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Abstract

In this paper we consider the nonparametric identification of Markov dynamic games
models in which each firm has its own unobserved state variable, which is persistent
over time. This class of models includes most models in the Ericson and Pakes (1995)
and Pakes and McGuire (1994) framework. We provide conditions under which the
joint Markov equilibrium process of the firms’ observed and unobserved variables can
be nonparametrically identified from data. For stationary continuous action games, we
show that only three observations of the observed component are required to identify
the equilibrium Markov process of the dynamic game. When agents’ choice variables
are discrete, but the unobserved state variables are continuous, four observations are
required.

1 Introduction

In this paper, we consider nonparametric identification in Markovian dynamic games models

where which each agent may have its own serially-correlated unobserved state variable.

This class of models includes most models in the Ericson and Pakes (1995) and Pakes

and McGuire (1994) framework. These models have been the basis for much of the recent

∗The authors can be reached at yhu@jhu.edu and mshum@caltech.edu.
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empirical applications of dynamic game models. Throughout, by “unobservable”, we mean

variables which are commonly observed by all agents, and condition their actions, but are

unobserved by the researcher.

Consider a dynamic duopoly game in which two firms compete. It is straightforward to

extend our assumptions and arguments to the case of N firms. A dynamic duopoly is

described by the sequence of variables
(
Wt+1,X

∗
t+1

)
, (Wt,X

∗
t ) , ..., (W1,X

∗
1 ) where

Wt = (W1,t,W2,t) ,

X∗
t =

(
X∗

1,t,X
∗
2,t

)
.

Wi,t stands for the observed information on firm i and X∗
i,t denote the unobserved hetero-

geneity of firm i at period t, which we allow to vary over time and be serially-correlated.

In empirical dynamic games model, the observed variables Wi,t consists of two variables:

Wi,t ≡ (Yi,t,Mi,t),

where Yi,t denotes firm i’s choice, or control variable in period t, and Mi,t denotes the state

variables of firm i which are observed by both the firms and the researcher. We assume that

the serially-correlated variables X∗
1,t and X∗

2,t are observed by both firms prior to making

their choices of Y1,t, Y2,t in period t, but the researcher never observes X∗
t . For simplicity,

we assume that each firm’s variables Yi,t,Mi,t,X
∗
i,t are scalar-valued.

Main Results: Our goal is to identify the density

fWt,X
∗

t |Wt−1,X∗

t−1
, (1)

which corresponds to the equilibrium transition density of the choice and state variables

along the Markov equilibrium path of the dynamic game. In Markovian dynamic settings,

the transition density can be factored into two components of interest:

fWt,X∗

t |Wt−1,X∗

t−1
= fYt,Mt,X∗

t |Yt−1,Mt−1,X∗

t−1

= fYt|Mt,X
∗

t︸ ︷︷ ︸
CCP

· fMt,X
∗

t |Yt−1,Mt−1,X∗

t−1︸ ︷︷ ︸
state transition

. (2)
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The first term denotes the conditional choice probabilities (CCP) for the firms’ actions

in period t, conditional on the current state (Mt,X
∗
t ). In the Markov equilibrium, firms’

optimal strategies typically depends just on the current state variables (Mt,X
∗
t ), but not

past values. The second term denotes is the equilibrium Markovian transition probabilities

for the state variables (Mt,X
∗
t ). As shown in Hotz and Miller (1993) and Magnac and

Thesmar (2002), once these two structural components are known, it is possible to recover

the “deep” structural elements of the model, including the period utility functions.

In an earlier paper (Hu and Shum (2008)), we focused on nonparametric identification of

Markovian single-agent dynamic optimization models. There, we showed that in stationary

models, four periods of data Wt+1, . . . ,Wt−2 were enough to identify the Markov transition

Wt,X
∗
t |Wt−1,X

∗
t−1, while five observations Wt+1, . . . ,Wt−3 were required for the nonsta-

tionary case. In this paper, we focus on Markovian dynamic games. We show that, once

additional features of the dynamic optimization framework are taken into account, only

three observations Wt, . . . ,Wt−2 are required to identify Wt,X
∗
t |Wt−1,X

∗
t−1 in the station-

ary case, when Yt is a continuous choice variable. If Yt is a discrete choice variable (while

X∗
t is continuous), then four observations are required for identification.

Related literature Recently, there has been a growing literature related to identifica-

tion and estimation of dynamic games. Papers include Aguirregabiria and Mira (2007),

Pesendorfer and Schmidt-Dengler (2007), Bajari, Benkard, and Levin (2007), Pakes, Os-

trovsky, and Berry (2007), and Bajari, Chernozhukov, Hong, and Nekipelov (2007). Our

main contribution relative to this literature is to provide nonparametric identification re-

sults for the case where there are firm-specific unobserved state variables, which are seri-

ally correlated over time. Allowing for firm-specific and serially-correlated unobservables

is important, because the dynamic game models in Ericson and Pakes (1995) and Pakes

and McGuire (1994) (see also Doraszelski and Pakes (2007)), which provide an important

framework for much of the existing empirical work in dynamic games, explicitly contain

firm-specific “product quality” variables which are typically unobserved by researchers.

A few recent papers have considered estimation methodologies for games with serially-

correlated unobservables. Arcidiacono and Miller (2006) develop an EM-algorithm for es-

timating dynamic games where the unobservables are assumed to follow a discrete Markov

process. Siebert and Zulehner (2008) extend the Bajari, Benkard, and Levin (2007) ap-

proach to estimate a dynamic product choice game for the computer memory industry where

each firm experiences a serially-correlated productivity shock. Finally, Blevins (2008) de-
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velops simulation estimators for dynamic games with serially-correlated unobservables, uti-

lizing state-of-the-art recursive importance sampling (“particle filtering”) techniques. How-

ever, all these papers focus on estimation of parametric models in which the parameters are

assumed to be identified, whereas this paper concerns nonparametric identification.

The class of models considered in this paper also resemble models analyzed in the dynamic

treatment effects literature in labor economics (eg. Cunha, Heckman, and Schennach (2006),

Abbring and Heckman (2007), Heckman and Navarro (2007)). Specifically, Cunha, Heck-

man, and Schennach (2006) apply the result of Hu and Schennach (2008) to show nonpara-

metric identification of a nonlinear factor model consisting of (Wt,W
′
t ,W

′′
t ,X∗

t ), where the

observed processes {Wt}
T
t=1

, {W ′
t}

T
t=1

, and {W ′′
t }

T
t=1

constitute noisy measurements of the

latent process {X∗
t }

T
t=1

, contaminated with random disturbances. In contrast, we consider

a different setting where (Wt,X
∗
t ) jointly evolves as a dynamic first-order Markov process.

2 Examples of Dynamic Duopoly Games

To make things concrete, we present two examples of a dynamic duopoly problem, both of

which are in the “dynamic investment” framework of Ericson and Pakes (1995) and Pakes

and McGuire (1994), but simplified without an entry decision.

Example 1 is a model of learning by doing in a durable goods market, similar to Benkard

(2004). There are two heterogeneous firms i = 1, 2, with each firm described by two time-

varying state variables (Mi,t,X
∗
i,t). Mi,t denotes the “installed base” of firm i, which are the

share of consumers who have previously bought firm i’s product. X∗
i,t is firm i’s marginal

cost, which is unobserved to the econometrician, and is an unobserved state variable. There

is learning by doing, in the sense that increases in the installed base will lower future

marginal costs. In each period, each firm’s choice variable Yi,t is its period t price, which

affects the demand for its product in period t and thereby the future installed base, which

in turn affects future production costs.

