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We study a random effects censored regression model in the context of repeated

games. Introducing a feedback variable into the model leads to violation of the

strict exogeneity assumption, thus rendering the random effects estimator incon-

sistent. Using the example of contributions to a public good, we investigate the

size of this bias in a Monte-Carlo study. We find that the magnitude of the bias

is around one per cent when initial values and individual effects are correlated.

The rate of censoring, as well as the size of the groups in which subjects interact,

both have an effect on the magnitude of the bias. The coefficients of strictly ex-

ogenous, continuous regressors remain unaffected by the endogeneity bias. The

size of the endogeneity bias in our model is very small compared to the size of the

heterogeneity bias, which occurs when individual heterogeneity is not accounted

for in estimation of nonlinear models.
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1 Introduction

1 Introduction

In economic experiments, subjects often interact in groups and receive some form of

feedback. The repeated public goods game is a prime example: Subjects take their

decision and then learn about the aggregate outcome in their group before the next

round starts. The same applies to other games, for example the gift exchange game or

the trust game when they are repeated. While experimenters can control many aspects

of the environment, the feedback presented to subjects in repeated play is typically

determined by the subjects’ actions and therefore endogenous.1 Often, researchers be-

lieve that past feedback is a meaningful predictor for current choices, thus including

feedback as dependent variable into their models. For econometric analysis, this poses

two problems: the observations are no longer independent between subjects, and the

strict exogeneity assumption fails. The consequences of this violation of the indepen-

dence and strict exogeneity assumptions depend on the type of model estimated. In

pooled estimation, all parameters can be consistently estimated as long as the model

is dynamically complete; see Wooldridge (2002, p. 256). If individual effects feature

in the model, and panel models are estimated, matters are more complicated. In the

remainder of this article we study the properties of a specific estimator when feedback

as well as individual heterogeneity are included in the model. In our empirical appli-

cation, we focus on contributions to an experimental public good under the voluntary

contribution mechanism (VCM), but none of our results is theoretically linked to public

goods.

Experimental researchers have become increasingly interested in learning more about

the heterogeneity of behaviour in their experiments. The discussion about types of

players in the public goods literature is one example of this interest in heterogeneity.

Some experimental methods have been employed to study individual heterogeneity,

for example the strategy method in Fischbacher, Gächter et al. (2001). This effort

has been complemented by econometric methods like the Two-Limit p-Tobit model by

Bardsley and Moffatt (2007). The latter study employed a sequential design and special

randomisation technique to identify four types of players in their data. However, a very

large number of public goods experiments have been conducted with a simultaneous

design and repeated interaction; our own dataset comprises more than 3500 individuals

1Some authors have manipulated feedback in public good experiments. Bardsley and Moffatt (2007)
employ a random mechanism to simulate other group members. Sell (1997) uses (manipulated)
feedback as a treatment variable (high cooperation versus low cooperation).
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1 Introduction

who participated in studies with this design.2 Given the evidence that individuals

are indeed heterogeneous, the econometric analysis of this type of data must take

heterogeneity into account. It is for this reason that we concentrate on models with

individual effects.

More precisely, we want to design a model that allows for individual-specific intercepts

as well as slopes (mixed model); this allows us to capture very different types of contri-

bution behaviour in a single model. One subject, for example, may be highly sensitive

to the feedback received, while another might contribute the same amount no matter

what. A third subject might provide contributions that decline over time for strategic

reasons. By allowing the intercepts and slopes to vary between subjects, we are able

to account for this multi-dimensional form of heterogeneity that we believe is present

in public goods data.

The participants of an experiment can be considered a random sample from a much

larger population. We are not interested in the actual values of the individual effects

for our subjects (since these values are random), but rather in the properties of the

estimated distribution of these effects. Therefore, the random effects framework is

appropriate (see Baltagi, 2001, p.15). Another reason to employ random effects lies

in the importance of time-invariant regressors in experimental studies; often, dummy

variables for treatments or sessions are added to the model, and the coefficients on

these cannot be identified in a fixed effects model.

As is true for many experimental settings, the outcome variable in VCM public goods

experiments is bounded. Contributions are limited to lie in between zero and the

endowment, ω. Typically, there is a sizable share of observations at either end of this

range, and especially at zero. We therefore concentrate on the random effects Tobit

framework to account for censoring. This model can be consistently estimated given

that there is a single individual random effect (random intercept), and all regressors

satisfy the strict exogeneity assumption; it is implemented in Stata in the xttobit

command.3 Here, we will add two complications to the model: more than one individual

random effect, and a feedback variable as regressor, which violates strict exogeneity.

Arellano and Honoré stated in 2001: ‘[. . .] very little is known about the estimation

of nonlinear panel data models with predetermined explanatory variables.’ (Arellano

and Honoré, 2001, p.3266). Some progress has been made since then; Honoré and Hu

2The dataset mentioned is a collection of data from several studies, all of which were co-authored by
Simon Gächter (CeDEx, University of Nottingham).

3We used version 10.1 of the software for our simulation.
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1 Introduction

(2004) prove that the GMM estimator in the case of a lagged dependent variable is

consistent under a set of regularity conditions. They also generalise the findings to

predetermined variables without limiting the nature of the feedback. However, their

model does not include random slopes.

To our knowledge there is no estimator for the censored regression model that allows

for random slopes and endogenous regressors. The aim of this study is to investigate

the random effects estimator under feedback, as it is present in repeated experiments.

We hope that, although we include a regressor that violates strict exogeneity, the bias

will be small due to the nature of feedback and censoring in the model.

In order to proceed, we need to be more specific about what exactly we mean by

feedback. In the current study we assume that N individuals are observed over T time

periods. T is regarded as fixed and small in comparison to N . There are P groups,

made up of K individuals each (groups are of an equal size, therefore K P = N).

Let yt−1,p−i denote the average outcome y in the previous round of group p, excluding

individual i, i.e.

yt−1,p−i =
1

K − 1

K∑
j=1,j 6=i,j∈p

yj,t−1. (1)

If the true data generating process is, generally speaking,

E(yi,t) = g(yt−1,p−i, X, β) (2)

then yt−1,p−i is considered a feedback variable.4 The effect is twofold: First, yi,t−1 feeds

into yj 6=i,j∈p,t, creating a correlation between observations in a group. One period on,

it feeds back into yi,t+1 via the same process (2). Feedback effects similar to (1) can

occur in many experimental settings where subjects repeatedly interact in groups.

In the context of a linear model and K = 2, we can see how the feedback variable

violates strict exogeneity. Assume the simple linear model

yi,t = β0yj,t−1 + β1xi,t + ui + εi,t (3)

where x is a strictly exogenous regressor, ε is Gaussian white noise, and u is an unob-

served individual effect which is uncorrelated with x and ε. Here, the feedback variable

4We assume that group composition is constant over time (‘partner’ matching). This does not mean
that feedback effects are not present in ‘stranger’ matching, but we would have to adopt a more
general notation to cater for it.
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1 Introduction

yt−1,p−i is simply equal to the lagged contribution of group member j since K = 2. (3)

can be rewritten as

yi,t = β0 (β0yi,t−2 + β1xj,t−1 + uj + εj,t−1) + β1xi,t + ui + εi,t

= β0 [β0 (β0yj,t−3 + β1xi,t−2 + ui + εi,t−2) + β1xj,t−1 + uj + εj,t−1]

+ β1xi,t + ui + εi,t

(4)

From (4) we can see the two effects of including feedback into the model: Firstly, yi,t is

correlated with uj, which means that all observations of subject i are correlated with all

observations of subject j. Secondly, yi,t depends on yi,t−2, creating a dependence over

time and introducing endogeneity. The feedback regressor yj,t−1 is correlated with the

individual effect ui; we therefore have a similar situation to a lagged dependent variable

in the presence of unobserved effects, and the strict exogeneity assumption never holds

(see Wooldridge (2002, p. 256)). yj,t−1 is not exogenous but it is predetermined.

This linear model cannot be consistently estimated by OLS due to E(y′j,t−1ui) > 0.

The random effects estimator, which relies on an even stricter exogeneity assumption,

is also inconsistent. The research question at hand is the extent of the inconsistency

in the parameter estimates, given the unusual structure of feedback in groups. We

will be focussing on the Tobit model for censored outcomes. We do not consider any

other type of misspecification, such as heteroscedasticity, non-normality of errors, or

contemporaneous endogeneity.

