equation (B.4) is a converging sequence.

Note that because profits are bounded and φit has support in <+, there is a probability uniformly

bounded away from zero over all strategies µ ∈ M̂ns, states x ∈ N ∩ [0, xmax], and time periods t ∈ N,

of exiting the industry at each time. Therefore, for all µ ∈ M̂ns, supt≥0 σ (Pµt) < 1, where σ(P ) is the

spectral radius of the matrix P .

Now,

(B.5) st = s0

t−1∏
i=0

Pµi +
t−1∑
i=0

1xeλi
t−1∏
j=i+1

Pµj .

Let

s̃t = λ̃1xe
t−1∑
i=0

P t−i−1
µ̃ .

Note that because σ (Pµ̃) < 1,

lim
t→∞

s̃t = λ̃1xe(I − Pµ̃)−1 = s̃ .

We have that,

st − s̃t = s0

t−1∏
i=0

Pµi +
t−1∑
i=0

λi1xe
t−1∏
j=i+1

Pµj − λ̃1xe
t−1∑
i=0

P t−i−1
µ̃ .

Let ε > 0. Because supt≥0 σ (Pµt) < 1:
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1. There exist s such that for all t > s+ 2,∣∣∣∣∣∣
∣∣∣∣∣∣λmax1xe

t−s−2∑
i=0

t−1∏
j=i+1

Pµj

∣∣∣∣∣∣
∣∣∣∣∣∣ < ε

3
,

and ∣∣∣∣∣
∣∣∣∣∣λ̃1xe

t−s−2∑
i=0

P t−i−1
µ̃

∣∣∣∣∣
∣∣∣∣∣ < ε

3
.

2. There exists T > s+ 2, such that, for all t ≥ T ,∣∣∣∣∣
∣∣∣∣∣s0

t−1∏
i=0

Pµi

∣∣∣∣∣
∣∣∣∣∣ < ε

3
.

Therefore, for t > T we have that,

||st − s̃t|| < ε+

∣∣∣∣∣∣
∣∣∣∣∣∣

t−1∑
i=t−s−1

λi1xe
t−1∏
j=i+1

Pµj − λ̃1xe
t−1∑

i=t−s−1

P t−i−1
µ̃

∣∣∣∣∣∣
∣∣∣∣∣∣

< ε+
t−1∑

i=t−s−1

∣∣∣∣∣∣
∣∣∣∣∣∣λi1xe

t−1∏
j=i+1

Pµj − λ̃1xeP t−i−1
µ̃

∣∣∣∣∣∣
∣∣∣∣∣∣ .

Note that the sum has s terms, for all t. Additionally, limt→∞ λi = λ̃, and limt→∞ Pµt = Pµ̃, because Pµ

is continuous in µ. Therefore,

lim
t→∞
‖st − s̃t‖ < ε .

Take ε→ 0 to conclude that limt→∞ ‖st − s̃t‖ = 0, and hence, limt→∞ st = s̃.

Finally, by equation (B.5), st is continuous because Pµ is continuos in µ. Hence, H1 is continuos.

Now, we show that the operator H2 is continuos. First, we show some preliminary lemmas.

Lemma B.2. The transition operator G is continuous on S∞.

Proof. Consider the sequence {Sk ∈ S∞ : k ≥ 0}, such that limk→∞ S
k = S ∈ S∞. Therefore,

limk→∞ s
k
t = st, for all t ≥ 0. In particular, the latter holds for t ≥ 1. Therefore, limk→∞G(Sk) = G(S).

The result follows.

Lemma B.3. The value function V is the unique solution of Bellman’s equation V = TV within the class

of bounded functions. Moreover, V and µ are continuous in the metric compatible with the product topology

in N ∩ [0, xmax]× S∞.
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Proof. Because single-period profits, investments, and expected sell-off value are bounded, V is the unique

solution of Bellman’s equation V = TV within the class of bounded functions (Bertsekas (2001)). We use

the contraction mapping theorem to prove that, additionally, V is continuous in the metric compatible with

the product topology in N∩ [0, xmax]×S∞. In particular, we show that T has a fixed point within the class

of bounded and continuous functions. Because the fixed point is V , V is continous.

Let Cb(N ∩ [0, xmax] × S∞,<) be the space of continuous and bounded real-valued functions with

domain N ∩ [0, xmax] × S∞. Recall that Cb(N ∩ [0, xmax] × S∞,<) is a complete metric space with the

metric defined by the supremum norm (Marsden and Hoffman (1993)). Also, recall that T is a contraction

in the supremum norm because β < 1 (Bertsekas (2001)). Now, we show that T maps elements from

Cb(N ∩ [0, xmax]× S∞,<) into Cb(N ∩ [0, xmax]× S∞,<).

Take a function V ∈ Cb(N ∩ [0, xmax]× S∞,<). By definition (B.1)

TV (x, S) = π(x, s0) + E

[
max

{
φit, sup

ι∈[0,ι̂]
(−dι+ βE [V (xi,t+1, G(S))|xit = x, ιit = ι])

}]
.

By Lemma B.2, the operator G is continuos. The profit function π and the value function V are continuos.

By assumption A.2, (−dι+ βE [V (xi,t+1, G(S))|xit = x, ιit = ι]) is continuos in ι and V , and the random

variable φit is absolutely continuos. Moreover ι is optimized over a compact space. By Berge’s Maximum

Theorem, TV (x, S) is continuos. Moreover, TV is bounded because profits, investments, and expected sell-

off value are uniformly bounded over all states. Therefore, T maps elements fromCb(N∩[0, xmax]×S∞,<)

into Cb(N ∩ [0, xmax]× S∞,<).