In the following, let Yt ≡ (Y1,t, Y2,t), and similarly for Mt and X∗
t . Let St ≡ (Mt,X

∗
t ) denote

the payoff-relevant state variables of the game in period t. Si,t ≡ (Mi,t,X
∗
i,t), for i = 1, 2,

denotes firm i’s state variables. Each period, firms earn profits by selling their products to
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consumers who have not yet bought the product. The demand curve for firm i’s product is

qi(Yt,Mt, ηi,t)

which depends on the price and installed base of both firms’ products. Firm i’s demand also

depends on ηi,t, a firm-specific demand shock. As in Aguirregabiria and Mira (2007) and

Pesendorfer and Schmidt-Dengler (2007), we assume that ηi,t is privately observed by each

firm; that is, only firm 1, but not firm 2, observes η1,t, making this a game of incomplete

information. Furthermore, we assume that the demand shocks ηi,t are i.i.d. across firm

and periods, and distributed according to a distribution K which is common knowledge to

both firms. The main role of the variable ηi,t is to generate randomness in Yi,t, even after

conditioning on (Mt,X
∗
t ).

The period t profits of firm i can then be written:

Πi(Yt, St, ηi,t) = qi(Yt,Mt, ηi,t) ∗ (Yi,t − X∗
i,t)

where Yi,t − X∗
i,t is firm i’s margin from each unit that it sells.

Installed base evolves according to the conditional distribution:

Mi,t+1 ∼ G(·|Mi,t, Yi,t). (3)

One example is to model the incremental change Mi,t+1 − Mi,t as a log-normal random

variable

log(Mi,t+1 − Mi,t) ∼ qi(Yt,Mt, ηi,t) + ǫi,t, ǫi,t ∼ N(0, σ2
ǫ ), i.i.d.-(i, t).

Marginal cost evolves according to the conditional distribution

X∗
i,t+1 ∼ H(·|X∗

i,t,Mi,t+1). (4)

One example is

X∗
i,t+1 = X∗

i,t − N(γ(Mi,t+1 − Mi,t), σ
2
k)

where γ and σk are unknown parameters. This encompasses learning-by-doing because the

incremental reduction in marginal cost (X∗
i,t+1 −X∗

i,t) depends on the incremental increase
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in installed base (Mi,t+1 − Mi,t).

In the dynamic Markov-perfect equilibrium, each firm’s optimal pricing strategy will also

be a function of the current St, and the current demand shock ηi,t:

Yi,t = Y ∗
i (St, ηi,t), i = 1, 2 (5)

where the strategy satisfies the equilibrium Bellman equation:

Y ∗
i (St, ηi,t) = argmaxyEη

−i,t

{
Πi(St, y, Y−i,t = Y ∗

−i(St, η−i,t)) +

βE
[
Vi(St+1, ηi,t+1)|y, Y−i,t = Y ∗

−i(St, η−i,t)
]} (6)

subject to Eqs. (4) and (3). In the above equation, Vi(St, ηit) denotes the equilibrium value

function for firm i, which is equal to the expected discounted future profits that firm i will

make along the equilibrium path, starting at the current state (St, ηit). �

Example 2 is a simplified version of the dynamic investment models estimated in the

productivity literature. (See Ackerberg, Benkard, Berry, and Pakes (2007) for a detailed

survey of this literature.) In this model, firms’ state variables are (Mi,t,X
∗
i,t), where Mi,t

denotes firm i’s capital stock, and X∗
i,t denotes its productivity shock in period t. Yi,t, firm

i’s choice variable, denotes new capital investment in period t.

Capital stock Mi,t evolves deterministically, as a function of (Yi,t−1,Mi,t−1):

Mi,t = (1 − δ) · Mi,t−1 + Yi,t−1. (7)

The productivity shock is serially correlated, and evolves according to the conditional dis-

tribution

X∗
i,t+1 ∼ H(·|X∗

i,t,Mi,t). (8)

Each period, firms earn profits by selling their products. Let qi(pi,t, p−i,t, ηi,t) denote the

demand curve for firm i’s product, which depends on the quality and prices of both firms’

products. As in Example 1, ηi,t denotes the privately observed demand shock for firm i in

period t, which is distributed i.i.d. across firms and time periods.
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The period t profits of firm i are:

qi(pi,t, p−i,t, ηi,t) ∗ (pi,t − ci(Si,t)) − K(Yi,t)

where ci(·) is the marginal cost function for firm i (we assume constant marginal costs) and

K(Yit) is the investment cost function.

Following the literature, we assume that each firm’s price in period t are determined by a

static equilibrium, given the current values of the state variables St, and the firm-specific

demand shock ηi,t. Let p∗i (St, ηi,t) denote the static equilibrium prices for each firm in

period t. By substituting in the equilibrium prices in firm’s profit function, we obtain each

firm’s “reduced-form” expected profits:

Πi(St, Yt, ηi,t) = Eη
−i,t

qi

(
p∗1(St, η1,t), p

∗
2(St, η2,t), ηi,t

)
∗

[
p∗i (St, ηi,t) − ci(Si,t)

]
− K(Yi,t), i = 1, 2

As in Example 1, the Markov equilibrium investment strategy for each firm just depends

on the current state variables St, and the current shock ηi,t:

Yt = Y ∗
i (St, ηit), i = 1, 2.

subject to the Bellman equation (6) and the transitions (7) and (8). �

The substantial difference between examples 1 and 2 is that in example 2, the evolution of

the observed state variable Mi,t is deterministic, whereas in example 1 there is randomness

in Mi,t conditional on (Mi,t−1, Yi,t−1) (i.e., compare Eqs. (3) and (7)). As we will see below,

this has important implications for nonparametric identification.

Moreover, as illustrated in these two examples, for the first part of the paper we focus on

games with continuous actions, so that Yt are continuous variables. Later, we will consider

the important alternative case of discrete-action games, where Yt is discrete-valued.

3 Nonparametric identification

In this section, we present the assumptions for nonparametric identification in the dynamic

game model. The assumption we make here are different than those in our earlier paper

(Hu and Shum (2008)), and are geared specifically for the dynamic games literature, and
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motivated directly by existing applied work utilizing dynamic games. We assume that for

each market j,
{(

Wt+1,X
∗
t+1

)
, (Wt,X

∗
t ) , ..., (W1,X

∗
1 )

}
j

is an independent random draw

from the identical distribution fWt+1,Wt,...,W1,X∗

t+1
,X∗

t ,...,X∗

1
. This rules out across-market

effects and spillovers. For each market j, {W1, . . . ,WT }j is observed, for T ≥ 4.

After presenting each assumption, we relate it to the examples in the previous section.

Define Ω<t =
{
Wt−1, ...,W1,X

∗
t−1, ...,X

∗
1

}
. We assume the dynamic process satisfies:

Assumption 1 First-order Markov:

fWt,X
∗

t |Wt−1,X∗

t−1
,Ω<t−1

= fWt,X
∗

t |Wt−1,X∗

t−1
; (9)

Remark: The first-order Markov assumption is satisfied along the Markov-equilibrium

path of both examples given in the previous section. �

Without loss of generality, we assume that Wt = (Yt,Mt) ∈ R
2. We assume

Assumption 2

(i) fYt|Mt,X∗

t ,Yt−1,Mt−1,X∗

t−1
= fYt|Mt,X∗

t
,

(ii) fX∗

t |Mt,Yt−1,Mt−1,X∗

t−1
= fX∗

t |Mt,Mt−1,X∗

t−1
.

Assumption 2(i) is motivated completely by the state-contingent aspect of the optimal policy

function in dynamic optimization models. It turns out that this assumption is stronger than

necessary for our identification, but it allows us to achieve identification only using three

periods of data. Assumption 2(ii) implies that X∗
t is independent of Yt−1 conditional on

Mt, Mt−1 and X∗
t−1. This is consistent with the setup above.

Remarks: Assumption 2 is satisfied in both examples 1 and 2. �

The conditional independence assumptions 1-2 imply that the Markov transition density

(1) can be factored into

fWt,X
∗

t |Wt−1,X∗

t−1
= fYt,Mt,X

∗

t |Yt−1,Mt−1,X∗

t−1

= fYt|Mt,X
∗

t
· fX∗

t |Mt,Mt−1,X∗

t−1
· fMt|Yt−1,Mt−1,X∗

t−1
. (10)

In the identification procedure, we will identify these three components of fWt,X
∗

t |Wt−1,X∗

t−1
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in turn.

Next, we restrict attention to stationary equilibria in the dynamic game, which is natural

given our focus on Markov equilibria. In stationary equilibria, the Markov transition density

fWt,X∗

t |Wt−1,X∗

t−1
is time-invariant.