We conduct a Monte-Carlo study to examine the properties of the maximum likelihood

estimator implemented in gllamm under certain conditions. The user-written software

gllamm (Generalized Linear and Latent Mixed Models; see Rabe-Hesketh, Skrondal

et al. (2004)) allows the estimation of a wide range of models, including nonlinear

hierarchical models with random intercepts and random slopes. With some adjust-

ments to the data it can also be employed to fit Tobit models. While there is a Tobit

random effects estimator xttobit in official Stata, gllamm can handle more than one

random effect on more than one level. This estimator in conjunction with the Tobit

model, however, has not been widely discussed in the literature. Another goal of the

current study is therefore to establish the consistency of the estimator in gllamm when

estimating two-limit Tobit models with one or more random effects.5

5The authors of gllamm explain how to fit Tobit models in Rabe-Hesketh, Skrondal et al. (2005)
and Rabe-Hesketh and Skrondal (2007). The method was also discussed on the discussion list
Statalist earlier than that. gllamm’s capability of fitting Tobit models seems to have gone largely
unnoticed in the literature, with many authors relying on either linear mixed models or simpler
Tobit models for estimation (see for example Carpenter (2007)). Some authors do employ gllamm
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2 Design

The Monte-Carlo method is instrumental in learning about the impact of feedback

effects on an estimator. With real world data, the true data-generating process is

unknown, as is the true distribution of the data. It is therefore very difficult, if not

impossible, to make reliable conclusions about the statistical properties of an estimator

using real world data. All our analyses are based on data that are randomly gener-

ated from a well-defined distribution, using a data generating process that we select

according to our design.

2 Design

Table 1: Design matrix

No Uncorrelated Correlated
feedback feedback feedback

No
Experiment 3

random effects

Random intercept
Experiment 1 Experiment 4 Experiment 6

only

Random intercept
Experiment 2 Experiment 5 Experiment 7

and random slopes

We implemented a three-by-three design for our simulation study; see table 1. The

treatment variables are the number of random effects (none, one, or three random

effects) and the presence of feedback (no feedback, uncorrelated feedback and correlated

feedback). The top left cell of the design matrix is trivial (the standard Tobit model),

and no experiments have been performed for this configuration. The top right cell of

the matrix empty because it is infeasible. The correlation is between the individual

effect and the feedback; a model without random effects cannot be constructed.

In order to be able to distinguish between the two features of our feedback process (2)

to fit Tobit models, but only specify a single random intercept (e. g. Godin (2008) and Shephard,
Falcaro et al. (2003)) – a model which can be estimated by the xttobit command in official Stata.
However, the adaptive quadrature implemented in gllamm is superior in situations involving large
cluster sizes or high intraclass correlation; see Rabe-Hesketh, Skrondal et al. (2005). The downside
of adaptive quadrature is that convergence is slow.
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3 The model and parameters

– correlation between observations in a group and correlation between the regressor

affected by feedback and the individual effect – we also conduct experiments in which we

introduce a lagged dependent variable instead of feedback from other group members. A

lagged dependent variable induces correlation with the unobserved effect, but preserves

independence of observations between cross-sectional units.

3 The model and parameters

Our data-generating process is a linear panel model with N cross-sectional units and

T time periods. We then apply censoring from below and above. The basic model is

y∗i,t = β0 + β1x1i,t + β2x2i,t + β3x3i,t + βdTd(t = T )

+ βd(T−1)d(t = T − 1) + βtt+ εi,t

yi,t =


0 if y∗i,t < 0,

y∗i,t if 0 ≤ y∗i,t ≤ 20,

20 if y∗i,t > 20

(5)

where x1, x2 and x3 are exogenous predictors, t is a linear time trend, d(t = T ) is an

indicator variable (dummy) for the final time period, d(t = T − 1) is a dummy variable

for the penultimate time period, and εi,t is an iid normally distributed disturbance. De-

pending on the experiment, we introduce one or more random effects into the equation

for y∗i,t.

Our choice of model is closely related to features of public goods data that are generally

found in experimental studies (see Ledyard (1995) for an overview of the main findings).

We include a linear time trend, and allow for an ‘end-game effect’ with additional time

dummies for the ultimate and penultimate round. The censoring points of zero and 20

reflect our own data; the endowment ω was equal to 20 tokens in all our experiments.

We chose the parameter values β such that the censoring rate is approximately 60 per

cent, which is fairly high; the highest rate of censoring in our own data is 68 per cent.

The values of N and T remain constant for the experiment; we selected N = 200 and

T = 10. The choice of 200 cross-sectional units stems from the experimental background

of our data: in an experimental study, 200 subjects would constitute a very good sample

size. Since we develop our model for experimental data, we did not want to assume

unrealistically large sample sizes. We also did not want to use less than 200 units in

7



3 The model and parameters

order to give gllamm a reasonable chance of identifying the model (200 units mean

200 realisations of the random effects). Investigating the asymptotic properties of the

estimator as N grows large, as well as the (very) small sample properties, exceeds the

scope of the current study and is left for future research. The choice of 10 time periods

is again motivated by our own data, which predominantly consists of experimental

sessions with 10 rounds.

In all simulation experiments, our pseudo-population is composed of a vector of vari-

ables (x1, x2, x3, u0, u1, ut), where the x variables are regressors and the u variables

are individual random effects. The variables follow a multivariate normal distribution

with expectation µ and variance-covariance matrix Σ:

µ



x1

x2

x3

u0

u1

ut


=



19

6

0

0

0

0


Σ



x1

x2

x3

u0

u1

ut


=



64

12 25

−2.4 0.75 2.25

0 0 0 36

0 0 0 −0.75 0.25

0 0 0 0.48 −0.06 0.16


(6)

The covariates are correlated with each other, as are the random effects. All random

effects are uncorrelated with the covariates, satisfying the random effects assumption.

We also introduce a random disturbance εi,t which is uncorrelated with both xi and ui

and normally distributed with µε = 0 and σε = 6. The true parameters of our linear

model are as follows:

βx1

βx2

βx3

βt

βd(t=10)

βd(t=9)

βcons


=



0.4

−3

−2.5

−0.7

−7

−3

22


(7)

In experiments with feedback, the first time period is not included in the estimations.

x1 is the transmitter of feedback effects in our feedback experiments, via a mechanism

explained later on.

Since the type of models that can be estimated by xttobit are a subset of those that can

be estimated by gllamm, we can directly compare the two estimators in some cases. We

begin by simulating a model with a random intercept, which can be estimated by both
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4 Experiments without feedback effects

commands, in order to establish whether or not gllamm can estimate censored models

under very regular conditions. The official xttobit command will be our benchmark.

Convergence with gllamm in the case of three random effects can take a very long

time (approximately four hours for a model with three random effects and 2000 obser-

vations). For this reason, the experiments with three random effects are carried out

with a low number of repetitions of between 600 and 1000 each. One would usually

conduct Monte-Carlo studies with 10000 repetitions or more, but this is infeasible due

to computing time.6

4 Experiments without feedback effects

4.1 Random intercept only: Experiment 1

The first experiment is for a model with a random intercept u0. There are no feedback

effects, and the data come from the well-behaved pseudo-population described in (6);

these are optimal conditions for both xttobit and gllamm to estimate this model. The

data-generating process is

y∗i,t = β0 + β1x1i,t + β2x2i,t + β3x3i,t + βd10d(t = 10)

+ βd9d(t = 9) + βtt+ u0i + εi,t

yi,t =


0 if y∗i,t < 0,

y∗i,t if 0 ≤ y∗i,t ≤ 20,

20 if y∗i,t > 20

(8)

The results are listed in table 2 and 3. We can see that the averages of the estimated

parameters are very close to the true values, and biases are well below one per cent.

Both xttobit and gllamm perform very well. The normality tests and a visual in-

spection suggests that the estimates are normally distributed. The average estimated

6In order to see whether the smaller number of repetitions for gllamm influences our results, we cross-
check the findings from experiments 1, 4 and 6 using only a random sample of 800 repetitions each.
While there is some variation in the extent of the biases, all results continue to hold. The average
bias across all coefficients in these experiments increases from 0.28 per cent (10000 repetitions) to
0.35 per cent (800 repetitions).
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4 Experiments without feedback effects

Table 2: Results for experiment 1: xttobit

true average bias standard average es- p-value p-value nor-
Parameter value estimate in % deviation timated s.e. t-test mality test

β1 0.4 0.40 0.01 0.03 0.03 0.82 0.17
β2 -3 −3.00 0.07 0.07 0.07 0.00 0.00
β3 -2.5 −2.50 0.09 0.14 0.14 0.10 0.49
βt -0.7 −0.70 0.04 0.09 0.09 0.74 0.59
βd10 -7 −7.02 0.24 0.80 0.80 0.04 0.36
βd9 -3 −3.01 0.23 0.71 0.72 0.32 0.04
β0 22 22.02 0.08 0.79 0.79 0.03 0.27
σε 6 5.99 0.24 0.17 0.17 0.00 0.01
σu0 6 5.98 0.38 0.37 0.37 0.00 0.00
N = 200, T = 10, estimated by xttobit, 10000 repetitions.
The t-test is for equality of the average estimated parameter and the true value (two-sided test).

