
Harrington, Joseph E.; Zhao, Wei

Working Paper

Tacit collusion in an infinitely repeated prisoners' dilemma

Working Paper, No. 559

Provided in Cooperation with:
Department of Economics, The Johns Hopkins University

Suggested Citation: Harrington, Joseph E.; Zhao, Wei (2010) : Tacit collusion in an infinitely repeated
prisoners' dilemma, Working Paper, No. 559, The Johns Hopkins University, Department of
Economics, Baltimore, MD

This Version is available at:
https://hdl.handle.net/10419/49866

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/49866
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Tacit Collusion in an
Infinitely Repeated Prisoners’ Dilemma

Joseph E. Harrington, Jr.
Department of Economics
Johns Hopkins University
Baltimore, MD 21218

410-516-7615, -7600 (Fax)
joe.harrington@jhu.edu

www.econ.jhu.edu/People/Harrington

Wei Zhao.
Department of Economics
Johns Hopkins University
Baltimore, MD 21218

410-516-7615, -7600 (Fax)
wzhao8@jhu.edu

June 1, 2010

Abstract

In the context of an infinitely repeated Prisoners’ Dilemma, we explore how
cooperation is initiated when players communicate and coordinate through their
actions. There are two types of players - patient and impatient - which are
private information. An impatient type is incapable of cooperative play, while if
both players are patient types - and this is common knowledge - then they can
cooperate with a grim trigger strategy. We find that the longer that players have
gone without cooperating, the lower is the probability that they’ll cooperate in
the next period. While the probability of cooperation emerging is always positive,
there is a positive probability that cooperation never occurs.

1 Introduction

Antitrust and competition law has recognized that collusion comes in two varieties:
explicit and tacit. Explicit collusion involves express communication among the par-
ties regarding the collusive agreement - what outcome is to be supported and how
it is to be sustained. Tacit collusion is, essentially, collusion by all other means. A
common form of tacit collusion is indirect communication through price signaling.
A firm raises its price with the hope that other firms will interpret this move as an
invitation to collude and respond by matching the price increase. Of course, such a
move is risky in that a firm’s rivals may not raise price - either because they fail to
properly interpret the price signal or deliberately choose not to collude - in which
case the firm that raised price will experience a decline in profit from a loss of de-
mand. In light of that potential cost, a firm desiring of collusion may prefer not to
send such a signal and instead wait for a rival to take the initiative by raising price.
While waiting means that a firm avoids the possible demand loss from charging a
price above that of its rival, waiting could delay the time until a collusive outcome is
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reached. In this paper, we examine this trade-off towards investigating the dynamics
associated with achieving a tacitly collusive outcome.

The setting is an infinitely repeated two-player Prisoners’ Dilemma under incom-
plete information. There are two player types. One type never colludes, perhaps
because it is too impatient or it fails to properly read signals. Another type has
the capacity to collude and will surely do so once convinced the other player is also
willing and able. Collusion requires firms to achieve mutual understanding as to
a collusive arrangement. As our approach will deploy the equilibrium framework,
we will not be exploring the non-equilibrium process by which firms settle upon a
collusive equilibrium; firms will always be playing according to some equilibrium.
Tacit collusion in our setting refers to the coordination on cooperative play within
the context of a particular equilibrium. To be specific, a Markov Perfect Bayesian
Equilibrium is characterized in which a cooperative type player randomizes over the
cooperative and uncooperative actions, as long as there is uncertainty as to the other
player’s type. Once one of them chooses the cooperative action - which reveals it is
a cooperative type - then the players permanently move to the cooperative outcome
(when both are cooperative types) or the uncooperative outcome (when one or both
are uncooperative types).

With this simple model, a number of interesting questions can be explored. If
players have not yet colluded, is the likelihood of collusion declining over time? If so,
does it converge to zero? If it converges to zero, does it occur asymptotically or does
it become zero in finite time? That is, does a sufficiently long string of failed attempts
to collude (that is, both players having chosen the uncooperative action) result in a
cooperative type believing that it is so unlikely the other player is a cooperative type
that it gives up trying to collude? Or is collusion assured of eventually occurring?

We find that the probability of collusion emerging in any period is declining
over time but is always positive; at no point are beliefs sufficiently pessimistic that
cooperative types give up trying to collude. While always positive, the probability of
collusion arising in the current period (given it has not yet occurred) asymptotically
converges to zero. Furthermore, even if both players are cooperative types, it is
generally the case that the probability they never succeed in colluding is positive.
Though cooperative type players never give up trying to collude - in the sense that
they always choose the cooperative action with positive probability - they may never
achieve the collusive outcome.

To our knowledge, there is no previous work which seeks to model the dynamic
process by which players coordinate on cooperative play in a game with conflict.1

However, there are analyses that have some related features. The seminal work of
Kreps et al (1982) examines cooperation in a finitely repeated Prisoners’ Dilemma
with uncertainty as to types. An "irrational" type might be endowed with tit-for-tat
or a preference for the cooperative action, while a "rational" type optimizes uncon-
strained. If it was common knowledge that players were rational then the unique
equilibrium has them choose the uncooperative action in every period. However, un-

1Coordination within the context of a coordination game is explored in Crawford and Haller
(1990).
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certainty over the other player’s type can support cooperative play for some length
of time, at least probabilistically. The pattern in behavior is the reverse of ours in
that it can start with cooperative play but must eventually get to uncooperative play
when one or both are rational types.

More similar in mathematical structure is Dixit and Shapiro (1985). They con-
sider a repeated Battle of the Sexes game which can be interpreted as two players
simultaneously deciding whether or not to enter a market. It is profitable for one
and only one firm to enter. The stage game then has two asymmetric pure-strategy
equilibria and one symmetric mixed-strategy equilibrium. In the repeated version,
the dynamic equilibrium has randomization in each period with, effectively, the game
terminating once there is entry. Farrell (1987) considers this structure when players
can precede their actions with messages.

In our environment, when play thus far has been uncooperative, a player is un-
certain as to whether its rival will choose the cooperative or uncooperative action. In
exploring the support of cooperation in a population of randomly matching agents,
uncertainty instead occurs once a player faces a deviation from cooperative play. In
Kandori (1992), Ellison (1994), and Harrington (1995), players choose the cooperative
action in equilibrium but, in response to a partner having chosen the uncooperative
action, is supposed to respond with the uncooperative action in its next encounter
for the purpose of producing a contagious punishment that spreads through the pop-
ulation and eventually reaches the original deviator. When faced with a deviation, a
player is then uncertain whether its partner was the first to deviate - in which case
it can expect its next partner to choose the cooperative action - or whether it was
responding to having been deviated - in which case it is possible the punishment is
widespread and thus the next partner may be likely to select the uncooperative action.
There is then uncertainty about play off-of-the equilibrium path which is pertinent
to assessing the credibility of the punishment. Our uncertainty is on-the-equilibrium
path since players may be cooperative or uncooperative types.

2 Model

Consider a two-player Prisoners’ Dilemma:

Prisoners’ Dilemma
Player 2

Player 1
C D

C a, a c, b

D b, c d, d

where2

b > a > d ≥ c.

2 It is typical to assume d > c but we will allow d = c.
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It is further assumed:3

2a ≥ b+ c ≥ a+ d.

The first inequality is standard as it means the highest symmetric payoff has both
players choosing C rather than taking turns cheating (that is, one player choosing D
and the other choosing C).4 The second inequality is new and will prove critical to
our characterization. This assumption can be re-arranged to b − a ≥ d − c, so that
the gain to playing D - when the other player is expected to play C - is at least as
great as the gain to playing D - when the other player is expected to play D. This
condition holds for the Cournot quantity game with linear demand and constant
marginal cost5 and, loosely speaking, the Bertrand price game with homogeneous
goods and constant marginal cost. The Bertrand price game is the special case when:

b = 2a, a > d = c = 0.