Assumption 3 Stationarity of Markov kernel:

fWt,X
∗

t |Wt−1,X∗

t−1
= fW2,X∗

2
|W1,X∗

1
.

Consider the joint density of {Yt,Mt, Yt−1,Mt−1, Yt−2}. Let supp (Yt,Mt, Yt−1,Mt−1, Yt−2)

denote for the support of the random vector {Yt,Mt, Yt−1,Mt−1, Yt−2}, together with Yt =

supp (Yt), Mt = supp (Mt), and X ∗
t = supp (X∗

t ).

We show in the Appendix, that Assumptions 1-2 imply that

fYt,Mt,Yt−1|Mt−1,Yt−2

=

∫
fYt|Mt,Mt−1,X∗

t−1
fMt,Yt−1|Mt−1,X∗

t−1
fX∗

t−1
|Mt−1,Yt−2

dx∗
t−1

=

∫
fYt|Mt,Mt−1,X∗

t−1
fMt,Yt−1,X∗

t−1
|Mt−1,Yt−2

dx∗
t−1 (11)

where the final line follows from Assumptions 1-2.

Let ω (·) be a user-specified function. For example, ω (·) may be ω (x) = x, x2, c, I(x > c),

or I(x = c) for some constant c. In practice, the choice of ω(·) will be model-specific. As will

be clear below, one reason we introduce the ω(·) function is in order to accommodate games

where firms’ choice variables Yit are deterministic functions of the current state (Mt,X
∗
t ).

(For both examples in the previous section, this would correspond to the case without

the firm-specific shocks ηit.) Given Eq. (11), it follows that, for any (x,mt,mt−1, z) ∈

supp (Yt,Mt,Mt−1, Yt−2)

∫
ω (yt−1) fYt,Mt,Yt−1|Mt−1,Yt−2

(x,mt, yt−1|mt−1, z) dyt−1 (12)

=

∫ [
fYt|Mt,Mt−1,X∗

t−1

(
x|mt,mt−1, x

∗
t−1

)
E

[
ω (Yt−1) |mt,mt−1, x

∗
t−1

]
·

fMt,|Mt−1,X∗

t−1

(
mt, |mt−1, x

∗
t−1

)
fX∗

t−1
|Mt−1,Yt−2

(
x∗

t−1|mt−1, z
) ]

dx∗
t−1,
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where we use the shorthand notation

E
[
ω (Yt−1) |mt,mt−1, x

∗
t−1

]
= E

[
ω (Yt−1) |Mt = mt,Mt−1 = mt−1,X

∗
t−1 = x∗

t−1

]
.

In order to identify the unknown densities on the right hand side, we use the identification

strategy for the nonclassical measurement error models in Hu and Schennach (2008). Their

results imply that two measurements and a dependent variable of a latent explanatory

variable are enough to achieve identification. For fixed values of (Mt,Mt−1), we see that

(Yt, Yt−1, Yt−2) enter equation (11) separately in, respectively, the first, second, and third

terms. This implies that we can use (Yt, Yt−2) as the two measurements and Yt−1 as the

dependent variable of the latent variable X∗
t−1.

Since the function ω(·) is user-specified, the density on the left hand side of equation (12)

is observed in the data. Let Lp (X ), 1 ≤ p < ∞ stand for the space of functions h (·) with∫
X |h(x)|pdx < ∞, and let L∞ (X ) denote the space of functions h (·) with supx∈X |h(x)| <

∞. For any 1 ≤ p ≤ ∞, We define the integral operator LYt,mt,ω|mt−1,Yt−2
: Lp (Yt−2) →

Lp (Yt)) for any given (mt,mt−1) ∈ supp (Mt,Mt−1) and any h ∈ Lp (Yt−2),

(
LYt,mt,ω|mt−1,Yt−2

h
)
(x) =

∫
k(x,mt|mt−1, z)h(z)dz,

k(x,mt|mt−1, z) =

∫
ω (yt−1) fYt,Mt,Yt−1|Mt−1,Yt−2

(x,mt, yt−1|mt−1, z) dyt−1.

We also define the operator corresponding to the unobserved density fYt|Mt,Mt−1,X∗

t−1
, i.e.,

LYt|mt,mt−1,X∗

t−1
: Lp

(
X ∗

t−1

)
→ Lp (Yt) , as follows:

(
LYt|mt,mt−1,X∗

t−1
h
)

(x) =

∫
fYt|Mt,Mt−1,X∗

t−1
(x|mt,mt−1, x

∗
t−1)h(x∗

t−1)dx∗
t−1.

As shown in Hu and Schennach (2008), the identification of an operator, e.g., LYt|mt,mt−1,X∗

t−1
,

is equivalent to that of its corresponding density, e.g., fYt|Mt,Mt−1,X∗

t−1
. Identification of

LYt|mt,mt−1,X∗

t−1
from the observed LYt,mt,ω|mt−1,Yt−2

requires

Assumption 4 For a known ω (·) and any (mt,mt−1) ∈ supp (Mt,Mt−1) ,

(i) LYt,mt,ω|mt−1,Yt−2
is one-to-one;

(ii) LYt|mt,mt−1,X∗

t−1
is one-to-one.

Assumption 4(ii) rules out cases where Yt is discrete-valued, but X∗
t−1 is continuous. Hence,
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in this section, we are restricting attention to games with continuous action spaces, so that

(Yt,X
∗
t−1) are both continuous.1

Remark: Instead of proving that the operators are one-to-one in examples 1 and 2,

here we only discuss whether the variation in Yt−2 or X∗
t−1 will imply variation in Yt for

fixed (mt,mt−1), which is necessary in order for the one-to-one assumptions to hold. In

both examples 1 and 2, equation (12) implies that, just holding mt, yt−1, and and mt−1

fixed, variation in Yt−2 will affect X∗
t−1. In turn, changes in X∗

t−1 will induce changes in

X∗
t , which will directly affect Yt. This reasoning implies that Assumption 4(i) should hold

as long as E
[
ω (Yt−1) |mt,mt−1, x

∗
t−1

]
does not vanish for a nontrivial set of x∗

t−1.

Similarly, variation in X∗
t−1 implies changes in X∗

t , which directly affects Yt, even when mt

and mt−1 are fixed. Therefore, Assumption 4(ii) should hold. However, note that in order

for one-to-one to hold, the supports of Yt and X∗
t should be of the same dimension. If, for

example, Yt is discrete (as in entry games), but X∗
t is continuous, then the condition would

fail. �

As shown in the Appendix, equation (12) can be written in operator notation as (for fixed

(mt,mt−1)):

LYt,mt,ω|mt−1,Yt−2
= LYt|mt,mt−1,X∗

t−1
Dω|mt,mt−1,X∗

t−1
Dmt|mt−1,X∗

t−1
LX∗

t−1
|mt−1,Yt−2

, (13)

where Dω|mt,mt−1,X∗

t−1
and Dmt|mt−1,X∗

t−1
are diagonal operators.

Since ω(·) is a user-specified function, we can evaluate equation (12) with ω (x) = 1, which

yields

fYt,Mt|Mt−1,Yt−2
=

∫
fYt|Mt,Mt−1,X∗

t−1
fMt|Mt−1,X∗

t−1
fX∗

t−1
|Mt−1,Yt−2

dx∗
t−1. (14)

The above can be expressed in operator notation as

LYt,mt|mt−1,Yt−2
= LYt|mt,mt−1,X∗

t−1
Dmt|mt−1,X∗

t−1
LX∗

t−1
|mt−1,Yt−2

(15)

for any given (mt,mt−1) ∈ supp (Mt,Mt−1). (See the appendix for the full definition of

these operators.)