Table 3: Results for experiment 1: gllamm

true average bias standard average es- p-value p-value nor-
Parameter value estimate in % deviation timated s.e. t-test mality test

β1 0.4 0.40 0.07 0.03 0.03 0.26 0.59
β2 -3 −3.00 0.06 0.07 0.07 0.01 0.00
β3 -2.5 −2.50 0.00 0.14 0.14 0.99 0.00
βt -0.7 −0.70 0.17 0.09 0.09 0.16 0.14
βd10 -7 −7.01 0.09 0.80 0.80 0.44 0.61
βd9 -3 −3.02 0.58 0.72 0.72 0.02 0.92
β0 22 22.00 0.00 0.79 0.79 0.97 0.52
log(σε) 1.79 1.79 0.16 0.03 0.03 0.00 0.23
σu0 6 5.98 0.37 0.37 0.37 0.00 0.07
N = 200, T = 10, estimated by gllamm, 10000 repetitions.
The t-test is for equality of the average estimated parameter and the true value (two-sided test).
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4 Experiments without feedback effects

standard errors are very close to the actual standard deviations of the estimates for

both estimators.

Following these results, we have now confidence in the performance of gllamm when

estimating Tobit random effects models under regular conditions.

4.2 Random intercept and random slopes: Experiment 2

We now add two random slopes to the model: one for the time trend t (which we call

ut), and one for x1 (which we call u1). The new model is

y∗i,t = β0 + β1x1i,t + β2x2i,t + β3x3i,t + βd10d(t = 10)

+ βd9d(t = 9) + βtt+ u1ix1i,t + utit+ u0i + εi,t

yi,t =


0 if y∗i,t < 0,

y∗i,t if 0 ≤ y∗i,t ≤ 20,

20 if y∗i,t > 20

(9)

Again, we run simulations using both xttobit and gllamm. We do not expect xttobit

to be consistent any longer, because the model it estimates is misspecified and the

random slopes are correlated with the random intercept; the estimates will suffer from

heterogeneity bias.

Table 4: Results for experiment 2: xttobit

true average bias standard average es- p-value p-value nor-
Parameter value estimate in % deviation timated s.e. t-test mality test

β1 0.4 0.42 5.74 0.05 0.03 0.00 0.00
β2 -3 −3.00 0.03 0.08 0.08 0.25 0.00
β3 -2.5 −2.50 0.12 0.16 0.16 0.07 0.67
βt -0.7 −0.70 0.08 0.11 0.10 0.62 0.88
βd10 -7 −6.95 0.71 0.95 0.95 0.00 0.03
βd9 -3 −2.99 0.31 0.86 0.86 0.27 0.25
β0 22 21.60 1.83 0.96 1.04 0.00 0.14
σε 6 7.11 18.50 0.23 0.21 0.00 0.00
σu0 6 9.50 58.40 0.57 0.57 0.00 0.00
Three random effects. N = 200, T = 10, estimated by xttobit, 10000 repetitions.
The t-test is for equality of the average estimated parameter and the true value (two-sided test).
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4 Experiments without feedback effects

Table 5: Results for experiment 2: gllamm

true average bias standard average es- p-value p-value nor-
Parameter value estimate in % deviation timated s.e. t-test mality test

β1 0.4 0.40 0.59 0.05 0.05 0.18 0.32
β2 -3 −3.01 0.23 0.07 0.08 0.01 0.47
β3 -2.5 −2.51 0.50 0.16 0.15 0.03 0.46
βt -0.7 −0.69 0.88 0.10 0.10 0.08 0.13
βd10 -7 −7.08 1.17 0.85 0.88 0.01 0.90
βd9 -3 −3.04 1.24 0.79 0.78 0.20 0.00
β0 22 22.08 0.37 0.86 0.85 0.01 0.49
log(σε) 1.79 1.79 0.18 0.03 0.03 0.01 0.33
Cholesky(1,1) 6 5.98 0.34 0.97 0.97 0.56 0.01
Cholesky(2,2) 0.484 0.48 1.82 0.04 0.04 0.00 0.05
Cholesky(3,3) 0.378 0.30 21.90 0.19 0.28 0.00 0.00
Cholesky(2,1) -0.125 −0.12 4.41 0.08 0.08 0.07 0.00
Cholesky(3,1) 0.08 0.08 3.75 0.14 0.14 0.55 0.22
Cholesky(3,2) -0.103 −0.10 0.44 0.10 0.10 0.90 0.02
Var(u0) 36 36.70 1.94 11.52 (11.56) 0.10 0.00
Var(u1) 0.25 0.25 0.56 0.04 (0.04) 0.38 0.00
Cov(u0,u1) -0.75 −0.75 0.22 0.55 (0.54) 0.94 0.15
Var(ut) 0.16 0.17 5.60 0.10 (0.10) 0.02 0.00
Cov(u0,ut) 0.48 0.39 18.70 0.77 (0.80) 0.00 0.00
Cov(u1,ut) -0.06 −0.06 2.66 0.05 (0.05) 0.38 0.28
Standard deviations in parentheses are calculated from the estimated variance-covariance matrix
using the delta method.

N = 200, T = 10, estimated by gllamm, 645 repetitions.
The t-test is for equality of the average estimated parameter and the true value (two-sided test).

12



5 Feedback effects

Table 4 lists the results for xttobit (10000 repetitions). As expected, xttobit no

longer consistently estimates most parameters. For all but one parameter (that of x2),

the bias is now at least 30 per cent larger than it was before, with the parameter of x1

as well as σε and the random effect being the worst affected. The standard deviations

of all estimated parameters are up by at least 17 per cent, and xttobit underestimates

these standard deviations by up to 33 per cent.

gllamm however (see table 5) estimates the main parameters of the model with very

little bias. We can see some bias (of less than 1.3 per cent) on the indicator variables,

which may be due to the small number of repetitions. The estimated standard errors

are very close to the actual standard deviations.

The variances and covariances of the random effects7 are estimated reasonably well.

The biases that we see are presumably due to a twofold small sample effect: we have

only 200 realisations of the random effects per repetition, and we also only have a

relatively small number of repetitions. Especially the element [3, 3] of the Cholesky

decomposition does not seem to be very well estimated by gllamm, and this leads to

biases in the variance and covariances of ut. However, we chose a very small value for

the variance of ut (0.16), and gllamm only missed out by 0.009 on average. We would

expect this bias to disappear when increasing the number of cross-sectional units; such

an experiment is outside the scope of the current study.

We are now reasonably confident that gllamm consistently estimates the Tobit model

with random intercept and random slopes, given a sufficient number of cross-sectional

units.

5 Feedback effects

We now introduce feedback into the model. Since the other group members’ behaviour

plays an important part in contribution theory and evidence, we want to use this

variable as a predictor. The average contribution of the other group members in the

previous round violates the strict exogeneity assumption, as explained in the introduc-

tion.

7In gllamm, the variances and covariances of the random effects are not estimated directly; instead,
the software estimates the elements of the Cholesky decomposition of the variancecovariance ma-
trix. The last six rows of table 5 therefore depict the values derived from the estimated quantities.
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5 Feedback effects

We stipulate the following model:

y∗i,t = β0 + β1yt−1,p−i + β2x2i,t + β3x3i,t + βd10d(t = 10)

+ βd9d(t = 9) + βtt+ u0i + εi,t

yi,t =


0 if y∗i,t < 0,

y∗i,t if 0 ≤ y∗i,t ≤ 20,

20 if y∗i,t > 20

(10)

β1 is now the coefficient of the feedback variable. The feedback is blurred by averaging

and censoring, and we hope that, if this is the only transmitter of feedback, the esti-

mator will be relatively robust towards it. We apply censoring to the feedback variable

since y∗t−1,p−i is unobservable; subjects only observed yt−1,p−i, and the latent variable

cannot have influenced the decision making process.