If both set the monopoly price then each earns a. Deviation from that outcome
involves just undercutting the rival’s price which means that the price-cost margin
is approximately the same but sales are doubled so that the payoff is 2a. Given the
other firm prices at cost, pricing at cost as well yields a profit of zero (so, d = 0) as
does pricing at the monopoly price (so, c = 0).6

Players are infinitely-lived and anticipate interacting in a Prisoners’ Dilemma each
period. If players have a common discount factor of δ, the grim trigger strategy is a
subgame perfect equilibrium iff:

δ >
b− a

b− d
.

To capture uncertainty on the part of a player as to whether the other player is willing
to cooperate, it is assumed that a player’s discount factor is private information. A
player can be of two possible types. A player can be type L (for "long run") which
means its discount factor is δ where δ > b−a

b−d . Or a player can be type M (for
"myopic") which means its discount factor is zero (though any value less than b−a

b−d
should suffice). Hence, type M players always choose D. A necessary condition for
cooperative play to emerge and persist over time is then that both players are type
L.

3Note that we cannot have d = c and b+ c = a+d holding simultaneously as it would then imply
b = a, which violates the assumption that b > a.

4The condition 2a ≥ b+ c is not necessary for our results but rather is to motivate the focus on
players trying to sustain (C,C) in every period.

5Assume constant marginal cost c and inverse market demand for firm i is β0−β1qi−β2qj where
β0 > 0, β1 ≥ β2 > 0; thus, products can be differentiated. C corresponds to the low quantity q

l, and
D to the high quantity qh. b− a > d− c is then

qh β0 − β1q
h − β2q

l − c − ql β0 − (β1 + β2) q
l − c > qh β0 − (β1 + β2) q

h − c − ql β0 − β1q
l − β2q

h − c

⇔ qh > ql.

6The reference to "loosely speaking" is that this interpretation requires three prices - monopoly
price, just below the monopoly price, and marginal cost - while the Prisoners’ Dilemma has only two
actions.
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The equilibrium to be characterized will have the property that if both players are
type L and this is common knowledge then they implement the grim trigger strategy
and thus cooperative play occurs. If players’ types are common knowledge and one
or both are type M then they realize cooperation is infeasible and thereby choose D
in every period. Thus, we can think of the game as having a terminal payoff - either
a
1−δ (when both are type L) or

d
1−δ (when one or both are type M) - when players’

types become common knowledge. The focus of our analysis is then on what happens
before a state of common knowledge is reached. Towards that end, let αt denote the
probability that a player attaches to the other player being type L in period t. In the
equilibrium that is to be characterized, αt will be common to both players. Hence,
αt is not only the probability that player 1 attaches to player 2 being type L but is
also player 1’s point belief as to the probability that player 2 attaches to player 1
being type L, and so forth. α1 is the common prior probability.

Suppose, at the start of period t, players’ types are not common knowledge,
αt ∈ (0, 1) , and a type L player (whether player 1 or 2) chooses C with probability
qt ∈ (0, 1) . Future beliefs are described as follows based on the actions chosen in
period t.

• If both players chose D in period t then - since both types choose D with positive
probability - players remain uncertain as to the other player’s type and update
their beliefs using Bayes Rule:

αt+1 =
αt
¡
1− qt

¢
1− αtqt

. (1)

• If both players chose C in period t then - since only a type L player chooses C
with positive probability - it is common knowledge they are both type L.

• If one player chose C and the other chose D in period t then the former has
revealed its type to be type L. It is assumed the other player’s type becomes
known prior to the next period so that, at the start of period t + 1, players’
types are common knowledge.

The assumption that players’ types are common knowledge as soon as one player’s
type is known requires some explanation. Suppose player 1 chose C in the current
period and player 2 did not; player 1’s type has then been revealed to be type L,
while uncertainty remains about player 2. What would be natural to expect is that
player 1 would choose C in the next period and wait to learn whether player 2 signals
it is type L by also playing C. If player 2 did choose C then it would be common
knowledge that both players are type L, and the players would adopt the grim trigger
strategy. If player 2 instead chose D then player 1 would infer that player 2 is type
M , in which case player 1 (as well as player 2) would play D thereafter. In that case,
player 1 earns a low payoff of c for two periods rather than the one period for our
specification. By having just one period of loss rather than two periods, expressions
are simplified and it would seem to be a reasonable approximation. Furthermore, this
approximation does not disturb the main feature of this environment which is that
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signalling a desire to cooperate is risky, and this risk creates a waiting game between
type L players. A type L player wants to learn whether the other player is also type
L and thus whether cooperation is feasible. The sooner they learn they are both type
L, the sooner they are engaged in cooperative play. The necessary step for players
to learn that they can cooperate is that at least one of them plays C and thereby
signals a capacity to cooperate. However, choosing C is risky in that the other player
may choose D - either because the player’s type is M or because its type is L and
the player has chosen to wait. Each player prefers the other player to take the risk
by choosing C but waiting runs the risk of delaying the time until cooperative play is
achieved. As a result, in equilibrium, type L players will randomize between playing
C and D until one of them chooses C at which time future play is set - both play C
(if both are type L) or both play D (if one or both are type M).

The solution concept to be used is Markov Perfect Bayesian Equilibrium (MPBE);
a strategy is Markovian during the phase when players’ types are not common knowl-
edge. More specifically, if αt ∈ (0, 1) then a type L agent’s period t play depends
only on αt and no other element of the history. A Markov strategy is then of the
form, q (·) : [0, 1]→ [0, 1]. If both players choose D in period t then the next period’s
beliefs are as specified in (1).

In deriving equilibrium conditions, a player will go through the thought experi-
ment of deviating from q (·). Note, however, that this does not upset the specification
of common beliefs. For suppose player 1 deviates in period t by not choosing C with
probability q

¡
αt
¢
. As each player expects the other to have chosen C with probability

q
¡
αt
¢
, each player assigns probability

αt(1−q(αt))
1−αtq(αt) to the other player being type L.

While player 1 knows that player 2’s beliefs about player 1’s type are incorrect, that
is irrelevant as all player 1 cares about is player 2’s type and player 2’s beliefs, both

of which are summarized by
αt(1−q(αt))
1−αtq(αt) . Thus,

αt(1−q(αt))
1−αtq(αt) remains the state variable

pertinent to play, even if a player deviates from equilibrium play.
Let V : [0, 1]→ < denote the value function associated with type L players using

some symmetric strategy q (·). By the previous description of play, if player 1 is type
L then player 1’s continuation payoff, depending on the current period’s actions and
beliefs α at the start of the period, is:

Player 1’s action Player 2’s action Player 2’s type Expected continuation payoff
C C L a

1−δ
C D L a

1−δ
C D M d

1−δ
D C L a

1−δ
D D L,M V

³
α(1−q(α))
1−αq(α)

´
By examining MPBE, this paper focuses on the dynamics associated with players

learning about their capacity to cooperate and the manner in which cooperative play
is achieved. There is, however, another equilibrium in which a type L chooses C in
the first period and uses a grim punishment; that is, if both do not choose C in the
first period then a player chooses D thereafter and otherwise chooses C. This is an
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equilibrium iff the initial probability that a player is type L is sufficiently large:

α

µ
a

1− δ

¶
+ (1− α)

µ
c+

δd

1− δ

¶
≥ αb+ (1− α) d+

δd

1− δ
⇔

α ≥ d− c

(d− c) + δ
³
a−d
1−δ

´
− (b− a)

.

The appeal of the equilibrium upon which we focus is that it encompasses the waiting
game associated with signalling cooperation and thereby can deliver a richer set of
dynamics regarding the emergence of cooperative play.