1On the other hand, if X∗

t−1 is discrete, one may allow Yt to be discrete with a support no smaller than
that of X∗

t−1.
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As in Hu and Schennach (2008), if the latter operator relation can be inverted (which is

ensured by Assumption 4), we can combine Eqs. (13) and (15) to get

LYt,mt,ω|mt−1,Yt−2
L−1

Yt,mt|mt−1,Yt−2

≡ LYt|mt,mt−1,X∗

t−1
· Dω|mt,mt−1,X∗

t−1
· L−1

Yt|mt,mt−1,X∗

t−1

. (16)

This representation shows that an eigenvalue-eigenfunction decomposition of the observed

operator LYt,mt,ω|mt−1,Yt−2
L−1

Yt,mt|mt−1,Yt−2
yields the unknown density functions fYt|mt,mt−1,X∗

t−1

as the eigenfunctions and E
[
ω (Yt−1) |mt,mt−1, x

∗
t−1

]
as the eigenvalues.

The following assumption ensures the uniqueness of this decomposition, and restricts the

choice of the ω(·) function.

Assumption 5 (i) For any (mt,mt−1, x
∗
t−1) ∈ supp

(
Mt,Mt−1,X

∗
t−1

)
, there exists a known

ω (·) such that

∣∣E
[
ω (Yt−1) |mt,mt−1, x

∗
t−1

]∣∣ < ∞. (17)

(ii) For any (mt,mt−1, x
∗
t−1) and (mt,mt−1, x̃

∗
t−1) in supp

(
Mt,Mt−1,X

∗
t−1

)
with x∗

t−1 6=

x̃∗
t−1, there exists a known ω (·) such that

E
[
ω (Yt−1) |mt,mt−1, x

∗
t−1

]
6= E

[
ω (Yt−1) |mt,mt−1, x̃

∗
t−1

]
, (18)

where both expectations are nonzero.

Assumption 5(i) implies that the conditional expectation E
[
ω (Yt−1) |mt,mt−1, x

∗
t−1

]
is al-

ways bounded. Assumption 5(ii) implies that a change in x∗
t−1 can be detected by the

conditional expectation of ω (Yt−1) for some known function ω (·).

Remark: For example 1, as long as the density fY1,t−1|Mt,Mt−1,X∗

t−1
has a finite mean, we

may use ω (yt−1) = y1,t−1 to satisfy assumption 5(i). When we use ω (yt−1) = I (y1,t−1 > c),

E
[
ω (Yt−1) |mt,mt−1, x

∗
t−1

]
= Pr

(
Y1,t−1 > c|mt,mt−1, x

∗
t−1

)
also satisfies assumption 5(i).

On the other hand, Mt|Mt−1, Yt−1 is deterministic for example 2. Hence, for fixed (mt,mt−1),

the density fYt−1|Mt,Mt−1,X∗

t−1
is only defined at a single point yt−1 = mt−(1−δ)mt−1, which

is finite. Therefore, in this example, E
[
ω (Yt−1) |mt,mt−1, x

∗
t−1

]
is trivially bounded, for

ω(Yt−1) = Yt−1.

12



Assumption 5(ii) requires that the conditional expectation E
[
ω (Yt−1) |mt,mt−1, x

∗
t−1

]
varies

in X∗
t−1 given any fixed (mt,mt−1), so that the “eigenvalues” in the decomposition (16) are

distinctive. For example 1, given the preceding discussion, if assumption 5(i) is satisfied,

then assumption 5(ii) will hold if, for any (mt,mt−1, x
∗
t−1) in supp

(
Mt,Mt−1,X

∗
t−1

)
,

0 <
∣∣E

[
ω (Yt−1) |mt,mt−1, x

∗
t−1

]∣∣ < ∞ and
∂E

[
ω (Yt−1) |mt,mt−1, x

∗
t−1

]

∂x∗
t−1

6= 0.

For example 2, the capital stock Mt evolves deterministically, so that E
[
ω (Yt−1) |mt,mt−1, x

∗
t−1

]
=

ω (mt − (1 − δ)mt−1). Since this does not change with x∗
t−1 for any fixed (mt,mt−1), There-

fore, assumption 5(ii) fails. �

Remark (Deterministic choices): In some models, the choice variable Yit is a deter-

ministic function of the current state variables, i.e.,

Yi,t−1 = gi(Mt−1,X
∗
t−1), i = 1, 2. (19)

In examples 1 and 2, this would be the case if we eliminated the privately-observed demand

shocks η1t and η2t.

With ω (yt−1) = y1,t−1, we have

E
[
ω (Yt−1) |mt,mt−1, x

∗
t−1

]
= g1(mt−1, x

∗
t−1).

Therefore, a sufficient condition for assumption 5 is that for any mt−1 and x∗
t−1,

0 <
∣∣g1(mt−1, x

∗
t−1)

∣∣ < ∞ and
∂g1(mt−1, x

∗
t−1)

∂x∗
t−1

6= 0.

That means Yt−1 is monotonic in X∗
t−1 for any given mt−1. �

Remark: Notice that in the decomposition (16), the function ω (·) only appears in the

eigenvalues. Therefore, if there are several ω(·) functions which satisfy Assumption (5),

the decompositions (16) using these different ω(·)’s should yield the same eigenfunctions.

Hence, depending on the specific model, it may be possible to use this feature as a general

specification check for Assumptions (1) and (2). We do not explore this possibility here. �

Under the foregoing assumptions, the density Yt,mt, yt−1|mt−1, Yt−2 and the function ω (·)
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(for fixed mt,mt−1) can form a unique eigenvalue-eigenvector decomposition. In this de-

composition, the eigenfunction corresponds to the density fYt|mt,mt−1,X∗

t−1
(·|mt,mt−1, x

∗
t−1)

which can be written as

fYt|mt,mt−1,X∗

t−1
(·|mt,mt−1, x

∗
t−1) = fY1,t,Y2,t|mt,mt−1,X∗

1,t−1
,X∗

2,t−1
(·, ·|mt,mt−1, x

∗
1,t−1, x

∗
2,t−1).

(20)

The eigenvalue-eigenfunction decomposition only identifies this eigenfunction up to some

arbitrary ordering of the (x∗
1,t−1, x

∗
2,t−1) argument. Hence, in order to pin down the right

ordering of x∗
t−1, an additional ordering assumption is required. In our earlier paper (Hu and

Shum (2008)), where x∗
t was scalar-valued, a monotonicity assumption sufficed to pin down

the ordering of x∗
t . However, in dynamic games, x∗

t−1 is multivariate, so that monotonicity

is no longer well-defined.

Consider the marginal density

fYi,t|mt,mt−1,X∗

1,t−1
,X∗

2,t−1
(·|mt,mt−1, x

∗
1,t−1, x

∗
2,t−1),

which can be computed from Eq. (20) above. We make the following ordering assumption:

Assumption 6 (i) for any given (mt,mt−1) ∈ supp (Mt,Mt−1) and x∗
2,t, there exist a

known functional G such that G
[
fY1,t|Mt,Mt−1,X∗

t−1
(·|mt,mt−1, x

∗
1,t−1, x

∗
2,t−1)

]
is monotonic

in x∗
1,t−1;

(ii) Without loss of generality, we normalize x∗
1,t−1 as

x∗
1,t−1 = G

[
fY1,t|Mt,Mt−1,X∗

t−1
(·|mt,mt−1, x

∗
1,t−1, x

∗
2,t−1)

]
;

(iii) x∗
2,t−1 also satisfies (i) and (ii), i.e.,

x∗
2,t−1 = G

[
fY2,t|Mt,Mt−1,X∗

t−1
(·|mt,mt−1, x

∗
1,t−1, x

∗
2,t−1)

]

for any given (mt,mt−1) and x∗
1,t−1.

Remark: Consider example 1, and firm 1. A sufficient condition for this assumption is

that fY1,t|mt,mt−1,X∗

1,t−1
,X∗

2,t−1
is stochastically increasing (in the sense of first-order stochastic

dominance) in x∗
1,t−1, for fixed x∗

2,t−1 and mt,mt−1. Note that, in the Markov equilibrium,

14



Y1,t is a function of Mt,X
∗
t , ηi,t. Hence, the distribution of Y1,t|Mt,Mt−1,X

∗
1t−1,X

∗
2,t−1 can

be written as:

Y ∗
i (X∗

1,t,X
∗
2,t,mt, ηi,t)|mt,mt−1,X

∗
1,t−1, x

∗
2,t−1.