For the practical implementation, we draw the initial (i. e. time period 1) values of y

from x1 in (6), alongside the other variables. We assign all units to groups of four. We

then compute y1,p−i for each unit, which we censor according to our censoring rule at

zero and 20. This allows us to compute yi,2 according to (10). This process is then

repeated for all time periods.

Groups remain constant in our design (i. e. partner matching), since we believe that

the feedback effects will be strongest in this setting. Changing the groups randomly

would therefore not constitute a good test of robustness of the estimator.

The observations are no longer independent between cross-sectional units; strictly

speaking, we are applying a quasi-likelihood approach in the following sections.

5.1 Without random effects: Experiment 3

In a first step, we want to confirm that a pooled Tobit model can be consistently

estimated in the presence of feedback effects, but without any random effects. The

specification in (10) is dynamically complete (i.e. all relevant lags appear in the model);

thus, inference is the same as in the standard Tobit model (Wooldridge, 2002, p.539).

The results of 10000 repetitions are listed in table 6. The coefficients and standard

errors being estimated very accurately. If there is a small sample bias, it is negligible.

14



5 Feedback effects

Table 6: Results for experiment 3: tobit

true average bias standard average es- p-value p-value nor-
Parameter value estimate in % deviation timated s.e. t-test mality test

β1 0.4 0.40 0.19 0.03 0.03 0.01 0.48
β2 -3 −3.00 0.03 0.07 0.07 0.22 0.00
β3 -2.5 −2.50 0.07 0.14 0.14 0.21 0.02
βt -0.7 −0.70 0.47 0.12 0.12 0.01 0.04
βd10 -7 −7.01 0.09 0.90 0.90 0.48 0.04
βd9 -3 −3.00 0.04 0.78 0.78 0.89 0.18
β0 22 22.03 0.13 0.83 0.82 0.00 0.00
σε 6 5.98 0.36 0.17 0.17 0.00 0.03
N = 200, T = 9, estimated by tobit, 10000 repetitions.
The t-test is for equality of the average estimated parameter and the true value (two-sided test).

5.2 Random intercept only: Experiment 4

We now add a random intercept u0 to the model, and estimate using xttobit and

gllamm. The results are displayed in tables 7 and 8.

Table 7: Results for experiment 4: xttobit

true average bias standard average es- p-value p-value nor-
Parameter value estimate in % deviation timated s.e. t-test mality test

β1 0.4 0.40 0.39 0.03 0.03 0.00 0.48
β2 -3 −3.00 0.06 0.08 0.08 0.03 0.00
β3 -2.5 −2.50 0.06 0.15 0.15 0.35 0.08
βt -0.7 −0.70 0.18 0.13 0.12 0.32 0.02
βd10 -7 −7.01 0.09 0.94 0.94 0.51 0.16
βd9 -3 −3.00 0.11 0.81 0.81 0.70 0.06
β0 22 21.99 0.05 0.98 0.98 0.25 0.24
σε 6 5.98 0.34 0.19 0.19 0.00 0.00
σu0 6 5.97 0.47 0.40 0.39 0.00 0.00
N = 200, T = 9, estimated by xttobit, 10000 repetitions.
The t-test is for equality of the average estimated parameter and the true value (two-sided test).

For both estimators, the biases are well below one per cent, and the average estimated

standard errors are very close to the actual standard deviations in the simulations.

In fact, the t-test of β̂ = βtrue cannot reject the null hypothesis for the majority of

parameters. Standard deviations have gone up by 19 per cent on average for both

estimators, compared to the situation without feedback effects; the likely cause is that

the effective sample size has been reduced due to intra-group correlation, while the
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5 Feedback effects

Table 8: Results for experiment 4: gllamm

true average bias standard average es- p-value p-value nor-
Parameter value estimate in % deviation timated s.e. t-test mality test

β1 0.4 0.40 0.39 0.03 0.03 0.00 0.38
β2 -3 −3.00 0.07 0.08 0.08 0.01 0.00
β3 -2.5 −2.50 0.08 0.15 0.15 0.18 0.04
βt -0.7 −0.70 0.36 0.13 0.12 0.04 0.62
βd10 -7 −7.02 0.34 0.94 0.94 0.01 0.01
βd9 -3 −3.01 0.45 0.81 0.81 0.10 0.09
β0 22 21.98 0.10 0.98 0.98 0.02 0.85
log(σε) 1.79 1.79 0.22 0.03 0.03 0.00 0.57
σu0 6 5.98 0.42 0.39 0.39 0.00 0.00
N = 200, T = 9, estimated by gllamm, 10000 repetitions.
The t-test is for equality of the average estimated parameter and the true value (two-sided test).

number of observations stays the same. Overall, the estimators prove fairly robust to

the type of feedback we have introduced in this section. Although strict exogeneity is

violated by construction, we have so far only implemented a very mild, and probably

unrealistic, form of feedback: the initial values of yi in time period 1 are drawn from

the same distribution as x1 in (7), and are not correlated with the individual effect.

We are going to relax this assumption later on.

5.3 Random intercept and random slopes: Experiment 5

Next we introduce random slopes for x1 and t into the model, as we have done before

in section 4.2. Again, we expect xttobit to be inconsistent.

As expected, xttobit (see table 9) produces biased estimates of many coefficients. It

also substantially underestimates the standard error of the coefficient of the feedback

variable x1 by 26 per cent. The t-test is now being rejected on a significance level

of five per cent for seven coefficients. Comparing these results to the results without

feedback in table 4, we can see that the bias has increased for some coefficients and

decreased for others. Most notably, there is now a bias of more than three per cent on

the parameter βt.

gllamm, on the other hand, estimates coefficients and standard errors very well. For all

coefficients of the main model, except the standard deviation of the residual, the t-test

cannot reject the null hypothesis. The normality test fares equally well. The standard

errors are out by at most 6.6 per cent. Overall, the introduction of feedback seems to
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5 Feedback effects

Table 9: Results for experiment 5: xttobit

true average bias standard average es- p-value p-value nor-
Parameter value estimate in % deviation timated s.e. t-test mality test

β1 0.4 0.42 3.86 0.05 0.04 0.00 0.18
β2 -3 −3.00 0.13 0.09 0.09 0.00 0.00
β3 -2.5 −2.50 0.09 0.17 0.17 0.19 0.00
βt -0.7 −0.67 3.73 0.14 0.14 0.00 0.23
βd10 -7 −6.99 0.19 1.06 1.08 0.21 0.07
βd9 -3 −3.05 1.70 0.92 0.94 0.00 0.15
β0 22 21.74 1.20 1.08 1.12 0.00 0.47
σε 6 7.14 19.00 0.26 0.23 0.00 0.00
σu0 6 6.73 12.10 0.47 0.45 0.00 0.00
Three random effects. N = 200, T = 9, estimated by xttobit, 10000 repetitions.
The t-test is for equality of the average estimated parameter and the true value (two-sided test).

Table 10: Results for experiment 5: gllamm

true average bias standard average es- p-value p-value nor-
Parameter value estimate in % deviation timated s.e. t-test mality test

β1 0.4 0.40 0.04 0.05 0.05 0.94 0.83
β2 -3 −3.00 0.05 0.08 0.08 0.59 0.14
β3 -2.5 −2.50 0.10 0.16 0.16 0.69 0.46
βt -0.7 −0.70 0.41 0.14 0.14 0.61 0.17
βd10 -7 −7.01 0.07 1.05 1.00 0.91 0.95
βd9 -3 −3.04 1.47 0.90 0.86 0.20 0.03
β0 22 22.02 0.08 1.05 1.03 0.66 0.60
log(σε) 1.79 1.78 0.42 0.04 0.04 0.00 0.54
Cholesky(1,1) 6 6.09 1.57 1.05 1.08 0.02 0.26
Cholesky(2,2) 0.484 0.47 2.65 0.04 0.04 0.00 0.07
Cholesky(3,3) 0.378 0.26 30.60 0.24 0.46 0.00
Cholesky(2,1) -0.125 −0.13 1.59 0.10 0.10 0.60 0.38
Cholesky(3,1) 0.08 0.06 29.40 0.18 0.19 0.00 0.00
Cholesky(3,2) -0.103 −0.10 1.16 0.15 0.14 0.83 0.46
Var(u0) 36 38.24 6.21 12.93 (13.20) 0.00 0.00
Var(u1) 0.25 0.25 0.12 0.05 (0.05) 0.88 0.01
Cov(u0,u1) -0.75 −0.81 7.96 0.65 (0.65) 0.02 0.00
Var(ut) 0.16 0.19 20.20 0.14 (0.15) 0.00 0.00
Cov(u0,ut) 0.48 0.19 59.80 1.13 (1.11) 0.00 0.00
Cov(u1,ut) -0.06 −0.05 11.90 0.07 (0.07) 0.01 0.01
Standard deviations in parentheses are calculated from the estimated variance-covariance matrix
using the delta method.

