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Voting Power in the EU Council of Ministers and Fair
Decision Making in Distributive Politics∗

Michel Le Breton Maria Montero Vera Zaporozhets

March 2011

Abstract

We analyze and evaluate the different decision rules describing the Council of Min-
isters of the EU starting from 1958 up to date. All the existing studies use the Banzhaf
index (for binary voting) or the Shapley-Shubik index (for distributive politics). We
argue that the nucleolus can be considered an appropriate power measure in distribu-
tive situations and an alternative to the Shapley-Shubik index. We then calculate the
nucleolus and compare the results of our calculations with the conventional measures.
In the second part, we analyze the power of the European citizens as measured by the
nucleolus under the egalitarian criterion proposed by Felsenthal and Machover (1998),
and characterize the first best situation. Based on these results we propose a method-
ology for the design of the optimal (fair) decision rules. We perform the optimization
exercise for the earlier stages of the EU within a restricted domain of voting rules, and
conclude that Germany should receive more than the other three large countries under
the optimal voting rule.

∗We would like to thank Moshé Machover, Josep Freixas and participants in the 10th international meeting
of the society for Social Choice and Welfare for helpful comments.
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1 Introduction

Democratic decision-making, in local, national or supra-national bodies, is based on voting.
Political scientists and economists alike have long noted that it is far from obvious how to
evaluate the voting power of different individuals or groups, e.g. parliamentary coalitions,
in decision-making bodies. They noticed that the voting power need not be proportional to
the number of votes an individual or a group is entitled to. For example, Luxembourg was
powerless in the Council of Ministers of the EU between 1958 and 1973. It held one vote,
whereas a qualified majority of votes was defined to be 12 out of 17. Since other member
states held an even number of votes, Luxembourg formally was never able to make any
difference in the voting process. The recent enlargement of the European Union caused a
lively debate on the adequate tools for measuring decision power in real-life institutions and
had strong implications for the balance of the power among member states.
During the last decade scholars have continued to contribute to the theoretical and em-

pirical research on power indices1. One of the important applied questions addressed in this
literature is whether the national representation in the European Union is fair or not. It
has often been claimed that the current allocation of votes among EU states is not fair.
In particular, it is often asserted that, in the European decision-making process, the large
countries are under-represented while the reverse holds for the small ones. In this paper
we address this question by performing the evaluation of the power distribution among the
member states in the EU Council of Ministers starting from 1958 up to date using the nucle-
olus. We conclude that in most of the cases, the above critique is justified2, and therefore we
propose a new methodology for the design of the optimal (fair) decision rules. In particular,
we show that in the Council of Ministers in 1958, Germany got too little weight as compared
to France and Italy, and that, surprisingly, the choice to make Luxembourg a dummy was
optimal in our context. In what follows, we explain why the nucleolus is an appealing power
measure for this analysis.
As noted by Napel and Widgrén (2004) "Scientists who study power in political and

economic institutions seem divided into two disjoint methodological camps. The first one uses
non cooperative game theory to analyze the impact of explicit decision making procedures
and given preferences over a well-defined, usually Euclidean policy space. The second one
stands in the tradition of cooperative game theory with more abstractly defined voting
bodies: the considered agents have no particular preferences and form winning coalitions
which implement unspecified policies. Individual chances of being part of and influencing a
winning coalition are then measured by a power index....Proponents of either approach have
recently intensified their debate which was sparked by the critique by Garrett and Tsebelis
(1999, 2001).... Several authors have concluded that it is time to develop a unified framework
for measuring decision power. On the one hand, such framework should allow for predictions
and ex post analysis of decisions based on knowledge of procedures and preferences. On the

1See for instance, Algaba et al. (2007), Barr and Passarelli (2009), Bilbao et al. (2002), Felsenthal and
Machover (2001, 2004), Laruelle and Widgrén (1998) and Leech (2002).

2The smaller countries have not been systematically overrepresented according to the nucleolus. In
particular, the total payoff is divided among the four largest countries in the 1973 and 1981 Councils.
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other hand, it must be open to ex ante and even completely a priori analysis of power when
detailed information may either not be available or should be ignored for normative reasons".
Some authors including Steunenberg, Schmidtchen and Koboldt (1999), Maaser and

Napel (2007), Napel and Widgrén (2004) have proposed models of public decision making
where, to some extent, the two points of view are reconciled. Steunenberg, Schmidtchen and
Koboldt (1999) propose a general framework where the policy space is a multidimensional
space and preferences are defined by the Euclidean distance to an ideal point. The power
of a player with respect to an arbitrary outcome function (i.e., a function mapping a profile
of ideal points into a policy) is defined as the difference between the expected payoff of this
player and the expected payoff of a random player. They apply their theory to the case where
the policy space is one-dimensional and where the game form is intended to model the EU
decision-making process. Maaser and Napel (2007) also consider a one-dimensional policy
space and model a two-tier representative system where each citizen in each constituency
has single-peaked symmetric preferences. They assume that the representative of each con-
stituency is the median voter of the constituency and that the decision taken at the top tier
is the position of the pivotal representative. Using Monte-Carlo simulations, they investigate
several artificial constituency configurations as well as the EU and the US electoral college.
More precisely, given a random device to select the ideal points, they look for the allocation
of voting weights for which each voter in each constituency has an equal chance to determine
the policy implemented by the top tier, and show that the Penrose square root principle
comes close to ensuring equal representation. Napel and Widgrén (2004) consider the situ-
ation where the status quo is matched against a proposal but the decision to challenge the
status quo as well as the nature of the proposal is not exogenous like in traditional models
of power measurement; instead the proposal is under the control of an agenda setter. They
sketch a theory of power measurement (the players are the voters and the agenda-setter) for
this specific setting and under the extra assumption of unidimensionality: where (ex ante)
power is defined as expected marginal influence3.
Napel and Widgrén (2004) assert that "So far, we have only considered ideal points in

one-dimensional policy spaces. These are analytically convenient. Both the derivation of
ex post power and formation of expectations are more complicated for higher-dimensional
spaces. However, there is no obstacle, in principle". In this paper, we aim to contribute
to the reconciliation between the two approaches. We certainly agree with the postulate
that game forms have to be taken into account by political analysis but we do not want the
power analysis to be extremely sensitive to the details of the game form used to describe the
non-cooperative decision process, i.e. we would like to derive some robust power measure.
To do so, we consider a specific, but extremely important, multidimensional policy space,
namely distributive politics. Precisely, we are interested in multidimensional policy issues
which can be represented as vectors in the simplex of some Euclidean space. This setting
arises naturally when the issue under scrutiny is the allocation of a fixed budget (surplus,
cost, gains from cooperation or coordination...) across the members of an organization. More

3Several authors including Napel and Widgrén (2006, 2009), Passarelli and Barr (2007) and Tsebelis
(1994) have analyzed non cooperative game forms describing the interaction between the decision bodies
(among which the council of ministers) involved in the EU decision making process.
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generally, under the assumptions of transferable utility (i.e., quasi-linearity with respect to
some common numeraire) and efficiency in public decision making, the simplex structure
appears as the efficient frontier of any bounded and convex subset of policies like those
considered in the spatial model of politics. The unit of measurement will be interpreted
below as being money but alternative units, like for instance ministry portfolios or (local)
public expenditures, can be considered. The key assumption that we make on preferences
is that members of the organization only care about their share. This means that the ideal
points are the vertices of the simplex and that there is no room here for a difference between
ex ante and ex post power measurement from the perspective of preferences.4

Several alternative forms can be considered to describe the public decisionmaking process.
Following Montero (2006) and Snyder et al. (2005), we could consider for instance a leg-
islative bargaining game a la Baron and Ferejohn (1989) where players act strategically as
proposers and (or) voters. Montero (2006) shows that, if the vector of probabilities of being
selected as a proposer coincides with the nucleolus, then the nucleolus is the unique vector
of expected equilibrium payoffs. Another game form for which the nucleolus also appears
as the vector of equilibrium payoffs is the celebrated sequential lobbying model pioneered by
Groseclose and Snyder (1996) and further explored by Banks (2000), Diermeier and Myerson
(1999), Le Breton and Zaporozhets (2010) and Le Breton, Sudhölter and Zaporozhets (2010)
among others. In this model, two competing lobbies buy the votes of (some of) the mem-
bers of a legislature in order to get these people to vote for their most preferred alternative.
Young (1978 a, b) had already developed a quite similar model in a series of illuminating
papers. Young (1978 a,b), Le Breton and Zaporozhets (2010) and Le Breton, Sudhölter and
Zaporozhets (2010) have independently demonstrated that if at equilibrium lobbying takes
place, then the nucleolus is a vector of equilibrium payoffs and, often, the unique vector of
equilibrium payoffs. In both models, the ex ante approach is well defined. In the bargaining
model, it is attached to the vector of probabilities of being selected to act as a proposer. In
the lobbying model, as suggested in Diermeier and Myerson (1999), randomness results from
the fact that the willingness to pay of each lobby is the realization of a random variable and
that lobbying takes place iff the ratio of the two realizations is larger than some threshold
called the hurdle factor.
These arguments provide grounds for our choice of the nucleolus as a contender to the

traditional measures. Felsenthal and Machover (1998) and Laruelle and Valenciano (2008)
argue that the (absolute) Banzhaf measure (see Penrose (1946) and Banzhaf (1965)) is
appropriate for binary voting, whereas the Shapley-Shubik (1954) index is appropriate for
distributive politics. The above line of reasoning shows that in the context of distributive
politics the nucleolus can be considered as an appropriate power measure and an alternative
to the Shapley-Shubik index. This point of view has been advocated a long time ago with

4This paper focuses exclusively on measurement and design issues. We will not discuss/provide any
empirical testing of the bargaining/lobbying theories which are introduced. One prominent illustration of
the distributive setting is the allocation of the European budget dedicated to agricultural matters. While
complicated, the ultimate goal of the decision making process dealing with these issues is to divide the budget
across countries in order to support some specific branches of this sector. Kauppi and Widgrén (2004) offer
a convincing defense of the usefulness of quantitative power indices to describe a significant fraction of the
distribution of power between members.
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force and talent by Young5 (1978 b) and more recently by Montero (2005). Our paper aims
to contribute to the diffusion of the idea that the nucleolus is indeed a power index that
should be considered in applied positive and normative analysis of organizations described
as weighted majority games.
In the first part of our paper, we analyze the distribution of voting power in the Council

of Ministers of the European Union according to the nucleolus starting from 1958 up to date.
We compare the results of our calculations with the predictions provided by the Banzhaf and
the Shapley-Shubik as well as another index obtained from the non-cooperative bargaining
game due to Baron and Ferejohn (see Montero (2007)). We are interested in the power of a
country to approve as well as its power to block a decision. The Banzhaf and the Shapley-
Shubik indices give the same answer in both situations6. The two new measures may assign
different values to the power to approve and to the power to block a proposal by a country.
In the second part, we move to a normative analysis, i.e. to the determination of the

weights that should be assigned to the members of the EU Council of Ministers in order
to achieve a certain social objective7. Hereafter, we will refer to these weights as being the
optimal weights.
The question of finding the optimal weights has been addressed before in the literature,

but always assuming a binary setting in which an alternative is pitted against the status
quo, rather than a distributive setting in which the set of alternatives is a simplex. Within
the binary setting, there have been egalitarian approaches that seek to equalize the power
of all citizens (as measured by the Banzhaf index), and utilitarian approaches that seek to
maximize the total utility of all citizens. Taking the egalitarian approach, Felsenthal and
Machover (1998) show that the optimal weights are such that each country’s Banzhaf index
is proportional to the square root of its population size, the celebrated Penrose’s rule (1946).
Barberà and Jackson (2006) take a utilitarian approach and find that the optimal weights
depend upon the details of the probability process selecting the profile of utilities. This
utilitarian model has also been explored by Beisbart, Bovens and Hartmann (2005) and
Beisbart and Hartmann (2010).
In this paper, we follow the egalitarian approach with the nucleolus being the measure

of power of the countries in the EU Council of Ministers8: in our setting the role of the

5In Young (1978 c) a new and different approach to power measurement is developed.
6The (absolute) Banzhaf measure of a game coincides with the Banzhaf measure of the dual game in which

the blocking coalitions of the original game are winning. There are two other measures, the Coleman (1971)
measures, which refer to the probability of being pivotal conditional on the final decision being positive or
negative. The two Coleman measures are proportional to the Banzhaf measure and are mutually dual (see
Felsenthal and Machover, p. 49).