We see from the above that, once mt,mt−1, x
∗
2,t−1 are fixed then X∗

1,t−1 affects Y1,t only

through the conditional distribution of X∗
1,t|m1,t−1,X

∗
1,t−1. Hence, assumption 6(i) is satis-

fied if (i) Yi,t is increasing in X∗
1,t, for fixed mt, x

∗
2,t, η1,t; and (ii) the distribution X∗

1,t|m1,t−1,X
∗
1,t−1

is stochastically increasing in X∗
1,t−1.

2 Both (i) and (ii) should be confirmed on a model-

by-model basis, but is not unreasonable given the interpretation of Yi,t as a price and X∗
1,t

as a marginal cost variable. �

From the eigenvalue-eigenvector decomposition in Eq. (16), we can identify the densities

fYt|mt,mt−1,X∗

t−1
. Eq. (11) and assumption 4(ii) then imply the identification of the joint

density fmt,yt−1,X∗

t−1
|mt−1,Yt−2

. This can be factored into the components fmt,yt−1|mt−1,X∗

t−1
,

and fX∗

t−1
|mt−1,Yt−2

, for all (yt−1,mt,mt−1) with positive support. From the factorization

fMt,Yt−1|Mt−1,X∗

t−1
= fMt|Yt−1,Mt−1,X∗

t−1
· fYt−1|Mt−1,X∗

t−1

we can recover fMt|Yt−1,Mt−1,X∗

t−1
and fYt−1|Mt−1,X∗

t−1
. Given stationarity, the latter density

is identical to fYt|Mt,X
∗

t
, so that from fMt,Yt−1|Mt−1,X∗

t−1
we have recovered the first two

components of fWt,X∗

t |Wt−1,X∗

t−1
in Eq. (10).

All that remains now is to identify the third component fX∗

t |Mt,Mt−1,X∗

t−1
. To obtain this,

note that the following operator relation holds (see the Appendix for details):

fYt|mt,mt−1,X∗

t−1
= LYt|mt,X

∗

t
fX∗

t |mt,mt−1,X∗

t−1

for given (mt,mt−1), and where we define the operator LYt|mt,X
∗

t
: Lp (X ∗

t ) → Lp (Yt) ,

(
LYt|mt,X∗

t
h
)

(x) =

∫
fYt|Mt,X∗

t
(x|mt, x

∗
t )h(x∗

t )dx∗
t .

Identification of fX∗

t |Mt,Mt−1,X∗

t−1
then requires

Assumption 7 for any mt ∈ Mt, LYt|mt,X
∗

t
is one-to-one.

2Note that we do not have to worry about an indirect effect of X∗

1t−1 on Y1t through the X∗

2t−1. This is
because, for example 1, the evolution of X∗

2t depends just on Mt and X∗

2t−1 (cf. Eq. (4)), which are both
held fixed for Assumption 5.
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Similarly to assumption 4(ii), this one-to-one assumption rules out the case where the

support of Yt is discrete, but X∗
t is continuous.

Given assumption (7), the final component in Eq. (10) can be recovered as:

fX∗

t |m1,mt−1,X∗

t−1
=

(
LYt|mt,X

∗

t

)−1

fYt|mt,mt−1,X∗

t−1
(21)

where both terms on the right-hand-side have already been identified in previous steps.

Remark (deterministic choices, continued): For the case where Yit is determinisitc

given the current state variables (X∗
t ,Mt), and yit = gi(mt, x

∗
t ), for both firms i = 1, 2, we

can take:

fYt|mt,X
∗

t
= 1

(
Yit = gi(mt,X

∗
t ), i = 1, 2

)
.

Given knowledge of fmt,yt−1|mt−1,X∗

t−1
, the functions g1(· · · ) and g2(· · · ) can be mapped out

by varying (yt−1,mt,mt−1) along points with positive support. In this case, Assumption

7 requires that the mapping
(
Y1t, Y2t

)′
= [g1(mt,X

∗
t ), g2(mt,X

∗
t )]′ is invertible in X∗

t =

(X∗
1t,X

∗
2t). Consequently, equation (21) is analogous to the usual multivariate change of

variables formula between Yt and X∗
t . �

Finally, we summarize the identification results as follows:

Theorem 1 (Stationary case) Under the assumptions 1, 2, 3, 4, 5, 6, and 7, the den-

sity fWt,Wt−1,Wt−2
, for any t ∈ {3, . . . T}, uniquely determines the time-invariant Markov

equilibrium transition density fW2,X∗

2
|W1,X∗

1
.

Proof. See the appendix.

This theorem implies that we may identify the Markov kernel density with three periods of

data.

Without stationarity, the desired density fYt|Mt,X
∗

t
is not the same as fYt−1|Mt−1,X∗

t−1
, which

can be recovered from the three observations fWt,Wt−1,Wt−2
. However, in this case, we can

repeat the whole foregoing argument for the three observations fWt+1,Wt,Wt−1
to identify

fYt|Mt,X
∗

t
. Hence, the following corollary is immediate:

Corollary 1 (Nonstationary case) Under the assumptions 1, 2, 4, 5, 6, and 7, the den-
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sity fWt+1,Wt,Wt−1,Wt−2
uniquely determines the time-varying Markov equilibrium transition

density fWt,X∗

t |Wt−1,X∗

t−1
, for every period t ∈ {3, . . . T − 1}.

4 Extensions

4.1 Games with discrete actions

Up to this point, we have focused on games where Yt and X∗
t−1 are both continuous, so

that assumption 4(ii) is satisfied. In this section, we consider discrete-choice games, where

Yt is discrete-valued, but the unobserved state variables X∗
t are continuous.3 In this case,

Assumption 4(ii) is violated, so that (Yt, Yt−2) cannot be used as the two measurements in

the Hu and Schennach (2008) setup.

However, under assumptions 1-2, we may use (Mt+1,Mt−2) to play the role of (Yt, Yt−2) in

the identification procedure, especially when Yt is discrete. Consider the joint density of

{Mt+1, Yt,Mt, Yt−1,Mt−1, Yt−2,Mt−2}. One can show that assumptions 1-2 imply that

fMt+1,Yt,Mt,Yt−1,Mt−1,Yt−2,Mt−2
(22)

=

∫
fMt+1,Yt|Mt,Mt−1,X∗

t−1
fMt,Yt−1|Mt−1,X∗

t−1
fX∗

t−1
,Mt−1,Yt−2,Mt−2

dx∗
t−1.

The identification strategy in Hu and Schennach (2008) implies that two measurements and

a dependent variable of a latent explanatory variable are enough to achieve identification.

For fixed (mt,mt−1), Equation (22) implies that, when X∗
t−1, Yt and Mt are all continuous,

we may use either (Yt, Yt−2) or (Mt+1,Mt−2) as the two measurements of X∗
t−1. The former

case was considered in the previous section.

However, when Yt is discrete and Mt is continuous, we have to use (Mt+1,Mt−2) as the two

measurements of X∗
t−1.

4

3This is also the setup in Heckman and Navarro’s (2007) single-agent dynamic treatment effect model,
where Yt is an indicator for school attendance and X∗

t denotes a student’s unobserved ability. In that model,
Heckman and Navarro allow X∗

t to be arbitrarily correlated over time, but assume that it enters the model
additively. They demonstrate identification using large support assumptions. In contrast, we restrict the
joint process of Wt, X

∗

t to be first-order Markov, but allow the unobservables X∗

t to enter in nonseparable
manner. Consequently, our identification arguments are quite different from theirs.

4In general, one can use (U, V ) as the two measurements of X∗

t−1, where U = g(Mt+1, Yt) and V =
q (Mt−2, Yt−2) for some known functions g (·, ·) and q (·, ·).
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Integrating out (Yt, Yt−2) in Eq. (22), we obtain

∫
ω (yt−1) fMt+1,Mt,Yt−1|Mt−1,Mt−2

(x,mt, yt−1|mt−1, z) dyt−1 (23)

=

∫ [
fMt+1|Mt,Mt−1,X∗

t−1

(
x|mt,mt−1, x

∗
t−1

)
E

[
ω (Yt−1) |mt,mt−1, x

∗
t−1

]
·

fMt,|Mt−1,X∗

t−1

(
mt, |mt−1, x

∗
t−1

)
fX∗

t−1
|Mt−1,Mt−2

(
x∗

t−1|mt−1, z
) ]

dx∗
t−1

for any (x,mt,mt−1, z) ∈ supp (Mt+1,Mt,Mt−1,Mt−2). We may achieve identification un-

der the assumptions as follows. Assumption 4 is replaced by the following assumption.