N = 200, T = 9, estimated by gllamm, 662 repetitions.
The t-test is for equality of the average estimated parameter and the true value (two-sided test).
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6 Correlated feedback

have had a very small effect on the consistency of the estimates. The standard errors

are higher under feedback, due to the reduced effective sample size.

The estimates of the random effects variancecovariance matrix suffer from similar prob-

lems as in section 4.2, and again we suspect small sample size and few repetitions as

the underlying reasons for the biases. These biases appear to have increased with the

introduction of feedback.

6 Correlated feedback

In the previous section, the initial values yi,1 for each unit i were simply drawn from

a normal distribution according to x1 in (6). This implies that the initial values are

uncorrelated with the individual effects. The assumption of zero correlation is very

strict, and probably unrealistic. We would expect an individual with a high u0 to have

a higher initial value of y than another individual with a low value of u0. Introducing

correlation between yi,1 and u0i is likely to amplify the violation of the strict exo-

geneity assumption underlying the random effects estimator. To implement correlated

feedback, we modify the way the initial values are constructed: we again draw random

values according to x1 in (6), but then we add u0 − 9 to them. The term −9 is

included in order to bring the average values of the new feedback variable in line with

the old feedback variable.8 Figure 1 shows the simulated average feedback variable over

time for both the uncorrelated and the correlated case (10000 repetitions each). The

two patterns are very similar to each other. They are also very similar to the actual

trend of average contributions observed in our own data. By adding the random effect

u0 to the initial values, we induce a correlation between yi,1 and u0i of approximately

60 per cent.

6.1 Random intercept only: Experiment 6

We now study the properties of the two estimators under correlated feedback. Of special

interest is the bias of the parameter β1 (the coefficient of the feedback variable). Under

uncorrelated feedback (experiment 4), the bias was 0.38 per cent for both gllamm and

8To be able to observe the pure effect of adding correlation to the feedback, we must ensure that all
other aspects of the environment remain constant between experiments. This applies not only to
the distribution of the data but also to the censoring rate and the range and trend of the resulting
feedback.
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6 Correlated feedback
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Figure 1: Comparison of simulated feedback effects over time

xttobit; the standard deviation of the estimates was ∼ 0.034. Results for correlated

feedback are listed in table 11 and 12.

Table 11: Results for experiment 6: xttobit

true average bias standard average es- p-value p-value nor-
Parameter value estimate in % deviation timated s.e. t-test mality test

β1 0.4 0.40 1.03 0.04 0.04 0.00 0.49
β2 -3 −3.00 0.07 0.08 0.08 0.01 0.00
β3 -2.5 −2.50 0.15 0.15 0.15 0.01 0.02
βt -0.7 −0.70 0.40 0.11 0.11 0.01 0.03
βd10 -7 −7.03 0.43 0.93 0.93 0.00 0.34
βd9 -3 −3.02 0.50 0.81 0.80 0.07 0.78
β0 22 21.97 0.16 0.88 0.88 0.00 0.00
σε 6 5.98 0.33 0.19 0.19 0.00 0.00
σu0 6 5.98 0.37 0.39 0.39 0.00 0.00
N = 200, T = 9, estimated by xttobit, 10000 repetitions.
The t-test is for equality of the average estimated parameter and the true value (two-sided test).

The bias of β1 has more than doubled to ∼ 1.05percent. The standard deviation

remains almost unchanged at 0.036. xttobit and gllamm produce very similar results.

The estimates of σu0 are not badly affected by the introduction of correlation to the

initial conditions. Generally, standard deviations have not increased significantly, and

they are on average well estimated by both estimators.
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6 Correlated feedback

Table 12: Results for experiment 6: gllamm

true average bias standard average es- p-value p-value nor-
Parameter value estimate in % deviation timated s.e. t-test mality test

β1 0.4 0.40 1.05 0.04 0.04 0.00 0.10
β2 -3 −3.00 0.08 0.08 0.08 0.00 0.00
β3 -2.5 −2.50 0.07 0.15 0.15 0.23 0.05
βt -0.7 −0.70 0.58 0.11 0.11 0.00 0.07
βd10 -7 −7.03 0.48 0.92 0.93 0.00 0.40
βd9 -3 −3.03 0.86 0.81 0.80 0.00 0.67
β0 22 21.96 0.17 0.89 0.88 0.00 0.00
log(σε) 1.79 1.79 0.23 0.03 0.03 0.00 0.91
σu0 6 5.97 0.50 0.39 0.39 0.00 0.00
N = 200, T = 9, estimated by gllamm, 10000 repetitions.
The t-test is for equality of the average estimated parameter and the true value (two-sided test).

So far, the worst news in terms of consistency is the bias of ca. 1 per cent on the

coefficient of the feedback variable. In the next section, we will examine if this changes

with the introduction of random slopes.

6.2 Random intercept and random slopes: Experiment 7

We introduce random slopes into the model, in the same way as we have done in pre-

vious sections. Since all three random effects are correlated with each other according

to (6), we indirectly induce correlation not only between the initial conditions and u0

but also between the initial conditions and u1 and ut. For the reason that this model

is the most complicated (and possibly demanding in terms of estimation), we have col-

lected slightly more observations for gllamm for this model (962 observations). Results

for xttobit are listed in table 13, and those for gllamm in table 14.

Compared to experiment 5, the biases for xttobit have largely remained the same,

with only the bias on the time trend increasing by 40 per cent to 5.14 per cent. For

gllamm, biases on the parameters of the main model are all below one per cent. For

the elements of the Cholesky decomposition, average estimates are even a little closer

to the true values than they were in experiment 5. Worst affected is the individual

effect u0, which does not come as a surprise, given our implementation of correlated

feedback.

Overall, the results are encouraging. From a theoretical viewpoint, the estimator im-

plemented in gllamm is inconsistent for our model; however, even under correlated feed-
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6 Correlated feedback

Table 13: Results for experiment 7: xttobit

true average bias standard average es- p-value p-value nor-
Parameter value estimate in % deviation timated s.e. t-test mality test

β1 0.4 0.42 3.90 0.06 0.04 0.00 0.42
β2 -3 −3.00 0.04 0.09 0.08 0.18 0.00
β3 -2.5 −2.50 0.08 0.17 0.17 0.24 0.04
βt -0.7 −0.66 5.14 0.13 0.13 0.00 0.27
βd10 -7 −6.91 1.35 1.03 1.04 0.00 0.05
βd9 -3 −3.00 0.12 0.89 0.90 0.69 0.50
β0 22 21.69 1.40 0.96 0.98 0.00 0.85
σε 6 6.83 13.80 0.24 0.22 0.00 0.00
σu0 6 6.65 10.80 0.46 0.44 0.00 0.00
Three random effects. N = 200, T = 9, estimated by xttobit, 10000 repetitions.
The t-test is for equality of the average estimated parameter and the true value (two-sided test).

Table 14: Results for experiment 7: gllamm

true average bias standard average es- p-value p-value nor-
Parameter value estimate in % deviation timated s.e. t-test mality test

β1 0.4 0.40 0.79 0.06 0.05 0.08 0.30
β2 -3 −3.00 0.09 0.08 0.08 0.29 0.04
β3 -2.5 −2.49 0.24 0.15 0.16 0.23 0.84
βt -0.7 −0.70 0.35 0.13 0.12 0.57 0.46
βd10 -7 −7.00 0.05 1.02 0.99 0.92 0.98
βd9 -3 −3.00 0.12 0.85 0.85 0.90 0.35
β0 22 21.97 0.12 0.94 0.93 0.39 0.19
log(σε) 1.79 1.79 0.40 0.04 0.04 0.00 0.73
Cholesky(1,1) 6 6.07 1.16 0.91 0.93 0.02 0.15
Cholesky(2,2) 0.484 0.47 2.80 0.05 0.05 0.00 0.16
Cholesky(3,3) 0.378 0.28 26.60 0.23 0.38 0.00
Cholesky(2,1) -0.125 −0.12 2.69 0.10 0.09 0.28 0.05
Cholesky(3,1) 0.08 0.06 24.50 0.16 0.17 0.00 0.01
Cholesky(3,2) -0.103 −0.11 1.63 0.14 0.14 0.72 0.01
Var(u0) 36 37.66 4.60 10.96 (11.38) 0.00 0.00
Var(u1) 0.25 0.25 0.91 0.06 (0.06) 0.20 0.00
Cov(u0,u1) -0.75 −0.77 2.26 0.62 (0.62) 0.40 0.02
Var(ut) 0.16 0.19 18.30 0.13 (0.13) 0.00 0.00
Cov(u0,ut) 0.48 0.26 46.40 0.97 (0.97) 0.00 0.00
Cov(u1,ut) -0.06 −0.06 7.47 0.07 (0.07) 0.03 0.04
Standard deviations in parentheses are calculated from the estimated variance-covariance matrix
using the delta method.