Using the contraction mapping theorem (Marsden and Hoffman (1993)), we conclude that T has a

fixed point among the class of continuous and bounded functions, therefore, V is continous. Using Berge’s

Maximum Theorem again, we conclude that ι and ρ are also continuous.

Lemma B.4. The operator H2 maps elements from S∞ × Λ̂ns into M̂ns × Λ̂ns, and is continuous.

Proof. By Lemmas B.2 and B.3, for each t ≥ 0,
{
µ(·, Gt(S)),max{0,min{λt + βV (xe, Gt+1(S))− κ, λmax}}

}
is continous in (S, λ). Hence, H2 is continuous.

Now, limt→∞G
t(S) = {s, s, s, ...}, for some s ∈ S, because S ∈ S∞. Hence, using the continuity of

µ (Lemma B.3), limt→∞ µ(·, Gt(S)) = µ, for some µ ∈ M̃. By a similar argument, the second component

of H2 also converges. Hence, H2 maps elements from S∞ × Λ̂ns into M̂ns × Λ̂ns.
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B.4 Proof Theorem 2.1

Proof. Because the range of µ ∈ M̃ and λ ∈ M̃ are bounded, by Tychonoff Theorem (Royden (1988)),

M̂ns × Λ̂ns is a compact set with the product topology. It is also a convex set and a subset of a locally

convex Haussdorff space.

By Lemmas B.1 and B.4, H is a continuos operator that maps elements from M̂ns × Λ̂ns into itself.

Hence, by Brouwer-Schauder-Tychonoff’ theorem, there exists a fixed point (µ, λ) of H in the set M̂ns ×

Λ̂ns. The fixed point is a NOE, such that, for all x, limt→∞ µt(x) = µ̃(x) and limt→∞ λt = λ̃.

To finish the proof we show that (µ̃, λ̃) ∈ M × Λ is an OE. Using the argument in Lemma B.1,

it is straightforward to show that the sequence S in the first component of H1(µ, λ) converges to s̃ =

1xe λ̃ (I − Pµ̃)−1, the long-run expected state under oblivious strategy and entry rate (µ̃, λ̃). By Lemma

B.4, µt(·) = µ(·, Gt(S)). Taking limt→∞, using the fact that limt→∞G
t(S) = {s̃, s̃, ...}, and that µ is

continuous (Lemma B.3), we conclude that µ̃(·) is an OE strategy. Because V is continuous (Lemma B.3),

the associated OE value function is V (x, {s̃, s̃, ...}). Because λ is a fixed point of H and taking limt→∞, if

λ̃ = 0, then V (xe, {s̃, s̃, ...}) ≤ 0. Similarly, if λ̃ > 0, then βV (xe, {s̃, s̃, ...}) = κ. Therefore, λ̃ is an OE

entry rate. The result follows.

C Proofs Section 4

Proof of Theorem 4.1. First, let us write,

V0

(
x, s|µ′, µ̃, λ̃

)
− V0

(
x, s|µ̃, λ̃

)
= V0

(
x, s|µ′, µ̃, λ̃

)
− Ṽ0

(
x|µ̃, λ̃, s

)
+ Ṽ0

(
x|µ̃, λ̃, s

)
− V0

(
x, s|µ̃, λ̃

)
.(C.1)

Because µ̃ and λ̃ attain an s−nonstationary oblivious equilibrium, for all x,

Ṽ0

(
x|µ̃, λ̃, s

)
= sup

µ′∈M̃ns

Ṽ0

(
x|µ′, µ̃, λ̃, s

)
= sup

µ′∈Mns

Ṽ0

(
x|µ′, µ̃, λ̃, s

)
,

where the last equation follows because there will always be an optimal nonstationary oblivious strategy

when optimizing a nonstationary oblivious value function even if we consider more general strategies. Let
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µ∗ ∈Mns be such that supµ′∈Mns
V0

(
x, s|µ′, µ̃, λ̃

)
= V0

(
x, s|µ∗, µ̃, λ̃

)
, for all x ∈ N. We have,

(C.2) V0

(
x, s|µ∗, µ̃, λ̃

)
− Ṽ0

(
x|µ̃, λ̃, s

)
≤

Eµ∗,µ̃,λ̃

[
τi∑
k=0

βk
(
π(xik, s−i,k)− π(xik, s̃(µ̃,λ̃,s),k)

) ∣∣∣xi0 = x, s−i,0 = s

]
.

Competitors of firm i are using nonstationary oblivious strategies, therefore, their evolution is not affected

by firm i’s evolution. Hence,

(C.3) V0

(
x, s|µ∗, µ̃, λ̃

)
− Ṽ0

(
x|µ̃, λ̃, s

)
≤

Eµ̃,λ̃

[ ∞∑
k=0

βk
[

max
x′∈{x(k),...,x+kw}

(
π(x′, s−i,k)− π(x′, s̃(µ̃,λ̃,s),k)

)]+ ∣∣∣s−i,0 = s

]
.

On the other hand,

(C.4) Ṽ0

(
x|µ̃, λ̃, s

)
− V0

(
x, s|µ̃, λ̃

)
=

Eµ̃,λ̃

[
τi∑
k=0

βk
(
π(xik, s̃(µ̃,λ̃,s),k)− π(xik, s−i,k)

) ∣∣∣xi0 = x, s−i,0 = s

]
.