3 Markov Perfect Bayesian Equilibrium

In this section, some properties of a MPBE are provided, while existence is established
in the next section. Given the other player chooses C with probability q when she is
type L, a player’s expected payoff from choosing C is

WC(α) ≡ α

∙
q

µ
a

1− δ

¶
+ (1− q)

µ
c+

δa

1− δ

¶¸
+ (1− α)

µ
c+

δd

1− δ

¶
,

which can be simplified to

WC(α) = αq (a− c) + c+
αδ (a− d)

1− δ
+

δd

1− δ
; (2)

and from choosing D is

WD(α) ≡ α

∙
q

µ
b+

δa

1− δ

¶
+ (1− q)

µ
d+ δV

µ
α (1− q)

1− αq

¶¶¸
+(1− α)

µ
d+ δV

µ
α (1− q)

1− αq

¶¶
which can be simplified to

WD(α) = αq

µ
b+

δa

1− δ

¶
+ (1− αq)

µ
d+ δV

µ
α (1− q)

1− αq

¶¶
. (3)

If, in equilibrium, q ∈ (0, 1) then the expressions in (2) and (3) must be the same:

αq (a− c)+c+
αδ (a− d)

1− δ
+

δd

1− δ
= αq

µ
b+

δa

1− δ

¶
+(1− αq)

µ
d+ δV

µ
α (1− q)

1− αq

¶¶
.

Re-arranging gives us:

αq =
δ
h

a
1−δ − V

³
α(1−q)
1−αq

´i
− (1− α) δ(a−d)1−δ − (d− c)

δ
³

a
1−δ − V

³
α(1−q)
1−αq

´´
+ (b− a)− (d− c)

. (4)
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Define:

α ≡ (1− δ) (d− c)

δ (a− d)
∈ [0, 1) ,

where α ≥ 0 follows from d ≥ c and a > d. To show α < 1, note that

(1− δ) (d− c)

δ (a− d)
< 1⇔ δ >

d− c

a− c
.

As it is already assumed

δ >
b− a

b− d
,

a sufficient condition for δ > d−c
a−c is

b− a

b− d
≥ d− c

a− c
⇔ (b− a) (a− c) ≥ (d− c) (b− d)⇔ b+ c ≥ a+ d

which is true by assumption. Thus, α ∈ [0, 1).
Theorem 1 states that a stationary symmetric MPBE has a type L player choose

D for sure when the probability that the other player is type L is sufficiently low,
α ≤ α. When instead α > α, a type L player randomizes between playing C and D.
In that case, the probability that a player chooses C, q (α), is defined by (4). Proofs
are in the appendix.7

Theorem 1 If q (·) is a stationary symmetric Markov Perfect Bayesian Equilibrium
then

q (α)

½
= 0 if α ∈ [0, α]
∈ (0, 1) if α ∈ (α, 1]

V (α)

(
= d

1−δ if α ∈ [0, α]
∈
³

d
1−δ ,

a
1−δ

´
if α ∈ (α, 1]

The next result concerns the evolution of beliefs and behavior in response to
a failure to cooperate (that is, both players have always chosen D). Recall that if
the probability a player assigns to the other player being type L is α then, after
observing the other player chose D, the updated probability is α(1−q(α))

1−αq(α) where q (α)
is the equilibrium probability that a type L player chooses C given beliefs α. Further
recall that if α > α then q (α) > 0.

Theorem 2 If q (·) is a stationary symmetric Markov Perfect Bayesian Equilibrium
then: i) if α > α then α(1−q(α))

1−αq(α) > α; ii) if α1 > α then limt→∞αt = α and q
¡
αt
¢
> 0

for all t; iii) if α > 0 then limα↓αq (α) = 0; and iv) limt→∞ αtq
¡
αt
¢
= 0.

7 If b+ c ≥ a+ d does not hold, Theorems 1 and 2 are still true as long as δ > d−c
a−c . However, the

results in Section 4 would change.
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Theorem 2 shows that if α1 > α then αt > α for all t which then implies q
¡
αt
¢
> 0

for all t. Therefore, no matter how long players have failed to cooperate, a type L
player will continue to try to initiate cooperation (in the sense of assigning positive
probability of choosing C). In other words, beliefs never become so pessimistic about
the other player’s willingness to cooperate that a player prefers to abandon any
prospects of cooperation by playing D for sure.8 It is also the case, however, that,
when α > 0, the probability of a player initiating cooperation converges to zero over
time in response to the probability that the other player is type L converging to α
after a history of failed cooperation. Note that the probability of a type L player
playing C must converge to zero as the probability of a player being type L approaches
α (> 0) from above. If q (α) was instead bounded above zero then a sufficiently long
sequence of playing D would have to result in a sufficiently small probability of the
player being type L, which would contradict this probability being bounded below
by α. Finally, conditional on cooperation not yet having emerged, the probability
assigned to a player initiating cooperation is αtq

¡
αt
¢
in which case the probability

that cooperation emerges out of period t is 1 −
¡
1− αtq

¡
αt
¢¢2. While this value is

always positive - so collusion is always a possibility - it converges to zero in response
to an ever-increasing sequence of failed attempts at collusion, in which case collusion
eventually becomes very unlikely to emerge.

4 Equilibrium with an Affine Value Function

Given a value function V (·), the resulting symmetric equilibrium strategy, q∗ (·, V (·)) ,
is defined by:

q∗ (α, V (·)) =

⎧⎨⎩
0 if Y C (q, α, V (·)) < Y D (q, α, V (·)) , ∀q ∈ [0, 1]eq (α, V (·)) otherwise
1 if Y C (q, α, V (·)) > Y D (q, α, V (·)) , ∀q ∈ [0, 1]

where eq (α, V (·)) is defined by
Y C (eq (α, V (·)) , α, V (·)) = Y D (eq (α, V (·)) , α, V (·)) ,

and the payoffs from choosing C and D, respectively, are:

Y C (eq (α, V (·)) , α, V (·)) ≡ αeq (α, V (·)) (a− c) + c+
αδ (a− d)

1− δ
+

δd

1− δ

Y D (eq (α, V (·)) , α, V (·)) ≡ αeq (α, V (·))µb+ δa

1− δ

¶
+ (1− αq)

µ
d+ δV

µ
α (1− q)

1− αq

¶¶
.

Definition 3 An affine Markov Perfect Bayesian Equilibrium (MPBE) is a MPBE
in which the value function is affine over α ∈ [α, 1].

Existence of equilibrium is established by showing that there exists a unique
stationary symmetric affine MPBE.

8Note that this result is not obvious. If α > 0 then, in principle, αt < α unless q (α) → 0
sufficiently fast as α→ α .
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Theorem 4 There exists a unique stationary symmetric affine Markov Perfect Bayesian
Equilibrium. The value function is

V (α) =

½
d
1−δ if α ∈ [0, α]
x+ yα if α ∈ [α, 1] (5)

where (x, y) is the unique solution to:

x+ y
(1− δ) (d− c)

δ (a− d)
=

d

1− δ
(6)

x+ y =
2aδ + (1− δ)

h
(b− a)− (d− c)−

√
Ω
i

2δ (1− δ)
. (7)

and

Ω ≡ [(b− a)− (d− c)]2 + 4δ (a− c) [(b− a)− (d− c)] + 4δ (a− c) (d− c) . (8)

Furthermore, there is a unique stationary symmetric strategy associated with this
equilibrium:

q (α) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if α ∈

h
0, (1−δ)(d−c)δ(a−d)

i
δ(a−d)−δ(1−δ)y

(1−δ)[(b−a)−(d−c)]+δa−δ(1−δ)(x+y) if α ∈
³
(1−δ)(d−c)
δ(a−d) , 1

i
+
¡
1
α

¢ h δa−δ(1−δ)x−δ(a−d)−(1−δ)(d−c)
(1−δ)[(b−a)−(d−c)]+δa−δ(1−δ)(x+y)

i (9)

In the preceding section, we established that αtq
¡
αt
¢
converges to zero and thus

is eventually decreasing over time. If we focus on equilibria with an affine value
function, we can now say that αtq

¡
αt
¢
is monotonically declining over time, in which

case the probability a player chooses C decreases with the length of time for which
cooperative play has not yet occurred. It is also the case that a type L player’s
equilibrium value is decreasing with the likelihood assigned to players being type L.