N = 200, T = 9, estimated by gllamm, 962 repetitions.
The t-test is for equality of the average estimated parameter and the true value (two-sided test).
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7 Heterogeneity bias

back and with a sample of just 200 cross-sectional units, biases on the main parameters

are below one per cent. Even the standard errors are estimated well by gllamm (only

the conventional maximum likelihood variance estimator was used in the experiments,

without adjustment for clustering).

7 Heterogeneity bias

In this section we address the question of how large the endogeneity bias is in our

model relative to the size of the heterogeneity bias. We encounter heterogeneity bias

when the true model features individual heterogeneity but we estimate a simpler model

without accounting for heterogeneity. In nonlinear models, the population-averaged

approach (i. e. pooled estimation) generally leads to inconsistent estimates (Cameron

and Trivedi, 2009, p.603). We have already seen this bias in experiments 2, 5, and 7,

where we reported (misspecified) xttobit estimates for a model with random slopes.

In what follows, we take a closer look at the magnitude of the heterogeneity bias and its

relation with the endogeneity bias in our model.9 Figure 2 shows the biases in per cent

for each of the main parameters under the various feedback conditions. The black bars

represent the biases when estimating our model, which has three individual random

effects, using a simple tobit estimation, thus ignoring all heterogeneity. The grey bars

represent the estimates from a random intercept tobit model (using xttobit), and the

white bars represent the estimates from gllamm where all three random effects have

been specified correctly.10

The gllamm estimates do not suffer from heterogeneity bias in any of the three feedback

conditions. The xttobit estimates and tobit estimates do suffer from this bias. The

heterogeneity bias ought to be strongest in the tobit estimates, and this is confirmed

by figure 2.

The endogeneity bias occurs whenever we have individual heterogeneity and feedback.

The top left panel in figure 2 therefore depicts a situation where no endogeneity bias

is present; the data generating process is described in equation (9). The bias on the

coefficient β1 gives us an estimate of the pure heterogeneity bias in our model: 7 per

9In a different context, Wilcox (2006) studies the heterogeneity bias in learning models. He finds
that the bias is very large, but can be greatly reduced by applying random coefficients estimators
even if these are misspecified.

10Note that the estimates for xttobit and gllamm (the grey and white bars) have been discussed in
detail in the previous sections.
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7 Heterogeneity bias
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Figure 2: Heterogeneity and endogeneity bias

cent for the simple tobit model, and 6 per cent for the random intercept model. We

also have an estimate of the pure endogeneity bias in figure 2: the white bars in the

bottom left and right hand side panels. They depict a situation where endogeneity is

present, but individual heterogeneity has been modelled accurately. The endogeneity

bias on β1 is 0.8 per cent.

When adding endogeneity to incorrectly modelled heterogeneity, it appears that the two

types of biases reinforce each other, at least for the case of the simple tobit estimates.

In the right hand side panel, we have the situation of endogeneity through feedback, but

without correlation of initial values and individual effects (see equation (10)). Biases on

β1 and βt are substantial when estimating by simple tobit. Upon adding correlation to

the feedback process (bottom left panel in the graph), the bias on β1 tops 15 per cent,

showing a very poor performance of the simple tobit model under heterogeneity and

endogeneity. The random intercept model performs better, but still produces biases

up to 5 per cent; more than six times as much as the pure endogeneity bias that

we encounter with the gllamm estimates. The direction of the biases is such that we
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8 The effect of feedback censoring on the bias

overestimate the feedback effect β1 and underestimate the (negative) time effect βt.

This leads to the conclusion that using a simple tobit model where individual hetero-

geneity is present results in significant biases in the parameter estimates, and potential

endogeneity only makes things worse. If such a model was estimated in the presence

of heterogeneity and endogeneity, the researcher would find a feedback effect which is

higher than the true average feedback effect, and a time effect which is lower than the

true average time effect, thus shifting the interpretation in favour of conditional coop-

eration and away from strategic contributions.11 The gllamm estimates, on the other

hand, perform very well, with a low endogeneity bias of ∼ 0.8 per cent. The simple

tobit model is only appropriate in a situation without any individual heterogeneity; in

this case it is robust to feedback effects, as we demonstrated in table 6.

While the small endogeneity bias is good news for our proposed model, it is unclear

whether our results will still hold under different censoring rates. We suspect that the

censoring helps to reduce the correlation between unobserved effects and the feedback

variable in the ‘Correlated Feedback’ condition. While it is infeasible to repeat all

experiments with different rates of censoring, we attempt to shed light on the issue

in the next section where we investigate the effect of the censoring of the feedback

variable.

8 The effect of feedback censoring on the bias

In our experiments with feedback we applied censoring to the feedback variable, since

y∗t−1,p−i is unobservable. This procedure is likely to reduce the correlation between

the regressor and the individual effect u0i (the correlation will be zero in the censored

domain). Given our relatively high censoring rate of 60 per cent, this dampening

effect might be substantial. In this section, we repeat experiments 4 and 6, this time

with uncensored feedback. While uncensored feedback is an unrealistic data generating

process in our case, it will help understand how much the censoring affects the feedback

bias. If removing the censoring on the feedback substantially increases the bias, the

results provide evidence that with a lower censoring rate the bias might be worse.

11We mention conditional cooperation and strategic contributions merely as examples of how one
might interpret the two coefficients in the context of a public good. We do not deal with the issue
of conditional cooperation, and how to measure it, in this work; our research question is purely
related to the statistical performance of an estimator.
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8 The effect of feedback censoring on the bias

All parameters of the model remain the same. Estimation is done with the xttobit

routine. The only change to the data generating process is that yt−1,p−i is replaced by

y∗t−1,p−i:

y∗i,t = β0 + β1y∗t−1,p−i + β2x2i,t + β3x3i,t + βd10d(t = 10)

+ βd9d(t = 9) + βtt+ u0i + εi,t

yi,t =


0 if y∗i,t < 0,

y∗i,t if 0 ≤ y∗i,t ≤ 20,

20 if y∗i,t > 20

(11)

We restrict our analysis to the case of a single random intercept u0, for reasons of

computational costs.
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Figure 3: Effect of removing the censoring from the feedback variable

Figure 3 depicts the effect of removing the censoring of the feedback variable on the

bias of selected coefficients. Generally, biases increase when removing the censoring; the

strongest effects have been highlighted with arrows in the graph. For β1, for example,

the bias more than doubles in the case with uncorrelated feedback. Interestingly, the

time trend is now estimated with a much larger bias as well. On the other hand, the

bias on the coefficient of x2 (which is strictly exogenous in our model) is hardly affected

at all. The exercise confirms our suspicion that the size of the feedback bias in the tobit
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9 Lagged dependent variable

model is related to censoring. We would expect a similar effect from reducing the overall

censoring rate; however, to confirm this, more simulations are required. This is left to

future research. It is worth pointing out that even with uncensored feedback, biases

are still much lower than the heterogeneity biases we found in the previous section.

Full results of the experiments in this section are reported in tables 17 and 18 in the

appendix.

9 Lagged dependent variable

Building on our results so far, we attempt to understand how the correlation between

observations within a group affects the estimation. Our feedback mechanism (1) has

two effects: on the one hand, it creates a situation similar to a lagged dependent

variable, and on the other hand it gives rise to correlations between observations in a

group. To investigate, we create experiments 8 and 9, where we remove the feedback

and add a lagged dependent variable. Observations within a group will be independent

in this setup.

Panel tobit models with a lagged dependent variable have been studied in the literature;

see for example Arellano, Bover et al. (1997) and Honoré (1993). As explained in the

introduction, OLS and the random effects estimator will be biased. Our aim is to study

the magnitude of the random effects estimator bias in a situation where one explanatory

variable is predetermined, but observations are independent between cross-sectional

units. We can then compare the findings to our results from experiments 4/4a and

6/6a. For the same reasons as in the previous section, we restrict our analysis to the

case of a single random intercept.