Assumption 4’ For a known ω (·) and any (mt,mt−1) ∈ supp (Mt,Mt−1) ,

(i) LMt+1,mt,ω|mt−1,Mt−2
is one-to-one;

(ii) LMt+1|mt,mt−1,X∗

t−1
is one-to-one.

The operators LMt+1,mt,ω|mt−1,Mt−2
and LMt+1|mt,mt−1,X∗

t−1
are defined in the appendix. In

the setting where Yt−1 is discrete, but X∗
t−1 is continuous, Assumption 4’(ii) essentially

requires that the observed state variable Mt be informative on X∗
t−1, i.e.,

fMt|Yt−1,Mt−1,X∗

t−1
6= fMt|Yt−1,Mt−1

. (24)

This is because, once (mt,mt−1) are fixed, the effect of X∗
t−1 on Mt+1 must come either

through Yt (which depends on X∗
t , and which in turn is serially correlated with X∗

t−1)),

or through X∗
t (which is serially correlated with X∗

t−1). When Yt is discrete, but X∗
t is

continuous, then Yt cannot fully “transmit” all the information in X∗
t−1, which is required

to satisfy Assumption 4’(ii). Hence, Mt must transmit the information in X∗
t−1, as in

equation (24).

The eigenfunction corresponds to the density fMt+1|mt,mt−1,X∗

t−1
(·|mt,mt−1, ·) which can be

written as

fMt+1|mt,mt−1,X∗

t−1
(·|mt,mt−1, ·) = fM1,t+1,M2,t+1|mt,mt−1,X∗

1,t−1
,X∗

2,t−1
(·, ·|mt,mt−1, ·, ·).

We then need the following ordering assumption instead of assumption 6.

Assumption 6’ (i) for any given (mt,mt−1) ∈ supp (Mt,Mt−1) and x∗
2,t, there exist a
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known functional G such that G
[
fM1,t+1|Mt,Mt−1,X∗

t−1
(·|mt,mt−1, x

∗
1,t−1, x

∗
2,t−1)

]
is mono-

tonic in x∗
1,t−1;

(ii) Without loss of generality, we normalize x∗
1,t−1 as

x∗
1,t−1 = G

[
fM1,t+1|Mt,Mt−1,X∗

t−1
(·|mt,mt−1, x

∗
1,t−1, x

∗
2,t−1)

]
;

(iii) x∗
2,t−1 also satisfies (i) and (ii), i.e.,

x∗
2,t−1 = G

[
fM2,t+1|Mt,Mt−1,X∗

t−1
(·|mt,mt−1, x

∗
1,t−1, x

∗
2,t−1)

]

for any given (mt,mt−1) and x∗
1,t−1.

The following assumption is needed to replace assumption 7.

Assumption 7’ for any mt ∈ Mt, LMt+1|mt,X
∗

t
is one-to-one.

The operator LMt+1|mt,X
∗

t
is defined in the appendix. This assumption also requires that

equation (24) holds. Finally, we summarize the identification results as follows:

Theorem 2 Under the assumptions 1, 2, 3, 4’, 5, 6’, and 7’, the density fWt+1,Wt,Wt−1,Wt−2

for any t ∈ {3, . . . T − 1} , uniquely determines the time-invariant Markov equilibrium tran-

sition density fW2,X∗

2
|W1,X∗

1
.

Proof. See the appendix.

4.2 Alternatives to Assumption 2(ii)

In this section, we consider alternative conditions of assumption 2(ii). Assumption 2(ii)

implies that X∗
t is independent of Yt−1 conditional on Mt, Mt−1 and X∗

t−1. There are other

alternative ”limited feedback” assumptions, which may be suitable for different empirical
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settings. Assumptions 1 and 2(i) imply

fWt+1,Wt,Wt−1,Wt−2

= fYt+1,Mt+1,Yt,Mt,Yt−1,Mt−1,Yt−2,Mt−2

=

∫ ∫ [
fYt+1,Mt+1|Yt,Mt,X

∗

t
fYt|Mt,X

∗

t
fX∗

t ,Mt|Yt−1,Mt−1,X∗

t−1
·

fYt−1|Mt−1,X∗

t−1
fX∗

t−1
,Mt−1,Yt−2,Mt−2

]
dx∗

t dx∗
t−1.

Assumption 2(ii) implies that the state transition density satisfies

fX∗

t ,Mt|Yt−1,Mt−1,X∗

t−1
= fX∗

t |Mt,Mt−1,X∗

t−1
fMt|Yt−1,Mt−1,X∗

t−1
.

Alternative ”limited feedback” assumptions may be imposed on the density fX∗

t ,Mt|Yt−1,Mt−1,X∗

t−1
.

One alternative to assumption 2(ii) is

fX∗

t ,Mt|Yt−1,Mt−1,X∗

t−1
= fX∗

t |Mt,Yt−1,X∗

t−1
fMt|Yt−1,Mt−1,X∗

t−1
, (25)

which implies that Mt−1 does not have a direct effect on X∗
t conditional on Mt, Yt−1, and

X∗
t−1. A second alternative is

fX∗

t ,Mt|Yt−1,Mt−1,X∗

t−1
= fMt|X∗

t ,Yt−1,Mt−1
fX∗

t |Yt−1,Mt−1,X∗

t−1
. (26)

which is the ”limited feedback” assumption used in our earlier study (Hu and Shum (2008))

of identification on single-agent dynamic optimization problems. Both alternatives (25)

and (26) can be handled using identification arguments similar to the one in Hu and Shum

(2008).

A third alternative to assumption 2(ii) is

fX∗

t ,Mt|Yt−1,Mt−1,X∗

t−1
= fX∗

t |Mt,Yt−1,Mt−1,X∗

t−1
fMt|Mt−1,X∗

t−1
. (27)

This alternative can be handled in an identification framework similar to the one used in

this paper.
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5 Conclusions

In this paper, we show several results regarding nonparametric identification in a general

class of Markov dynamic games, including many models in the Ericson and Pakes (1995) and

Pakes and McGuire (1994) framework. We show that only three observations Wt, . . . ,Wt−2

are required to identify Wt,X
∗
t |Wt−1,X

∗
t−1 in the stationary case, when Yt is a continuous

choice variable. If Yt is a discrete choice variable (while X∗
t is continuous), then four

observations are required for identification.

In ongoing work, we are working on developing estimation procedures for dynamic games

which utilize these identification results.
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Proof. (theorem 1) First, assumptions 1-2 imply that the density of interest becomes

fWt,X
∗

t |Wt−1,X∗

t−1
= fYt,Mt,X

∗

t |Yt−1,Mt−1,X∗

t−1

= fYt|Mt,X∗

t ,Yt−1,Mt−1,X∗

t−1
fX∗

t |Mt,Yt−1,Mt−1,X∗

t−1
fMt|Yt−1,Mt−1,X∗

t−1

= fYt|Mt,X
∗

t
fX∗

t |Mt,Mt−1,X∗

t−1
fMt|Yt−1,Mt−1,X∗

t−1
. (28)

We consider the observed density fWt+1,Wt,Wt−1,Wt−2
. One can show that assumptions 1 and

