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Abstract

This paper provides a way of evaluating a player’s contribution to her team and relates her

effort to her salaries. We collect data from UEFA Euro 2008 Tournament and construct the

passing network of each team. Then we determine the key player in the game while ranking all

the other players too. Next, we identify key groups of players to determine which combination

of players played more important role in the match. Using 2010 market values and observ-

able characteristics of the players, we show that players having higher intercentrality measures

regardless of their field position have significantly higher market values.
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1 Introduction

Team like situations dominate many social and economic environments. Firms and organizations are

usually made up of smaller groups or teams. In fact recommendation letters often mention person’s

ability to be a team player. An applicant’s to be a team player is also tested in many interviews.

Work environments like R&D groups, special task forces and even academia to a certain extent

function as teams. Teamwork is an important feature of many games like soccer, basketball and

voleyball. This makes understanding to contribution of individual members to a team very useful

exercise. It can help design better teams and compensation packages. Identify the key players in

teams is also very useful for retention issues. In this paper, we develop a method for identifying key

players and key groups in teams.

There is a substantial literature on identifying the key node in a network. These may be degree

based measures that take into account the number of links that emanate and end at a node. (see for

instance Katz (1953), Freeman (1979), Hubbell (1965), Bonacich (1987) and Sade (1989)). Closeness

measure like those developed by Sabidussi (1966) and Freeman (1979) use some type of topological

distance in the network to identify the key players. Another measure called betweeness measure

(see for instance Freeman (1979)) uses the number of paths going through a node to determine its

importance. Borgatti and Everett (2006) develop a unified framework to measure the importance

of a node. Borgatti (2006) identifies two types of key player problems (KPP). He argues that in

KPP-positive situation key players are those who can optimally diffuse something in the network.

In a KPP negative situation key players are individuals whose removal leads to maximal disruption

in the network.

In a recent paper Ballester et al. (2006) provide microfoundation for the key player problem.

Their model has two vital ingredients: individual actions and interaction between players. In the

Nash equilibrium of the game each player chooses their individual action taking both components

into account. The key player is the one whose removal leads to the greatest overall reduction in

effort. Thus, their approach builds strategic behavior into the network, and combines both negative

and positive aspects of the problem.

In this paper, we develop a Team Game based on the individual actions and interactions between

players. Additionally, each player gains utility when the team achieves its desired outcome. This
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team outcome depends on individual effort and an ability term for each player. We then develop a

new intercentrality measure that takes into account each player’s contribution to their teammates

and the team outcome in fact captures the contributions of other players to each player for achieving

the team’s objective. Another interesting feature is that following Ballester et al. (2006) we define

key player problem from a social planner’s perspective. In context of teams the chairman, team

leader or head coaches can be regarded as the social planners.

This paper has two contributions. The first contribution is extending Ballester et al. (2006)

model and introducing team (or network) outcome component into the analysis to rank players

according to their contributions to their teammates. Nash Equilibrium of the model provides the

optimal amount of individual efforts’ of each player. It implies that if the player has a higher return

for his individual actions or a higher ability parameter then she will have more incentives to perform

individual actions. The second contribution is providing an empirical illustration of the approach

using a team sport: soccer. We observe the passing effort of international soccer players to proxy

the amount of interaction between players in UEFA European Championship 2008 and identify the

key players and key groups in the network. It is important to note that we are not seeking the

best player on the field. Rather, we are looking for the player whose contribution to his team is

maximal. Finally, we show that players who have higher interactions (passings and receivings) have

significantly higher ratings from experts and market values.

Determining a key group instead of a key player is an interesting aspect since more than one player

may have equivalent level of contribution to their teammates. In addition to that, it is important to

identify which combination of players have more importance within the network. This information

is crucial for the team managers who wish to form a team with individuals who provide different

adjacency to their teammates. It is important to note that the members of the of key groups are

not the best working peers but they are the ones whose joint contribution to their team is maximal.

Temurshoev (2008) extends Ballester et al.(2006) paper by introducing the key group dimension.

Temurshoev (2008) searches for the key group, whose members are, in general, different from the

players with highest individual intercentralities. We also apply Temurshoev’s (2008) approach and

determine the key groups of players.

The methods in this paper can be extended to the more general situations where people work in

teams; however, in this paper, we provide an empirical example from international soccer matches.
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Taking this approach has some advantages. First, soccer is a team sport and the payoff of players

in the teams greatly depend on the team outcome. Second, interactions within soccer teams are

observable and passing effort of players is a good metric to identify these interactions. We create a

unique passing data from UEFA European Championship 2008 and identify the key players and key

groups of teams which played in the Quarter Final, Semi-Final and Final stage of the tournament.1

After the introduction, the paper proceeds as follows: Section 2 defines the Team Game and

various centrality measures, identifies the Nash Equilibrium and our team intercentrality measure.