The result follows by expressions (C.1), (C.3), and (C.4).

Proof of Theorem 4.2. By equation (C.2):

V0

(
x, s|µ∗, µ̃, λ̃

)
− Ṽ0

(
x|µ̃, λ̃, s

)
≤

Eµ∗,µ̃,λ̃

[
τi∑
k=0

βk
(
π(xik, s−i,k)− π(xik, s̃(µ̃,λ̃,s),k)

) ∣∣∣xi0 = x, s−i,0 = s

]
.

Competitors of firm i are using nonstationary oblivious strategies, therefore, their evolution is not affected

by firm i’s evolution. Using this fact and a similar argument to Theorem 5.2 in Weintraub, Benkard, and

Van Roy (2008a) we obtain:

(C.5) V0

(
x, s|µ∗, µ̃, λ̃

)
− Ṽ0

(
x|µ̃, λ̃, s

)
≤
∞∑
k=0

βkEµ̂,µ̃,λ̃

[[
π(xik, s−i,k)− π(xik, s̃(µ̃,λ̃,s),k)

]+ ∣∣∣xi0 = x, s−i,0 = s

]
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The result of the proof is analogous to Theorem 4.1.

Proof of Corollary 4.1. The proof is analogous to Theorem 4.2, but uses a similar argument to Corollary

B.1 in Weintraub, Benkard, and Van Roy (2008a) to obtain:

(C.6) V0

(
x, s|µ∗, µ̃, λ̃

)
− Ṽ0

(
x|µ̃, λ̃, s

)
≤ Eµ̂,µ̃,λ̃

[ ∞∑
k=0

βk
[
π(xik, s−i,k)− π(xik, s̃(µ̃,λ̃,s),k)

]+ ∣∣∣xi0 = x, s−i,0 = s

]

=
∞∑
k=0

βk
∑

y∈{x,...,x+k}

(
k

y − x

)
(1− δ)y−xδk−(y−x)E

[[
π(y, s−i,k)− π(y, s̃(µ̃,λ̃,s),k)

]+ ∣∣∣s−i,0 = s

]
.

D Proofs Section 6

Let `1,g = {f ∈ <∞+ | ‖f‖1,g <∞}. With some abuse of notation, let S1,g = S1 ∩ `1,g.

D.1 Proof of Proposition 6.1

Proof of Proposition 6.1. It is simple to show that Assumption A.1.4 implies that, for all f, f ′ ∈ S1,g, and

m,n ∈ <+ (see Lemma A.6 in Weintraub, Benkard, and Van Roy (2008b))

| lnπm(xe, f, n)− lnπm(xe, f ′, n)| ≤ ‖f − f ′‖1,g.

By the previous equation and Assumption 6.2, it follows that, for all ε > 0, there exists z ∈ N, such that,

sup
m,t

inf
f̂∈S1,z

| lnπm(xe, f̃ (m)
t , ñ

(m)
t )− lnπm(xe, f̂ , ñ(m)

t )| ≤ ε.

Therefore, for all m ∈ <+, t > 0, there exists f̂ (m)
t ∈ S1,z , such that,

(D.1) exp(−ε)πm(xe, f̂ (m)
t , ñ

(m)
t ) ≤ πm(xe, f̃ (m)

t , ñ
(m)
t ).

Assumption 6.1.4 implies that there exists c1 > 0 and m1 ∈ N, such that, if ñ(m)
t < c1m and m > m1,
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then,

(D.2) πm(xe, f̂ (m)
t , ñ

(m)
t ) >

κ

β
+ 1.

Assumption 6.3 implies that there exists c2 > 0 and m2 such that, λ(m)
max > c2m, for all m > m2. Let

m = max{m1,m2} and c = min{c1, c2}. We show that the proposition holds for c and m given by these

quantities.

Let us assume for contradiction that there exists t > 0 and m > m, such that, ñ(m)
t /m < c. We need to

consider two cases. First, consider λ(m)
t−1 = λ

(m)
max. In this case, ñ(m)

t ≥ λ
(m)
max > cm by Assumption 6.3 and

we arrive to a contradiction.

In the second case, λ(m)
t−1 < λ

(m)
max. By the zero expected value condition in the definition of NOE, it must

be that

βṼ
(m)
t (xe|µ(m), λ(m), s

(m)
0 )− κ ≤ 0.

By equations (D.1) and (D.2), for ε sufficiently small

κ

β
< πm(xe, f̃ (m)

t , ñ
(m)
t ) ≤ Ṽ (m)

t (xe|µ(m), λ(m), s
(m)
0 ),

contradicting the zero expected value condition. The result follows.

D.2 Proof of Proposition 6.2

We start by proving some preliminary lemmas.

Lemma D.1. Let X be a binomial random variable with parameters (p, n). Then,

• If p = 0, for all q ∈ <, n ≥ 1,
E exp(qX)

exp[q(δ + 1)EX]
= 1.

and
E exp(qX)

exp[q(δ − 1)EX]
= 1.

• For all δ > 0, there exists C1 > 0, such that, for all p ∈ (0, 1], n ≥ 1,

(D.3)
E exp(qX)

exp[q(δ + 1)EX]
≤ exp(−C1EX),

where q = ln(1 + δ).
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For all δ > 0, there exists C2 > 0, such that, for all p ∈ (0, 1], n ≥ 1,

(D.4)
E exp(qX)

exp[q(1− δ)EX]
≤ exp(−C2EX),

where q = ln(1− δ).