7The selection of national voting weights in the Council of Ministers of the European Union and its
implied influence on the EU legislation have received a great deal of attention from academics, politicians
and the general public and have generated a lot of controversies.

8As it will be clear, we could of course reproduce the analysis for any measure different from the nucleolus.
We have argued that the nucleolus emerges at equilibrium in models of lobbying models and also in the
Baron-Ferejohn bargaining setting for a specific choice of the recognition probabilities. Kalandrakis (2006)
has shown that any vector from the simplex is the vector of equilibrium payoffs of the Baron-Ferejohn
game for an appropriate choice of the recognition probabilities. We could for instance take the Shapley value
instead of the nucleolus or take the equilibrium vector attached to the case where all recognition probabilities
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Council of Ministers is to distribute some surplus across the countries. The country amount
is then divided equally among their citizens (we do not introduce any bias). If this surplus
is interpreted as the gains from the EU, we would like this surplus to be shared equally
among European citizens9. It follows from our result that this egalitarian goal will be met
perfectly if and only if the nucleolus for the representatives coincides with the population
shares. It is not clear, however, how this principle ought to be operationalized in practice,
either in terms of apportioning an integer number of seats for given non-integer ideal shares
or in determining what are the ideal shares. Although it seems straightforward to allocate
weights proportional to population sizes, this ignores the combinatorial properties of weighted
voting, which often imply stark discrepancies between voting weight and actual voting power
as illustrated in the beginning of the introduction. We are confronted to a truly combinatorial
second best optimization problem. Second best, because we will never reach perfection and we
need therefore to evaluate the social loss associated to any deviation from perfect equality.
Combinatorial, because we have only a finite number of possibilities. In that respect the
terminology "optimal weights" can be misleading as what really matters is the simple game
induced by the weights. If there were only three countries, the notion of weights is almost
meaningless. In addition to that, let us also point out that there is no reason to infer that
the second best optimal simple game will be a weighted majority game10. The combinatorial
problem is difficult11. We introduce a methodology, based on the specific criterion of variance
minimization12, for the design of the voting rule. Implementing the method is far from easy.
We illustrate its application when the number of EU members was very small.
The rest of the paper is organized as follows. In the subsequent subsection we provide a

review of the closely related literature. Section 3 describes the first five configurations of the
Council of Ministers between 1958 and 1995 which operated under weighted voting rules.
We provide the values for the nucleolus and the expected payoffs from the corresponding
bargaining game both for the approval and the block situations. The expected payoffs, in
fact, are given only up to 1986 due to the computational complexity. We compare these values
with the more traditional power measures, the Banzhaf and the Shapley-Shubik indices. In
section 4, we describe the qualified voting rules for 15 and 27 members as prescribed by the
Treaty of Nice, and compare the nucleolus with the values for the Banzhaf and the Shapley-
Shubik indices. Section 5 is devoted to the design of the optimal (fair) decision rules. Section
6 is devoted to the calculation of the optimal voting rule for the earlier stages of the EU.

are equal. Ultimalely, the validity of the optimal weights depends upon which parameters of the bargaining
game are the most relevant to describe the particular distributive setting under scrutiny.

9The principle of "one person, one vote" is generally taken to be a corner stone of democracy. In this
distributive setting, the principle is as simple as "one person, one euro".
10In the utilitarian framework, Barberà and Jackson (2006) show that the optimal voting rule is almost a

weighted voting rule.
11This explains why many practionners select a parametrized family of weight functions (for instance, the

population of the country to the power α) and calculate the values of the power indices resulting from each
feasible choice of the parameter(s). It is not entirely clear to us why this procedure guarantees that the
optimal second best simple game can be determined through such exploration.
12Variance minimization has been adopted by many authors. Of course, many other inequality indices like

for instance, the Gini index and the Kolm-Atkinson’s indices could be used instead. The results are very
similar if the Gini index is used instead (see p. 36).
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An appendix is dedicated to an overview of the notions from cooperative game theory which
are used in this paper, as well as some results on the combinatorics of simple games with a
special attention to the issue of representation by weights.

2 Two "New" Power Indices

A measure of power is a map ξ from the set of simple games (N,W) to the set of n-tuples of
real numbers. The value ξi = ξi (N,W) is the power of player i in the game (N,W) , and it
satisfies 0 ≤ ξi ≤ 1. The most famous power measures used in the literature are the Banzhaf
(BZ) and the Shapley-Shubik (SS) indices13. In this paper, we introduce two new measures
of power which are not derived from any set of axioms but instead as vectors of equilibrium
payoffs of positive models of politics.

2.1 Lobbying and Power : The Nucleolus

In this section, we show that the nucleolus and more generally, the vectors belonging to the
least core of the simple game arise as the vectors of equilibrium payoffs of a game describing
the competition between two lobbies to buy the influence of the members of a legislature.
More precisely, in Young (1978 a, b), Le Breton and Zaporozhets (2010) and Le Breton,
Sudhölter and Zaporozhets (2010), it is shown that the least core and the nucleolus are in
one-to-one correspondence with the set of vectors of equilibrium payoffs of the legislators in
a celebrated game of lobbying due to Groseclose and Snyder (1996) and further analyzed
by Banks (2000) and Diermeier and Myerson (1999). In this game-theoretical model of
lobbying, the players of the simple game are the legislators or public decision makers in
charge of public policy. The legislators are assumed to be reactive to the influence of two
lobbies and the public policy can be biased towards one side or the other depending upon
the strength of each lobby and one key parameter characterizing the simple game and called
the hurdle factor of the simple game. Le Breton and Zaporozhets (2010) and Le Breton,
Sudhölter and Zaporozhets (2010) show how to calculate the hurdle factor.
As emphasized by Young, the nucleolus NU (N,W) of the simple game (N,W) can be

interpreted as the vector of relative prices of the legislators’ votes that a lobby has to pay to
impose its most preferred outcome in the presence of the opposition. It can be shown that
those prices are the solutions (up to a normalization) to the following linear program14:

min
X
i∈N

ti

s.t.
X
i∈S

ti ≥ 1 for all S ∈W

ti ≥ 0 for all i ∈ N

. (1)

13For the definitions and the properties see for example, Felsenthal and Machover (1998) and Laruelle and
Valenciano (2008).
14In fact, the equilibrium offers ti coinside with the least core of the corresponding cooperative game. It

may contain multiple solutions, but the nucleolus is always one of them.
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It is important to point out that the set of prices that we obtain when blocking coali-
tions are considered differ from the set of prices when winning considered as above. The
corresponding vector of prices are the solutions to the following linear program :

min
X
i∈N

ti

s.t.
X
i∈S

ti ≥ 1 for all S ∈ B

ti ≥ 0 for all i ∈ N

.

The measures of power advocated by Banzhaf and Shapley-Shubik are invariant to the
duality operation, i.e. BZ (N,W) = BZ (N,B) and SS (N,W) = SS (N,B). In contrast,
NU (N,W) 6= NU (N,B) except in the case where (N,W) is constant sum. The second
vector arises as a vector of equilibrium payoffs when the order of play of the two lobbies is
inverted.

2.2 Bargaining and Power : The Nucleolus (Again)

In this section, we describe the power of the players as the payoffs they should expect to
derive at equilibrium if the division of the pie proceeds from a legislative bargaining game
constrained by some protocol. The game that we consider is the popular bargaining model
introduced by Baron and Ferejohn (1989). The voting rule is represented by a simple voting
game (N,W).
Bargaining proceeds as follows. At every round t = 1, 2,... Nature selects a random

proposer: player i is selected with probability pi. This player proposes a distribution of the
budget (x1, ..., xn) with xj ≥ 0 for all j = 1, ...n and

Pn
j=1 xj = 1. The proposal is voted

upon immediately (closed rule). If the coalition of voters in favor of the proposal is winning,
the proposal is implemented and the game ends; otherwise the game proceeds to the next
period in which Nature selects a new proposer. Players are risk neutral and discount future
payoffs by a factor δi ∈ [0, 1]. A (pure) strategy for player i is a sequence σi = (σti)∞t=1, where
σti, the tth round strategy of player i, prescribes:
1. A proposal x.
2. A response function assigning ”yes” or ”no” to all possible proposals by the other

players.
The solution concept is stationary subgame perfect equilibrium (SSPE). Stationarity re-

quires that players follow the same strategy at every round t regardless of past offers and
responses to past offers. Banks and Duggan (2000) have shown that an SSPE15 always ex-

15The main predictions of the model in the absence of veto players are the following. First, there is a
property of immediate agreement. Even without discounting there is a pressure to reach agreement in the
first period because of the risk of being excluded afterwards. Second, all coalition partners with a positive
expected payoffmust be pivotal, since otherwise it would be a waste of resources for the agenda setter. Third,
the proposer receives a disproportionate share of the pie, because he always buys the cheapest coalition and
pays the minimum amount to its members just to secure the acceptance of the proposal.
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ists16 in this type of bargaining model. In addition, Eraslan and McLennan (2006)17 have
shown that all SSPE lead to the same expected equilibrium payoffs.
In the case where pi = 1

n
and δi = 1 for all i = 1, ..., n, we denote by BF (N,W) the

unique vector of equilibrium payoffs attached to the SSPE of the bargaining game. Hereafter,
we will refer to this vector as the Baron-Ferejohn measure of power attached to the simple
game (N,W).
Montero (2006) has analyzed the above bargaining game in the case where δi = δ ≤ 1

for all i = 1, ..., n. She shows that if the vector p coincides with the nucleolus, then p is the
unique vector of equilibrium payoffs. In her terminology, the nucleolus is a self-confirming
measure of power. The nucleolus can be the equilibrium payoff for other probability vectors
as well (see example 9 in Montero (2006)).

3 Five Voting Bodies: Descriptive Analysis of Power

This section is purely descriptive. We analyze five weighted majority voting games associated
to the Council of Ministers of the European Union in 1958, 1973, 1981, 1986 and 1995 (Table 1
is adapted from Felsenthal and Machover, 2001), and compare the distribution of the decision
power according to the four different power measures.
We provide values for the Banzhaf and the Shapley-Shubik indices (calculated using the

webpage of D. Leech), the nucleolus (calculated using a Maple program based on Matsui
and Matsui (2000)), as well as an index obtained from the non-cooperative bargaining game
due to Baron and Ferejohn. We are interested in power distribution in both approval and
block situations. Both Banzhaf and Shapley-Shubik indices give the same answer, however,
the other two measures may assign different capacity to approve or to block a proposal by
a country. Expected payoffs for the original Baron-Ferejohn game are taken from Montero
(2007); some of these results also appear in Snyder et al. (2005)18. Besides reporting those
results, in this paper we compute expected payoffs for the dual game, i.e., we consider
blocking coalitions rather than winning coalitions.

3.1 Power Distribution in 1958

The European Community is represented by the weighted majority game [12; 4, 4, 4, 2, 2, 1].
As one can easily see Luxembourg is not in any winning or blocking coalition, and the game
can be equivalently represented as [6; 2, 2, 2, 1, 1, 0].
First, we look at the expected equilibrium payoffs in the bargaining game with equal

probabilities of being a proposer and focusing on blocking coalitions. Denote by x, y and

16The existence result is provided by Banks and Duggan (2000) in a very general setting in which the space
of outcomes can be any convex compact set and the utility functions are concave but otherwise unrestricted.
17In the case of the standard majority game, the result was proved in Eraslan (2002).
18Montero (2007) computes expected payoffs for the 1958, 1973 and 1981 Councils. Snyder et al.’s (2005)

table 2 contains expected payoffs for 1958 and 1973 case. The calculations coincide for 1958 but differ for
1973.
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Table 1: Weights and quota in the Council of Ministers.