2(i) imply

fWt+1,Wt,Wt−1,Wt−2

=

∫ ∫
fWt+1,Wt,Wt−1,Wt−2,X∗

t ,X∗

t−1
dx∗

t dx∗
t−1

=

∫ ∫
fWt+1|Wt,Wt−1,Wt−2,X∗

t ,X∗

t−1
fWt,X

∗

t |Wt−1,Wt−2,X∗

t−1
fWt−1,Wt−2,X∗

t−1
dx∗

t dx∗
t−1

=

∫ ∫
fWt+1|Wt,X

∗

t
fWt,X

∗

t |Wt−1,X∗

t−1
fWt−1,Wt−2,X∗

t−1
dx∗

t dx∗
t−1

=

∫ ∫
fYt+1,Mt+1|Yt,Mt,X∗

t
fYt|Mt,X∗

t
fX∗

t |Mt,Yt−1,Mt−1,X∗

t−1
fMt|Yt−1,Mt−1,X∗

t−1
fX∗

t−1
,Yt−1,Mt−1,Yt−2,Mt−2

dx∗
t dx∗

t−1

=

∫ ∫
fYt+1,Mt+1|Yt,Mt,X

∗

t
fYt|Mt,X

∗

t
fX∗

t |Mt,Yt−1,Mt−1,X∗

t−1
fMt|Yt−1,Mt−1,X∗

t−1
×

×fYt−1|Mt−1,X∗

t−1
fX∗

t−1
,Mt−1,Yt−2,Mt−2

dx∗
t dx∗

t−1

=

∫ ∫
fYt+1,Mt+1|Yt,Mt,X

∗

t
fYt|Mt,X

∗

t
fX∗

t |Mt,Yt−1,Mt−1,X∗

t−1
fMt,Yt−1|Mt−1,X∗

t−1
fX∗

t−1
,Mt−1,Yt−2,Mt−2

dx∗
t dx∗

t−1.

Assumption 2(ii) then implies

fWt+1,Wt,Wt−1,Wt−2

=

∫ ∫
fYt+1,Mt+1|Yt,Mt,X

∗

t
fYt|Mt,X

∗

t
fX∗

t |Mt,Mt−1,X∗

t−1
fMt,Yt−1|Mt−1,X∗

t−1
fX∗

t−1
,Mt−1,Yt−2,Mt−2

dx∗
t dx∗

t−1

=

∫ (∫
fYt+1,Mt+1|Yt,Mt,X

∗

t
fYt|Mt,X

∗

t
fX∗

t |Mt,Mt−1,X∗

t−1
dx∗

t

)
fMt,Yt−1|Mt−1,X∗

t−1
fX∗

t−1,Mt−1,Yt−2,Mt−2
dx∗

t−1
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The expression in the parenthesis can be simplified as follows:

∫
fYt+1,Mt+1|Yt,Mt,X

∗

t
fYt|Mt,X

∗

t
fX∗

t |Mt,Mt−1,X∗

t−1
dx∗

t

=

∫
fYt+1,Mt+1|Yt,Mt,Mt−1,X∗

t ,X∗

t−1
fYt|Mt,Mt−1,X∗

t ,X∗

t−1
fX∗

t |Mt,Mt−1,X∗

t−1
dx∗

t

=

∫
fYt+1,Mt+1,Yt,X

∗

t |Mt,Mt−1,X∗

t−1
dx∗

t

= fYt+1,Mt+1,Yt|Mt,Mt−1,X∗

t−1
.

We then have

fWt+1,Wt,Wt−1,Wt−2
(29)

= fYt+1,Mt+1,Yt,Mt,Yt−1,Mt−1,Yt−2,Mt−2

=

∫
fYt+1,Mt+1,Yt|Mt,Mt−1,X∗

t−1
fMt,Yt−1|Mt−1,X∗

t−1
fX∗

t−1
,Mt−1,Yt−2,Mt−2

dx∗
t−1.

Integrating out Yt+1, Mt+1, and Mt−2 leads to

fYt,Mt,Yt−1|Mt−1,Yt−2
(30)

=

∫
fYt|Mt,Mt−1,X∗

t−1
fMt,Yt−1|Mt−1,X∗

t−1
fX∗

t−1
|Mt−1,Yt−2

dx∗
t−1.

Furthermore, we may have for a user-specified function ω (·)

∫
ω (yt−1) fYt,Mt,Yt−1|Mt−1,Yt−2

dyt−1 (31)

=

∫
fYt|Mt,Mt−1,X∗

t−1
E

[
ω (Yt−1) |mt,mt−1, x

∗
t−1

]
fMt,|Mt−1,X∗

t−1
fX∗

t−1
|Mt−1,Yt−2

dx∗
t−1,

One can show that the equation above is equivalent to

LYt,mt,ω|mt−1,Yt−2
= LYt|mt,mt−1,X∗

t−1
Dω|mt,mt−1,X∗

t−1
Dmt|mt−1,X∗

t−1
LX∗

t−1
|mt−1,Yt−2

, (32)

where for any given (mt,mt−1) ∈ supp (Mt,Mt−1)

LYt,mt,ω|mt−1,Yt−2
: Lp (Yt−2) → Lp (Yt) ,

(
LYt,mt,ω|mt−1,Yt−2

h
)
(x) =

∫
k(x,mt|mt−1, z)h(z)dz,

with k(x,mt|mt−1, z) =

∫
ω (yt−1) fYt,Mt,Yt−1|Mt−1,Yt−2

(x,mt, yt−1|mt−1, z) dyt−1,
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LYt|mt,mt−1,X∗

t−1
: Lp

(
X ∗

t−1

)
→ Lp (Yt) ,

(
LYt|mt,mt−1,X∗

t−1
h
)

(x) =

∫
fYt|Mt,Mt−1,X∗

t−1
(x|mt,mt−1, x

∗
t−1)h(x∗

t−1)dx∗
t−1,

Dω|mt,mt−1,X∗

t−1
: Lp

(
X ∗

t−1

)
→ Lp

(
X ∗

t−1

)
,

(
Dω|mt,mt−1,X∗

t−1
h
) (

x∗
t−1

)
= E

[
ω (Yt−1) |mt,mt−1, x

∗
t−1

]
h

(
x∗

t−1

)
,

Dmt|mt−1,X∗

t−1
: Lp

(
X ∗

t−1

)
→ Lp

(
X ∗

t−1

)
,

(
Dmt|mt−1,X∗

t−1
h
) (

x∗
t−1

)
= fMt|Mt−1,X∗

t−1
(mt|mt−1, x

∗
t−1)h

(
x∗

t−1

)
,

LX∗

t−1
|mt−1,Yt−2

: Lp (Yt−2) → Lp
(
X ∗

t−1

)
,

(
LX∗

t−1
|mt−1,Yt−2

h
) (

x∗
t−1

)
=

∫
fX∗

t−1
|Mt−1,Yt−2

(x∗
t−1|mt−1, z)h(z)dz.

Integrating out Yt−1 in equation (30) leads to

fYt,Mt|Mt−1,Yt−2
(33)

=

∫
fYt|Mt,Mt−1,X∗

t−1
fMt|Mt−1,X∗

t−1
fX∗

t−1
|Mt−1,Yt−2

dx∗
t−1.

This equation is equivalent to

LYt,mt|mt−1,Yt−2
= LYt|mt,mt−1,X∗

t−1
Dmt|mt−1,X∗

t−1
LX∗

t−1
|mt−1,Yt−2

(34)

for any given (mt,mt−1) ∈ supp (Mt,Mt−1), where

LYt,mt|mt−1,Yt−2
: Lp (Yt−2) → Lp (Yt) ,

(
LYt,mt|mt−1,Yt−2

h
)
(x) =

∫
fYt,Mt|Mt−1,Yt−2

(x,mt|mt−1, z)h(z)dz.

Assumption 4 then implies

LYt,mt,yt−1|mt−1,Yt−2
L−1

Yt,mt|mt−1,Yt−2

≡ LYt|mt,mt−1,X∗

t−1
Dω|mt,mt−1,X∗

t−1
L−1

Yt|mt,mt−1,X∗

t−1

.
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With assumptions 3, 4, 5, 6, and 7, theorem 1 in Hu and Schennach (2008) implies that

fYt|Mt,Mt−1,X∗

t−1
is nonparametrically identified. By equation (30) and assumption 4, identi-

fication of LYt|mt,mt−1,X∗

t−1
implies that of fMt,Yt−1|Mt−1,X∗

t−1
and fX∗

t−1
|Mt−1,Yt−2

. We may

then identify fYt−1|Mt−1,X∗

t−1
and fMt|Yt−1,Mt−1,X∗

t−1
from

fYt−1|Mt−1,X∗

t−1
=

∫
fMt,Yt−1|Mt−1,X∗

t−1
dmt,

fMt|Yt−1,Mt−1,X∗

t−1
=

fMt,Yt−1|Mt−1,X∗

t−1

fYt−1|Mt−1,X∗

t−1

.