Proof. The case p = 0 is trivial. Suppose 0 < p ≤ 1.

We use the following inequalities that are easy to show:

(D.5) (1 + x) log(1 + x)− x > 0 and (1− x) log(1− x) + x > 0,∀x ∈ (0, 1).

Using the moment generating function for the binomial distribution, we have that for all q ∈ <,

E exp(qX)
exp[q(δ + 1)EX]

=
(1− p+ peq)n

exp[q(δ + 1)EX]
= exp

{
−EX

[
q(1 + δ)− 1

p
log(1− p+ peq)

]}

Note that 1
p log(1 + (eq − 1)p) is decreasing in p, for all q. Its derivative has the opposite sign to

(1 + (eq − 1)p) log(1 + (eq − 1)p)− (eq − 1)p > 0.

So using that limp→0
1
p log(1− p+ peq) = exp(q)− 1 we have that:

q(1 + δ)− 1
p

log(1− p+ peq) ≥ q(1 + δ)− exp(q) + 1, ∀p ∈ (0, 1], ∀q ∈ <.

The right-hand side of the above inequality is maximizied at q = ln(1 + δ) and its maximum is C1 =

(1 + δ) ln(1 + δ)− δ > 0, which is positive by equation (D.5). Inequality (D.3) then follows.

To show inequality (D.4) follow a similar argument, noting that,

E exp(qX)
exp[q(1− δ)EX]

=
(1− p+ peq)n

exp[q(1− δ)EX]
= exp

{
−EX

[
q(1− δ)− 1

p
log(1− p+ peq)

]}
,

and choose q = log(1− δ) and C2 = (1− δ) log(1− δ) + δ > 0.

Lemma D.2. Let Assumptions A.1, A.2, A.3, 6.1.4, 6.2, and 6.3 hold. Then, for all δ > 0, there exists c > 0

and m ∈ N, such that for all t > 0 and m > m,

P

[∣∣∣∣∣n(m)
t

ñ
(m)
t

− 1

∣∣∣∣∣ ≥ δ
]
≤ 2e−cm.
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Proof. Let Bxt be a binomial random variable that represents the number of firms that at the initial period

were at quality level x and are still inside the industry at time period t. Let Ykt be a random variable that

represents the number of firms that entered the industry at time period 0 < k ≤ t and are still inside the

industry at time period t. Because entry at every time period t ≥ 1 is represented by a Poisson random

variable and firms’ trajectories are independent (because they use NOE strategies), we have that Ykt is

Poisson. Let Yt =
∑t

k=1 Ykt. The random variable Yt is Poisson because it is a sum of independent Poisson

random variables. Hence, we can write

nt =
∑
x

Bxt + Yt,

where each random variable Bxt is binomial and Yt is Poisson. Moreover, these random variables are

independent. Note that for each market size m,
∑

x s̃
(m)
0 (x) <∞, hence, the sum above has a finite number

of terms Bxt for each market size m.

We have that

P

(
n

(m)
t

ñ
(m)
t

− 1 ≥ δ

)
≤

E exp
(∑

x qB
(m)
xt + qY

(m)
t

)
exp

[
q(δ + 1)

(∑
xEB

(m)
xt + EY

(m)
t

)] =

=
E exp(qY (m)

t )

exp[q(δ + 1)EY (m)
t ]

∏
x

E exp(qB(m)
xt )

exp[q(δ + 1)EB(m)
xt ]

Now, using Lemma D.1 and a similar analysis for the Poisson distribution based on the moment generating

function, there exists C1 > 0, such that, for all t > 0 and m ∈ <,18

P

(
n

(m)
t

ñ
(m)
t

− 1 ≥ δ

)
≤ exp(−C1EY

(m)
t )

∏
x

exp(−C1EB
(m)
xt ) =

= exp

(
−C1E

[
Y

(m)
t +

∑
x

B
(m)
xt

])
= exp(−C1ñ

(m)
t ).

Now, by Proposition 6.1, there exists C2 > 0 and m, such that, for all m > m and t > 0, ñ(m)
t ≥ C2m.

Therefore, there exists c = C1C2 and m, such that, for all t > 0 and m > m,

(D.6) P

(
n

(m)
t

ñ
(m)
t

− 1 ≥ δ

)
≤ exp(−cm).

18The same constant C1 as in inequality (D.3) serves to bound the term corresponding to the Poisson random variable.
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A similar bound can be derived for P
(

1− n
(m)
t

ñ
(m)
t

≥ δ
)

. The result follows by putting together both

bounds.

Proof of Proposition 6.2. Convergence of n(m)
t /ñ

(m)
t follows from Lemma D.2. To complete the proof,

we will establish convergence of ‖f (m)
t − f̃ (m)

t ‖1,g, for all t > 0. Note that for any z ∈ N,

‖f (m)
t − f̃ (m)

t ‖1,g ≤ zmax
x≤z

g(x)|f (m)
t (x)− f̃ (m)

t (x)|+
∑
x>z

g(x)f (m)
t (x) +

∑
x>z

g(x)f̃ (m)
t (x)

≡ A(m)
z +B(m)

z + C(m)
z ,

where we have omitted the dependence on t to simplify notation. We will show that for any z, A(m)
z

converges in probability to zero, that for any δ > 0, for sufficiently large z, limm→∞ P[C(m)
z ≥ δ] = 0, and

that for any δ > 0 and ε > 0, for sufficiently large z, lim supm→∞ P[B(m)
z ≥ δ] ≤ ε/δ. The assertion that

‖f (m)
t − f̃ (m)

t ‖1,g →p 0 follows from these facts.