Section 3 motivates the use of soccer data as an empirical application. Section 4 identifies the

empirical methodology. The paper concludes with discussions and possible extensions.

2 Team Game

In this section, we first define the team game. Then we introduce the various centrality measures

and find the Nash Equilibrium of the game. Finally, we provide the relationship between the Nash

equilibrium and team intercentrality measure.

2.1 Model Setup

We begin by introducing the Team Game. We define the individual player’s payoff function using

the notation of Ballester et al. (2006) as far as possible.

Ui(x1, ...., xn) = αixi +
1
2
σiix

2
i +

∑
j 6=i

σijxixj + θZ. (1)

The first two terms form a standard quadratic utility function where xi ≥ 0 is defined as the

individual effort of player i. Here, αi > 0 stands for the coefficient of individual actions and σii < 0,

the coefficient of the second term, defines concavity in own effort i.e., ∂2Ui/∂x
2
i = σii < 0. For

simplicity we assume that these coefficients are identical for all players and we drop the subscript.2

The third term captures the bilateral influences between players with σij being the coefficient of

this term. Note that σij could be positive or negative depending on whether the interaction is a

1Fifty European National Teams played qualifying stages and only 16 of them were qualified for the UEFA Euro
2008. So, it is reasonable to expect that the quality of the players in the national tournaments are similar. Thus,
interaction between players plays a crucial role in determining the outcome of the matches making our results more
important.

2We relax this assumption and consider the cases when αi and σii can be different for every player in Proposition
1 (a)-(b).
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strategic complement or substitute. We let Σ = [σij ] be the matrix of these coefficients. The last

expression is the team outcome term which denotes the desired team goal. For instance, for a sales

team this could be achieving sales. In a game soccer this could be winning the game or scoring

more goals. This term contains a common set of variables for all players since they all share the

same team outcome. For simplicity, let Z =
∑n
i=1 δixi where δi defines each individual’s ability to

help achieve the team’s goal. The parameter θ is a scale factor that could be used to capture the

importance of different events for the team.3

Our team game differs from that of Ballester et al. (2006) model in the last term. This allows us to

consider the n players acting together towards a common objective. While alternative formulations

are possible, we believe our framework has certain advantages. First, it allows for explicit comparison

with Ballester et al. (2006). Second, while all effort by player provides a utility, the effort adjusted by

the ability parameter is important for achieving the team outcome. This can be useful for empirical

illustration since it may not be possible to obtain data on αi and σii. The ability parameter δi on

the other hand could be obtained from available data.

Following Ballester et al. (2006), let σ = min (σij |i 6= j) and σ = max (σij |i 6= j). We assume

that σ < min (σ, 0). Let γ = − min σ, 0 ≥ 0. If efforts are strategic substitutes for some pair of

players, then σ < 0 and γ > 0; otherwise, σ ≥ 0 and γ = 0. Let λ = σ + γ ≥ 0. We assume that

λ > 0. Define gij = (σij +γ)/λ. Note that, the gij ’s are weighted and directed allowing us to obtain

relative complementarity measures. Consequently, the elements gij of the weighted adjacency matrix

lie between 0 and 1.4 The adjacency matrix G = [gij ] is defined as a zero diagonal nonnegative

square matrix. The zero diagonal property assures that no player is connected to themselves (i.e,

there are no direct loops from player i to i.) Then, Σ matrix which captures the cross effects can

be decomposed into the following expression:

Σ = −βI− γU + λG (2)

where −βI shows the concavity of the payoffs in terms of own actions, −γU shows the global inter-

3In principle, one could define θZ to capture the importance of the team’s objective. Here, for simplicity we assume
it to be θ.

4If we do not use a weighted G matrix then G matrix involves only 0s and 1s as its elements. This will imply
that the weight for having more connections with the same player is zero. So, gij = 1 then there is a connection and
if gij = 0 then there is no connection between player i and player j. However, it is very important to identify the
relative interaction between players rather than just considering if there is a connection between player i and j. Thus,
using a weighted G matrix is important to illustrate team environments.
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action effect, and λG shows the complementarity in players’ efforts. Using the above decomposition,

Equation (1) becomes:

Ui(x1, ..., xn) = αxi −
1
2

(β − γ)x2
i − γ

n∑
j=1

xixj + λ

n∑
j=1

gijxixj + θzZ (3)

for all players i = 1, ..., n.

2.2 Centrality Measures

Here, we define the centrality measures needed to identify the key player. Let M be a matrix defined

as follows:

M(g, a) = [I− aG]−1 =
∞∑
k=0

akGk. (4)

The above matrix keeps track of the number of paths that start from player i and end at player j

with a decay factor, a and a given adjacency matrix G. Note that players can also contribute to

their teammates through indirect connections, but these have lower weights.

Following Ballester et al.(2006), we define the Bonacich centrality measure as:

b(g, a) = [I− aG]−1 · 1 (5)

where 1 is a n×1 vector of ones, n is number of players in the team and I is a n×n identity matrix.

