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Bargaining in Legislatures: A New Donation

Paradox

Maria Montero¤

November 21, 2010

Abstract

It is well known that proposers have an advantage in the canonical

model of bargaining in legislatures: proposers are sure of being part

of the coalition that forms, and, conditional on being in a coalition, a

player receives more as a proposer than as a coalition partner. In this

paper I show that, if parties di¤er in voting weight, it is possible for a

party to donate part of its proposing probability to another party and

be better-o¤ as a result. This can happen even if the recipient never

includes the donor in its proposals. Even though actually being the

proposer is valuable, having a higher probability of being proposer may

be harmful.

Keywords: legislative bargaining, weighted majority games, voting

paradoxes.

J.E.L. classi…cation: C78, D72.

¤School of Economics, University of Nottingham, University Park, NG7 2RD Notting-
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1 Introduction

A donation paradox occurs when a player transfers an apparently valuable

prerogative to another player but is better-o¤ as a result (Kadane et al.,

1999). The donation paradox in power indices was identi…ed by Felsenthal

and Machover (1995). A power index exhibits the donation paradox when

it is possible for a player to increase its power (as measured by the index)

by donating part of its weight to another player. Felsenthal and Machover

(1998, p. 258-259) see the donation paradox as something that should not

occur for measures of what they call P-power (the voter’s expected share in

a …xed purse that is divided by voting).

In this paper, I identify a donation-type paradox that arises as an equi-

librium phenomenon in the context of legislative bargaining. The most in-

‡uential model of bargaining in legislatures is due to Baron and Ferejohn

(1989). In this model,  parties must divide a budget by majority rule. The

parties have opposed preferences in the sense that each party would like to

have the whole budget for itself. One of the parties is randomly selected

to make a proposal, and the remaining parties accept or reject. Being the

proposer is valuable in this model: the proposer is guaranteed to be in the

coalition that forms and, conditional on being part of the coalition, a player

gets more as a proposer than as a responder. Baron and Ferejohn analyze

simple majority rules with symmetric voters, but the proposer advantage

occurs for any distribution of votes and any quali…ed majority as long as no

player has a monopoly on making proposals and there are no veto players

(see Harrington 1990, proposition 1; Okada 1996, theorem 1; Montero 2006,

corollary 3). When each player has one vote, having a higher probability of

being proposer can never hurt a player (Eraslan (2002)). The present paper

shows that, if players have di¤erent weights, it may be possible for a player

to gain from donating some of its proposing probability to a recipient and

be better-o¤. This can happen even though the recipient never includes the

donor in its proposals (either before or after the donation). The e¤ect is

triggered by the fact that the donor is disproportionately likely to receive

proposals by third parties after the donation.
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2 The model

2.1 Weighted majority games

Let  = f1  g be the set of players.  µ  ( 6= ?) represents a

generic coalition of players, and  : 2 ! R with (?) = 0 denotes the

characteristic function. We have a weighted majority game i¤ there exist

 nonnegative numbers (weights) 1   and a nonnegative number 

such that () = 1 if
P

2  ¸  and 0 otherwise. A coalition  is called

winning i¤ () = 1 and losing i¤ () = 0. It is called minimal winning

i¤ () = 1 and ( ) = 0 for all  such that  ½ . The set of all winning

coalitions is denoted by  . A player who belongs to all winning coalitions

is called a veto player.

A weighted majority game admits a homogeneous representation if there

exists a vector of nonnegative numbers 
1   


 and a nonnegative number

 such that () = 1 if and only if
P

2 

 = .

2.2 The bargaining procedure

Let ( ) be weighted majority game. We interpret this game as a trans-

ferable payo¤ game where  players decide by majority rule on the division

of a (perfectly divisible) budget.