9.1 Uncensored lag: Experiment 8

In the spirit of the previous section, we conduct our lagged dependent variable exper-

iment both with and without censoring of the lag. We expect the bias to be worse in
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9 Lagged dependent variable

the uncensored case. The data generating process for experiment 8 is as follows:

y∗i,t = β0 + β1y
∗
i,t−1 + β2x2i,t + β3x3i,t + βd10d(t = 10)

+ βd9d(t = 9) + βtt+ u0i + εi,t

yi,t =


0 if y∗i,t < 0,

y∗i,t if 0 ≤ y∗i,t ≤ 20,

20 if y∗i,t > 20

(12)

All parameters stay exactly the same as in the previous sections. The latent, unob-

servable y∗ appears in lagged form as regressor. From table 15 we can see that biases

Table 15: Results for experiment 8: xttobit

true average bias standard average es- p-value p-value nor-
Parameter value estimate in % deviation timated s.e. t-test mality test

β1 0.4 0.42 3.78 0.02 0.02 0.00 0.00
β2 -3 −3.01 0.37 0.08 0.08 0.00 0.00
β3 -2.5 −2.51 0.33 0.16 0.16 0.00 0.10
βt -0.7 −0.65 7.14 0.12 0.12 0.00 0.00
βd10 -7 −7.10 1.43 1.02 1.02 0.00 0.40
βd9 -3 −3.10 3.23 0.88 0.87 0.00 0.22
β0 22 21.76 1.09 0.86 0.86 0.00 0.01
σε 6 6.01 0.15 0.20 0.20 0.00 0.00
σu0 6 5.80 3.37 0.42 0.42 0.00 0.24
Uncensored lagged dependent variable. N = 200, T = 9, estimated by xttobit, 10000 repetitions.
The t-test is for equality of the average estimated parameter and the true value (two-sided test).

go up significantly for most variables. Especially the coefficient on the lagged depen-

dent variable, β1, and the linear time trend are affected, the latter having the largest

bias of 7.14 per cent. It becomes clear why different estimation strategies need to be

considered for lagged dependent variables. y∗i,t−1 is unobservable, though, and it will

be interesting to see how the biases react to censoring of the lagged variable. This is

being done in the next experiment.

27



9 Lagged dependent variable

9.2 Censored lag: Experiment 9

We now repeat experiment 8 with the modification of censoring of the lag. The new

data generating process is

y∗i,t = β0 + β1yi,t−1 + β2x2i,t + β3x3i,t + βd10d(t = 10)

+ βd9d(t = 9) + βtt+ u0i + εi,t

yi,t =


0 if y∗i,t < 0,

y∗i,t if 0 ≤ y∗i,t ≤ 20,

20 if y∗i,t > 20

(13)

with all the parameters remaining at their previous values. Instead of the unobservable

y∗i,t−1, we include yi,t−1 which can be observed. Comparing table 16 with table 15, we

Table 16: Results for experiment 9: xttobit

true average bias standard average es- p-value p-value nor-
Parameter value estimate in % deviation timated s.e. t-test mality test

β1 0.4 0.40 0.14 0.03 0.03 0.05 0.84
β2 -3 −3.00 0.08 0.08 0.08 0.00 0.00
β3 -2.5 −2.50 0.05 0.15 0.15 0.40 0.01
βt -0.7 −0.70 0.36 0.12 0.12 0.03 0.05
βd10 -7 −7.01 0.07 0.92 0.92 0.58 0.47
βd9 -3 −3.01 0.41 0.81 0.80 0.13 0.47
β0 22 22.03 0.14 0.90 0.89 0.00 0.18
σε 6 5.98 0.30 0.19 0.19 0.00 0.01
σu0 6 5.98 0.31 0.41 0.40 0.00 0.01
Censored lagged dependent variable. N = 200, T = 9, estimated by xttobit, 10000 repetitions.
The t-test is for equality of the average estimated parameter and the true value (two-sided test).

can see that the biases are on average dramatically smaller. Biases are now well below

1 per cent, and for four parameters, the null hypothesis of the t-test cannot be rejected

at 5 per cent level. This confirms the dampening effect of censoring on the endogeneity

bias that we already discovered for the feedback case.

How big is the bias in the case of experiment 9 (endogeneity bias, but independent

observations between cross-sectional units) compared to experiment 6 (endogeneity bias

and correlated observations within a group; see table 11)? In both experiments, the

variable causing the endogeneity bias is censored. Biases in the correlated feedback case
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10 Larger groups, bigger problem?

are up to 7 times as big as those in the lagged dependent variable case. This provides

evidence that a large part of the problem is caused by the intragroup correlation.

However, in the experiments without censoring of the feedback or lagged dependent

variable, the converse is true. The biases under correlated feedback are significantly

lower (by as much as factor 11) than those under lagged dependent variable. This

shows that the two effects - censoring and intragroup correlation - interact with each

other. Intragroup correlation appears to make the problem worse, while censoring of

the dependent variable has a dampening effect on bias.

10 Larger groups, bigger problem?

We have decided on a group size of four in this study, reflecting the situation of our

own data. Given our results so far, it is likely that group size has a significant effect on

bias in the random effects tobit model with feedback.12 The direction of the effect is

a priori unclear: if, for a given censoring rate, the bias stems mainly from the induced

correlation between observations within a group, then it should increase with group size.

If the bias originates mainly from the correlation between a regressor and the (own)

individual effect, we would not expect it to move around a lot; since the feedback effect

is formulated as an average, a larger groups means that the feedback concerning u0 is

nominally smaller, but it comes from a larger number of individuals. In the previous

section, we found some evidence that intragroup correlation may be a big part of the

problem; if this is the case, we should find now that biases increase with group size.

But we also found evidence that the dampening effect of censoring takes over.

We repeated experiment 6 (correlated feedback) for group sizes two to ten,13 and esti-

mated with xttobit. All parameters of the model remain the same, except the number

of cross-sectional units which has to be slightly adjusted to allow for different group

sizes. Figures 4 summarises the results; detailed results are listed in the appendix.

Figure 4 shows the average bias in per cent versus group size for four coefficients in

the model: β1 (the coefficient of the feedback variable), β2 (the coefficient of a strictly

12This is a very different aspect to the effect of group size on contributions, which has been examined
in several economic experiments (see for example Isaac and Walker (1988) and Isaac, Walker et al.
(1994)). Here we are concerned with the statistical properties of an estimator.

13Especially for the larger group sizes, a higher number of repetitions was needed in order to achieve
stable results. The experiments in this section were conducted with in between 19400 and 30000
repetitions.
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Figure 4: Average bias of β1, β2, βt and σu0 for various group sizes

exogenous regressor), βt (the coefficient of the linear time trend), and the standard

deviation of the random effect, σu. The bias of β1 starts out very low for a group size

of two, and increases quickly until it reaches 1.05 per cent for a group size of four (this

is experiment 6). For all group sizes larger than four, the bias does not increase any

more but remains at around one per cent. At the same time, the standard deviation of

the estimates of β1 increases from 0.028 for a group size of two to 0.053 for a group size

of ten (not shown). This is to be expected: variation in x1 is taken away by averaging.

The larger the groups, the less variation there is, and the less precise is the estimate.

Since x2 is exogenous, its coefficient should be affected much less by any endogeneity

problem in x1 than β1. This is confirmed in our experiments, where the bias of this

coefficient remains low for all group sizes. For the standard deviation of the random

effect, σu, and the coefficient of the time trend βt, the bias increases only slightly with

group size.

Overall, we find some support for biases increasing with group size, although the effect

appears to flatten as groups grow larger. Here, we may have identified a ‘turning

point’ where the adverse effect of larger groups on correlation is outweighed by the

dampening of censoring. Reassuringly, the bias on parameters of strictly exogenous

variables appear to be small and unaffected by group size.
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11 Summary and conclusions

11 Summary and conclusions

We study the random effects estimator under a specific feedback setup that is frequently

encountered in economic experiments. We stipulated a simple feedback mechanism

which, in theory, renders the random effects estimator inconsistent by introducing an

endogeneity bias. We proceed to make the mechanism more realistic by introducing

correlation between the individual effect and the initial value of the dependent variable.