The Bonacich centrality measure counts the total number of paths that originates from player i.

Note that bi is the row sum of the M matrix. Equivalently, the Bonacich centrality measure is

bi(g, a) = mii(g, a) +
∑
i6=jmij(g, a). Next, we define a weighted Bonacich centrality measure with

the ability parameter, δi as the weight:

bδ(g, a) = [I− aG]−1 · δ (6)

The Ballester et al. (2006) intercentrality measure (ICM) for an asymmetric G is given by:

c̃i(g, a) = bi(g, a)×
∑n
j=1mji(g, a)
mii(g, a)

(7)

We define another centrality measure which accounts for the weighted receivings of the players

where the weights are given by δi:

ri(g, a) =
n∑
j=1

mij(g, a)× δi (8)
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This (receiving) centrality measure takes into account the paths that end in player i weighted by

the ability parameter of the player.

Note that, in the context of teams, the Σ matrix is unlikely to be symmetric since the number of

paths from player i to player j will be different for at least one pair. Hence, an asymmetric Σ matrix

will lead to an asymmetric G matrix. We now define a new intercentrality measure for determining

the key players in the teams. The team intercentrality measure (TICM) for an asymmetric G matrix

for the Team Game is given by:

ĉi(g, a) = bi(g, a)×
∑n
j=1mji(g, a)
mii(g, a)

+
n∑
j=1

mij(g, a)× δi (9)

Unlike the Bonacich centrality measure, ICM takes into account both the connections that player

i sends to her teammates and the number of connections that player i receives. The primary

difference between ICM and TICM is in the last term which measures player i’s contribution to the

team outcome by her ability parameter.

2.3 Nash Equilibrium of Team Game

In this section, we show that the Team Game has a unique interior Nash equilibrium.

Theorem 2.1. Consider a matrix of cross-effects which can be decomposed into (3). Let σij 6= σji

for at least one j 6= i, β/λ > (ρ(G)) and θ ≤ |α − γx̂∗| . Define λ∗ = λ/β. Then, there exists a

unique, interior Nash Equilibrium of the team game given by:

x∗(Σ) =
αb(g, λ∗) + θbδ(g, a)

β + γb̂(g, λ∗)

where b̂(g, λ∗) =
∑n
i=1 bi(g, λ

∗).

Proof. The condition for a well defined interior Nash equilibrium of the Team Game is that the

[βI− λG]−1 matrix must be invertible. We can rewrite the [βI− λG]−1 matrix as

λ[
β

λ
I−G]−1 (10)

Let (ρ1(G)) be the spectral radius of G matrix.5 Then, β > λ(ρ1(G)) ensures that Equation (9) is

invertible by Theorem III of Debreu and Herstein (1953, pg.601). Once the condition is verified, an

5Spectral radius of G matrix is defined as the inverse of the norm of the highest eigenvalue of G matrix.
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interior Nash equilibrium in pure strategies x∗ ∈ Rn+ satisfies:

∂Ui
∂xi

(x∗) = 0 and x∗i > 0 for all i=1, 2,...,n

Hence, maximizing Ui with respect to xi yields:

∂Ui
∂xi

= αi + σiixi +
∑
j 6=i

σijxj + θδi = 0

Therefore, x∗ solves:

α1 + θIδ = (βI + γU− λG)x∗

Pre-multiplying both sides with [I− λ∗G]−1 and using the definition of bδ(g, λ∗), we obtain:

βx∗ = (α− γx̂∗)[I− λ∗G]−11 + θbδ(g, λ∗)

where x̂∗ =
∑n
i=1 x

∗
i . Using U · x∗ = x̂ · 1 where U is a n × n matrix of ones and x̂ =

∑n
i=1 xi.

Rearranging terms yields:

x∗(Σ) =
αb(g, λ∗) + θbδ(g, λ∗)

β + γb̂(g, λ∗)

where b̂(g, λ∗) =
∑n
i=1 bi(g, λ

∗).

Given that α + θδ > 0 and bi(g, λ∗) + bδ(g, λ∗) ≥ 1 for all i = 1, ..., n, there is only one critical

point and ∂2Ui

∂x2
i

= σii < 0 is always concave. This argument ensures that x∗ is interior. Now, we

establish uniqueness by dealing with the corner solutions.

Let β(Σ), γ(Σ), λ(Σ) and G(Σ) be the elements of the decomposition of Σ. For all matrices

Y, vector y and set S ⊂ 1, 2, ..., n, Ys is a submatrix of Y with s rows and columns and ys is the

subvector of y with rows in s. Then, γ(Σs) ≤ γ(Σ), β(Σs) ≥ β(Σ) and λ(Σs) ≤ λ(Σ). Also,

λ(G) = Σ + γ(U− I)− σiiI− θzZ and the coefficients in λG (s rows and columns) are at least as

high as the the coefficients in λ(Σs)Gs. From Theorem I of Debreu and Herstein (1953, pg.600),

ρ1(λ(Σs)Gs) ≤ ρ1(λ(Σ)G). Therefore, β(Σ) > λ(Σ)ρ1(G) implies that β(Σs) > λ(Σs)ρ1(Gs).