Bargaining proceeds as follows: At every round  = 1 2  Nature selects

a player randomly to be the proposer according to some probability distri-

bution  = ()2 , where  ¸ 0 for all  and
P

2  = 1. The selected

player proposes a payo¤ vector ()2 . This payo¤ vector must be feasible

(
P

2  · 1) and no player can receive a negative payo¤ ( ¸ 0 for all  in

). Given a proposal, all players vote "yes" or "no " sequentially (the order

does not a¤ect the results). If the total number of votes in favor is at least

, the proposal is implemented and the game ends. Otherwise the game

proceeds to the next period in which Nature selects a new proposer (always

with the same probability distribution). Players are risk-neutral and share

a discount factor  · 1

The probability  is player ’s recognition probability. Two common

assumptions are equal recognition probabilities ( = 1
 for all  in ), and
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(for weighted majority games) proportional recognition probabilities,  =


() for all  in  .

A pure strategy for player  is a sequence  = ()
1
=1, where  the

-th round strategy of player , prescribes

1. A proposal ()2 

2. A response function assigning ”yes” or ”no” to all possible proposals

of the other players.

Players are free to condition their actions on the history of the game up

to time ; however we will study equilibria in which they choose not to do

so. The solution concept is stationary subgame perfect equilibrium (SSPE).

Stationarity requires that players follow the same (possibly mixed) strategy

at every round : the probability that the proposer makes a given proposal

is the same for all  regardless of history, and the response function depends

only on the current proposal and not on what happened in previous rounds.

Given an SSPE ¤ we will denote the associated expected payo¤ for

player  (computed at the beginning of the game, before Nature chooses the

proposer) by (
¤) -we will drop ¤ to simplify notation-. The expected

payo¤ given that a proposal is rejected is called the continuation value. Con-

tinuation values play a very important role in any SSPE: because incredible

threats are ruled out by subgame perfection, a responder must accept any

payo¤ strictly higher than their continuation value. Moreover, when the

equilibrium is stationary the continuation value is the same at all subgames

for given ¤: after a proposal is rejected a period elapses and the players do

the same they would do at time 1 all over again, thus player ’s continuation

value is simply .

2.3 The proposer advantage

The proposer advantage was originally established by Baron and Ferejohn

(1989) and Harrington (1990) for symmetric games. Because of symmetry,

each player expects 1
 if the game goes to the next period. Since the proposer

needs only to convince  ¡ 1 players to vote for the proposal, it can o¤er 1


to  ¡ 1 players and pocket the remaining 1 ¡ ¡1
 = 1

 + ¡
 . Thus there

is a proposer advantage as long as   . Introducing discounting leads
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to an even greater proposer advantage. Okada (1996) shows that there is a

proposer advantage in general games assuming that each player is recognized

with probability 1
 and   1. This result can be easily generalized to any

recognition probabilities and to  = 1 provided that no player has veto power

or a recognition probability equal to 1 (if a player has veto power, there is

still a proposer advantage if   1).

Lemma 1 Let [;] be a weighted majority game. If there are no veto

players and no player with  = 1, then there is a proposer advantage in

the sense that a player earns strictly more as a proposer than as a coalition

partner in an SSPE. The requirement of no veto players can be replaced by

  1.

Proof. Let  be the expected equilibrium payo¤ for player . In a

stationary equilibrium a player has the same  in each period and, since

there is 1 unit to divide,
P

2  · 1.

Any player with   0 must have   0. As a proposer, player 

can always exclude some  with   0 and o¤er everybody else slightly

more than their continuation value; the proposal will pass as  is not a veto

player.1 Since
P

2nfg   1, it follows that  has a positive payo¤ as a

proposer. Moreover, given that no player can be allocated a negative payo¤

as a responder, any player with a positive recognition probability must have

a positive expected payo¤ overall.

Player  receives  as a coalition partner in an SSPE. As a proposer, it

receives 1 ¡
P

2nfg  , where

 2 arg min
32

X

2

 

This is because a player must accept any o¤ers above . If o¤ers

were above , the proposer could undercut the o¤er slightly and it would

still be accepted. Thus  must receive exactly  as a coalition partner,

and the proposer receives 1 ¡
P

2nfg  for some . If  were not the

1 If there was no  with   0 it would be even easier for  to have a positive payo¤ as

a proposer by o¤ering all players slightly more than 0.
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solution to the minimization problem, there would be another coalition that

could be proposed with coalition partners getting slightly more than their

continuation value; they would have to accept and the proposer would be

better-o¤.