Theorem 5 If q (·) is the unique stationary symmetric affine Markov Perfect Bayesian
Equilibrium then αq (α) is increasing in α and V (α) is increasing in α.

While αq (α) is increasing in α, q (α) need not be increasing in α everywhere,
though we know that eventually it must be increasing in α since it converges to zero
(when α > 0). We next show that when d > c then q (α) is decreasing over time as
lower probability is attached to players being type L (given only D has been chosen
thus far). However, when d = c then q (α) is, interestingly, independent of a player’s
beliefs as to the other player’s type and thus is constant over time. Though it is still
the case that αt is declining, a type L player maintains the same probability of acting
cooperatively.

Theorem 6 If q (·) is the unique stationary symmetric affine Markov Perfect Bayesian
Equilibrium then, for α > α: i) if d > c then q (α) is increasing in α; and ii) if d = c
then q (α) = q0 for some q0 ∈ (0, 1) .
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When d = c - so a player is not harmed when choosing the cooperative action -
the probability that a type L player chooses C is fixed at some positive value. Thus,
if both players are type L then, almost surely, players will eventually achieve the
collusive outcome. However, whether cooperative play ultimately emerges is not so
clear when d > c as then the probability of cooperation being initiated is declining
over time and converges to zero. To examine this issue, define QT as the probability
that players are still not colluding by the end of period T, conditional on both players
being type L. If q (·) is a stationary symmetric Markov Perfect Bayesian Equilibrium,
QT is defined by

QT =
TY
t=1

¡
1− qt

¢2
where, given α1, qt is defined recursively by:

qt = q
¡
αt
¢
, t ≥ 1; αt =

αt−1
¡
1− qt−1

¢
1− αt−1qt−1

, t ≥ 2.

The next result shows that, even when both players are type L, there is a positive
probability that collusion never emerges even though they never give up trying (that
is, they always choose C with positive probability).

Theorem 7 At the unique stationary symmetric affine Markov Perfect Bayesian
Equilibrium, if d > c then limT→∞QT > 0.

If both players are type L then, in any period, there is always a positive proba-
bility that one of them will choose the cooperative action and thereby result in the
emergence of collusion. This property follows from αt > α for all t; regardless of how
long the other player has chosen D, a player assigns sufficient probability to its rival
being type L that it is optimal to continue to try to cooperate (as reflected in choos-
ing C with positive probability). For αt > α (> 0) , it must be the case that a long
sequence of choosing D is not a sufficiently pessimistic signal that the other player is
type L which can only be the case if, as αt → α, the probability that a type L player
chooses C converges sufficiently fast to zero, qt → 0. But, as shown in the previous
result, this also has the implication that the probability that two type L players start
colluding in period t is going to zero sufficiently fast, which means collusion is not
assured. In short, even if both players are willing and able to cooperate, there is a
positive probability that they never do so though they never give up trying.

5 Examples

In this section, we derive the affine MPBE for some examples. Example 1 is a case in
which the probability of a player choosing the cooperative action is independent of α
and, therefore, fixed over time. When players are more patient, we show that collusion
is more likely to emerge. In Example 2, the probability a type L player chooses the
cooperative action is increasing in the likelihood it assigns to the other player also

11



being type L. In response to an ever-lengthening sequence of failed cooperation,
the probability of cooperation emerging is declining. Furthermore, conditional on
both players being type L, the probability that collusion never occurs is positive.
Finally, Example 3 considers an asymmetric Prisoners’ Dilemma in which the collusive
outcome does not split the surplus equally. Surprisingly, greater asymmetry makes
collusion more likely to emerge.

5.1 Example 1: Bertrand Price Game

Assume b = 2a, d = c = 0, and normalize so a = 1.

Bertrand Price Game
Player 2

Player 1
C D

C 1, 1 0, 2

D 2, 0 0, 0

This case approximates the Bertrand price game in which, for example, market de-
mand is perfectly inelastic at two units with a maximum willingness to pay of 1, and
firms have zero marginal cost.

Since d = c, previous analysis established that α = 0 and the probability of a type
L player cooperating is independent of α and thus constant over time. The unique
stationary symmetric affine Markov Perfect Bayesian Equilibrium is9

q (α) =

√
4δ + 1− 1√
4δ + 1 + 1

V (α) =

µ
1 + δ − (1− δ)

√
4δ + 1

2δ (1− δ)

¶
α

As one would expect, the probability of choosing C is higher when players are more
patient:

∂q

∂δ
=

4¡√
4δ + 1 + 1

¢2√
4δ + 1

> 0

The probability that two type L players are colluding by period T ≥ 2 is

1−
∙
1−

µ√
4δ + 1− 1√
4δ + 1 + 1

¶¸2(T−1)
.

When δ = .9, Figure 1 shows how the probability of collusion rises rapidly over time,

9Derivations for all examples are available on request.
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and that it is quite close to one by period 10.

Figure 1: Probability of collusion by period T (δ = .9)
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5.2 Example 2: Bertrand Price Game with Relative Compensation

Let us modify the Bertrand price game so that managers - not owners - are re-
peatedly making price decisions and managerial compensation is based on relative
performance. Specifically, a manager receives compensation equal to half of firm
profit but, in the event that the other firm has higher profit, incurs a penalty equal
to one-quarter of the rival firm’s profit. The single-period payoff to a manager is
then:

Payoff of manager i in period t =

½
(1/2)πti if πti ≥ πtj
(1/2)πti − (1/4)πtj if πti < πtj

where πti is the period t profit of firm i. If market demand is perfectly inelastic at
two units with a maximum willingness to pay of 2 (and zero marginal cost) then the
managers’ payoff matrix is represented by

Bertrand Price Game
with Relative Compensation

Player 2

Player 1
C D

C 1, 1 −1, 2
D 2,−1 0, 0

13



The unique stationary symmetric affine Markov Perfect Bayesian Equilibrium is:

q (α) =

(
0 if α ∈

£
0, 1−δδ

¤
[αδ−(1−δ)](

√
2δ−1)

α
√
2δ(2δ−1) if α ∈

¡
1−δ
δ , 1

¤
V (α) =

(
0 if α ∈

£
0, 1−δδ

¤
[(1+α)δ−1][δ−(1−δ)

√
2δ]

δ(1−δ)(2δ−1) if α ∈
¡
1−δ
δ , 1

¤
We know from Theorem 6 that, when α > 1−δ

δ (= α), q (α) is increasing in α.
If δ = .8 then α = .25 and, for α > .25,

q (α) ' .279− .07

α
,

which is plotted in Figure 2. If players have thus far always played D then, in each
player updating their beliefs as to the other player’s type, αt will fall over time which
then induces type L players to choose C with a lower probability. If a string of (D,D)
gets longer and longer, so that αt → α, q (α)→ 0 and does so at an increasingly fast
rate; note that q (α) is strictly concave in α.

Figure 2: Probability of choosing C, δ = .8
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When a player initially assigns a 50% chance to its rival being type L, the prob-
ability that collusion has not been achieved by period T is shown in Figure 3. There
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is about an 11% chance that collusion is never achieved.

Figure 3: Probability of No Collusion by Period T , δ = .8, α1 = 0.5
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5.3 Example 3: Asymmetric Bertrand Price Game

Consider the following generalization of Example 1 where the collusive outcome is
now allowed to be asymmetric and γ ∈ [1/2, 1).10

Asymmetric Bertrand Price Game
Player 2

Player 1
Cooperate Defect

Cooperate γ, 1− γ 0, 1

Defect 1, 0 0, 0

The collusive outcome gives player 1 a market share of γ which is at least 1/2. The
unique stationary affine MPBE is

q1 =

p
γ(γ + 4δ(1− γ))− γp
γ(γ + 4δ(1− γ)) + γ

q2 =

p
(1− γ)(1− γ + 4δγ)− (1− γ)p
(1− γ)(1− γ + 4δγ) + (1− γ)

V2(α1) =

"
(γ − δ + 3δ(1− γ))− (1− δ)

p
γ(γ + 4δ(1− γ))

2(1− δ)δ

#
α1

V1(α2) =

"
(1− δ − γ + 3δγ)− (1− δ)

p
(1− γ)(1− γ + 4δγ)

2(1− δ)δ

#
α2

10A preliminary analysis suggests that many of the results in Sections 3 and 4 can be extended to
when the Prisoners’ Dilemma is asymmetric.
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As with Example 1, q1 and q2 do not depend on α. One can prove that q1 is decreasing
in γ and increasing in δ, and q2 is increasing in γ and δ.