Let y∗ be a non interior Nash equilibrium of the Team Game. Let S ⊂ 1, 2, ..., n such that y∗i = 0

if and only if i ∈ N \ S. Thus, y∗i > 0 for all i ∈ S.

∂Ui
∂xi

= α− βxi − γ
n∑
j 6=i

xj + λ

n∑
i=1

gijxj + θδi

∂Ui
∂xi

(0) = αi + θδi
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and 0 cannot be a Nash Equilibrium. Then,

−Σsy
∗
s = (βIs + γUs − λGs)y∗

s = α+ θδ

βy∗
s + γUsy

∗
s − λGsy

∗
s = α+ θδs

β[Is − λ∗Gs]y∗
s = α+ θδs − γŷ∗s · 1s

where the last step utilizes Usy∗s = ŷ∗s ·1s and λ∗ = λ/β. Pre-multiplying both sides by [Is−λ∗Gs]−1

yields:

βy∗
s = [I− λ∗Gs]−1α+ θ[I− λ∗Gs]−1δs − γŷ∗s [Is − λ∗Gs]−1 · 1s (11)

y∗
s =

(α− γŷ∗s )bs(g, λ∗) + θbsδ(g, λ
∗)

β
(12)

Every player i ∈ N \ S is best responding with y∗i = 0 so that y∗j is the action of the subset S of

players.

∂Ui
∂xi

(y∗i ) = α−
∑
j∈S

σijy
∗
j + θδi

∂Ui
∂xi

(y∗i ) = α− γŷ∗s + λ
∑
j∈S

gijy
∗
j + θδi ≤ 0

for all i ∈ N \ S. Now substitute y∗s instead of y∗j in the above equation:

∂Ui
∂xi

(y∗) = α− γŷ∗s + λ
∑
j∈S

gij(
(α− γŷ∗s )bj(g, λ∗) + θbjδ(g, λ

∗)
β

) ≤ 0

∂Ui
∂xi

(y∗) = (α− γŷ∗s )[1 + λ∗
∑
j∈S

gijbj(g, λ∗)] + θλ∗
∑
j∈S

bjδ(g, λ
∗) ≤ 0

If θ ≤ |α− γŷ∗s | then y∗i ≤ 0 using Equations (10) and (11), which is a contradiction.

The Nash equilibrium of the Team Game has interesting implications. First, it identifies the

optimal effort of individuals in the network based on the given interactions between players. It

explains why some players have low centrality values. For instance, players who have higher α and δ

have greater incentives to perform individual actions. The Nash equilibrium of the game implies that

when the ability parameter of the individual increases, the individuals will have greater incentives

to perform individual actions.

A unique interior Nash equilibrium exists even when players have heterogeneity in returns (αi)

and concavity (σii) in individual actions are proved in Proposition 1 (a) and (b).
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Proposition 1

(a): If αi 6= αj and θ ≤ max |αi − γx̂∗| then Nash equilibrium of the Team Game is:

x∗(Σ) =
bα(g, λ∗) + θbδ(g, λ∗)

β + γb(g, λ∗)

(b): If αi 6= αj , σii 6= σjj for at least one player and θ ≤ max |αi − γx̂∗|, then Nash equilibrium

of the team game is:

x∗(Σ) =
beα(g, λ̃∗) + θb̃δ(g, λ∗)

β̃ + γ̃b̂(g, λ̃∗)
Proof: See Appendix.

2.4 Key Player

We now provide a method to identify the key player in the team from the social planner’s perspective

based on the relationship between TICM and the aggregate Nash equilibrium effort levels.

We denote by G−i (resp. Σ−i) the new adjacency matrix (resp. matrix of cross-effects), obtained

from G (resp. from Σ) by setting all of its ith row and column coefficients to zero. The resulting

network is g−i. The planner’s problem is to reduce x∗(Σ) optimally by picking the appropriate

player from the population. Formally, she solves max {x∗(Σ)−x∗(Σ−i)|i = 1, ..., n}. This is a finite

optimization problem and has at least one solution. Let i∗ be a solution. We call i∗ the key player

in Team Game, and removing i∗ from the initial network g has the highest impact on the aggregate

equilibrium level.

Theorem 2.2. Let β > λρ1(G). The key player of the Team Game i∗ solves max{x∗(Σ) −

x∗(Σ−i)|i = 1, ..., n} and has the highest team intercentrality measure (TICM) in g, that is ĉi∗(g, λ∗) >

ĉi(g, λ∗) for all i = 1, ..., n.

In the proof, since we allow for asymmetric Σ and G matrices, we adapt Lemma 1 from Ballester

et al.(2006) for this case.