Country 1958 1973 1981 1986 1995
Germany 4 10 10 10 10
Italy 4 10 10 10 10
France 4 10 10 10 10
UK − 10 10 10 10
Spain − − − 8 8
Belgium 2 5 5 5 5
Netherlands 2 5 5 5 5
Greece − − 5 5 5
Portugal − − − 5 5
Sweden − − − − 4
Austria − − − − 4
Denmark − 3 3 3 3
Ireland − 3 3 3 3
Finland − − − − 3
Luxembourg 1 2 2 2 2
Quota 12 41 45 54 62
Total votes 17 58 63 76 87
Quota (%) 70.59 70.69 71.43 71.05 71.26

z respectively the expected payoffs for players of type 2, 1 and 0. If we impose x = y, the
equilibrium strategies might be summarized as follows:

Player type
[2] [1] [0]

Coalition type [2, 2] λ (2) − −
[2, 1] 1− λ (2) 1 (3) −
[2, 2, 0] − − μ (3)
[2, 1, 0] − − 1− μ (6)

In the table we indicate the probability of proposing each coalition type by each player
type, with the number of coalitions available to the proposer in parentheses.19 The equations
for the players’ expected payoffs are:

19For example, a player of type [2] proposes a coalition of type [2,2] with probability λ. Because each
proposer of type [2] belongs to two coalitions of type [2,2], each of them is proposed with probability λ/2.
A type [0] player proposes a coalition of type [2,1,0] with probability 1−μ. There are 6 such coalitions, and
each type [1] player belongs to 3 of them. Thus, if type [0] is selected to be the proposer, each type [1] player
receives a proposal with probability (1− μ)/2.
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x =
1

6
(1− x) +

2

6

λ

2
x+

2

6

1

3
x+

1

6

µ
2

3
μ+

1− μ

3

¶
x

y =
1

6
(1− x) +

3

6

1− λ

2
y +

1

6

1− μ

2
y

z =
1

6
(1− 2x)

x = y

The solution is: 0 ≤ μ ≤ 1, λ = 6−5μ
15

, x = y = 5
28
≈ 0.179, z = 3

28
≈ 0.107.

Interestingly, the medium-size countries get the same payoff as the large ones, and the
small country gets a disproportionately high payoff as well. Part of the reason is that the
small and medium countries have a disproportionately high proposal power: the probability
of being selected as a proposer is the same for all the countries and equals 1/6. Note also
that Luxembourg is a dummy but gets a positive expected payoff because it is allowed to
make proposals.
In order to calculate the nucleolus (NU) we solve the problem (1) which looks like:

min 3x+ 2y
s.t. 2x+ 2y ≥ 1

3x ≥ 1
x, y ≥ 0

.

The solution of this problem is:

x =
1

3
, y =

1

6
,

and the value of the program (the hurdle factor) is γ = 1.333.
If we look at the game with respect to the blocking coalitions, the nucleolus is the solution

(up to a normalization) of the following program:

min 3x+ 2y
s.t. x+ y ≥ 1
2x ≥ 1
x, y ≥ 0

.

.
The solution now is

¡
1
2
, 1
2

¢
and the value of the program (the dual hurdle factor) is γ = 2.5.

The results are summarized in the following Table 2:

3.2 Power Distribution in 1973

The voting body is represented by the following weighted majority game: [41; 10, 10, 10, 10, 5, 5, 3, 3, 2].
There are 5 types of minimal blocking coalitions: [10, 10], [10, 5, 5], [10, 5, 3], [10, 3, 3, 2] and
[5, 5, 3, 3, 2].
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Table 2: Power distribution in 1958.

Country SS BZ BF BF (b) NU NU(b)
γ = 1.333 γ = 2.5

Germany 0.233 0.238 0.238 0.179 0.250 0.200
Italy 0.233 0.238 0.238 0.179 0.250 0.200
France 0.233 0.238 0.238 0.179 0.250 0.200
Netherlands 0.150 0.143 0.119 0.179 0.125 0.200
Belgium 0.150 0.143 0.119 0.179 0.125 0.200
Luxembourg 0 0 0.048 0.107 0 0

Again, we are looking for the expected equilibrium payoffs with respect to the blocking,
and we denote by x, y, z and w the expected payoffs for players of type 10, 5, 3 and 2
respectively. We postulate an equilibrium with y = z and x < 2y. Under these assumptions,
[10,10] is the cheapest coalition type for proposer type [10], and [10,5,3] is the cheapest
coalition type for [3]. Type [5] is indifferent between [10,5,5] and [10,5,3]; we postulate
that [10,5,3] is proposed with certainty. Type [2]’s cheapest minimal winning coalition is
[10,3,3,2], but this is not the optimal coalition for this type because [10,10,2] is cheaper. The
equilibrium strategies might be summarized as follows:

Player type
[10] [5] [3] [2]

Coalition type [10, 10] 1(3) − − −
[10, 5, 3] − 1(8) 1(8) −
[10, 10, 2] − − − 1(4)

The equations for the expected payoffs are given by:

x =
1

9
(1− x) +

3

9

1

3
x+

4

9

1

4
x+

1

9

1

2
x

y =
1

9
(1− x− z) +

2

9

1

2
y

z =
1

9
(1− x− y) +

2

9

1

2
z

w =
1

9
(1− 2x)

y = z

Expected equilibrium payoffs are:

x =
2

15
≈ 0.133, y = z =

13

135
≈ 0.096, w = 11

135
≈ 0.081.
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Surprisingly, expected payoffs for the smaller countries are quite large and do not differ
much between player types.
To calculate the nucleolus we solve the linear program:

min 4x+ 2y + 2z + w
s.t. 4x+ y ≥ 1

4x+ z ≥ 1
4x+ w ≥ 1
3x+ 2y + z ≥ 1
3x+ 2y + w ≥ 1
3x+ y + 2z ≥ 1
x, y, z, w ≥ 0

.

The solution is (1/3, 0, 0, 0) and the value of the program is 4/3. As compared to 1958
the hurdle factor does not change, as well as the power of the big countries. However, other
countries, even though they are not dummies, get zero.
Looking at the minimal blocking coalitions we need to solve:

min 4x+ 2y + 2z + w
s.t. x+ y + z ≥ 1

x+ 2y ≥ 1
2x ≥ 1
2y + 2z + w ≥ 1
x+ 2z + w ≥ 1
x, y, z, w ≥ 0

We deduce that the nucleolus in this case is
¡
1
6
, 1
12
, 1
12
, 0
¢
and the dual hurdle factor is

γ = 3. It is interesting to notice, that even though Luxembourg is not a dummy anymore
it gets 0. Further, the hurdle factor is increasing as compared to the previous case, which
means that the Council became less vulnerable to lobbying.
The results are summarized in the Table 3.

3.3 Power Distribution in 1981

As it is shown in Montero (2007) the representation [45; 10, 10, 10, 10, 5, 5, 5, 3, 3, 2] is equiv-
alent to [18; 4, 4, 4, 4, 2, 2, 2, 1, 1, 1].
The nucleolus is the solution of the linear program:

min 4x+ 3y + 3z
s.t. 4x+ y ≥ 1

4x+ 2z ≥ 1
3x+ 3y ≥ 1
3x+ 2y + 2z ≥ 1
x, y, z ≥ 0

13



Table 3: Power distribution in 1973.

Country SS BZ BF BF (b) NU NU (b)
γ = 1.333 γ = 3.0

Germany 0.179 0.167 0.159 0.133 0.250 0.167
Italy 0.179 0.167 0.159 0.133 0.250 0.167
France 0.179 0.167 0.159 0.133 0.250 0.167
UK 0.179 0.167 0.159 0.133 0.250 0.167
Belgium 0.081 0.091 0.079 0.096 0 0.083
Netherlands 0.081 0.091 0.079 0.096 0 0.083
Denmark 0.057 0.066 0.071 0.096 0 0.083
Ireland 0.057 0.066 0.071 0.096 0 0.083
Luxembourg 0.001 0.016 0.063 0.081 0 0

The minimum is reached at (1/3, 0, 0), and the value of this minimum is 4/3. In fact,
nothing is changed as compared to 1973.

The following linear program:

min 4x+ 3y + 3z
s.t. 2x ≥ 1

x+ 2y ≥ 1
x+ y + 2z ≥ 1
3y + 2z ≥ 1
x, y, z ≥ 0

gives the solution if we are interested in the game with respect to blocking situation. The
nucleolus in this case is (0.16, 0.08, 0.04) and the dual hurdle factor is γ = 3.125.
When calculating the expected payoffs, we postulate x < 2y, y < 2z and x < y + z (the

latter inequality implies that [4,4,1] is the optimal coalition type for player type [1]). Then,
the optimal strategies can be summarized in the following table:

Player type
[4] [2] [1]

Coalition type [4, 4] 1(3) − −
[4, 2, 2] − 1(8) −
[4, 4, 1] − − 1(6)

The system for the equilibrium expected payoffs is:
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x =
1

10
(1− x) +

3

10

1

3
x+

3

10

2

8
x+

3

10

3

6
x

y =
1

10
(1− x− y) +

2

10

4

8
y

z =
1

10
(1− 2x)

The solution is:

x =
4

31
≈ 0.129, y = 27

310
≈ 0.087 and z =

23

310
≈ 0.074.

Interestingly, x < 2y and y < 2z, i.e. the price per vote of a smaller player is higher than
for a bigger one.
The results are summarized in the Table 4.

Table 4: Power distribution in 1981.

Country SS BZ BF BF (b) NU NU (b)
γ = 1.333 γ = 3.125

Germany 0.174 0.158 0.160 0.129 0.250 0.160
Italy 0.174 0.158 0.160 0.129 0.250 0.160
France 0.174 0.158 0.160 0.129 0.250 0.160
UK 0.174 0.158 0.160 0.129 0.250 0.160
Belgium 0.071 0.082 0.080 0.087 0 0.080
Netherlands 0.071 0.082 0.080 0.087 0 0.080
Greece 0.071 0.082 0.080 0.087 0 0.080
Denmark 0.030 0.041 0.040 0.074 0 0.040
Ireland 0.030 0.041 0.040 0.074 0 0.040
Luxembourg 0.030 0.041 0.040 0.074 0 0.040

3.4 Power Distribution in 1986

The game is described as [54; 10, 10, 10, 10, 8, 5, 5, 5, 5, 3, 3, 2]. With respect to the blocking
the game can be written as: [23; 10, 10, 10, 10, 8, 5, 5, 5, 5, 3, 3, 2]. By ω we denote the number
of minimum winning coalitions. Table 5 summarizes the power measures for this voting rule.
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Table 5: Power distribution in 1986.

Country SS BZ NU NU (b)
γ = 1.38 γ = 3.2
ω = 135 ω = 182

Germany 0.134 0.129 0.138 0.125
Italy 0.134 0.129 0.138 0.125
France 0.134 0.129 0.138 0.125
UK 0.134 0.129 0.138 0.125
Spain 0.111 0.109 0.103 0.125
Belgium 0.064 0.067 0.069 0.063
Netherlands 0.064 0.067 0.069 0.063
Greece 0.064 0.067 0.069 0.063
Portugal 0.064 0.067 0.069 0.063
Denmark 0.043 0.046 0.034 0.063
Ireland 0.043 0.046 0.034 0.063
Luxembourg 0.012 0.018 0 0

3.5 Power Distribution in 1995

The game is described as [62; 10, 10, 10, 10, 8, 5, 5, 5, 5, 4, 4, 3, 3, 3, 2] with total weight 87.
With respect to the blocking the game becomes: [26; 10, 10, 10, 10, 8, 5, 5, 5, 5, 4, 4, 3, 3, 3, 2].
Table 6 summarizes the power measures for this voting rule.

4 Qualified Majority Voting in the Treaty of Nice

4.1 QMV in non-enlarged CM

The Treaty of Nice changed the votes of the member states and the quota to W15 =
[169; 29, 29, 29, 29, 27, 13, 12, 12, 12, 10, 10, 7, 7, 7, 4]. It also introduced the additional require-
ment that the member states constituting the qualified majority represent at least 62% of
the total population. A majority of member states is also mentioned, but this turns out to
be redundant (see Felsenthal and Machover (2001)).
The rule P15 = [2327; 820, 592, 590, 576, 394, 158, 105, 102, 100, 89, 81, 53, 52, 37, 4] (total

weight is 3753) is the weighted rule whose weights are population sizes of 15 countries and
quota is 62%. The following Table 7 presents the results of computing the nucleolus forW15

as well as for the double majority systemW15 ∩ P15.
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Table 6: Power distribution in 1995.