The di¤erence between proposer and coalition partner payo¤ is 1 ¡


P

2  . This is always positive because, since no player has a monopoly

on making proposals there is at least one player  6=  who can make pro-

posals (and will therefore have   0) and since there are no veto players

that player can be excluded.

The requirement of there being no veto players can be replaced by   1.

Then there must be a proposer advantage because the sum of the continu-

ation values of all players is strictly less than 1.

If a player has a monopoly on making proposals the advantage of being

proposer is not de…ned.

3 A new donation paradox

Suppose there are four parties in the legislature, controlling 3, 2, 2 and 1

votes respectively, and 5 votes are needed to pass a proposal. We consider

two possible scenarios: each party is recognized with a probability propor-

tional to its number of votes ( =
¡
3
8 
2
8 
2
8 
1
8

¢
), or alternatively each party

is recognized with equal probability (thus  =
¡
1
4 
1
4 
1
4 
1
4

¢
). Both scenarios

are plausible: in the …rst case, we can think of a voter with three votes as a

party composed of three members, each of them with one vote, who always

follow party discipline, and each member is selected with equal probability;

in the second case, we can think of parties as being treated equally in terms

of voice even though they have di¤erent numbers of votes. Because the

medium-size players have the same recognition probability in both scenar-

ios, we can view the move from one scenario to the other as the large player

"donating" some of its recognition probability to the small player.

Eraslan and McLennan (2006) show that all SSPE have the same ex-

pected payo¤s, therefore if we are only interested in payo¤s and not in

strategies it is enough to …nd one equilibrium.
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Note that players of the same type must have the same payo¤ in equilib-

rium if they have the same recognition probability (Montero, 2002, lemma

2). This result also follows from Eraslan and McLennan’s uniqueness result

(if equilibrium payo¤s are unique they must be symmetric). Thus, we can

set 2 = 3 and use 2 to denote both player 2 and player 3’s payo¤s. We

will also focus on equilibrium strategies that are symmetric in the sense that

the two players of the same type play the same strategy, and are treated

symmetrically by other players’ strategies.

What coalitions do players propose in equilibrium? The answer is straight-

forward for the largest and the smallest player.

The large player always proposes f1 2g or f1 3g (each with probability

05 since we focus on symmetric strategies). The small player is of no use to

the large player as a coalition partner: adding the small player to a coalition

that already contains the large player never turns a losing coalition into a

winning one.

Similarly, the large player is of little use to the small player as a coalition

partner. The natural coalition for the small player to propose is the only

minimal winning coalition to which it belongs, f2 3 4g. A coalition like

f1 2 4g could conceivably be proposed if 1 · 2, but this is never the case

for the recognition probabilities we consider.

As for a medium-size player like player 2, it can propose coalition f1 2g or

coalition f2 3 4g, depending on how 1 compares with 2+4. If 1 = 2+4

we have a competitive situation in the sense that players that can replace

each other in a minimal winning coalition receive the same payo¤.

Proposition 2 Consider the weighted majority game [5; 3 2 2 1], and let

 =
¡
3
8 
2
8 
2
8 
1
8

¢
. The equilibrium payo¤ vector in any SSPE with  = 1 is

 =
¡
5
14 

4
14 

4
14 

1
14

¢
.

Proof. Suppose the large player proposes to each medium-sized player

with probability 05, the small player proposes to both medium-sized players,

and each medium-sized player randomizes between proposing to the large

player (with probability ) and proposing coalition f2 3 4g (with proba-

bility 1 ¡ ). Suppose moreover that each coalition partner is o¤ered its
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continuation value (so, for example, player 2 proposes (1 1¡ 1 0 0)), and

players accept any o¤er that gives them at least their continuation value.

Note that a mixed strategy can only be optimal for a medium-sized player

if 1 = 2 + 4. The following system of equations determines the expected

payo¤s derived from these strategies and the equilibrium value of .