Lemma 1: Let M = [I−aG]−1 matrix be well defined and nonnegative. Thenmji(g, a)mik(g, a) =

mii(g, a)[mjk(g, a)−mjk(g−i, a)] for all k 6= i 6= j.

Proof. Aggregate Nash equilibrium in the Team Game depends on the Bonacich centrality and the

Bonacich centrality weighted by the ability parameter of the player. Note that ρ1(G) > ρ1(G−i).

Thus, when M(g, λ∗) is well defined and nonnegative then so is M(g−i, λ∗) for all i = 1, ..., n.
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Let bji(g, λ∗) = bj(g, λ∗)− bj(g−i, λ∗) for all j 6= i. This is the contribution of the player i to the

player j’s Bonacich centrality in g. Recall ri(g, a) =
∑n
j=1mij(g, a) × δi. Summing over all j 6= i

and adding bi(g, λ∗) to both sides and adding the loss of the player’s receivings centrality measure

gives the aggregate effect of player i’s removal from the Team Game.

b(g, λ∗)− b(g−i, λ∗) + riδ(g, λ
∗) = bi(g, λ∗) +

∑
j 6=i

bji(g, λ∗) + riδ(g, λ
∗) ≡ ei(g, λ∗)

where ei is the loss function when player i is removed from the network. Our goal is to find ith

player whose removal will result in the highest ei such that ei∗(g, λ∗) ≥ ei(g, λ∗) for all i = 1, ..., n.

ei(g, λ∗) = bi(g, λ∗) +
∑
j 6=i

[bj(g, λ∗)− bj(g−i, λ∗)] + riδ(g, λ
∗)

= bi(g, λ∗) +
∑
j 6=i

n∑
k=1

[mjk(g, λ∗)−mjk(g−i, λ∗)] + riδ(g, λ
∗)

Using Lemma 1 for the asymmetric G matrix, the above expression becomes:

ei(g, λ∗) = bi(g, λ∗) +
∑
j 6=i

n∑
k=1

mji(g, a)mik(g, a)
mii(g, a)

+ riδ(g, λ
∗)

ei(g, λ∗) = bi(g, a)× (
n∑
j=1

mji(g, a))/mii(g, a) + riδ(g, λ
∗)

3 Soccer: A Team Game and The Role of Passing

Modern soccer is very much a team game. The performance of players depends crucially on each

other’s actions and interaction between players forms a vital component of the game. Soccer coaches,

training books and authorities emphasize the team aspect of the game. As the great Brazilian soccer

player Pele said in a press conference in Singapore in November 2006, “I think the problem with

Brazil was lack of teamwork because everybody used to say Brazil will be in the final.” Pele added

that Brazil had the best individual players against France, but they lost the game because they

could not play as a team.6 On November 29, 2007, Gerard Houllier, the famous technical director of

the French Football Federation, speaking at the 9th UEFA Elite Youth Football Conference summed

this up as “Teamwork is the crux of everything.”7

6See http :// findarticles.com/p/articles/mi kmafp/is 200611/ai n16939060.

7See http://www.uefa.com/uefa/keytopics/kind=1024/newsid=629284.html
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Figure 1: The relationship between average number of shots per game and average number of passes
per game in UEFA Euro 2008.

One important aspect of soccer that makes it a team game is the fact that passing is a very

crucial part of the game. In the early days of soccer, the game was based on individual skills such

as tackling and dribbling. The Scots invented the passing game in the 1870s and everyone soon

realized that it is easier move the ball than players, and the ball is faster than humans. Since then

passing and receiving have become a key part of a soccer team’s strategies. A soccer training manual

by Luxbacher (2005) emphasizes the importance of passing in the following “Passing and receiving

skills form the vital thread that allows 11 individuals to play as one - that is the whole to perform

greater than the sum of its parts.” Similarly, Miller and Wingert (1975) addresses the importance

of passing in soccer by stating that “There are no more crucial skills than passing in soccer because

soccer is a team sport. The most effective set plays involve accurately passing and receiving the

ball.”

Luhtanen et al. (2001) report that successful passes at the team level are important for explain-

ing the success in the UEFA European Championship 2000. Specifically, Luhtanen et al. (2001)

document that there is one to one relationship between the ranking of the team in Euro 2000 and

the ranking of the team in terms of successful passing and receivings. Thus, it seems reasonable

that passing is a good metric for identifying the interactions between players.
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Figure 1 displays the relationship between average number of shots per game and average num-

ber of passes per game of the national teams in the UEFA European Championship 2008.8 The

correlation coefficient between these variables is 0.7. The regression coefficient obtained from re-

gressing average number of shots on goal per game on average number of passes per game indicates

that on the average 27 passes created 1 additional shot on goal for the team in Euro 2008. This is

consistent with the idea that teams need ball possession to create goal scoring opportunities which

directly affects the outcome of the match. Clearly, passing is an important interaction variable in

our dataset.