Country SS BZ NU NU (b)
γ = 1.4 γ = 3.33
ω = 829 ω = 1270

Germany 0.117 0.112 0.115 0.1
Italy 0.117 0.112 0.115 0.1
France 0.117 0.112 0.115 0.1
UK 0.117 0.112 0.115 0.1
Spain 0.095 0.092 0.092 0.1
Belgium 0.055 0.059 0.057 0.05
Netherlands 0.055 0.059 0.057 0.05
Greece 0.055 0.059 0.057 0.05
Portugal 0.055 0.059 0.057 0.05
Sweden 0.045 0.048 0.046 0.05
Austria 0.045 0.048 0.046 0.05
Denmark 0.035 0.036 0.034 0.05
Ireland 0.035 0.036 0.034 0.05
Finland 0.035 0.036 0.034 0.05
Luxembourg 0.021 0.023 0.023 0.05

4.2 QMV in a 27-member CM

Following Felsenthal and Machover (2001) and Bilbao et al. (2002) we consider different
variants involving votes, population and/or number of member countries.
The first variant is a double majority system v1∩v2, or v1∩v3. The rule v1 is the weighted

rule with votes described by
W27 = [255; 29, 29, 29, 29, 27, 27, 14, 13, 12, 12, 12, 12, 12, 10, 10, 10, 7, 7, 7, 7, 7, 4, 4, 4, 4, 4, 3]

20.
The rule v2 is rule P27, the weighted rule whose weights are population shares (per

thousand) of the 27 members and whose quota is equal to 62%:
P27 = [620; 170, 123, 122, 120, 82, 80, 47, 33, 22, 21, 21, 21, 21, 18, 17, 17, 11, 11, 11, 8, 8, 5, 4, 3, 2, 1, 1].
Finally, v3 is eitherM27, the ordinary majority rule, with weight 1 for each country and

quota 14, orM0
27, a qualified majority of 2/3 of the countries, with weight 1 for each country

and quota 18 :
M27 = [14; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1];
M0

27 = [18; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1];
The second variant is a triple majority system of votes, population and member countries

v1 ∩ v2 ∩ v3, where v1, v2 and v3 are as before.

20Sometimes in the literature quota 258 is used because of the discrepancies in the Nice Treaty. It appears
that the correct number is 255. However, we perform calculations also for quota 258, and we did not find
significant differences.

17



Table 7: Power distribution for the 15 EU countries under the nucleolus.

Country W15 W15 ∩ P15
NU NU(b) NU NU(b)
γ = 1.4 γ = 3.414 γ = 1.4 γ = 3.483
ω = 775 ω = 1018 ω = 760 ω = 1490

Germany 0.122 0.121 0.122 0.139
Italy 0.122 0.121 0.122 0.119
France 0.122 0.121 0.122 0.119
UK 0.122 0.121 0.122 0.119
Spain 0.112 0.111 0.112 0.109
Belgium 0.051 0.061 0.051 0.059
Netherlands 0.051 0.051 0.051 0.050
Greece 0.051 0.051 0.051 0.050
Portugal 0.051 0.051 0.051 0.050
Sweden 0.041 0.040 0.041 0.050
Austria 0.041 0.040 0.041 0.040
Denmark 0.031 0.030 0.031 0.030
Ireland 0.031 0.030 0.031 0.030
Finland 0.031 0.030 0.031 0.030
Luxembourg 0.020 0.020 0.020 0.020

In the following table we report the number of minimum winning coalitions for each
analyzed rule:

Table 8: Minimal winning coalitions for the 27 EU countries under different rules.
rule ω
W27 476063
W27 ∩ P27 476060
W27 ∩M27 476063
W27 ∩M

0
27 684204

W27 ∩M27 ∩ P27 476060
W27 ∩M

0
27 ∩ P27 684201

One can notice that there is not a big difference in terms of the number of the minimum
winning coalitions between W27, W27 ∩ P27, W27 ∩M27 and W27 ∩M27 ∩ P27 or between
W27 ∩M

0
27 and W27 ∩M

0
27 ∩ P27.

Interestingly, the hurdle factor γ is not affected by the additional requirements and it
remains the same (γ = 1.337) for all combinations. The nucleolus also assigns the same
values under all these rules. The results are given in the subsequent Table 9.
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Table 9: Power distribution for the 27 EU countries according to the nucleolus
under different rules.

Country NU
Germany 0.084
UK 0.084
France 0.084
Italy 0.084
Spain 0.078
Poland 0.078
Romania 0.041
Netherlands 0.038
Greece 0.035
Czech Republic 0.035
Belgium 0.035
Hungary 0.035
Portugal 0.035
Sweden 0.029
Bulgaria 0.029
Austria 0.029
Slovak Republic 0.020
Denmark 0.020
Finland 0.020
Ireland 0.020
Lithuania 0.020
Latvia 0.012
Slovenia 0.012
Estonia 0.012
Cyprus 0.012
Luxembourg 0.012
Malta 0.009

5 The Power of the European Citizens and the Optimal
Decision Rule

In the previous sections we calculated the power of each nation (representative) in the Council
of Ministers of the European Union measured for four measures of power. In this section, we
will focus on the nucleolus and we will adopt a normative perspective. As already explained,
focusing on the nucleolus simply means that we are interested in European policy issues
which can be described formally as distributive politics. Something has to be shared among
the members of the council of ministers and ultimately among the European citizens and
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the nucleolus is the reduced form of equilibrium for several alternative game forms spanning
bargaining and lobbying. To fix ideas, let us for the time being interpret this pie as the gains
(measured in appropriate units) resulting from European coordination. Fairness suggests
allocating these gains equally across European citizens. This means that each country should
receive a share proportional to its population size. If there were no intermediate political
bodies i.e. if the simple game to be considered was the majority game with the set of
European citizens as the set of players, then all the coordinates of the nucleolus would
be equal and proportionality would be fulfilled. Unfortunately, we are in a second best
environment: the negotiation takes place across the countries. Only, in a second stage, the
share obtained by each country is divided among the citizens of the country. We are left with
a non trivial mechanism-design exercise because we need to evaluate the citizens’ indirect
power via their representatives in a two-stage decision-making process: at the first stage
citizens elect their representative (exercise their direct power), and at the second stage the
representative makes an actual decision (citizens exercise only indirect power).
In what follows, we use a similar approach as in Felsenthal and Machover (1998) to

measure citizens’ indirect Banzhaf power in a two-tier system. Their main result is that
citizens’ indirect Banzhaf powers are equal if and only if the Banzhaf powers of the delegates
in the council are proportional to the respective square root of the population size21. Algaba
et al. (2007) apply this theory to analyze the power of the European citizens for 25 and
27 countries. In the proposition below we prove a similar theoretical result for the relative
voting power measured by the nucleolus and then apply it to the Council of Ministers of the
European Union.
To describe the two-stage political process we use the following notations. Let the simple

voting game Γ0 = (M,W0) describe the decision-making process at the council, where M =
{1, ...,m} is the set of countries and W0 is set of all winning coalitions. Also, by u we
denote the characteristic function. Similarly, the game Γi = (Ni,W i), i = 1...m refers to
the decision-making process for each country i. Naturally, we assume that the sets Ni are
disjoint. Then, the compound game Γ = Γ0 [Γ1, ...,Γm] is defined over set N = N1 ∪ ...∪Nm

and its characteristic function v is defined by

v(S) = u(
©
i ∈M : S ∩Ni ∈Wi

ª
), S ⊂ N.

We also denote by ni and n the size of Ni and N respectively. We adopt an assumption
from Felsenthal and Machover (1998) that each component Γi is a quota majority game with
the same quota22 q ≥ 1/2 for all i = 1...m. By assumption, the numbers ni are very large.

Proposition 1 The nucleolus ν of the simple game Γ can be expressed through the nucleolus
ν0 of the game Γ0 as follows

21See their theorem 3.43.
22In fact, Felsenthal and Machover (1998) assume that the components are simple majority games, i.e.

q = 1/2.
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ν =

⎛⎜⎜⎝ν01
n1

, ...,
ν01
n1| {z }

n1 times

, ...,
ν0m
nm

, ...,
ν0m
nm| {z }

nm times

⎞⎟⎟⎠ . (2)

Proof. In order to find the nucleolus for the game Γ (up to a normalization) we need to
solve the following linear minimization problem:

min
X
i∈M

X
j∈Ni

tij

s.t.
X
i∈S

X
j∈Ti

tij ≥ 1 for Ti ∈W i, S ∈W0

tij ≥ 0 for i ∈M, j ∈ Ni

. (3)

The numbers tij reflect the amounts each citizen j in country i gets. Without loss of
generality we can take tij = ti, i.e. the citizens’ of country i get the same amount. Then,
the problem (3) can be rewritten as follows:

min
X
i∈M

niti

s.t.
X
i∈S

qniti ≥ 1 for S ∈W0

ti ≥ 0 for i ∈M

.

Applying the substitution for t0i = qniti the minimization problem equivalently can be
rewritten as:

min
X
i∈M

t0i

s.t.
X
i∈S

t0i ≥ 1 for S ∈W0

t0i ≥ 0 for i ∈M

. (4)

One can notice that the final problem (4) is the problem for the representatives. There-
fore, we proved that ti = 1

qni
t0i and taking into account normalization we establish the claim.

From the proof of the proposition it also follows that the hurdle factor γ of the compound
game is equal to the hurdle factor γ0 of the game for the representatives multiplied by 1

q
.

The determination of the nucleolus of a compound simple game is not straightforward. Our
proposition is a specific case of a more general result by Megiddo (1971, 1974). He shows
that the nucleolus ν of a compound game Γ can be expressed as follows:

ν = α1ν
1∗ + ...+ αmν

m∗,

where νi∗ is a baricentrical projection of νi on Ni, i.e.

νi∗j =

½
νij, j ∈ Ni

0, j /∈ Ni
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and αi is a solution to an optimization problem23. In our case α = ν0.

Corollary 2 Citizens’ indirect powers measured by the nucleolus νi are equal for all i ∈ N
iff the powers of the delegates ν0j are equal to the respective population rates

nj
n
.

The optimization variable is here the simple game (M,W0). There is a finite number
of possible choices. This number can be large if we do not impose any restrictions on the
nature of the simple game. In appendix 3 we report some results from the literature on the
enumeration of all simple games or important families of simple games. One of the most
important classes is that of strong weighted majority games. If we limit the optimization
to that subclass, then we may think of using Peleg’s (1968) result asserting that, if we
assign zero weight to dummy players, the unique normalized homogeneous representation
of a homogeneous strong weighted majority game (N,W) coincides with the nucleolus of
(N, v). If the game generated by the weights ωi = ni and the quota i∈M ωi

2
is homogeneous

and has no dummy players, then the solution of our problem is trivial as we can get the first
best. Unfortunately, things are much less simple. In what follows, we will formulate the
combinatorial optimization problem that we consider and derive the optimal simple game
(M,W0). Before doing so, it is useful to evaluate how the implications of the choices of
(M,W0) on the nucleolus for the five stages of European enlargement which are considered
in this paper. In the following two tables 10 and 11 we show the population ratios taken
from Felsenthal and Machover (1998, 2004) and the nucleolus taken from the tables in the
previous section. An asterisk indicates an occurrence of the paradox of new members: a
member state’s relative power has increased although its relative weight has decreased as a
result of the accession of the new members. One can notice that it happens for example, in
1995 when Luxembourg gains in relative power from 0 to 0.023.

23See his Theorem 5.6.

22



Table 10: Population and the nucleolus in the Council of Ministers 1958-1995.

Country 1958 1973 1981 1986 1995
nj
n

NU nj
n

NU nj
n

NU nj
n

NU nj
n

NU
France 0.266 0.250 0.203 0.250 0.200 0.250 0.172 0.138 0.156 0.115
Germany 0.322 0.250 0.242 0.250 0.228 0.250 0.189 0.138 0.220 0.115
Italy 0.291 0.250 0.214 0.250 0.209 0.250 0.176 0.138 0.154 0.115
Belgium 0.053 0.125 0.03 8 0 0.036 0 0.031 0.069∗ 0.027 0.057
Netherlands 0.066 0.125 0.052 0 0.053 0 0.045 0.069∗ 0.042 0.057
Luxembourg 0.002 0 0.001 0 0.001 0 0.001 0 0.001 0.023∗

UK − − 0.218 0.250 0.205 0.250 0.176 0.138 0.157 0.115
Denmark − − 0.019 0 0.019 0 0.016 0.034∗ 0.014 0.034
Ireland − − 0.012 0 0.013 0 0.011 0.034∗ 0.010 0.034
Greece − − − − 0.036 0 0.031 0.069∗ 0.02 8 0.057
Spain − − − − − − 0.120 0.103 0.105 0.092
Portugal − − − − − − 0.031 0.069 0.027 0.057
Austria − − − − − − − − 0.022 0.046
Sweden − − − − − − − − 0.024 0.046
Finland − − − − − − − − 0.014 0.034

It is interesting to compare this table with table 5.3.9 in Felsenthal and Machover (1998),
where fairness is evaluated using the Banzhaf index as a power measure. By comparing
Banzhaf indices and the square root of the population, they show that larger member states
tend to have too little power and the smaller ones too much, though they claim that the
discrepancies are not too large except for Germany and Luxembourg. In our table we see
two types of situation: for 1958, 1986 and 1995 the pattern of larger countries getting a less
than proportional payoff is repeated; however in 1973 and 1981 the payoff is divided among
the four largest countries.
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Table 11: Population and the nucleolus in the Council of Ministers under QM
rules with 15 and 27 members.