By Assumption 6.2, for any δ > 0, for sufficiently large z, lim supm→∞C
(m)
z < δ, and therefore,

limm→∞ P[C(m)
z ≥ δ] = 0. By Tonelli’s Theorem, E[B(m)

z ] = C
(m)
z . Invoking Markov’s inequality, for

any δ > 0 and ε > 0, for sufficiently large z, lim supm→∞ P[B(m)
z ≥ δ] ≤ ε/δ.

To finish the proof we show that for any z, A(m)
z converges in probability to zero. In particular, we show

that, for all x, |f (m)
t (x)− f̃ (m)

t (x)| →p 0 using mathematical induction. First, note that the result holds for

t = 0 because f̃ (m)
0 (x) = f

(m)
0 (x) (recall that at t = 0, s(m)

0 = s̃
(m)
0 ). To complete our inductive argument,

we now show that |f (m)
k (x)− f̃ (m)

k (x)| →p 0, ∀x, implies |f (m)
k+1(x)− f̃ (m)

k+1(x)| →p 0, ∀x.

We define

D
(m)
k (x) =

1

n
(m)
k+1

n̂(m)
k

∑
y∈[x±w]

f̂
(m)
k (y)p̂(m)

k (y, x) + 1{x=xe}e
(m)
k

 ,

where ŝ(m)
k (y) is the number of firms at time k in state y in marketm after exit decisions have been realized;

n̂
(m)
k =

∑
y ŝ

(m)
k (y) is the total number of firms after exit decisions have been realized (and before new

entrants enter the industry); f̂ (m)
k (y) = ŝ

(m)
k (y)

n̂
(m)
k

is the fraction of firms at time k in state y after exit decisions

have been realized; e(m)
k is the number of entrants at time k + 1 in market m; p̂(m)

k (y, x) is the probability

of transitioning from state y to state x conditional on staying in the industry; and 1{·} is the indicator

function. Let p(m)
k (y) be the probability of staying in the industry for a firm in state y in market m in

time period k, and p(m)
k (y, x) the unconditional probability of transitioning from state y to state x. Then,

p̂
(m)
k (y, x) = p

(m)
k (y,x)

p
(m)
k (y)

. Note that this conditional probability is well defined for all m, k, x, y, because by
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assumption, πm(x, s) > 0, ∀m,x, s, and the random variables φit have support in <+.

By the triangle inequality |f (m)
k+1(x)−f̃ (m)

k+1(x)| ≤ |f (m)
k+1(x)−D(m)

k (x)|+|D(m)
k (x)−f̃ (m)

k+1(x)|. Therefore

it suffices to show that every term at the right hand side of the inequality goes to zero in probability as the

market size grows.

First, we show that |f (m)
k+1(x)−D(m)

k (x)| →p 0. We can decompose f (m)
k+1(x) as

f
(m)
k+1(x) =

1

n
(m)
k+1

 ∑
y∈[x±w]

Zy(x) + 1{x=xe}e
(m)
k

 ,

where Zy(x) is a binomial random variable with parameters {n̂(m)
k f̂

(m)
k (y), p̂(m)

k (y, x)}. For any ε > 0,

conditional on f̂ (m)
k , n̂

(m)
k , n

(m)
k+1 > 0,

P(|f (m)
k+1(x)−D(m)

k (x)| > ε) = P

∣∣∣∣∣∣
∑

y∈[x±w]

Zy(x)− n̂(m)
k

∑
y∈[x±w]

f̂
(m)
k (y)p̂(m)

k (y, x)

∣∣∣∣∣∣ > εn
(m)
k+1


≤

n̂
(m)
k

ε2(n(m)
k+1)2

∑
y∈[x±w]

f̂
(m)
k (y)p̂(m)

k (y, x)(1− p̂(m)
k (y, x)) ≤ 2w + 1

ε2n
(m)
k+1

,

where the first inequality follows by Chebyshev’s inequality. Integrating over f̂ (m)
k , n̂

(m)
k , n

(m)
k+1, it follows

that unconditionally,

P(|f (m)
k+1(x)−D(m)

k (x)| > ε) ≤ (2w + 1)/ε2E
[
1/n(m)

k+11{n(m)
k+1>0}

]
+ P

(
n

(m)
k+1 = 0

)
.

Because n(m)
k+1/ñ

(m)
k+1 →p 1 and ñ(m)

k+1 → ∞ (Proposition 6.1) it must be that n(m)
k+1 →p ∞. Therefore,

1/n(m)
k+1 →p 0, and by the bounded convergence theorem we have that E

[
1/n(m)

k+11
n

(m)
k+1>0

]
→ 0. It follows

that |f (m)
k+1(x)−D(m)

k (x)| →p 0.