It might be expected that the player with the higher share of collusive profit
would play C with a higher probability. However, when the share of collusive profit
for player 1 (γ) is larger, the probability of playing C is actually higher for player 2
and lower for player 1. Since player 1 gains more by achieving cooperative play when
γ is bigger, player 2 must be more likely to play C if player 1 is to be indifferent
between playing C and D; and recall that D is more attractive when the other player
is more likely to initiate cooperation. Surprisingly, the player who benefits more from
colluding is less likely to take the first move in cooperating.

To explore the effect of asymmetry on the likelihood of collusion, consider the
probability that collusion is initiated in any period:

1− (1− q1) (1− q2) = 1−
4µq

γ+4δ(1−γ)
γ + 1

¶³q
1−γ+4δγ
1−γ + 1

´ .
It is straightforward to show that it is increasing in γ,

∂ [1− (1− q1) (1− q2)]

∂γ
> 0, (10)

so collusion is more likely when the collusive outcome is more skewed to favor one
firm.

As the equilibrium condition for the grim trigger strategy is δ ≥ γ, increasing
asymmetry makes collusion more difficult in the sense that the minimum discount
factor is higher. However, conditional on the collusive outcome being sustainable,
asymmetry reduces the expected time until collusion is achieved, as reflected in (10).
In fact, as asymmetry becomes extreme, collusion is achieved immediately.11

lim
γ→1

q1 (α1) =

p
γ(γ + 4δ(1− γ))− γp
γ(γ + 4δ(1− γ)) + γ

= 0

lim
γ→1

q2 (α2) = lim
γ→1

p
(1− γ)(1− γ + 4δγ)− (1− γ)p
(1− γ)(1− γ + 4δγ) + (1− γ)

= lim
γ→1

q
1−γ+4δγ
1−γ − 1q

1−γ+4δγ
1−γ + 1

= 1

Therefore,
lim
γ→1

1− (1− q1) (1− q2) = 1.

For when δ = .8, Figure 4 depicts the relationship between the asymmetry of the
collusive outcome and the probability of collusion emerging, given it has not yet
happened.

11Keep in mind that as we let γ → 1, we must have δ → 1 so that δ ≥ γ is satisfied.
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Figure 4: Per period probability of collusion emerging, δ = .8

0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00

0.7

0.8

0.9

1.0

gamma

prob.

6 Concluding Remarks

The gap between theory and practice on the issue of collusion is probably as great
as any in the field of industrial organization. Explicit collusion is illegal and vigor-
ously prosecuted, while tacit collusion is generally legal. Lawyers can meaningfully
discuss the distinction between explicit and tacit collusion, but such a discussion is
more problematic when it is held among industrial organization theorists. Developing
rigorous theoretical notions of explicit and tacit collusion will allow us to character-
ize those environments conducive to explicit collusion and those conducive to tacit
collusion, and also the types of collusive schemes that are implementable using ex-
plicit collusion or tacit collusion. Progress on these issues is critical to developing a
more sophisticated understanding of collusion that is relevant to the enforcement of
competition laws.

In thinking about communication in the context of a formal model, it can manifest
itself in two ways - exchange of information and of intentions. Explicit collusion
could involve communication on the equilibrium path for the purpose of exchanging
information. There is a limited amount of work in oligopoly theory on this topic.
In Athey and Bagwell (2001, 2008), firms have private information about their cost
and exchange (costless) messages about cost, while in Hanazono and Yang (2007),
firms have private signals on demand and seek to share that information. Then
there is work in which sales or some other endogenous variable is private information
and firms exchange messages for monitoring purposes; see Aoyagi (2002), Chan and
Zhang (2009), and Harrington and Skrzypacz (2009).12 In light of that body of work,
12There is also an extensive game theory literature on the issue of private monitoring. See Compte

(1998), Kandori and Matsushima (1998), Kandori (2002), Zheng (2008), and Obara (2009)
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tacit collusion can be thought of as collusion when firms do not exchange messages.
Communication may also be used to resolve strategic uncertainty. Explicit collusion
can mean express communication for the purpose of coordinating a move from a non-
collusive equilibrium to a collusive equilibrium, while tacit collusion involves more
opaque forms of communication. Here, intentions rather than hard information is
being communicated.

Within the context of the equilibrium paradigm, the current paper sought to make
progress on the tacit signalling of the intention to collude. Our main findings are that
if the initial probability that players are capable of colluding is sufficiently high then,
in any period, there is always the prospect of collusion emerging. No matter how
long is there a history of failed collusion, beliefs as to players being cooperative types
remain sufficiently high that it is worthwhile for them to continue to try to cooperate.
This does not imply, however, that collusion is assured. For a wide class of situations,
there is a positive probability that collusion never emerges. Players never give up
trying to collude but they may also never succeed.

While these results are new and, to some extent, surprising, their relevance to
understanding tacit collusion among firms in actual markets is not at all clear. While
that is our ultimate objective, it was not the goal we set out with this paper. Our
goal was simply to start thinking rigorously about tacit collusion in the context of a
formal model. By doing so, our hope is that it’ll lead to new ways of thinking about
the modelling of tacit and explicit collusion, and that those new ways of thinking will
shed light on various forms of collusion in actual markets.

In terms of future work, one research direction is to allow a player’s type to
change over time, rather than remain fixed forever. Recent work by Escobar and
Toikka (2009) provides a foundation for such an analysis. When a cooperative type
raises price and does not receive a favorable response, it’ll infer that its rival is an
uncooperative type. In that case, it might be inclined to try again later on the hope
that the rival’s type has changed. Furthermore, a player who has previously failed to
respond in kind may see itself as having the burden in initiating cooperation in the
event that its type does change since its rival may be disinclined to try to collude.
A deviation would not have different implications as it would be interpreted as a
change in a player’s type. Assuming persistence in types, the punishment of the
deviator would have a certain credibility (beyond simply being an equilibrium) in
that the other player believes there is little point in trying to cooperate. Indeed,
non-cooperation may be the unique equilibrium. All this could put the burden on
the deviator to re-initiate cooperation. Even this cursory analysis suggests that a
rich set of behavior could arise from allowing types to evolve stochastically over time.
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7 Appendix: Proofs

Proof of Theorem 1. Let us first show the properties on V (·) are true, assuming
the properties on q (·) hold. First note that, in equilibrium, V : [0, 1]→

h
d
1−δ ,

a
1−δ

i
, as

V (α) has a lower bound of d
1−δ - as a player can assure itself of a payoff of at least

d
1−δ

by choosing D every period - and a
1−δ is an upper bound because the highest average

symmetric payoff is a. If q (α) = 0 then type L players play D for sure in the current
period and since α(1−q(α))

1−αq = α then the same is true for all ensuing periods; hence,

by stationarity, if q (α) = 0 then V (α) = d
1−δ . To show that V (α) ∈

³
d
1−δ ,

a
1−δ

´
when α ∈ (α, 1] , note that q (α) ∈ (0, 1) implies V (α) = WC(α) = WD(α). d

1−δ is a
lower bound on V (α) for all α since at least that value can be achieved by choosing
D in every period. Thus, from (3) we have:

V (α) = αq

µ
b+

δa

1− δ

¶
+ (1− αq)

µ
d+ δV

µ
α (1− q)

1− αq

¶¶
≥ αq

µ
b+

δa

1− δ

¶
+ (1− αq)

µ
d+ δ

d

1− δ

¶
>

d

1− δ
+ αq

a− d

1− δ

>
d

1− δ

since b > a > d. From (2) we have:

V (α) = αq (a− c) + c+
αδ (a− d)

1− δ
+

δd

1− δ

= a− (a− c) + αq (a− c) +
αδ (a− d)

1− δ
− δ (a− d)

1− δ
+

δa

1− δ

=
a

1− δ
− (1− αq (α)) (a− c)− (1− α)

δ (a− d)

1− δ
<

a

1− δ

since a > c, d. This establishes the properties on V (·).
Let us now establish the stated properties on q (·). A player strictly prefers D to

C iff:

αq

µ
b+

δa

1− δ

¶
+(1− αq)

µ
d+ δV

µ
α (1− q)

1− αq

¶¶
> αq (a− c)+c+

αδ (a− d)

1− δ
+

δd

1− δ
.