Country QM 15 QM 27
nj
n

NU nj
n

NU
Germany 0.219 0.122 0.170 0.084
France 0.157 0.122 0.123 0.084
UK 0.158 0.122 0.123 0.084
Italy 0.154 0.122 0.120 0.084
Spain 0.105 0.112 0.082 0.078
Poland − − 0.080 0.078
Romania − − 0.047 0.041
Netherlands 0.042 0.051 0.033 0.038
Greece 0.028 0.051 0.022 0.035
Portugal 0.027 0.051 0.021 0.035
Belgium 0.027 0.051 0.021 0.035
Czech Republic − − 0.021 0.035
Hungary − − 0.021 0.035
Sweden 0.024 0.041 0.018 0.029
Austria 0.022 0.041 0.017 0.029
Bulgaria − − 0.017 0.029
Denmark 0.014 0.031 0.011 0.02
Slovak Republic − − 0.011 0.02
Finland 0.014 0.031 0.011 0.02
Ireland 0.010 0.031 0.008 0.02
Lithuania − − 0.008 0.02
Latvia − − 0.005 0.012
Slovenia − − 0.004 0.012
Estonia − − 0.003 0.012
Cyprus − − 0.002 0.012
Luxembourg 0.001 0.020 0.001 0.012
Malta − − 0.001 0.009

Obviously, the results suggest that the European citizens are not treated equally under
the decision rules operating in the CM since 1958 till now. The reason is that the nucleolus
does not coincide with the population ratios, i.e. the corollary 2 is not satisfied. In what
follows we investigate the question of whether it were possible to do better and describe the
methodology to choose the optimal decision rule.
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6 The Optimal (Fair) Decision Rules

Corollary 2 suggests that if we would like to equalize the citizens’ power under the nucleolus,
we need to choose a voting rule which leads to the nucleolus ν0j for the representatives being
equal to the countries’ population sizes. However, except in some exceptional circumstances,
it is not always possible to find a game for which the vector of countries’ population sizes
coincides with the nucleolus. Our tables provide information on the distance between the
first best and the outcome of the choices which were made. These choices may be third best
choices and we would like now to report on what could or should have the second best from
the perspective of our nucleolus measure of benefit.
Hereafter, we will assume that the objective of the political architect is to design the

simple game (M,W0) in such a way that the distance between the induced nucleolus cal-
culated at the citizen level and the first best is the smallest possible. The distance which
is considered here is the quadratic distance where the units are the citizens instead of the
countries. We have chosen to focus on the variance, but the minimization of any other
inequality index like the Gini index or a Kolm-Atkinson index as reflecting the desire to
meet an egalitarian norm would be very appropriate too. Maaser and Napel (2006) refer to
this variance evaluation at the individual level as being the cumulative individual quadratic
deviation. Beisbart and Bovens (2007) also use the quadratic criterion way to measure de-
parture from perfect equality. While different, our approach follows the direction paved by
Barberà and Jackson (2006) who consider instead an utilitarian criterion. This approach
has been followed by several authors among which Beisbart, Bovens and Hartmann (2005)
and Beisbart and Bovens (2007).
Denoting by Sm the set of all simple games with m players, our combinatorial problem

is defined as follows:

Min
(M,W0)∈Sm

V ar
¡
NU

¡
(M,W0)

¢¢
,

where

V ar
¡
NU

¡
(M,W0)

¢¢
=
X
i∈M

ni

∙
1

n
− ν0i

ni

¸2
, (5)

where NU ((M,W0)) = (ν01, ν
0
2, ..., ν

0
m). The term

ν0i
ni
indicates how much power (accord-

ing to the nucleolus) a citizen in country i gets given a specific voting rule. One can notice
that (5) can be simplified as

V ar
¡
NU

¡
(M,W0)

¢¢
=
X
i∈M

(ν0i )
2

ni
− 1

n
. (6)

The resolution of our problem would be greatly simplified if we knew the image Im (NUm)
of the mapping NUm attaching to any simple game (M,W0) ∈ Sm the nucleolus of the
game. Im (NUm) is a finite subset of the (m− 1)− dimensional simplex. If Im (NUm) was
characterized, our problem would be:
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Min
X
i∈M

(xi)
2

ni

s.t. x ∈ Im (NUm)
. (7)

This formulation indicates quite clearly why the second best problem differs from its
first analogue where the constraint x ∈ Im (NUm) is replaced by the relaxed constraint

x ∈
(
y ∈ Rm

+ :
mX
i=1

yi = 1

)
. The first order conditions write:

2ν0i
ni

= λ for i ∈M,

where λ is a Lagrange multiplier. From these conditions, we deduce that

ν0i =
ni
n
for i ∈M,

which is as expected the egalitarian first best. Unfortunately, the set(s) has(ve) not
been characterized in full generality. This problem, known as an inverse problem as the
problem is to characterize which vectors can be obtained as a power vector for an adequate
choice of a simple game, has been formulated recently by Alon and Edelman (2010) for the
Banzhaf measure and they obtained partial results. We are not aware of any general result
on the inverse problem for the nucleolus. This means that we will examine the combinatorial
problem in its original formulation. Precisely, we consider as subset of feasible simple games
any subset Gm of the set Sm of all simple games with a special focus on the set of constant
sum simple games. However, any other subset of Sm like for instance, the set of weighted
majority simple games or homogeneous weighted majority games or weighted majority games
where the weights are constrained by some symmetry conditions could be considered as well.
The procedure for solving (7) can be presented as the sequence of the following steps:
Step 1. For the given number of countries m, list all possible games the class Gm;
Step 2. Calculate the nucleolus ν0 for each game from the list;
Step 3. Find the variance from (6);
Step 4. Choose the game with the minimal variance.
We illustrate the use of our technique for m = 3 and 4. Without loss of generality, we

assume that n1 ≥ n2 ≥ ... ≥ nm.
For 3 countries there are only two possible strong games: the simple majority game which

is represented as [2; 1, 1, 1] and the dictatorial game which is represented as [1; 1, 0, 0]. Then
given (6) the variance for the majority game is:

V armaj =
1

9

∙
1

n1
+
1

n2
+
1

n3

¸
− 1

n
,

and the variance for the dictatorial game is:

V ardict =
1

n1
− 1

n
.
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Figure 1: The optimal rule in a class of strong games for m = 3.

On the following graphs (figure 1) we show the values of the population shares γ1 and γ2
for the two biggest countries (where γi =

ni
n
) for which each of the two games is optimal.

If we drop the restriction of strong, we have an additional game, where there are two
vetoers24 with the representation [2; 1, 1, 0]. The variance for such a rule is:

V arveto =
1

4

∙
1

n1
+
1

n2

¸
− 1

n
.

On the following figures 2 we again show the values of the two biggest countries’ popu-
lation shares, γ1 and γ2, for which each of the three games is optimal.

24We could also include the unanimity game, but it gives the same variance as the simple majority game.
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Figure 2: The optimal rule for m = 3.

Not surprisingly, the majority rule is optimal when the three countries are not too different
in terms of the population ratios, and the dictatorial rule is optimal in the case where there
is a relatively big country.
For 4 countries there are only 3 possible games in the class of strong games: [1; 1, 0, 0, 0]

(dictatorial rule), [2; 1, 1, 1, 0] (majority rule for three players) and [3; 2, 1, 1, 1] (apex game).
As before the variance for the majority game is:

V armaj =
1

9

∙
1

n1
+
1

n2
+
1

n3

¸
− 1

n
,

and the variance for the dictatorial game is:

V ardict =
1

n1
− 1

n
.

The variance for the apex game is:

V arapex =
1

25

∙
4

n1
+
1

n2
+
1

n3
+
1

n4

¸
− 1

n
.
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On the following graph 3 we show the region on (γ1, γ2, γ3)- space where the majority rule is
optimal. Similarly to the previous case, the majority rule is optimal when the three biggest
countries are relatively close in the population size and the fourth country is very small.

Figure 3: Optimality of the simple majority rule for m = 4.

From the results reported in appendix 3, it is clear that we can solve our optimality
problem by "brute force" as long as m ≤ 8 for some specific important classes of simple
games, like for instance, strong weighted majority games. For such games, we will (of course)
limit ourselves to those where the raking of the weights is congruent to the population sizes.
For m ≤ 8, any weighted majority game admits a unique minimal integral representation
which coincides with the least core and therefore the nucleolus. The relationship between
representations and nucleolus starts to become intricate when m ≥ 9. The nucleolus is
always a representation but it does not always induce a minimal integral representation even
in simple games with a unique such minimal integral representation.
We take advantage of this methodological detour to discuss briefly the issue of represen-

tation of weighted majority games which is discussed in more detail in appendices 2 and
3. We know that the notion of weight is meaningless in the measurement of power as what
matters is the structure of winning coalitions resulting from the weights. However, in the lit-
erature on the design of optimal voting organizations, authors often refer to optimal weights
which could be misleading as we could infer that the numerical values of the weights make
sense. They raise questions, like for instance: should these weights vary like the population
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size or the square root of the population size or any other power of the population size?
We think that if the design question has to be formulated in terms of representation, then
it could be formulated as follows : among all potential minimal integral representations of
strong weighted majority simple games, which one should be selected given the considered
objective? At the extreme, suppose that the organization has only 3 members whose pop-
ulations sizes satisfy n1 ≥ n2 ≥ n3. Then the question of allocating voting weights to the
countries according the to the values of ni versus the values of

√
ni has little interest. A

formulation using canonical minimal integral representations is instead very meaningful and
it offers some extra advantages, like for instance, the knowledge of the seats’ number (or total
weight) necessary to proceed. Of course, when m is large the combinatorial issue becomes
out of reach and it may be useful to compare working with the ni as opposed to the

√
ni.

It is then an empirical matter to determine what we mean by large m to move from the
combinatorics to the calculation through simple functions of weights.25

Because the class of strong weighted majority games is too large to be analyzed for
m ≥ 9, we also analyze another class of games in which the weights are fixed, so that the
only element that varies from game to game is the quota. We then look for the quota that
minimizes nV ar. We fix the weights to coincide with population shares. This seems the
most natural choice and it is also the choice made in the Treaty of Lisbon.
We implement the following algorithm.

1. Given the vector of weights (ω1, ..., ωn), we calculate the total weight ω(S) associated
to each subset S ⊆ N . There are 2n such subsets (including the empty set).

2. Order the ω(S) from lowest to largest. About half of these values are above ω(N)
2

(exactly half if none of the coalitions has ω(N)
2
votes). This gives at most 2n−1 relevant

values for the quota.26 Any numbers in between two of the values would be equivalent
to the higher of the two values and need not be considered.

3. Find the nucleolus for each of the games, calculate nV ar, and find the quotas that
minimize nV ar.

Note that payoffs achievable in this class are not necessarily achievable in the other class
and the reverse. For example, in a game with 4 players and n1 ≥ n2 > n3 ≥ n4, setting
q = n1 + n2 leads to a nucleolus payoff of

¡
1
2
, 1
2
, 0, 0

¢
, which is not available in the class of

strong weighted majority games. On the other hand, with populations (3, 2, 2, 1) the payoff
vector

¡
2
5
, 1
5
, 1
5
, 1
5

¢
is available in the class of strong weighted majority games but cannot be

achieved if the weights must coincide with the population shares.
In what follows, the nucleolus is computed using Derks and Kuipers’ DOS program.

The program is available at Jean Derks’ homepage (http://www.personeel.unimaas.nl/Jean-
Derks/), and the algorithm is explained in Derks and Kuipers (1997); see also Wolsey (1976).

25Taking the population values reported in table 5.3.1. of Felsenthal and Machover (1998), we checked
that ni performs better than

√
ni in all cases under the assumption of simple majority.

26Because several coalitions may have the same total weight, the number of distinct available quotas may
be much lower.
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6.1 The EU Council of Ministers 1958 Revisited

In this final part we apply our technique to find the optimal decision rule for the EU Council
of Ministers in 1958 given the number of member states and their population sizes (see Table
10). In the following Table 12 we list all strong weighted majority games as provided by
Isbell (1959) with the corresponding values for the nucleolus and for nV ar.