There are some advantages to using passing for capturing player interactions. First, it is pairwise

and both the sender and receiver of the pass must be successful to complete the action. So, the

pairwise passing enables us to utilize the network theory to understand the contribution of each

player to the team. Second, passing as a measure of interaction is observable and easily quantifiable.

Data for other aspects of the soccer such as tackling, dribbling or off the ball movement of players

are very hard to observe. In addition, often identifying the quality of these actions require subjective

judgement. Finally, even if we had data about these aspects, it would be still difficult to quantify

those variables exactly.

4 Empirical Methodology

This section illustrates our methodology for identifying the key player and key groups in soccer

teams. First, we present the payoff function of players in soccer teams. Second, we describe our data

collection process. Next, we calculate the ICM and TICM by using the corresponding definitions in

the paper and provide our results for the key players and key groups. Finally, we conduct sensitivity

checks for the model parameters used for identifying key players.

8This data was accessed from the following website http://www1.uefa.com/tournament/statistics/teams. It is
available from the authors upon request.
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 Figure 2: Discounting the successful passes and loses by “d”"!
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4.1 Empirical Model

We return to the individual payoff function given in Equation (1) and interpret its terms for the

game of soccer.9

Ui(x1, ...., xn) = αixi +
1
2
σiix

2
i +

∑
j 6=i

σijxixj + θZ

where xi is defined as how often the player i kicks the ball. This includes all passes, shots at the

goal, corners and throw-ins of player i. The coefficient αi measures the returns to individual effort.

As before the utility function is quadratic in own effort with ∂2Ui/∂x
2
i = σii < 0. The third term

captures the interaction among players with σij being the number of passes from player i to j. Thus,

player i’s utility from interacting with player j is weighted by how often he passes to j.

9Observe the payoff function shows only the actions of the team of interest. However, it does take the other team’s
effort into account implicitly. For example, as long as one of the team has ball possession, the other team cannot have
any shots or passes.
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In the above payoff function, σij represents the complementary action of player i on player j.

σij indicates the number of (discounted) successful passes from player i to j minus the number of

(discounted) unsuccessful passes from player i to j. This means that if σij is positive, number of

successful passes from player i to player j exceeds the number of unsuccessful passes from player i to

j. While measuring the complementarity in players’ effort, we introduce a discounting parameter, d

in constructing the Σ matrix. Passes that are made far from the opponent’s goal have little influence

on creating a goal scoring opportunity. Therefore, we discount the passes that are made in own half

of the field by a factor 0 < d < 1. On the other hand, if player i successfully passes the ball to

player j, and if player j is the opponent’s half, then we do not discount that pass. Unsuccessful

passes are discounted in the opposite way. If a player i losses the ball while trying to pass to player

j, we look at the position of j. If player j is in the opponent’s half, then we discount that loss by

d. Similarly, if player i losses the ball while trying to pass to player j who is in his own half, then

we do not discount that loss. Basically, if player i losses the ball near his own goal then that is a

serious loss for the team. The intuition for not discounting the unsuccessful passes made in the own

half is that players have to run back which hurts the team’s play and may create an opportunity for

the opponent to start an attack from an advantageous position.

The last term of the payoff function explains how an individual’s utility depends on team outcome.

We assume that the team outcome, Z is a linear function of each player’s effort and ability parameter.

The coefficient θ is a scale parameter that can be used to capture the importance of the game. In

this framework, the ability parameter, δi is defined as the scoring probability of player i where δi =

Number of goals scored by player i / Number of total shots on goal of player i. Alternatively, Z can

also be defined as the outcome of the match. Specifically, Z can be assumed to be taking values of

{1, 0, -1} where Z = 1 implies that the team wins the game, Z = 0 implies that the match ended in

a draw, and Z = −1 implies that the team lost the match. For the above definition of Z, the Nash

equilibrium of the Team Game boils is identical to the Ballester et al. (2006) and allows us use the

ICM provided by the authors in Remark 5 (note find page number).

4.2 Data and Results

Our data consists of all the matches from the Quarter Final onwards for the UEFA European

Championship 2008. All the data that is used in the study is available from the authors on request.
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Unfortunately, official passing data from UEFA’s website is not adequate for our study due to a

number of reasons. First, UEFA provides data only on the successful passes between player i and j

and excludes the unsuccessful passes. Second, UEFA statistics do not provide the passing position

of the players which is important for assessing the quality of passing. Finally, UEFA provides the

total number of passes between player i and j in the entire tournament rather than match by match.

Hence, we created a unique passing data set ourselves by watching the matches. This was done

by freezing the frame at the time of the passing attempt and recording the player making the pass

and the receiver in a matrix by noting the field position. We also discounted the passes using the

method described in the previous section. Net discounted passes were used to create the interaction

matrix, Σ.10 The net passes are used to determine the σ′ijs in Σ matrix. As expected, the Σ and

G matrices are both asymmetric.