(11)

Since V
³
α(1−q)
1−αq

´
≥ d

1−δ , a sufficient condition for (11) involves substituting
d
1−δ for

V
³
α(1−q)
1−αq

´
:

αq

µ
b+

δa

1− δ

¶
+ (1− αq)

µ
d

1− δ

¶
> αq (a− c) + c+

αδ (a− d)

1− δ
+

δd

1− δ
(12)

or

αq

µ
b+

δa

1− δ

¶
+(1− αq)

µ
d

1− δ

¶
−αq (a− c)− c− αδ (a− d)

1− δ
− δd

1− δ
> 0. (13)
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Take the derivative of the LHS of (13) with respect to q:

α

µ
b+

δa

1− δ

¶
− α

µ
d

1− δ

¶
− α (a− c) = α [(b− a)− (d− c)] + αδ

µ
a− d

1− δ

¶
> 0,

since b− a ≥ d− c and a− d > 0. Hence, the difference between the payoff to D and
the payoff to C is minimized when q = 0. Thus, D is surely strictly preferred to C if
(12) holds when q = 0:

d

1− δ
> c+

αδ (a− d)

1− δ
+

δd

1− δ
, (14)

which is equivalent to

d > c+
αδ (a− d)

1− δ
⇔ (1− δ) (d− c) > αδ (a− d)⇔ (α ≡) (1− δ) (d− c)

δ (a− d)
> α.

Thus, if α < α then, in equilibrium, q (α) = 0.
To prove that q (α) = 0, suppose not. It follows from q (α) > 0 that

α (1− q (α))

1− αq (α)
< α

and, by the preceding analysis,

V

µ
α (1− q (α))

1− αq (α)

¶
=

d

1− δ
. (15)

For q (α) > 0, the expected payoff from choosing D must equal that from choosing C
for some q > 0:

αq

µ
b+

δa

1− δ

¶
+ (1− αq)

µ
d

1− δ

¶
= αq (a− c) + c+

αδ (a− d)

1− δ
+

δd

1− δ
, (16)

where we used (15). However, notice that the LHS and RHS of (16) are exactly the
same as in (12). By the previous analysis, if α = α then the payoff to D and C are
equal when q = 0 and the payoff to D exceeds that from C when q > 0 in which case
(16) cannot hold. We conclude that q (α) = 0.

Finally, let us prove that if α ∈ (α, 1] then q (α) ∈ (0, 1). To show that q (α) > 0,
suppose not so ∃α0 > α such that q (α0) = 0. By the preceding logic, V (α0) = d

1−δ . In
that case, the payoff to D is at least as great as that from C iff (14) holds with a weak
inequality, but the previous analysis showed that is the case iff α ≤ α. Therefore, if
α ∈ (α, 1] then q (α) > 0. To show that q (α) < 1, consider the payoffs from C and D
when the other player (if type L) chooses C for sure:

Play C : α

µ
a+

δa

1− δ

¶
+ (1− α)

µ
c+ δ

µ
d

1− δ

¶¶
Play D : α

µ
b+

δa

1− δ

¶
+ (1− α)

µ
d+ δ

µ
d

1− δ

¶¶
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Since choosing D yields a strictly higher payoff, it cannot be the case that q (α) = 1.
Therefore, q (α) < 1.

Proof of Theorem 2. To show that α > α implies α(1−q(α))
1−αq(α) > α, suppose not so

that ∃α0 > α such that α0(1−q(α0))
1−α0q(α0) ≤ α. By the proof of Theorem 1, V

³
α0(1−q(α0))
1−α0q(α0)

´
=

d
1−δ and, from (4), we have:

α0q
¡
α0
¢
=

δ
³
a−d
1−δ

´
− (d− c)− (1− α0) δ(a−d)1−δ

δ
³
a−d
1−δ

´
− (d− c) + (b− a)

=
α0δ

³
a−d
1−δ

´
− (d− c)

δ
³
a−d
1−δ

´
− (d− c) + (b− a)

. (17)

We’ve made the supposition

α ≥ α0 (1− q (α0))

1− α0q∗ (α0)

which is equivalent to

α0q
¡
α0
¢
≥ α0 − α

1− α
. (18)

Substituting (17) into (18):

α0δ
³
a−d
1−δ

´
− (d− c)

δ
³
a−d
1−δ

´
− (d− c) + (b− a)

≥ α0 − α

1− α

α0δ
³
a−d
1−δ

´
− (d− c)

δ
³
a−d
1−δ

´
− (d− c) + (b− a)

≥
α0 − (1−δ)(d−c)

δ(a−d)

1− (1−δ)(d−c)
δ(a−d)

δ (a− d)α0 − (1− δ) (d− c)

δ (a− d)− (1− δ) (d− c) + (1− δ) (b− a)
≥ δ (a− d)α0 − (1− δ) (d− c)

δ (a− d)− (1− δ) (d− c)

δ (a− d)− (1− δ) (d− c) ≥ δ (a− d)− (1− δ) (d− c) + (1− δ) (b− a)

0 ≥ (1− δ) (b− a) ,

which is not true. Hence, @α0 > α such that α0(1−q(α0))
1−α0q(α0) ≤ α which means if α0 > α

then α0(1−q(α0))
1−α0q(α0) > α.

Next consider: if α1 > α then limt→∞αt = α. By Bayes rule,

αt+1 = αt
µ
1− qt

1− αtqt

¶
⇒ αt+1 < αt.

By part (i) of this theorem, if α1 > α then α is a lower bound of the sequence {αt}.
Hence, {αt} has a limit and it is sufficient to show that α is the infimum of {αt}.
Suppose not, and let α0 > α be the infimum of {αt}. Then as αt → α0, αt+1 → αt,
which indicates qt → 0. As qt → 0, V (αt+1)→ d

1−δ . But we know from the proof of
Theorem 1 that the payoff to D is the same as the payoff from C iff αt → α, which
contradicts αt → α0 and α0 > α. Therefore, limt→∞αt = α, for α1 > α.
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That α1 > α implies q
¡
αt
¢
> 0 ∀t immediately follows from αt > α ∀t and

Theorem 1.
Next let us show that limα↓αq (α) = 0 when α > 0. It has already been proven:

if α1 > α then limt→∞αt = α. Therefore,

lim
α↓α

α (1− q (α))

1− αq (α)
= α (> 0) ,

which implies limα↓αq (α) = 0.
Finally, it is easy to prove limt→∞ αtq

¡
αt
¢
= 0. If α1 ≤ α then q

¡
αt
¢
= 0∀t

and therefore limt→∞ αtq
¡
αt
¢
= 0. If α1 > α > 0 then, by the other results of

Theorem 2, limt→∞ αt = α and limα↓α q (α) = 0 which implies limt→∞ αtq
¡
αt
¢
= 0.

If α1 > α = 0 then limt→∞ αt = 0 which implies limt→∞ αtq
¡
αt
¢
= 0.