Table 12: Strong Weighted Voting Games with 6 Players.

NU nVar
[1, 0, 0, 0, 0, 0] (1, 0, 0, 0, 0, 0) 2.106
[1, 1, 1, 0, 0, 0] (1/3, 1/3, 1/3, 0, 0, 0) 0.145
[2, 1, 1, 1, 0, 0] (2/5, 1/5, 1/5, 1/5, 0, 0) 0.391
[1, 1, 1, 1, 1, 0] (1/5, 1/5, 1/5, 1/5, 1/5, 0) 0.773
[3, 1, 1, 1, 1, 0] (3/7, 1/7, 1/7, 1/7, 1/7, 0) 0.412
[2, 2, 1, 1, 1, 0] (2/7, 2/7, 1/7, 1/7, 1/7, 0) 0.305
[3, 2, 2, 1, 1, 0] (1/3, 2/9, 2/9, 1/9, 1/9, 0) 0.120
[2, 1, 1, 1, 1, 1] (2/7, 1/7, 1/7, 1/7, 1/7, 1/7) 10.299
[4, 1, 1, 1, 1, 1] (4/9, 1/9, 1/9, 1/9, 1/9, 1/9) 6.295
[3, 2, 1, 1, 1, 1] (1/3, 2/9, 1/9, 1/9, 1/9, 1/9) 6.154
[4, 2, 2, 1, 1, 1] (4/11, 2/11, 2/11, 1/11, 1/11, 1/11) 4.062
[3, 3, 2, 1, 1, 1] (3/11, 3/11, 2/11, 1/11, 1/11, 1/11) 4.024
[4, 3, 3, 1, 1, 1] (4/13, 3/13, 3/13, 1/13, 1/13, 1/13) 2.837
[5, 2, 2, 2, 1, 1] (5/13, 2/13, 2/13, 2/13, 1/13, 1/13) 3.059
[5, 3, 3, 2, 1, 1] (1/3, 1/5, 1/5, 2/15, 1/15, 1/15) 2.208
[2, 2, 2, 1, 1, 1] (2/9, 2/9, 2/9, 1/9, 1/9, 1/9) 6.102
[3, 2, 2, 2, 1, 1] (3/11, 2/11, 2/11, 2/11, 1/11, 1/11) 4.258
[4, 3, 2, 2, 1, 1] (4/13, 3/13, 2/13, 2/13, 1/13, 1/13) 2.995
[3, 3, 2, 2, 2, 1] (3/13, 3/13, 2/13, 2/13, 2/13, 1/13) 3.201
[4, 3, 3, 2, 2, 1] (4/15, 1/5, 1/5, 2/15, 2/15, 1/15) 2.336
[5, 4, 3, 2, 2, 1] (5/17, 4/17, 3/17, 2/17, 2/17, 1/17) 1.777

As one can see from the Table 12, in the class of strong weighted majority games the
game [3, 2, 2, 1, 1, 0] provides the minimal variance with value for nV ar = 0.12. The actual
decision rule for 1958 is not in the list, because it is not a strong game. However, nV ar for
this game equals to 0.175, and therefore this rule cannot be optimal even if we accept simple
games which are not strong.
Two conclusions can be drawn from this exercise are the following. First, Germany got

too little weight as compared to France and Italy. Second, the choice to make Luxembourg
a dummy was optimal in our context.
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If instead we make weights coincide with population shares, the vector of weights would
be (0.322, 0.291, 0.266, 0.066, 0.053, 0.002). There are 25 = 32 possible games, but only 9
different values for the nucleolus. Perhaps surprisingly, the optimal voting game in this class
has the same nucleolus and thus the same nV ar as the optimal voting game in the class of
strong majority games.

Table 13: Possible Values for the Nucleolus in the 1958 Council of Ministers using
the Population as Weights.

Quota NU nVar
(0.500, 0.625] (1/3, 1/3, 1/3, 0, 0, 0) 0.145
(0.625, 0.643] (1/3, 2/9, 2/9, 1/9, 1/9, 0) 0.120
(0.643, 0.656] (1/3, 1/4, 1/6, 1/6, 1/12, 0) 0.216
(0.656, 0.668] (2/7, 2/7, 1/7, 1/7, 1/7, 0) 0.305
(0.668, 0.678] (1/4, 1/4, 1/4, 1/4, 0, 0) 0.591
(0.678, 0.709] (1, 0, 0, 0, 0, 0) 2.106
(0.709, 0.734] (0.5, 0.5, 0, 0, 0, 0) 0.636
(0.734, 0.934] (1/3, 1/3, 1/3, 0, 0, 0) 0.145
(0.934, 0.947] (1/4, 1/4, 1/4, 1/4, 0, 0) 0.591
(0.947, 0.998] (1/5, 1/5, 1/5, 1/5, 1/5, 0) 0.773
(0.998, 1] (1/6, 1/6, 1/6, 1/6, 1/6, 1/6) 14.120

6.2 The EU Council of Ministers 1973 Revisited

The 1973 Council of Ministers has nine states. As can be seen in table 17, there are 175428
strong weighted majority games with n = 9.
If we assume that weights coincide with population shares, we find 201 possible games

and 33 different values for the nucleolus. The optimal value of the quota is in the interval
(0.554, 0.563], leading to payoff vector

¡
4
15
, 3
15
, 3
15
, 3
15
, 1
15
, 1
15
, 0, 0, 0

¢
and nV ar = 0.064. As in

the 1958 case, the nucleolus of the optimal game treats Germany differently from the other
large countries, and the other large countries are treated symmetrically27. Also, some of the
states receive 0 in the nucleolus of the optimal game28.

27If we order the possible values of the nucleolus by decreasing nVar, the first few values also have the
property that Germany gets more than the next largest country.
28Unlike in the 1958 case, there are no dummy players in the optimal game. Note that there are values of

the quota for which each of the nine countries gets a different payoff. It is almost inevitable for Luxembourg
to get 0 (the only exception is when unanimity is required), but there are quota values for which the other
small countries would get a positive payoff.
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Table 14: Possible Values for the Nucleolus in the 1973 Council of Ministers using
the Population as Weights.

Quota NU nVar
[0.500, 0.503] ( 9

39
, 7
39
, 7
39
, 6
39
, 4
39
, 3
39
, 2
39
, 1
39
, 0) 0.186

(0.503, 0.505]
¡
6
27
, 5
27
, 5
27
, 4
27
, 3
27
, 2
27
, 1
27
, 1
27
, 0
¢
0.198

(0.505, 0.508]
¡
9
38
, 7
38
, 7
38
, 6
38
, 4
38
, 3
38
, 1
38
, 1
38
, 0
¢
0.140

(0.508, 0.510]
¡
23
95
, 18
95
, 17
95
, 15
95
, 10
95
, 7
95
, 3
95
, 2
95
, 0
¢
0.125

(0.510, 0.511]
¡
12
51
, 10
51
, 9
51
, 8
51
, 5
51
, 4
51
, 2
51
, 1
51
, 0
¢
0.132

(0.511, 0.512]
¡
16
68
, 13
68
, 12
68
, 11
68
, 7
68
, 5
68
, 3
68
, 1
68
, 0
¢
0.137

(0.512, 0.513]
¡
8
32
, 6
32
, 6
32
, 5
32
, 3
32
, 2
32
, 1
32
, 1
32
, 0
¢
0.109

(0.513, 0.515]
¡
10
43
, 8
43
, 8
43
, 7
43
, 4
43
, 3
43
, 2
43
, 1
43
, 0
¢
0.128

(0.515, 0.516]
¡
6
26
, 5
26
, 5
26
, 4
26
, 3
26
, 2
26
, 1
26
, 0, 0

¢
0.169

(0.516, 0.518]
¡
3
11
, 2
11
, 2
11
, 2
11
, 1
11
, 1
11
, 0, 0, 0

¢
0.153

(0.518, 0.524]
¡
7
31
, 6
31
, 6
31
, 5
31
, 3
31
, 2
31
, 1
31
, 1
31
, 0
¢
0.117

(0.524, 0.525]
¡
5
20
, 4
20
, 4
20
, 3
20
, 2
20
, 1
20
, 1
20
, 0
¢

0.129
(0.525, 0.526]

¡
11
47
, 9
47
, 9
47
, 8
47
, 4
47
, 3
47
, 2
47
, 1
47
, 0
¢
0.088

(0.526, 0.527]
¡
4
18
, 4
18
, 3
18
, 3
18
, 2
18
, 1
18
, 1
18
, 0, 0

¢
0.178

(0.527, 0.528]
¡
17
72
, 15
72
, 13
72
, 12
72
, 7
72
, 4
72
, 3
72
, 1
72
, 0
¢
0.089

(0.528, 0.529]
¡
8
34
, 7
34
, 6
34
, 6
34
, 3
34
, 2
34
, 1
34
, 1
34
, 0
¢
0.081

(0.529, 0.530]
¡
6
25
, 5
25
, 5
25
, 4
25
, 2
25
, 2
25
, 1
25
, 0, 0

¢
0.110

(0.530, 0.544]
¡
1
5
, 1
5
, 1
5
, 1
5
, 1
5
, 0, 0, 0, 0

¢
0.502

(0.544, 0.554]
¡
1
5
, 1
5
, 1
5
, 1
5
, 1
10
, 1
10
, 0, 0, 0

¢
0.188

(0.554, 0.563]
¡
4
15
, 3
15
, 3
15
, 3
15
, 1
15
, 1
15
, 0, 0, 0

¢
0.064

(0.563, 0.567]
¡
5
20
, 4
20
, 4
20
, 4
20
, 1
20
, 1
20
, 1
20
, 0, 0

¢
0.071

(0.567, 0.578]
¡
1
3
, 1
3
, 1
3
, 0, 0, 0, 0, 0, 0

¢
0.488

(0.578, 0.582]
¡
1
3
, 1
3
, 1
6
, 1
6
, 0, 0, 0, 0, 0

¢
0.235

(0.582, 0.733]
¡
1
4
, 1
4
, 1
4
, 1
4
, 0, 0, 0, 0, 0

¢
0.145

(0.733, 0.738]
¡
1
4
, 1
4
, 1
4
, 1
8
, 1
8
, 0, 0, 0, 0

¢
0.214

(0.738, 0.739]
¡
6
24
, 5
24
, 5
24
, 3
24
, 3
24
, 1
24
, 1
24
, 0, 0

¢
0.175

(0.739, 0.743]
¡
5
20
, 4
20
, 4
20
, 3
20
, 2
20
, 1
20
, 1
20
, 0, 0

¢
0.129

(0.743, 0.744]
¡
7
28
, 6
28
, 5
28
, 4
28
, 3
28
, 2
28
, 1
28
, 0, 0

¢
0.141

(0.744, 0.757]
¡
1
5
, 1
5
, 1
5
, 1
5
, 1
5
, 0, 0, 0, 0

¢
0.502

(0.757, 0.781] (1, 0, 0, 0, 0, 0, 0, 0, 0) 3.132
(0.781, 0.785]

¡
1
2
, 1
2
, 0, 0, 0, 0, 0, 0, 0

¢
1.180

(0.785, 0.796]
¡
1
3
, 1
3
, 1
3
, 0, 0, 0, 0, 0, 0

¢
0.488

(0.796, 0.947]
¡
1
4
, 1
4
, 1
4
, 1
4
, 0, 0, 0, 0, 0

¢
0.145

(0.947, 0.961]
¡
1
5
, 1
5
, 1
5
, 1
5
, 1
5
, 0, 0, 0, 0

¢
0.502

(0.961, 0.980]
¡
1
6
, 1
6
, 1
6
, 1
6
, 1
6
, 1
6
, 0, 0, 0

¢
0.774

(0.980, 0.987]
¡
1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 0, 0

¢
1.377

(0.987, 0.988]
¡
1
8
, 1
8
, 1
8
, 1
8
, 1
8
, 1
8
, 1
8
, 1
8
, 0
¢

2.122
(0.988, 0.999]

¡
1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9

¢
13.813
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6.3 The EU Council of Ministers 1981 Revisited

In principle there could be up to 29 = 512 possible games, but given the population shares
w = (0.228, 0.209, 0.205, 0.200, 0.053, 0.036, 0.036, 0.019, 0.013, 0.001) there is a substantial
duplication of values for w(S).29 It turns out that two countries have the same (rounded)
population shares (ω6 = ω7). Moreover, there are groups of countries with the same total
weight (e.g., ω1 = ω2+ω8, ω1+ω9 = ω3+ω6, ω5+ω8 = ω6+ω7, ω4+ω8 = ω3+ω9+ω10).
Because of this, there are only 239 different games, which correspond to 30 different values
of the nucleolus. The optimal value of the quota is in the interval (0.573, 0.577], leading to
payoff vector

¡
6
25
, 5
25
, 5
25
, 5
25
, 1
25
, 1
25
, 1
25
, 1
25
, 0, 0

¢
and nV ar = 0.042. As before, it turns out that

the nucleolus of the optimal game gives Germany a larger payoff, whereas the other three
large countries are treated symmetrically.30

29This duplication is due to the rounding of population shares. We have rounded the population shares
to three decimal places and then worked with the rounded weights. If instead we take the population
values reported by Felsenthal and Machover (which are also rounded, but less so) and calculate ω(S) for all
coalitions, it turns out that all 1024 values are distinct. On the other hand, with weights rounded to three
decimal places there cannot be more than 1000 distinct values, and in fact there are only 479 distinct values.
30It is also the case that if we order the possible values of the nucleolus by decreasing nVar, the first few

values also have the property that Germany gets more than the next largest country.
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Table 15: Possible Values for the Nucleolus in the 1981 Council of Ministers using
the Population as Weights.