1 =
3

8
(1 ¡ 2) +

4

8
1

2 =
2

8
(1 ¡ 1) +

3

8

1

2
2 +

2

8
(1 ¡ ) 2 +

1

8
2

4 =
1

8
(1 ¡ 22) +

4

8
(1 ¡ ) 4

1 = 2 + 4

The solution to this system is 1 = 5
14 , 2 = 4

14 , 4 = 1
14 and  = 1

2 .

The strategies described above constitute an equilibrium because respon-

ders are o¤ered their continuation values, and proposers are proposing to

the cheapest possible coalition partners.

Proposition 3 Consider the weighted majority game [5; 3 2 2 1], and let

 =
¡
1
4 
1
4 
1
4 
1
4

¢
. The equilibrium payo¤ vector in any SSPE with  = 1 is

 =
¡
3
8 
2
8 
2
8 
1
8

¢
.

Proof. Suppose the large player proposes to each medium-sized player

with probability 05, the medium-size players propose to the large player, and

the small player proposes to both medium-sized players. Suppose moreover

that each coalition partner is o¤ered its continuation value (so, for example,

player 2 proposes (1 1 ¡ 1 0 0)) and players accept any o¤er that gives

them at least their continuation value. Then continuation values are found

from the following system of equations

1 =
1

4
(1 ¡ 2) +

2

4
1

2 =
1

4
(1 ¡ 1) +

1

4

1

2
2 +

1

4
2

4 =
1

4
(1 ¡ 22)

The solution to this system of equations is 1 = 3
8 , 2 = 2

8 and 4 = 1
8 .
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The strategies described above constitute an equilibrium because respon-

ders are o¤ered their continuation values, and proposers are proposing to the

cheapest possible coalition partners. In particular, a medium-sized player

would compare proposing to the large player (and paying 3
8) with proposing

to the other two players (and paying 2
8 + 1

8 = 3
8). Because the alterna-

tive coalition is no better than the one that is being proposed, there is no

pro…table deviation.

What is the e¤ect of the donation from player 1 to player 4? The direct

e¤ect is negative: player 4 always proposes coalition f2 3 4g, so if players

did not change their strategies it would be the case that 2 would go up (as

the medium-sized players receive more proposals), 4 would go up (as the

small player is more likely to be recognized) and 1 would go down (as the

large player is less likely to be recognized). But then it would no longer be

optimal for players 2 and 3 to play a mixed strategy, as 1  2+ 4. In the

new equilibrium, the medium-sized players are more likely to propose to the

large player than before. This indirect e¤ect (the large player is more likely

to receive proposals from the medium-sized players) brings the equilibrium

back to a competitive situation in which 1 = 2 + 4. Nevertheless, the

individual values of 1, 2 and 4 are not the same as before, and player 1

is better-o¤ in this new competitive equilibrium.

More generally, there is a range of probabilities such that player 1 can

move from a competitive allocation to another competitive allocation that is

more favorable by donating some probability to player 4. Fix the probability

of being proposer for a medium-size player at 1
4 , and let  be the probability

that the large player is selected to be proposer; then the small player is

selected with probability 1
2 ¡  If we only consider recognition probabilities

such that a larger player cannot be selected less often than a smaller player,

the relevant range of values for  is 1
4 ·   1

2 . It turns out that the

equilibrium is always such that a medium-size player is indi¤erent between

proposing to the large player and proposing to the other medium-size player

and the small player, or equivalently 1 = 2 + 4. Let  be the probability

that a medium-size player proposes to the large player. Then expected

9



payo¤s are found from the following equations

1 =  (1 ¡ 2) +
1

2
1

2 =
1

4
(1 ¡ 1) +



2
2 +

1

4
(1 ¡ ) 2 +

µ
1

2
¡ 

¶

2

4 =

µ
1

2
¡ 

¶

(1 ¡ 22) +
1

2
(1 ¡ ) 4

1 = 2 + 4

The solution for  is 2(1¡2). It starts at 1 for  = 1
4 , and is approaches 0

when  approaches 12 . This is intuitive: if a player is less likely to be proposer