Now, we show that |D(m)
k (x)− f̃ (m)

k+1(x)| →p 0. By definition,

f̃
(m)
k+1(x) =

1

ñ
(m)
k+1

 ∑
y∈[x±w]

ñ
(m)
k f̃

(m)
k (y)p(m)

k (y, x) + 1{x=xe}λ
(m)
k


Suppose x 6= xe. Then, by the triangle inequality,

|D(m)
k − f̃ (m)

k+1(x)| ≤
∑

y∈[x±w]

p̂
(m)
k (y, x)

∣∣∣∣∣ ŝ
(m)
k (y)

n
(m)
k+1

−
ñ

(m)
k f̃

(m)
k (y)p(m)

k (y)

ñ
(m)
k+1

∣∣∣∣∣ .
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It suffice to show that each term in the sum converges to zero in probability.

We can write:

∣∣∣∣∣ ŝ
(m)
k (y)

n
(m)
k+1

−
ñ

(m)
k f̃

(m)
k (y)p(m)

k (y)

ñ
(m)
k+1

∣∣∣∣∣ =

∣∣∣∣∣∣∣
n

(m)
k f

(m)
k (y)

n
(m)
k+1s

(m)
k (y)

s
(m)
k (y)∑
i=1

W
(m)
iky −

ñ
(m)
k

ñ
(m)
k+1

f̃
(m)
k (y)p(m)

k (y)

∣∣∣∣∣∣∣ ,(D.7)

where W (m)
iky are i.i.d. Bernoulli random variables with mean p(m)

k (y) that are equal to one if firm i at state

y stays inside the industry at time period k in market m. We consider two cases:

(i) Suppose lim infm→∞ f̃
(m)
k (y) > 0. Because |f (m)

k (y) − f̃ (m)
k (y)| →p 0 by the inductive hypothe-

sis and n(m)
k →p ∞, one can check that in this case s(m)

k (y) →p ∞. Then, it is simple to verify

using Chebyshev’s inequality that 1/s(m)
k (y)

∑s
(m)
k (y)
i=1 W

(m)
iky − p

(m)
k (y) →p 0. Because for all k,

n
(m)
k /ñ

(m)
k →p 1, we have that (n(m)

k /ñ
(m)
k )(ñ(m)

k+1/n
(m)
k+1)→p 1. Also, |f (m)

k (y)− f̃ (m)
k (y)| →p 0 by

the inductive hypothesis. Finally, Proposition 6.1 together with Assumption 6.3 imply that ñ(m)
k /ñ

(m)
k+1

remains uniformly bounded from above over all market sizes. The previous convergence results to-

gether with the latter uniform bound imply that (D.7)→p 0.

(ii) Suppose lim infm→∞ f̃
(m)
k (y) = 0. For a subsequence for which limr→∞ f̃

(mr)
k (y) > 0, we can

apply argument (i). Now, we consider a subsequence for which limr→∞ f̃
(mr)
k (y) = 0. Consid-

ering that ñ(m)
k /ñ

(m)
k+1 remains uniformly bounded from above over all market sizes, we have that

limr→∞ ñ
(mr)
k f̃

(mr)
k (y)p(mr)

k (y)/ñ(mr)
k+1 = 0. Now, |f (m)

k (y) − f̃ (m)
k (y)| →p 0 implies f (mr)

k →p 0.

Also, 1/s(m)
k (y)

∑s
(m)
k (y)
i=1 W

(m)
iky ≤ 1. Moreover, (n(m)

k /ñ
(m)
k )(ñ(m)

k+1/n
(m)
k+1) →p 1. These facts with

the converging together lemma imply that n
(mr)
k f

(mr)
k (y)

n
(mr)
k+1 s

(mr)
k (y)

∑s
(mr)
k (y)
i=1 W

(mr)
iky →p 0. We conclude that

(D.7)→p 0.

If x 6= xe we need to additionally show that
∣∣∣∣ λ(m)

k

ñ
(m)
k+1

− e
(m)
k

n
(m)
k+1

∣∣∣∣→p 0. By the fact that
n

(m)
k+1

ñ
(m)
k+1

→p 1 it suffices

to show that
∣∣∣∣ λ(m)

k

ñ
(m)
k+1

− e
(m)
k

ñ
(m)
k+1

∣∣∣∣→p 0. Using Chebyshev’s inequality and the fact that e(m)
k is distributed Poisson

we have that

P(|e(m)
k − λ(m)

k | > εñ
(m)
k+1) ≤

λ
(m)
k

(εñ(m)
k+1)2

≤ 1

εñ
(m)
k+1

→ 0.

Hence, for all x, |f (m)
t (x)− f̃ (m)

t (x)| →p 0, concluding the proof.

D.3 Proof of Theorem 6.1

We start by proving some preliminary lemmas.
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Lemma D.3. Let Assumptions A.1, A.2, A.3, 6.1, 6.2 and 6.3 hold. Then, for all x ∈ N and t > 0,

sup
m

sup
µ∈M

Eµ

[ ∞∑
k=t

βk−t sup
f∈S1

πm(xik, f, ñ
(m)
k )

∣∣∣ xit = x

]
<∞.

Proof. Take c > 0 and m given by Proposition 6.1. Using Assumption 6.1.3 and the fact that for all m > m

and t > 0, ñ(m)
t ≥ cm, we have that

sup
m

sup
µ∈M

Eµ

[ ∞∑
k=t

βk−t sup
f∈S1

πm(xik, f, ñ
(m)
k )

∣∣∣ xit = x

]
≤ sup

µ∈M
Eµ

[ ∞∑
k=t

βk−tπ(xik)
∣∣∣ xit = x

]
<∞.