Quota NU nVar
[0.500, 0.501] ( 23

107
, 19
107

, 18
107

, 17
107

, 10
107

, 7
107

, 7
107

, 4
107

, 2
107

, 0) 0.121
(0.501, 0.502]

¡
7
33
, 6
33
, 6
33
, 5
33
, 3
33
, 2
33
, 2
33
, 1
33
, 1
33
, 0
¢

0.111
(0.502, 0.507]

¡
6
29
, 5
29
, 5
29
, 5
29
, 3
29
, 2
29
, 2
29
, 1
29
, 0, 0

¢
0.152

(0.507, 0.509]
¡
10
48
, 9
48
, 8
48
, 8
48
, 4
48
, 3
48
, 3
48
, 2
48
, 1
48
, 0
¢

0.106
(0.509, 0.511]

¡
7
34
, 6
34
, 6
34
, 6
34
, 3
34
, 2
34
, 2
34
, 1
34
, 1
34
, 0
¢

0.094
(0.511, 0.516]

¡
7
32
, 6
32
, 6
32
, 5
32
, 3
32
, 2
32
, 2
32
, 1
32
, 0, 0

¢
0.106

(0.516, 0.519]
¡
12
54
, 10
54
, 10
54
, 9
54
, 4
54
, 3
54
, 3
54
, 2
54
, 1
54
, 0
¢

0.060
(0.519, 0.522]

¡
8
37
, 7
37
, 7
37
, 6
37
, 3
37
, 2
37
, 2
37
, 1
37
, 1
37
, 0
¢

0.063
(0.522, 0.524]

¡
7
33
, 6
33
, 6
33
, 6
33
, 3
33
, 2
33
, 2
33
, 1
33
, 0, 0

¢
0.090

(0.524, 0.528]
¡
11
51
, 10
51
, 9
51
, 9
51
, 4
51
, 3
51
, 3
51
, 1
51
, 1
51
, 0
¢

0.054
(0.528, 0.530]

¡
8
38
, 7
38
, 7
38
, 7
38
, 3
38
, 2
38
, 2
38
, 1
38
, 1
38
, 0
¢

0.053
(0.530, 0.534]

¡
8
36
, 7
36
, 7
36
, 6
36
, 3
36
, 2
36
, 2
36
, 1
36
, 0, 0

¢
0.064

(0.534, 0.537]
¡
4
16
, 3
16
, 3
16
, 3
16
, 1
16
, 1
16
, 1
16
, 0, 0, 0

¢
0.080

(0.537, 0.541]
¡
7
32
, 6
32
, 6
32
, 6
32
, 2
32
, 2
32
, 2
32
, 1
32
, 0, 0

¢
0.067

(0.541, 0.543]
¡
1
5
, 1
5
, 1
5
, 1
5
, 1
5
, 0, 0, 0, 0, 0

¢
0.517

(0.543, 0.562]
¡
3
15
, 3
15
, 3
15
, 3
15
, 1
15
, 1
15
, 1
15
, 0, 0, 0

¢
0.093

(0.562, 0.573]
¡
5
20
, 4
20
, 4
20
, 4
20
, 1
20
, 1
20
, 1
20
, 0, 0, 0

¢
0.047

(0.573, 0.577]
¡
6
25
, 5
25
, 5
25
, 5
25
, 1
25
, 1
25
, 1
25
, 1
25
, 0, 0

¢
0.042

(0.577, 0.585]
¡
7
30
, 6
30
, 6
30
, 6
30
, 1
30
, 1
30
, 1
30
, 1
30
, 1
30
, 0
¢

0.052
(0.585, 0.590]

¡
1
3
, 1
3
, 1
3
, 0, 0, 0, 0, 0, 0, 0

¢
0.561

(0.590, 0.594]
¡
2
6
, 2
6
, 1
6
, 1
6
, 0, 0, 0, 0, 0, 0

¢
0.293

(0.594, 0.614]
¡
1
4
, 1
4
, 1
4
, 1
4
, 0, 0, 0, 0, 0, 0

¢
0.191

(0.614, 0.737]
¡
4
16
, 3
16
, 3
16
, 3
16
, 1
16
, 1
16
, 1
16
, 0, 0, 0

¢
0.080

(0.737, 0.744]
¡
17
76
, 15
76
, 14
76
, 12
76
, 7
76
, 4
76
, 4
76
, 2
76
, 1
76
, 0
¢

0.060
(0.744, 0.746]

¡
16
72
, 14
72
, 13
72
, 12
72
, 6
72
, 4
72
, 4
72
, 2
72
, 1
72
, 0
¢

0.053
(0.746, 0.747]

¡
8
37
, 7
37
, 7
37
, 6
37
, 3
37
, 2
37
, 2
37
, 1
37
, 1
37
, 0
¢

0.063
(0.747, 0.750]

¡
1
5
, 1
5
, 1
5
, 1
5
, 1
5
, 0, 0, 0, 0, 0

¢
0.517

(0.750, 0.767]
¡
3
15
, 3
15
, 3
15
, 3
15
, 1
15
, 1
15
, 1
15
, 0, 0, 0

¢
0.093

(0.767, 0.775] (1, 0, 0, 0, 0, 0, 0, 0, 0, 0) 3.386
(0.775, 0.794] (1

2
, 1
2
, 0, 0, 0, 0, 0, 0, 0, 0) 1.293

(0.794, 0.799] (1
3
, 1
3
, 1
3
, 0, 0, 0, 0, 0, 0, 0) 0.561

(0.799, 0.842] (1
4
, 1
4
, 1
4
, 1
4
, 0, 0, 0, 0, 0, 0) 0.191

(0.842, 0.950]
¡
1
5
, 1
5
, 1
5
, 1
5
, 1
5
, 0, 0, 0, 0, 0

¢
0.517

(0.950, 0.967]
¡
1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 0, 0, 0

¢
0.908

(0.967, 0.986]
¡
1
8
, 1
8
, 1
8
, 1
8
, 1
8
, 1
8
, 1
8
, 1
8
, 0, 0

¢
1.283

(0.986, 0.999]
¡
1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 1
9
, 0
¢

1.753
(0.999, 1]

¡
1
10
, 1
10
, 1
10
, 1
10
, 1
10
, 1
10
, 1
10
, 1
10
, 1
10
, 1
10

¢
11.230
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The optimal values for the nucleolus are summarized in table 16.

Table 16: Optimal values for the nucleolus if weights must coincide with popula-
tion shares.

Country 1958 1973 1981
nj
n

NU nj
n

NU nj
n

NU
France 0.266 0.222 0.203 0.2 0.200 0.2
Germany 0.322 0.333 0.242 0.267 0.228 0.24
Italy 0.291 0.222 0.214 0.2 0.209 0.2
Belgium 0.053 0.111 0.038 0.067 0.036 0.04
Netherlands 0.066 0.111 0.052 0.067 0.053 0.04
Luxembourg 0.002 0 0.001 0 0.001 0
UK − − 0.218 0.2 0.205 0.2
Denmark − − 0.019 0 0.019 0.04
Ireland − − 0.012 0 0.013 0
Greece − − − − 0.036 0.04

Using the Gini coefficient instead of nV ar as a measure of inequality would give very
similar results31. The optimal value for the nucleolus in 1958 and 1981 is not affected. For
1973, the two nucleolus values with the lowest nV ar also have the lowest Gini coefficient,
but the order is reversed. The payoff vector that minimizes the Gini index gives a positive
payoff of 0.05 to Denmark at the expense of Germany, Belgium and the Netherlands (whose
payoffs are reduced to 0.25 for Germany and 0.05 for Belgium and the Netherlands). All
other payoffs are unchanged.
One may also ask whether, taking the actual weights as given, the choice of the quota was

optimal. It turns out that the quota of 41 could not be improved for the 1973 Council given
the actual weights (10, 10, 10, 10, 5, 5, 3, 3, 2), but there could have been improvements in the
other two Councils. For the 1958 Council of Ministers, if weights are fixed at their actual
values (4, 4, 4, 2, 2, 1), the quota of 12 yields a nucleolus of (1

4
, 1
4
, 1
4
, 1
8
, 1
8
, 0). The payoff vector

(1
3
, 1
3
, 1
3
, 0, 0, 0) has a lower value for nV ar, and it is the nucleolus of the game for a quota of

10, 14 or 15. Neither was the quota of 45 optimal for the 1981 Council of Ministers given the
actual weights (10, 10, 10, 10, 5, 5, 5, 3, 3, 2): it yields a nucleolus of

¡
1
4
, 1
4
, 1
4
, 1
4
, 0, 0, 0, 0, 0, 0

¢
,

but a quota of 46 yields
¡
5
28
, 5
28
, 5
28
, 5
28
, 2
28
, 2
28
, 2
28
, 1
28
, 1
28
, 0
¢
, which corresponds to a lower value

of nV ar.
31An ideal robustness test would involve the calculation of the the Lorenz curve (Van Puyenbroeck (2008))

attached to each simple game. The pointwise comparison of these curves produces a partial ordering of the
simple games which does not depend upon the specific details of the disproportionality index which is used
(Monroe (1994)).
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7 Conclusion

In this paper, we have developed a methodology to evaluate and design voting organizations
in order to minimize the distance to an egalitarian sharing of a surplus when the process
of division across the countries which are members of the organization is described by the
nucleolus of the simple game. We have explained why the vector corresponding to the
nucleolus can be viewed as a vector measuring the power of each member of the organization
when the policy issue has the characteristics of distributive politics.
In the first part of the paper, we have reported our computation results concerning the

nucleolus and the Baron-Ferejohn measure of power for the organizations describing the five
consecutive stages of the EU. For the 1958, 1986 and 1995 cases we reach a similar conclusion
to studies that use the Banzhaf index: smaller countries tend to have a disproportionately
high power. For 1973 and 1981 we reach the opposite conclusion: it is the larger countries
that are favored. We have also formulated the design issue and alluded to the difficulties
attached to the resulting combinatorial problems. For the sake of illustration, we have
shown our optimization at work in the class of strong weighted majority games in the case
of the EU in 1958. Among the lessons of this exercise, we were able to confirm that making
Luxembourg a dummy was appropriate but that Germany was mistreated. This conclusion
is not affected if we consider the class of games in which weights coincide with population
shares. Since this latter class is smaller than the class of strong weighted majority games,
we were able to perform the optimization exercise for 1973 and 1981 as well. In both cases
it turns out that the optimal game assigns Germany the largest payoff, the three other large
countries get the same payoff, and some other smaller countries get 0. The same qualitative
results are achieved if the Gini coefficient is used instead of the variance.