By the stationarity assumption 3, we identify fYt|Mt,X
∗

t
= fYt−1|Mt−1,X∗

t−1
. In order to identify

fX∗

t |Mt,Mt−1,X∗

t−1
, we consider

fYt|Mt,Mt−1,X∗

t−1
=

∫
fYt,X

∗

t |Mt,Mt−1,X∗

t−1
dx∗

t

=

∫
fYt|Mt,X

∗

t
fX∗

t |Mt,Mt−1,X∗

t−1
dx∗

t .

Notice that fYt|Mt,Mt−1,X∗

t−1
on the left hand side has been identified. We define for a given

mt

LYt|mt,X
∗

t
: Lp (X ∗

t ) → Lp (Yt) ,
(
LYt|mt,X

∗

t
h
)

(x) =

∫
fYt|Mt,X

∗

t
(x|mt, x

∗
t )h(x∗

t )dx∗
t .

We then have

fYt|Mt=mt,Mt−1=mt−1,X∗

t−1
= LYt|mt,X

∗

t
fX∗

t |Mt=mt,Mt−1=mt−1,X∗

t−1
.

Then the invertibility of LYt|mt,X
∗

t
in assumption 7 implies the identification of fX∗

t |Mt,Mt−1,X∗

t−1
.

In summary, we have identified fYt|Mt,X
∗

t
, fMt|Yt−1,Mt−1,X∗

t−1
, and fX∗

t |Mt,Mt−1,X∗

t−1
. There-

fore, the density of interest fYt,Mt,X
∗

t |Yt−1,Mt−1,X∗

t−1
, i.e., fWt,X

∗

t |Wt−1,X∗

t−1
is identified in

equation (28).

Proof. (theorem 2) Integrating out Yt+1, Yt , and Yt−2 in equation (29) leads to

fMt+1,Mt,Yt−1|Mt−1,Mt−2

=

∫
fMt+1|Mt,Mt−1,X∗

t−1
fMt,Yt−1|Mt−1,X∗

t−1
fX∗

t−1,Mt−1,Mt−2
dx∗

t−1.

25



We may then have

∫
ω (yt−1) fMt+1,Mt,Yt−1|Mt−1,Mt−2

dyt−1 (35)

=

∫
fMt+1|Mt,Mt−1,X∗

t−1
E

[
ω (Yt−1) |mt,mt−1, x

∗
t−1

]
fMt,|Mt−1,X∗

t−1
fX∗

t−1
|Mt−1,Mt−2

dx∗
t−1.

The equation above is equivalent to

LMt+1,mt,ω|mt−1,Mt−2
= LMt+1|mt,mt−1,X∗

t−1
Dω|mt,mt−1,X∗

t−1
Dmt|mt−1,X∗

t−1
LX∗

t−1
|mt−1,Mt−2

,

where for any given (mt,mt−1) ∈ supp (Mt,Mt−1)

LMt+1,mt,ω|mt−1,Mt−2
: Lp (Mt−2) → Lp (Mt+1)) ,

(
LMt+1,mt,ω|mt−1,Mt−2

h
)
(x) =

∫
k(x,mt|mt−1, z)h(z)dz

k(x,mt|mt−1, z) =

∫
ω (yt−1) fMt+1,Mt,Yt−1|Mt−1,Mt−2

(x,mt, yt−1|mt−1, z) dyt−1.

LMt+1|mt,mt−1,X∗

t−1
: Lp

(
X ∗

t−1

)
→ Lp (Mt+1) ,

(
LMt+1|mt,mt−1,X∗

t−1
h
)

(x) =

∫
fMt+1|Mt,Mt−1,X∗

t−1
(x|mt,mt−1, x

∗
t−1)h(x∗

t−1)dx∗
t−1,

LX∗

t−1
|mt−1,Mt−2

: Lp (Mt−2) → Lp
(
X ∗

t−1

)
,

(
LX∗

t−1
|mt−1,Mt−2

h
) (

x∗
t−1

)
=

∫
fX∗

t−1
|Mt−1,Mt−2

(x∗
t−1|mt−1, z)h(z)dz.

Letting ω (·) = 1 in equation (35) leads to

fMt+1,Mt|Mt−1,Mt−2

=

∫
fMt+1|Mt,Mt−1,X∗

t−1
fMt|Mt−1,X∗

t−1
fX∗

t−1
,Mt−1,Mt−2

dx∗
t−1.

This equation is equivalent to

LMt+1,mt|mt−1,Mt−2
= LMt+1|mt,mt−1,X∗

t−1
Dmt|mt−1,X∗

t−1
LX∗

t−1
|mt−1,Mt−2
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for any given (mt,mt−1) ∈ supp (Mt,Mt−1), where

LMt+1,mt|mt−1,Mt−2
: Lp (Mt−2) → Lp (Mt+1)) ,

(
LMt+1,mt|mt−1,Mt−2

h
)
(x) =

∫
fMt+1,Mt|Mt−1,Mt−2

(x,mt|mt−1, z)h(z)dz.

The same identification procedure as in the proof of theorem 1 implies the identification of

fMt+1|Mt,Mt−1,X∗

t−1
, fYt−1|Mt−1,X∗

t−1
and fMt|Yt−1,Mt−1,X∗

t−1
. By the stationarity, we identify

fMt+1|Yt,Mt,X∗

t
= fMt|Yt−1,Mt−1,X∗

t−1
and fYt|Mt,X∗

t
= fYt−1|Mt−1,X∗

t−1
, which implies identifi-

cation of fMt+1|Mt,X
∗

t
through

fMt+1|Mt,X
∗

t
=

∫

Yt

fMt+1|Yt,Mt,X
∗

t
fYt|Mt,X

∗

t
.

In order to identify fX∗

t |Mt,Mt−1,X∗

t−1
, we consider

fMt+1|Mt,Mt−1,X∗

t−1
=

∫

Yt

∫
fMt+1,Yt,X

∗

t |Mt,Mt−1,X∗

t−1
dx∗

t

=

∫

Yt

∫
fMt+1|Yt,Mt,X∗

t
fYt|Mt,X∗

t
fX∗

t |Mt,Mt−1,X∗

t−1
dx∗

t

=

∫ (∫

Yt

fMt+1|Yt,Mt,X
∗

t
fYt|Mt,X

∗

t

)
fX∗

t |Mt,Mt−1,X∗

t−1
dx∗

t

=

∫
fMt+1|Mt,X

∗

t
fX∗

t |Mt,Mt−1,X∗

t−1
dx∗

t .

Notice that fMt+1|Mt,Mt−1,X∗

t−1
on the left hand side has been identified. We define for a

given mt

LMt+1|mt,X
∗

t
: Lp (X ∗

t ) → Lp (Mt+1) ,
(
LMt+1|mt,X

∗

t
h
)

(x) =

∫
fMt+1|Mt,X

∗

t
(x|mt, x

∗
t )h(x∗

t )dx∗
t .

We then have

fMt+1|Mt=mt,Mt−1=mt−1,X∗

t−1
= LMt+1|mt,X

∗

t
fX∗

t |Mt=mt,Mt−1=mt−1,X∗

t−1
.

Then the invertibility of LMt+1|mt,X∗

t
in assumption 7’ implies the identification of fX∗

t |Mt,Mt−1,X∗

t−1
.

In summary, we have identified fYt|Mt,X
∗

t
, fMt|Yt−1,Mt−1,X∗

t−1
, and fX∗

t |Mt,Mt−1,X∗

t−1
. There-

fore, the density of interest fYt,Mt,X∗

t |Yt−1,Mt−1,X∗

t−1
, i.e., fWt,X∗

t |Wt−1,X∗

t−1
is identified.
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