The result follows.

The following technical lemma follows immediately from Assumption 6.1.3. We omit the proof.

Lemma D.4. Let Assumptions A.1.3 and 6.1.2 hold. Then, for all ε > 0 there exists δ > 0 such that for all

n, n̂ ∈ <+ satisfying |n/n̂− 1| < δ,

sup
m∈<+,x∈N,f∈S1

∣∣∣∣πm(x, f, n)− πm(x, f, n̂)
πm(x, f, n̂)

∣∣∣∣ ≤ ε.
Lemma D.5. Let Assumptions A.1, A.2, A.3, 6.1, 6.2, and 6.3 hold. Then, for all sequences {µ̂(m) ∈Mns}

and x ∈ N,

lim
m→∞

Eµ̂(m),µ(m),λ(m)

[
τi∑
k=0

βk|πm(xik, s
(m)
−i,k)− πm(xik, f

(m)
−i,k, ñ

(m)
k )|

∣∣∣ xi0 = x, s
(m)
−i,0 = s̃

(m)
0

]
= 0.

Proof. For the purpose of this proof, we will assume that all expectations are conditioned on xi0 = x and

s
(m)
−i,0 = s̃

(m)
0 . Let ∆(m)

it = |πm(xit, s
(m)
−i,t) − πm(xit, f

(m)
−i,t, ñ

(m)
t )|. Fix ε > 0 and let δ > 0 satisfy the

assertion of Lemma D.4. Let Z(m)
t denote the event

∣∣∣n(m)
t /ñ

(m)
t − 1

∣∣∣ ≥ δ. Applying Tonelli’s Theorem and
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noting that s(m)
−i,0 = s̃

(m)
0 we obtain,

Eµ̂(m),µ(m),λ(m)

[
τi∑
k=0

βk∆(m)
ik

]
≤

∞∑
k=1

βkEµ̂(m),µ(m),λ(m)

[
∆(m)
ik

]
=

∞∑
k=1

βk
(
Eµ̂(m),µ(m),λ(m)

[
∆(m)
ik 1¬Z(m)

k

]
+ Eµ̂(m),µ(m),λ(m)

[
∆(m)
ik 1

Z
(m)
k

])
≤

∞∑
k=1

βk
(
εEµ̂(m),µ(m),λ(m)

[
πm(xik, f

(m)
−i,k, ñ

(m)
k )

]
+O(m)P[Z(m)

k ]
)

≤ εEµ̂(m),µ(m),λ(m)

[ ∞∑
k=1

βk sup
f∈S1

πm(xik, f, ñ
(m)
k )

]
+
∞∑
k=1

βkO(m)P[Z(m)
k ],

where the second to last inequality follows from Assumption 6.1.1 and Lemma D.4. By Lemma D.2, there

exist constants c,m such that P[Z(m)
k ] ≤ 2e−cm, for all k > 0 and m > m. Hence, the second sum above

converges to zero. Moreover, ε is arbitrary and the expected sum in the first term is uniformly bounded over

all market sizes (by Lemma D.3). The result follows.

The following technical lemma is proved in Weintraub, Benkard, and Van Roy (2008b).

Lemma D.6. Let Assumptions A.1.3 and A.1.4 hold. Then, for all ε > 0 there exists δ > 0 such that for

f, f̂ ∈ S1,g satisfying ‖f − f̂‖1,g < δ,

sup
m∈<+,x∈N,n∈<+

∣∣∣∣∣πm(x, f, n)− πm(x, f̂ , n)

πm(x, f̂ , n)

∣∣∣∣∣ ≤ ε.
Lemma D.7. Let Assumptions A.1, A.2, A.3, 6.1, 6.2, and 6.3 hold. Then, for all sequences {µ̂(m) ∈Mns}

and x ∈ N,

lim
m→∞

Eµ̂(m),µ(m),λ(m)

[
τi∑
k=0

βk|πm(xik, f
(m)
−i,k, ñ

(m)
k )− πm(xik, s̃

(m)
k )|

∣∣∣ xi0 = x, s
(m)
−i,0 = s̃

(m)
0

]
= 0.

Proof. For the purpose of this proof, we will assume that all expectations are conditioned on xi0 = x and

s
(m)
−i,0 = s̃

(m)
0 . Let ∆(m)

it = |πm(xit, f
(m)
−i,t, ñ

(m)
t ) − πm(xit, s̃

(m)
t )|. Fix ε > 0 and let δ satisfy the assertion

of Lemma D.6. Let Z(m)
t denote the event ‖f (m)

t − f̃ (m)
t ‖1,g ≥ δ. Applying Tonelli’s Theorem and noting
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that s(m)
−i,0 = s̃

(m)
0 we obtain,

Eµ̂(m),µ(m),λ(m)

[
τi∑
k=0

βk∆(m)
ik

]
≤

∞∑
k=1

βkEµ̂(m),µ(m),λ(m)

[
∆(m)
ik

]
=

∞∑
k=1

βk
(
Eµ̂(m),µ(m),λ(m)

[
∆(m)
ik 1¬Z(m)

k

]
+ Eµ̂(m),µ(m),λ(m)

[
∆(m)
ik 1

Z
(m)
k

])
≤ εC +

∞∑
k=1

βkEµ̂(m),µ(m),λ(m)

[
∆(m)
ik 1

Z
(m)
k

]
,(D.8)

for some constant C > 0. The last inequality follows from Lemmas D.3 and D.6.