Proof of Theorem 4. Re-arranging (4), an equilibrium q (·) is defined by

αq [(b− a)− (d− c)]+(1− α)
δ (a− d)

1− δ
+(d− c) = δ (1− αq)

∙
a

1− δ
− V

µ
α (1− q)

1− αq

¶¸
(19)

Conjecturing that the value function is linear in α,

V (α) = x+ yα, (20)

substitute (20) into (19).

αq [(b− a)− (d− c)] + (1− α)
δ (a− d)

1− δ
+ (d− c) (21)

= δ (1− αq)

∙
a

1− δ
− x− y

µ
α (1− q)

1− αq

¶¸

αq [(b− a)− (d− c)]+(1− α)
δ (a− d)

1− δ
+(d− c) = δ (1− αq)

a

1− δ
−δ (1− αq)x−δyα (1− q)

αq

½
[(b− a)− (d− c)] +

δa

1− δ
− δx− δy

¾
=

δa

1− δ
−δx−δyα−(1− α)

δ (a− d)

1− δ
−(d− c)

αq =
δa
1−δ − δx− δyα− (1− α) δ(a−d)1−δ − (d− c)

[(b− a)− (d− c)] + δa
1−δ − δx− δy

αq =
δa− δ (1− δ) (x+ yα)− (1− α) δ (a− d)− (1− δ) (d− c)

(1− δ) [(b− a)− (d− c)] + δa− δ (1− δ) (x+ y)

αq = α

∙
δ (a− d)− δ (1− δ) y

(1− δ) [(b− a)− (d− c)] + δa− δ (1− δ) (x+ y)

¸
(22)

+
δa− δ (1− δ)x− δ (a− d)− (1− δ) (d− c)

(1− δ) [(b− a)− (d− c)] + δa− δ (1− δ) (x+ y)
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Thus, αq is affine in α if the value function is affine in α. As a player is indifferent
between playing C and D, the value can be given by the payoff to choosing C for
sure:

V (α) = αq (a− c) +
αδ (a− d)

1− δ
+ c+

δd

1− δ
.

The value function is affine in αq and, since αq is affine in α, V (α) is affine in α.
The next step is to show that there exist unique values for x and y. Using the

payoff to playing C, in equilibrium the value function equals:

V (α) = αq (a− c) + c+
αδ (a− d)

1− δ
+

δd

1− δ

= α

∙
δ (a− d)− δ (1− δ) y

(1− δ) [(b− a)− (d− c)] + δa− δ (1− δ) (x+ y)

¸
(a− c)

+

∙
δa− δ (1− δ)x− δ (a− d)− (1− δ) (d− c)

(1− δ) [(b− a)− (d− c)] + δa− δ (1− δ) (x+ y)

¸
(a− c)

+c+
αδ (a− d)

1− δ
+

δd

1− δ

= α

∙
δ (a− c) [(a− d)− (1− δ) y]

(1− δ) [(b− a)− (d− c)] + δa− δ (1− δ) (x+ y)
+

δ (a− d)

1− δ

¸
(23)

+(a− c)

∙
δa− δ (1− δ)x− δ (a− d)− (1− δ) (d− c)

(1− δ) [(b− a)− (d− c)] + δa− δ (1− δ) (x+ y)

¸
+c+

δd

1− δ

Equating coefficients between (20) and (23), we have

x = (a− c)

∙
δd− δ (1− δ)x− (1− δ) (d− c)

(1− δ) [(b− a)− (d− c)] + δa− δ (1− δ) (x+ y)

¸
(24)

+c+
δd

1− δ

y =
δ (a− c) [(a− d)− (1− δ) y]

(1− δ) [(b− a)− (d− c)] + δa− δ (1− δ) (x+ y)
+

δ (a− d)

1− δ
(25)

To show that there is a unique solution to (24)-(25), define z ≡ x + y and note
that:

z = x+ y = V (1) =WC(1) = Q(a− c) +
δ (a− d)

1− δ
+ c+

δd

1− δ
,

where Q = q(1). Simplifying the preceding equation gives:

z = Q(a− c) +
δa

1− δ
+ c. (26)

If we can show that there exists a unique Q ∈ (0, 1) satisfying the equilibrium condi-
tion (21) when α = 1, then z = x+ y = V (1) is unique.
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Evaluating (21) at α = 1, we have:

Q [(b− a)− (d− c)] + (d− c) = δ (1−Q)

∙
a

1− δ
− x− y

µ
1−Q

1−Q

¶¸
Q [(b− a)− (d− c)] + (d− c) = δ (1−Q)

∙
a

1− δ
− z

¸
Q [(b− a)− (d− c)] + (d− c) = δ (1−Q)

∙
a

1− δ
−
µ
Q(a− c) +

δa

1− δ
+ c

¶¸
Q [(b− a)− (d− c)] + (d− c) = δ (1−Q)2 (a− c) ,

and re-arranging gives us

δ (a− c)Q2 − [2δ (a− c) + (b− a)− (d− c)]Q+ [δ (a− c)− (d− c)] = 0.

This quadratic has two solutions:

Q =
2δ (a− c) + (b− a)− (d− c)±

√
Ω

2δ (a− c)
,

where

Ω ≡ [2δ (a− c) + (b− a)− (d− c)]2 − 4δ (a− c) [δ (a− c)− (d− c)] (27)

= 4δ2 (a− c)2 + [(b− a)− (d− c)]2 + 4δ (a− c) [(b− a)− (d− c)]

−4δ2 (a− c)2 + 4δ (a− c) (d− c)

= [(b− a)− (d− c)]2 + 4δ (a− c) [(b− a)− (d− c)] + 4δ (a− c) (d− c)

> 0

since a > c, d ≥ c and b + c ≥ a + d; and recall that the assumption b > a implies
d = c and b + c = a + d cannot both hold. Hence, the two solutions are real. Next
note that the bigger root exceeds one:

Qb = 1 +
(b− a)− (d− c) +

√
Ω

2δ (a− c)
> 1.

Thus, we only need to show that the smaller root falls in (0, 1).

Qs = 1 +
(b− a)− (d− c)−

√
Ω

2δ (a− c)
< 1

if and only if

(b− a)− (d− c) <
√
Ω⇔ [(b− a)− (d− c)]2 < Ω⇔

[(b− a)− (d− c)]2 < [(b− a)− (d− c)]2 + 4δ (a− c) [(b− a)− (d− c)] + 4δ (a− c) (d− c) ,

which is equivalent to

4δ (a− c) [(b− a)− (d− c)] + 4δ (a− c) (d− c) > 0,
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and, therefore, Qs < 1. Qs > 0 if and only if

2δ (a− c) + (b− a)− (d− c) >
√
Ω

[2δ (a− c) + (b− a)− (d− c)]2 > Ω.

From (27), the preceding condition is equivalent to

4δ (a− c) [δ (a− c)− (d− c)] > 0,

which holds since

δ (a− c)− (d− c) > 0⇔ δ >
d− c

a− c
.

The last property follows from δ > b−a
b−d ≥

d−c
a−c .

There then exists a unique Q ∈ (0, 1), and z = x+ y = V (1) is unique since it is
linear in Q. In addition, plugging Qs in (26) gives

z =
2δ (a− c) + (b− a)− (d− c)−

√
Ω

2δ
+

δa

1− δ
+ c

=
a

1− δ
+
(b− a)− (d− c)−

√
Ω

2δ

=
2aδ + (1− δ)

h
(b− a)− (d− c)−

√
Ω
i

2δ (1− δ)
.

To close the model, use the initial condition

V (α) =
d

1− δ
,

which takes the form:

x =
d

1− δ
− y

(1− δ) (d− c)

δ (a− d)
.

x∗ is then the unique solution to

x∗ =
d

1− δ
− (z − x∗)

(1− δ) (d− c)

δ (a− d)
,

and y∗ is the unique solution to: y∗ = z − x∗. This completes the proof that there is
a unique stationary symmetric affine MPBE. Finally, solving for q from (22) gives us
(9).