In order to facilitate comparisons across mathes we define a tournament wide λ and γ which are

the same for every team. First we obtain the highest amount of positive and negative interaction

between each pair of players throughout the tournament. Using this, the tournament wide γ and

λ parameters are chosen as 5 and 20 respectively. This allows us to compare the same player’s

intercentrality measure from different matches as well as compare the intercentrality measure of

different players from different matches. 11

Data for creating the tournament wide scoring probabilities of each player was obtained from

ESPN’s website. [put the website here] Ideally, the life time scoring probability of a player would

be δi in the theocratical model. However, this data is not available and we use the tournament

wide measure as a proxy for this. Next, we calculate the M matrix, centrality vector (b) and

intercentrality vectors c and ĉ by using the definitions provided in Section 2. Note that assigning a

value to a is crucial for obtaining a pure and interior Nash equilibrium. Ballester et al. (2006) note

that for the case of asymmetric Σ and G matrices, a should be less than the spectral radius of G,

which is inverse of the norm of the highest eigenvalue of G. The greatest eigenvalue of G matrices

for the teams in the sample is 7.07 and hence following the above rule, the decay factor, a, is set to

10According to official statistics on average 800 successful passes occur in a match and it is a tedious exercise to
record every passing attempt. Note that we also take into account the unsuccessful passing effort which is not reported
by the official statistics.

11Note that the Netherlands vs Russia, Spain vs Italy and Croatia vs Turkey matches went into the extra time.
Therefore, comparing the players in the these games with those ended in 90 minutes is not possible. The cross
comparisons are valid for match lengths of the same duration. We discuss this issue in more detail in the next section.
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0.125 for all matches. Since we did not have any guide lines for discount factor, d ∈ [0, 1] we assume

that d = 0.5 for all matches. Using all of these parameters we then compute TICM and ICM of each

player.

The corresponding calculations for the Final, Semi Final and Quarter Final games for Euro 2008

are reported for each team in Tables 1-7. In those tables, ĉ refers to TICM and c indicates (ICM)

of Ballester et al. (2006). We find that the results obtained by using TICM are better at capturing

the players who have a direct influence on the outcome of the matches since it also incorporates the

scoring probabilities. The highest value of TICM is observed in the Spain vs Italy Quarter Final

game for Fabregas who has a value of 8.67. Note that this match ended in extra time. The highest

value of TICM is observed in the Germany vs Portugal Quarter Final game for Deco of Portugal who

has a value of 6.44 for a match which ended in normal time.[some arguments from slides interpret

results not biased aganist forwards etc] However, since the data on scoring probabilities of players is

not life time scoring probabilities, it also causes players who have very few shots in the tournament

but scored a goal to have a high TICM in some matches.[provide example from data and explain]

Therefore, we also report ICM results as a sensitivity check. [highest IM measure]

4.3 Sensitivity Checks

There is a concern that determination of the key player may depend on the our chosen values of the

decay factor, a and discount factor, d. In fact, by means of an example Ballester et al.(2006) show

that the key player may be different for different values of a. Similarly, the key player may change

depending the value of discount factor, d. Hence, in order to check the robustness of our results,

we conduct a simulation analysis by changing the values of those parameters. We allow a to vary

from 0 to 0.125 in increments of 0.001. Simultaneously, we use the same increment and increase the

value of d from 0 to 1. Since we perform the simulations for all matches and all teams, this gives us

14 × 125,000 = 1.75 million simulations. We find that the key player identified by ICM changes 15

percent of a time. On the other hand, the identified key players by using TICM change 40 percent of

a time. There is a greater variability in TICM results because the scoring probability of the players

are specific to the Euro 2008 tournament. Since the scoring probability itself shows great variability,

it makes the TICM measure more idiosyncratic. The passign game on the other hand is more stable

and therefore the ICM results have lesser variation.
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4.4 Key Group

In this section, we determine the key groups of players following Temurshoev (2008). In fact the idea

of the key groups [....Zenou.... put that in citation ]Key groups of players in the matches provide

information about the joint performance of players in the group. This is a valuable information for

the soccer clubs, managers and coaches who wish the form their teams with individuals that provide

different adjacencies to their teammates. In order to identify key groups of size k in a team, we take

every possible combination of k players from the team and determine the reduction in the aggregate

Nash equilibrium by their removal from the team. The key group consists of players whose removal

leads to largest reduction in the aggregate Nash equilibrium.

We use Temurshoev’s (2008) approach to compute the TICM of a group of k players. Removing

players from the game creates a decrease in the expected number of goals in addition to the reduction

in interaction between players. Therefore, the group intercentrality measure for TICM is defined as:

ĉg = b′E(E′ME)−1E′b + (1′ME)(E′δ) (13)

where E is the n×k matrix defined as E = (ei1, ..., eik) with eir being the ithr column of the identity

matrix, k being the number of players in the group and 1 ≤ k ≤ n. The first term captures the

effect of the removal of a group of players in g and the second term captures the effect of reduction

in the desired outcome of the team. It can be readily checked that for k = 1, the above expression

boils down to the team intercentrality measure (TICM) of a player which is given in Equation (8).