11.1 Performance of gllamm

One goal of this study was to evaluate the performance of gllamm when estimating

Tobit models in Stata. Our benchmark case is experiment 1, where we implemented

only a single random effect and no feedback. gllamm produces estimates of both the

coefficients and standard errors that are very similar to xttobit. We conclude that the

estimator implemented in gllamm consistently estimates Tobit models with a random

intercept under regular conditions. In experiment 2, we added random slopes to the

setup. The main coefficients of the model were still estimated well, while some elements

of the Cholesky decomposition of the covariance matrix were biased. We think that

four factors are likely to contribute towards the bias: a) small number of repetitions

(due to computational cost); b) small number of cross-sectional units; c) small values

in the true covariance matrix; d) high censoring rate. The question of whether or not

the bias disappears under different conditions has to be left for future research.

When introducing feedback into the model, gllamm’s performance remained very similar

to xttobit. The problems in estimating the Cholesky decomposition got worse with

the introduction with feedback; this may have to do with the reduction in the effective

sample size due to feedback. However, the main parameters are estimated well by

gllamm. Simply ignoring the random slopes and estimating a random intercept model

leads to significant biases on the main parameters of the model.

11.2 Uncorrelated feedback

Introducing uncorrelated feedback into the Tobit model in the presence of random

effects leads to some bias in the main coefficients. The size of the bias is small (below

0.5 per cent). While researchers always prefer unbiased estimators, our results are

encouraging in the sense that the problem may not be as bad as originally thought.
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11.3 Correlated feedback

In the next setup, we induce a correlation of about 60 per cent between the individual

effect and the initial value yi,1. This leads, as expected, to an increase in bias, most

notably for the coefficient of the feedback variable β1; its bias is now ∼ 1.05 per cent.

Again, in increase in bias is certainly bad news; however, the bias is still very small,

and certainly small compared to the bias resulting from ignoring the random slopes.

11.4 Heterogeneity bias

We find strong evidence for the presence of heterogeneity biases in our model. Especially

pooled tobit estimation of the heterogeneous slopes model results in a large upwards

bias on the feedback effect β1 and a large downwards bias on the (negative) time effect

βt, thus distorting the interpretation of results away from strategic effects.

11.5 The effect of censoring

We examine if the small size of the bias may be due to the high rate of censoring,

which eradicates some of the endogeneity problem. While it is infeasible to repeat

all experiments with different rates of censoring, we repeat two experiments where we

remove the censoring on the feedback variable only. The results of this exercise are

very clear: biases increase dramatically, especially for the feedback variable and the

linear time trend. We conclude that censoring has a dampening effect on the bias by

‘swallowing’ some of the correlation induced through the feedback.

11.6 The effect of intragroup correlation

Another important aspect of the feedback process is intra-group correlation. We at-

tempt to single out the effect of intra-group correlation by conducting two experiments

with lagged dependent variables instead of feedback variables. In this scenario, the

endogeneity problem is still present while the observations across subjects are indepen-

dent. For the censored case, we find that the biases are smaller when the intra-group

correlation is removed, providing evidence for an adverse effect of correlation within

groups on the properties of the estimator. However, for the uncensored case, we find

the opposite result: biases are larger under independence. We conclude that there is
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some interaction between the dampening effect of feedback and the adverse effect of

intra-group correlation, which needs to be examined in detail in further research.

11.7 The effect of group size

Finally, we investigate the effect of group size. The amount of intra-group correlation

increases with group size, while the endogeneity problem due to the correlation between

a regressor and the (own) individual effect remains at the same level. Unsurprisingly,

after what we learned in the previous section, we find a nonlinear effect of group size.

The bias of β1 increases until it reaches 1.05 per cent at a group size of four, and then

remains at around one per cent as group size increases to ten. Our results hint at an

interaction of censoring, intra-group correlation and endogeneity.

11.8 Conclusion

Our results show that there is an endogeneity bias when estimating the random effects

censored regression model under feedback. The size of the bias, however, is very small.

This is encouraging news for those studies that have applied this estimator under

feedback in the past (for example Carpenter, Bowles et al. (2009)). The user-written

software gllamm offers the possibility to estimate multi-level censored regression models

with random intercepts and random slopes; models which have not been employed very

much in the public goods literature. Given our results, we find that such models with

feedback can be estimated approximately consistently in gllamm. Simply ignoring the

random slopes if they are present in the true data-generating process results in very

significant heterogeneity biases. Further studies are needed to examine the effect of the

censoring rate on the endogeneity bias, as well as the effect of having larger groups.
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A Censoring and feedback

Table 17: Results for experiment 4a: xttobit

true average bias standard average es- p-value p-value nor-
Parameter value estimate in % deviation timated s.e. t-test mality test

β1 0.4 0.40 1.06 0.02 0.02 0.00 0.22
β2 -3 −3.00 0.11 0.08 0.08 0.00 0.00
β3 -2.5 −2.50 0.06 0.16 0.15 0.37 0.57
βt -0.7 −0.69 1.84 0.13 0.13 0.00 0.63
βd10 -7 −7.05 0.64 1.00 1.00 0.00 0.06
βd9 -3 −3.03 0.86 0.84 0.84 0.00 0.47
β0 22 21.93 0.32 0.92 0.92 0.00 0.05
σε 6 5.98 0.35 0.19 0.19 0.00 0.01
σu0 6 5.97 0.46 0.40 0.40 0.00 0.00
Uncensored, uncorrelated feedback. N = 200, T = 9, estimated by xttobit, 10000 repetitions.
The t-test is for equality of the average estimated parameter and the true value (two-sided test).

Table 18: Results for experiment 6a: xttobit

true average bias standard average es- p-value p-value nor-
Parameter value estimate in % deviation timated s.e. t-test mality test

β1 0.4 0.41 1.62 0.02 0.02 0.00 0.00
β2 -3 −3.00 0.08 0.08 0.08 0.00 0.00
β3 -2.5 −2.50 0.11 0.16 0.15 0.07 0.00
βt -0.7 −0.69 1.41 0.12 0.12 0.00 0.28
βd10 -7 −7.01 0.12 1.00 0.99 0.40 0.01
βd9 -3 −3.03 0.82 0.85 0.84 0.00 0.10
β0 22 21.94 0.29 0.86 0.86 0.00 0.79
σε 6 5.98 0.36 0.20 0.19 0.00 0.00
σu0 6 5.97 0.52 0.41 0.40 0.00 0.02
Uncensored, correlated feedback. N = 200, T = 9, estimated by xttobit, 10000 repetitions.
The t-test is for equality of the average estimated parameter and the true value (two-sided test).
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B Group size: detailed results

Table 19: Bias and standard deviation for the experiments with varying group size

Bias in %
Group size 2 3 4 5 6 7 8 9 10

Coefficient
β1 0.28 0.85 1.07 1.05 0.99 1.02 1.00 0.96 0.96
β2 0.07 0.11 0.08 0.06 0.05 0.05 0.08 0.06 0.06
β3 0.07 0.14 0.14 0.11 0.07 0.04 0.08 0.07 0.14
βt 0.31 0.03 0.29 0.48 0.39 0.45 0.52 0.62 0.58
βd10 0.09 0.20 0.32 0.29 0.21 0.24 0.24 0.22 0.27
βd9 0.03 0.16 0.32 0.42 0.40 0.16 0.52 0.31 0.53
β0 0.08 0.03 0.12 0.14 0.13 0.15 0.14 0.17 0.15
σε 0.35 0.29 0.33 0.36 0.32 0.33 0.29 0.32 0.35
σu0 0.38 0.31 0.37 0.46 0.44 0.51 0.42 0.51 0.53

Standard deviation
Group size 2 3 4 5 6 7 8 9 10

Coefficient
β1 0.028 0.032 0.036 0.040 0.042 0.046 0.048 0.052 0.055
β2 0.077 0.077 0.077 0.078 0.077 0.078 0.077 0.079 0.078
β3 0.151 0.149 0.150 0.149 0.149 0.148 0.150 0.151 0.151
βt 0.110 0.112 0.113 0.115 0.116 0.119 0.122 0.124 0.126
βd10 0.915 0.926 0.928 0.937 0.933 0.941 0.943 0.950 0.947
βd9 0.797 0.809 0.806 0.804 0.802 0.810 0.807 0.820 0.817
β0 0.844 0.864 0.885 0.905 0.911 0.939 0.956 0.987 0.993
σε 0.187 0.187 0.190 0.188 0.187 0.188 0.188 0.192 0.191
σu0 0.391 0.391 0.395 0.393 0.388 0.392 0.390 0.395 0.393

Parameters
Group size 2 3 4 5 6 7 8 9 10

Parameter
# of repetitions 21280 21664 21843 19406 30045 23230 21565 21111 20866
N 200 201 200 200 204 203 200 198 200
T 9 9 9 9 9 9 9 9 9
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