Proof of Theorem 5. Since the equilibrium probability of choosing C is

αq (α) = α

∙
δ (a− d)− δ (1− δ) y

(1− δ) [(b− a)− (d− c)] + δa− δ (1− δ) (x+ y)

¸
+

∙
δa− δ (1− δ)x− δ (a− d)− (1− δ) (d− c)

(1− δ) [(b− a)− (d− c)] + δa− δ (1− δ) (x+ y)

¸
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then αq (α) is increasing in α iff

δ (a− d)− δ (1− δ) y

(1− δ) [(b− a)− (d− c)] + δa− δ (1− δ) (x+ y)
> 0. (28)

By assumption
(b− a)− (d− c) ≥ 0,

and V (1) < a
1−δ implies

a

1− δ
− (x+ y) > 0. (29)

Thus, (28) is true iff the numerator is positive:

(a− d)− (1− δ) y > 0. (30)

Suppose (30) was not true. From (25), we have

y =
δ (a− c) [(a− d)− (1− δ) y]

(1− δ) [(b− a)− (d− c)] + δa− δ (1− δ) (x+ y)
+

δ (a− d)

1− δ
. (31)

If (30) is not true then the first term of (31) is non-positive, but then (31) implies

y ≤ δ (a− d)

1− δ

which contradicts the supposition that (30) is not true. From this contradiction, we
conclude (30) and thus αq (α) is increasing in α.

To show that V (α) is increasing in α, recall that

V (α) = αq (α) (a− c) +
αδ (a− d)

1− δ
+ c+

δd

1− δ
.

That αq (α) is increasing in α delivers the result.

Proof of Theorem 6. For α ≤ α, q (α) = 0, so it is non-decreasing in α for
α ∈ [0, α]. From hereon, suppose α > α so that

q (α) =
δ (a− d)− δ (1− δ) y

(1− δ) [(b− a)− (d− c)] + δa− δ (1− δ) (x+ y)

+

µ
1

α

¶ ∙
δa− δ (1− δ)x− δ (a− d)− (1− δ) (d− c)

(1− δ) [(b− a)− (d− c)] + δa− δ (1− δ) (x+ y)

¸
Thus, q (α) is increasing in α iff∙

δa− δ (1− δ)x− δ (a− d)− (1− δ) (d− c)

(1− δ) [(b− a)− (d− c)] + δa− δ (1− δ) (x+ y)

¸
< 0 (32)

The denominator of the LHS of (32) is positive because b− a ≥ d− c by assumption
and

a

1− δ
> x+ y
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as shown in (29). Thus, (32) is true iff the numerator is negative:

δa− δ (1− δ)x− δ (a− d)− (1− δ) (d− c) < 0. (33)

Suppose (33) was not true. From (24), we would then have

x ≥ c+
δd

1− δ

which implies

δa−δ (1− δ)x−δ (a− d)−(1− δ) (d− c) ≤ δa−δ (1− δ) (c+
δd

1− δ
)−δ (a− d)−(1− δ) (d− c)

(34)

By rearranging terms, the RHS of (34) is equivalent to

−(1− δ)2(d− c) (35)

which is negative iff d > c. Hence, the LHS of (33) is negative for d > c, which
contradicts the supposition that (33) is not true. From this contradiction, we conclude
(33) is true for d > c. Namely, q (α) is increasing in α for d > c.

If d = c, (35) implies

δa− δ (1− δ)x− δ (a− d)− (1− δ) (d− c) = 0⇒ ∂q (α)

∂α
= 0.

Proof of Theorem 7. First note that if α1 ≤ α then qt = 0 ∀t in which case
QT = 1. From hereon, assume α1 ∈ (α, 1) . If d > c then, with the affine MPBE,

q (α) = A+B

µ
1

α

¶
for some A and B where B < 0 and A+B < 1. Then

αt =
αt−1

¡
1− qt−1

¢
1− αt−1qt−1

=
αt−1

¡
1−A− B

αt−1
¢

1− αt−1
¡
A+ B

αt−1
¢

qt = A+B

µ
1

αt

¶
= A+B

Ã
1− αt−1

¡
A+ B

αt−1
¢

αt−1
¡
1−A− B

αt−1
¢! (36)

Since B 6= 0, we can invert

qt−1 = A+B

µ
1

αt−1

¶
to derive

αt−1 =
B

qt−1 −A
.
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Insert this expression in (36),

qt = A+B

Ã
1− αt−1

¡
A+ B

αt−1
¢

αt−1
¡
1−A− B

αt−1
¢!

qt = A+B

⎛⎜⎜⎝1−
³

B
qt−1−A

´µ
A+ B

B
qt−1−A

¶
³

B
qt−1−A

´µ
1−A− B

B
qt−1−A

¶
⎞⎟⎟⎠

qt = A+B

⎛⎝1−
³

B
qt−1−A

´ ¡
A+ qt−1 −A

¢³
B

qt−1−A

´
(1−A− qt−1 +A)

⎞⎠
qt = A+B

⎛⎝ qt−1−A−Bqt−1
qt−1−A

B(1−qt−1)
qt−1−A

⎞⎠ = A+

µ
qt−1 −A−Bqt−1

1− qt−1

¶

qt = A+

µ
qt−1 −A−Bqt−1

1− qt−1

¶
=

A
¡
1− qt−1

¢
+ qt−1 −A−Bqt−1

1− qt−1
= qt−1

µ
1−A−B

1− qt−1

¶
qt = qt−1

µ
1−A−B

1− qt−1

¶
(37)

By B < 0 and αt < 1, we have

A+B > A+B

µ
1

αt

¶
= qt, ∀ t.

By B < 0 and that αt decreasing over time, we have that qt decreasing over time.
Hence,

1− q1 ≤ 1− qt−1, ∀ t > 2,
Therefore,

qt ≤
µ
1−A−B

1− q1

¶
qt−1.

As this holds for all t, it implies

qt ≤
µ
1−A−B

1− q1

¶t−1
q1 = νt−1q,

where ν ≡
³
1−A−B
1−q1

´
∈ (0, 1). Hence,

TY
t=1

¡
1− qt

¢2
>

"
TY
t=1

¡
1− νt−1q

¢#2
.

To prove this theorem, it is then sufficient to show

lim
T→∞

TY
t=1

¡
1− νt−1q

¢
> 0,
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which is equivalent to

lim
T→∞

TY
t=1

¡
1− νtq

¢
> 0,

which, because q ∈ (0, 1), is true if

lim
T→∞

TY
t=1

¡
1− νt

¢
> 0,

which is equivalent to
∞X
t=1

log
¡
1− νt

¢
> −∞.

Since ν ∈ (0, 1) then

∞X
t=1

log
¡
1− νt

¢
= −

∙µ
ν +

ν2

2
+

ν3

3
+ ...

¶
+

µ
ν2 +

ν4

2
+

ν6

3
+ ...

¶
+ ...+

µ
νt +

ν2t

2
+

ν3t

3
+ ...

¶
+ ...

¸
Some manipulation yields the desired result:

−
∙µ

ν +
ν2

2
+

ν3

3
+ ...

¶
+

µ
ν2 +

ν4

2
+

ν6

3
+ ...

¶
+ ...+

µ
νt +

ν2t

2
+

ν3t

3
+ ...

¶
+ ...

¸
= −

∙¡
ν + ν2 + ν3 + ...

¢
+
1

2

¡
ν2 + ν4 + ν6 + ...

¢
+
1

3

¡
ν3 + ν6 + ν9 + ...

¢
+ ...

¸
= −

µ
ν

1− ν
+
1

2

ν2

1− ν2
+
1

3

ν3

1− ν3
+ ...

¶
= − ν

1− ν

µ
1 +

1

2

ν

1 + ν
+
1

3

ν2

1 + ν + ν2
+ ...

¶
≥ − ν

1− ν

¡
1 + ν + ν2 + ...

¢
= − ν

(1− ν)2
> −∞

31