Note that ∆(m)
ik ≤ 2 supf∈S1 πm(xik, f, ñ

(m)
k ). Hence,

∞∑
k=1

βkEµ̂(m),µ(m),λ(m)

[
∆(m)
ik 1

Z
(m)
k

]
≤

∞∑
k=1

βkEµ̂(m),µ(m),λ(m)

[
2 sup
f∈S1

πm(xik, f, ñ
(m)
k )1

Z
(m)
k

]

≤ 2 sup
µ∈Mns

∞∑
k=1

βkEµ,µ(m),λ(m)

[
sup
f∈S1

πm(xik, f, ñ
(m)
k )1

Z
(m)
k

]

= 2 sup
µ∈Mns

∞∑
k=1

βkEµ

[
sup
f∈S1

πm(xik, f, ñ
(m)
k )

]
P[Z(m)

k ],(D.9)

because supµ∈Mns
is attained by an oblivious strategy, so f (m)

−i,k evolves independently from xik. Assump-

tion 6.1.3 together with Proposition 6.1 implies

sup
µ∈Mns

Eµ

[ ∞∑
k=1

βk sup
f∈S1

πm(xik, f, ñ
(m)
k )P[Z(m)

k ]

]
≤ sup

µ∈M
Eµ

[ ∞∑
k=1

βkπ(xik)P[Z(m)
k ]

]
.

By the second part of Assumption 6.1.3, supµ∈MEµ
[∑∞

k=1 β
kπ(xik)

]
< ∞. Moreover, by Proposition

6.2, for all k ≥ 1, P(Z(m)
k ) → 0 as m → ∞. Then by the dominated convergence theorem (D.9)→m 0.

Finally, ε in (D.8) is arbitrary. The result follows.

Proof of Theorem 6.1. Let µ∗(m) be an optimal (non-oblivious) best response to (µ(m), λ(m)); in particular,

V
(m)
0 (x, s(m)

0 |µ∗(m), µ(m), λ(m)) = sup
µ∈Mns

V
(m)
0 (x, s(m)

0 |µ, µ(m), λ(m)).

Let

V̂ (m)(x) = V
(m)
0 (x, s(m)

0 |µ∗(m), µ(m), λ(m))− V (m)
0 (x, s(m)

0 |µ(m), λ(m)) ≥ 0.

The ANME property, which we set out to establish, asserts that for all x ∈ N, limm→∞ V̂
(m)(x) = 0.
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For any m, because µ(m) and λ(m) attain a NOE, for all x,

Ṽ
(m)
0 (x|µ(m), λ(m), s

(m)
0 ) = sup

µ̃∈M̃ns

Ṽ
(m)
0 (x|µ̃, µ(m), λ(m), s

(m)
0 ) = sup

µ̃∈Mns

Ṽ
(m)
0 (x|µ̃, µ(m), λ(m)s

(m)
0 ),

where the last equation follows because there will always be an optimal nonstationary oblivious strategy

when optimizing a nonstationary oblivious value function even if we consider more general strategies. It

follows that

V̂ (m)(x) =
(
V

(m)
0 (x, s(m)

0 |µ∗(m), µ(m), λ(m))− Ṽ (m)
0 (x|µ(m), λ(m), s

(m)
0 )

)
+
(
Ṽ

(m)
0 (x|µ(m), λ(m), s

(m)
0 )− V (m)

0 (x, s(m)
0 |µ(m), λ(m))

)
≤

(
V

(m)
0 (x, s(m)

0 |µ∗(m), µ(m), λ(m))− Ṽ (m)
0 (x|µ∗(m), µ(m), λ(m)s

(m)
0 )

)
+
(
Ṽ

(m)
0 (x|µ(m), λ(m)s

(m)
0 )− V (m)

0 (x, s(m)
0 |µ(m), λ(m))

)
≡ A(m)(x) +B(m)(x).

To complete the proof, we will establish that A(m)(x) and B(m)(x) converge to zero.

Let ∆(m)
it = |πm(xit, s

(m)
−i,t)− πm(xit, s̃

(m)
t )|. It is easy to see that

A(m)(x) ≤ Eµ∗(m),µ(m),λ(m)

[
τi∑
k=0

βk∆(m)
ik

∣∣∣ xi0 = x, s
(m)
−i,0 = s

(m)
0

]

B(m)(x) ≤ Eµ(m),λ(m)

[
τi∑
k=0

βk∆(m)
ik

∣∣∣ xi0 = x, s
(m)
−i,0 = s

(m)
0

]
,

By the triangle inequality,

∆(m)
ik ≤ |πm(xik, s

(m)
−i,k)− πm(xik, f

(m)
−i,k, ñ

(m)
k )|+ |πm(xik, f

(m)
−i,k, ñ

(m)
k )− πm(xik, s̃

(m)
k )|.

The result therefore follows from Lemmas D.5 and D.7.

E Figures
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Figure 1: NOE evolution from original OE to new OE after a shock to profits.

t=0 Time Period

Original OE
New OE

NOE Evolution

Figure 2: Percentage approximation error bound for different market sizes.
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vertical differentiation

Low level of 
vertical differentiation
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Figure 3: NOE total number of firms and entry rate as a function of the time period for low level
of vertical differentiation.

Expected total 
number of firms

Entry rate

Figure 4: NOE total number of firms and entry rate as a function of the time period for high level
of vertical differentiation.
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