8 Appendix

8.1 Appendix 1 : Cooperative Games32, Least Core and Nucleolus

A cooperative game with transferable utility (TU) is a pair (N, V ) whereN = {1, . . . , n} with
n ≥ 2 is a finite set of players and V is a function that associates a real number V (S) to each
subset S ofN . It is assumed that V (∅) = 0. It is constant-sum if V (S)+V (N\S) = V (N). It
is monotonic if : S ⊆ T ⊆ N ⇒ V (S) ≤ V (T ). It is superadditive if V (S∪T ) ≥ V (S)+V (T )
for all S, T ⊆ N such that S ∩ T = ∅. A player i ∈ N is a null-player (dummy) of (N,V )
if V (S ∪ {i}) = V (S) (V (S ∪ {i}) = V (S) + V {i}). Hereafter, we denote by XPO ≡
{y ∈ Rn |

Pn
i=1 y

i = V (N)} the set of (pre)imputations (or Pareto optimal imputations) and
by XIR ≡ {y ∈ Rn |

Pn
i=1 y

i = V (N), yj ≥ V ({j})∀j ∈ N} the set of imputations i.e. the
set of individually rational preimputations. A player k ∈ N is at least as desirable as a player
l ∈ N , denoted k º l if V (S ∪ {k}) ≥ V (S ∪ {l}) for all S ⊆ N\ {k, l}. The desirability
relation º is reflexive and transitive. If º is complete, the game is called a complete game.
32See Owen (1995) and Peleg and Sudhölter (2003).
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According to Krohn and Sudhölter (1995), a directed game is a complete game such that33

1 º 2 º ... º n.
Let X be a compact and convex subset of Rn and let x ∈ X. We denote by θ(x) the

2n-dimensional vector34 whose components are the numbers e(S, x) ≡ V (S) −
P

i∈S x
i for

∅ ⊆ S ⊆ N arranged according to their magnitude, i.e., θi(x) ≥ θj(x) for 1 ≤ i ≤ j ≤ 2n.
The nucleolus of (N,V ) with respect to X is the unique35 vector x∗ = Nu(N,V ) ∈ X such
that θ(x∗) is minimal, in the sense of the lexicographic order, of the sets {θ(y) | y ∈ X}.
The nucleolus of (N,V ) with respect to XIR will be called hereafter the nucleolus; it is the
nucleolus as originally defined by Schmeidler (1969)36. We denote also by ψ (x) the 22n-
dimensional vector whose components are the numbers e(S, x) − e(T, x) for ∅ ⊆ S, T ⊆ N
arranged according to their magnitude, i.e., ψi(x) ≥ ψj(x) for 1 ≤ i ≤ j ≤ 22n. Themodiclus
is the unique37 vector x∗∗ ∈ XPO such that ψ(x∗) is minimal, in the sense of the lexicographic
order, of the sets {ψ(y) | y ∈ XPO}.
Given a real number , the − core of (N,V ) is the set

C ≡ {x ∈ XPO : e(S, x) ≤ for all ∅ " S & N} .

The least core of (N, V ) denoted LC(V,N)38 is the intersection of all nonempty -cores of
(N,V ). If (N,V ) is superadditive, then LC(V,N) ⊆ XIR. In such case, LC(V,N) consists
of the vectors x such that θ1(x) = θ1(x

∗). Note that then, x∗ ∈ LC(V,N).

8.2 Appendix 2 : Simple Games39

A simple game is a pair (N,W) where N = {1, . . . , n} with n ≥ 2 is a finite set of players
andW is a set of subsets of N satisfying : N ∈W, ∅ /∈W and (S ⊆ T ⊆ N and S ∈W)⇒
T ∈ W. The collection W of coalitions is the set of winning coalitions. The simple game
(N,W) is proper if S ∈ W ⇒ N\S /∈ W. It is strong if S ∈ W or (and) N\S ∈ W. It is
constant sum (self-dual or decisive) if it is proper and strong40. Hereafter, we will attach to
any simple (N,W) the monotonic TU cooperative game (N, V ) where:

V (S) =

½
1 if S ∈W
0 otherwise

.

33A directed game is the element of the equivalence (with respect to permutations of players) class of
complete games where the desirability relation is congruent to the natural order.
34This vector is called the vector of excesses attached to x.
35For a proof of uniqueness, see Peleg and Sudhölter (2003).
36In contrast, the prenucleolus is the nucleolus with respect to X ≡

©
y ∈ Rn |

Pn
i=1 y

i = V (N)
ª
. If the

cooperative game is zero-monotonic, i.e., if V (S ∪ {i}) − V (S) ≥ V ({i}) for all i ∈ N and S ⊆ N \ {i},
the difference between the prenucleolus and the nucleolus vanishes. A simple game is always zero-monotonic
unless {i}, S ∈W for some i ∈ N and S ⊆ N \ {i}.
37The modiclus has been introduced and studied by Sudhölter (1996, 1997). For a proof of uniqueness,

we refer to his original papers or Peleg and Sudhölter (2003).
38The notion of least core was first introduced by Maschler, Peleg and Shapley (1979). Each payoff vector

of the least core of a zero-monotonic game is individually rational.
39See Von Neumann and Morgenstern (1944), Shapley (1962) and Taylor and Zwicker (1999).
40Some authors use the term strong for constant sum.
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Note that (N,V ) is superadditive iff (N,W) is proper and that (N,V ) is constant-sum
iff (N,W) is decisive. A simple game (N,W) is a weighted majority game if there exists a
vector ω = (ω1, . . . , ωn; q) of (n+ 1) nonnegative real numbers such that a coalition S is in
W iff

P
i∈S ωi ≥ q; q is referred to as the quota and ωi is the weight of player i ∈ N . The

vector ω is called a representation of the simple game (N,W). It is important to note that
the same game may admit several representations. A simple game is homogeneous if there
exists a representation ω such that

P
i∈S ωi =

P
i∈T ωi for all S, T ∈Wm whereWm denotes

the set of minimal winning coalitions. Such a representation when it exists is referred to as
a homogeneous representation. We note that if ωi ≥ ωj, then player i is at least as desirable
as a player j. Finally, we say that a representation is symmetric41 if ωi = ωj whenever i ∼ j.
The dual of (N,W) is the simple game (N,B) where S ∈ B if and only if N\S /∈ W.

The collection B of coalitions is the set of blocking coalitions.

8.3 Appendix 3: Representation and Enumeration of Simple Games

A representation of a weighted majority game (N,W) is an integral representation if ωi ∈
N ∪ {0} for all i ∈ N . Note that, without loss of generality, the quota q can be chosen to
be Min

S∈Wm

ω(S). An integral representation ω is minimal if there does not exist any integral

representation ω0 of (N,W) such that ω0 ≤ ω. If ω ≤ ω0 for every integral representation
ω0 of (N,W), then is the minimum integral representation of (N,W). A representation is
normalized if

P
i∈N ωi = 1.

In a strong simple game (N,W), an imputation x ∈ XIR is a normalized representation
of (N,W) if and only if q(x) ≡ Min

S∈Wm

x(S) > 1
2
. Peleg (1968) has proved that any imputation

in the least core of a strong weighted game (N,W) is a normalized representation of (N,W).
Therefore, in particular the nucleolus x∗ ((N,W)) of (N,W) is a normalized representation
of (N,W). He also proved that if (N,W) is a strong homogeneous weighted majority game,
then the nucleolus is the unique normalized homogeneous representation of (N,W) which
assigns zero to each null player. The nucleolus has rational coordinates i.e. can be written
as x∗ ((N,W)) = ω∗

ω∗(N) where the ω
∗
i for i ∈ N are integers whose greatest common divisor

is 1. Peleg proves that if (N,W) is a strong weighted majority game then ω∗ is a minimal
integral representation if and only if ω∗ (N) = 2q (ω∗)−1. He also proved that if (N,W) is a
strong homogeneous weighted majority game then ω∗ is a minimum integral representation
of (N,W). Sudhölter (1996) proved that if (N,W) is a weighted majority game, then
the modiclus is a normalized representation of (N,W). Ostman (1987) and Rosenmuller
(1987) showed that every homogeneous weighted (not necessarily strong) majority game has
a minimal integral representation and that this representation is homogeneous. Sudhölter
proved that, up to normalization, this minimal integral representation coincides with the
modiclus.
These results point out the existence of relationships between the nucleolus and the set

of minimal integral representations. It is important to draw attention to the fact that the

41Freixas, Molinero and Roura (2007) call such representations normalized. We think this choice of termi-
nology is potentially confusing given the standard use of the word normalized in this area.
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combinatorics of these relationships are however quite intricate. Peleg provides an example
of a strong weighted simple game with n = 12 for which ω∗ is not a minimal integral
representation. Quite remarkably, Isbell (1969) provides an example of a strong weighted
simple game with n = 19 and a minimum integral representation ω such that: ω∗ 6= ω.
Krohn and Sudhölter (1995) proved that if (N,W) is a strong weighted majority game

and n ≤ 8, then LC(N,V ) = Nu(N, V ) which coincides with the unique normalized minimal
integral representation of (N,W). When n = 9, they obtain 319124 strong directed games
out of which exactly 175428 are weighted majority games. In such a case they show that
LC(N,V ) is a singleton with the exception of exactly 12 games. Precisely, all strong weighted
majority games with n = 9 have a unique minimal normalized representation which coincides
with the least core and thus with the nucleolus with the exception of 14 games which have
exactly two minimal representations differing on one type of players. Moreover, in 12 of
these games both representations are exactly the extreme points of the least core. In the
remaining two cases, no normalized representation is contained in the least core though
the set is a singleton (i.e. coincides with the nucleolus)42. Freixas and Molinero (2009)
also prove that when n = 9 any strong weighted majority game admits a unique minimal
normalized symmetric representation but when n = 10, there are strong weighted majority
games without a unique minimal symmetric representation and with more than two minimal
integral representations.
The enumeration of all simple games or important subclasses like for instance the sub-

classes of strong, complete, directed, weighted majority or subclasses obtained by intersection
of these subclasses is important for the combinatorial optimization conducted in our paper43.
This paper has been a topic of investigation since von Neumann and Morgenstern who enu-
merated all strong simple games when n = 5 and Gurk and Isbell (1959) who enumerated all
strong simple games when n = 6. Isbell (1959) provides the list of the 135 strong weighted
majority games when n ≤ 7 together with their unique minimal integral representations; 38
of those games are homogeneous. Table 17 below reproduces the enumeration derived by
Krohn and Sudhölter for games44 with n ≤ 9.
The enumeration of all simple games (including the two constant ones attached to

V (∅) = 1 and V (N) = 0) is known as Dedekind’s problem. Table 18 below reproduces
the enumeration for games with n ≤ 6.
The enumeration of all strong simple games45 (including the two constant ones corre-

sponding to V (∅) = 1 and V (N) = 0) has also attracted attention. Table 19 below,
extracted from Loeb and Conway (2000), reproduces the enumeration for games with n ≤ 8.
42This result was also proved by Freixas, Molinero and Roura (2007). They also prove that in the case

where n ≤ 7, all weighted majority games have a unique minimal integral representation. Finally, they
prove that when n = 8, they are 154 weighted majority games with two minimal integral representations (of
course, we know from above that none of them is strong). They show however than they all have a unique
minimal symmetric integral representation. Freixas and Molinero (2010) contains examples of games where
n = 9 without a unique minimal symmetric integral representation.
43We may also consider those satisfying some symmetry conditions as in Loeb and Conway (2000).
44In this enumeration, they dont assume that ∅ /∈W, N ∈W.
45Strong simple games are also often called maximal intersecting families of sets.
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Table 17:
n 1 2 3 4 5 6 7 8 9
# directed games 3 5 10 27 119 1173 44315 161175190 ?
# weighted majority games 3 5 10 27 119 1113 29375 2730166 ?
# strong directed games 1 1 2 3 7 21 135 2470 319124
# strong weighted majority games 1 1 2 3 7 21 135 2470 175428
# homogeneous games 1 3 8 23 76 293 1307 6642 37882

Table 18:
n 1 2 3 4 5 6
# simple games 3 6 20 168 7581 7828354

Table 19:
n 1 2 3 4 5 6 7 8
# strong simple games 1 2 4 12 81 2646 1422564 229809982112

True, the enumerations in tables 18 and 19 count games which are isomorphic. If not,
the numbers decrease in a significant way as illustrated in table 20 below for games with
n ≤ 7.

Table 20:
n 1 2 3 4 5 6 7
# isomorphism classes of strong simple games 1 1 2 3 7 30 716

As already pointed out, we may also want to enumerate simple games satisfying some
symmetry properties described through the group of permutation automorphisms preserving
the set of minimal winning coalitions. Along these lines, we may also limit the enumeration
to games where some players are always treated similarly (the set of players is partitioned
into a number of types where two players from the same type are perfect substitutes in the
simple game). Freixas, Molinero and Roura (2009) and Kurz and Tautenhahn (2010) have
derived formulas to enumerate all such simple games.
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