with strategies being unchanged, it becomes cheaper and will receive more

proposals. What is surprising is the overcompensation, so that the player is

better-o¤ when it is less likely to be proposer. It turns out that 1 = 2(1¡)
5¡4 ,

which is decreasing in . Payo¤s for the other two types are 4 = 1¡2
5¡4

(which is decreasing in  as one would intuitively expect; the direct e¤ect

of the donation is stronger than the indirect e¤ect), and 2 = 1
5¡4 (which

must be increasing in  since the other payo¤s are decreasing in ).

4 Discussion

It is known that the indirect e¤ect can o¤set the direct e¤ect. Montero

(2002) shows that, for apex games and symmetric protocols, all values 0 

1 · 05 lead to the same expected payo¤s. If the apex player becomes the

proposer more often, it receives proposals less often so that the competitive

solution 1 = (¡ 2)2 is maintained.

An important di¤erence between the game [5; 3 2 2 1] and apex games

is that the competitive payo¤ vector is unique for apex games because apex

games have a unique homogeneous representation (up to rescaling). The

indi¤erence condition 1 = ( ¡ 2)2 together with 1 + ( ¡ 1)2 = 1

determines expected payo¤s uniquely.

The game [5; 3 2 2 1] has many competitive payo¤ vectors because it

has many homogeneous representations, so that assuming that the out-

come is competitive does not lead to a unique payo¤ vector. For exam-

ple, [7; 4 3 3 1] is a homogeneous representation of the same game. If we
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normalize the weights so that they add up to 1, it is easy to compute all

homogeneous representations. Clearly, players 2 and 3 must have the same

weight in any homogeneous representation. Denote the weights by 1, 2

and 4 respectively. Normalization implies that

1 + 22 +4 = 1 (1)

Homogeneity implies that 1 +2 = 22 +4, or

1 = 2 +4 (2)

Note that the homogeneity condition is the same as the indi¤erence

condition that we obtained previously for a medium-sized player, but with

weights instead of payo¤s. Solving this system we obtain

2 = 1 ¡ 21 (3)

4 = 31 ¡ 1 (4)

It turns out that 2 is negatively related to 1, whereas 4 is positively

related to 1.

Since f1 4g and f2 3g are losing coalitions, there are two additional

constraints: 2  4 guarantees that f1 4g is losing, and 4  0 guarantees

that f2 3g is losing. Taking these constraints into account we …nd that any

value 1 such that 1
3  1  2

5 leads to a homogeneous representation

(the corresponding intervals for the other two players are 1
3  2 

1
5 and

0  3 
1
5).

If we assume a ”competitive” equilibrium in which 1 = 2 + 4 (equiv-

alent votes receive the same payo¤), expected payo¤s must be proportional

to some homogeneous representation, and the payo¤s of 1 and 4 must vary

together. This goes some way towards explaining the phenomenon (if a

donation from 1 to 4 a¤ects 1 and 4 it must have a paradoxical e¤ect)

though it does not explain why payo¤s change when 1 donates probability

to 4 instead of remaining constant.
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5 Concluding remarks

Being recognized as a proposer is always a good thing ex post. However,

having a higher recognition probability can hurt a player. The reason is

that the indirect e¤ect of this donation may outweigh the direct e¤ect: the

recipient is now less likely to receive proposals, and that e¤ect more than

compensates for the increase in the recognition probability.

In the example the paradox seems to be connected to the fact that the

set of minimal winning coalitions is not rich enough, so that the homoge-

neous representation of the game is not unique. Identifying a class of games

for which the paradox does not occur (besides apex games) would be an

interesting topic for future research.2

2To the best of my knowledge, there are no general results on the comparative statics

of changing recognition probabilities. Kalandrakis (2006) shows that any expected pay-

o¤s can be obtained for some recognition probabilities, but contains no claims on what

probabilities lead to what payo¤s.
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