Note that the key group is not always comprised of the individuals having the highest intercentrality

measure. As described in Borgatti (2006) and Temurshoev (2008), according to the redundancy

principle key groups involve players who provide different adjacency to their teammates.

We choose key group sizes of k = 2 and k = 3 and calculate every possible group’s intercentrality

measure using ICM and TICM. The results for all the countries and matches in the sample are

provided in Tables 8-12. In these tables, we report the top two key groups. In the key group

tables, the column player position identifies the field position of the player. These positions are D

(Defense), M (Midfield) and F (Forward). The rank in the ĉ column identifies the player’s rank

according to (TICM). The other key group results using ICM is available upon request. For an

interesting comparison, we also provide the ICM key group results of Spain in Table 13. Generally,

the key groups obtained by using TICM include more forward players. [..........Some info from slides
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explain why interesting......]

4.5 Player Ratings, Market Value and (Team) Intercentrality

In this subsection, the effect of intercentrality measure of the players who played in the Final, Semi-

Final and Quarter Final games in Euro 2008 on their average ratings and market values will be

discussed.

We introduce the average ratings that are given by the experts to the analysis to show that

the performance of the players depend on their interactions with their teammates according to the

experts. We obtained the average ratings from three sources: Goal.com, ESPN and SkySports. We

create a variable of average rating for each player which is the obtained by taking of the average of

the ratings.12 We use these sources since they use the same scale and they also provide ratings for

the substitute and substituted players in the matches. Also, these sources are outside the competing

countries in UEFA EURO 2008 which eliminates potential bias in the ratings.

Next, we investigate whether having a higher ICM or TICM in Euro 2008 affects the market values

of the players. Considering the effect of intercentrality on the salaries would be more interesting.

However, the salaries of soccer players in Europe are private and not publicly available. Nevertheless,

Frick (2007) and Battre et al. (2008) regard the estimated market value of the soccer players obtained

from http://www.transfermarkt.de 13 as a good and reliable source to proxy the undisclosed salary

of players. Battre et al.(2008) points out that there is a strong relationship between the market value

of the players and their salaries for the players in Bundesliga, German First Division.14 Using their

argument, the estimated market value of the players are obtained for the year 2010 to proxy the salary

of the players. The website also provides information about the other observable characteristics

of the soccer players such as: Date of birth, club, nation, position, and number of international

appearances, number of international goals, preferred foot and captaincy. We use the Club UEFA

points and Nation UEFA points which are available from UEFA’s website in order to capture the

12The correlation coefficient of ratings from the above sources are 0.7 thus we prefer to take the average of these
ratings rather than using them one by one. Also, taking the average of the ratings will reduce the subjectivity in
measuring the performance of the players.

13transfermarkt.de does not allow user to track the past market values. We saved the data about the players in
March, 19 2010.

14Battre et al.(2006) obtains estimated market values of soccer players from a German sports magazine Kicker.
However, Kicker only provides the market values of the players who only play at Bundesliga. However, they conduct
a sensitivity check with transfermarkt data and they state that the correlation between those two sources are high.
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quality and reputation of the players. Club and Nation points are announced by UEFA yearly and

points are earned for being successful in UEFA club or national tournaments. The points that are

provided by UEFA for the year 2008 are composed of the points earned in 2003-2008 period. We

combine the available data from with the intercentrality measure, Club and Nation Rank measured

by the UEFA points in 2008. The descriptive statistics about the data set are provided in Table 14.

In order to analyze whether there is a correlation between average ratings and (team) inter-

centrality measure, we consider the following base model:

AvgRatingit = α1+β1(T )ICMit+γ1Agei+θ1Age2+λ1Positioni+ψ1ClubRanki+φ1NationRanki+εit.

Similarly, we consider another base model to investigate the relationship between the market values

of soccer players and their (team) intercentrality measure:

LogEMVi = α2+β2(T )ICMi+γ2Agei+θ1Age2+λ2Positioni+ψ2ClubRanki+φ2NationRanki+ui.

In the above regression models, the i subscript represents the player i and the t subscript repre-

sents the match t. In model 1, average rating is the dependent variable and stands for the average

ratings obtained from 3 reliable sources: Goal.com, ESPN and SkySports. In model 2, Log EMV

is the dependent variable obtained from transfermarkt.de and represents the log of the estimated

market value of the players in million euros. (T)ICM stands for the (team) intercentrality measure

and identifies the contribution of player i to her teammates. Position is a dummy variable that

identifies the position of the player. We consider three different positions for the players: Defense

(D), Midfield (M) and Forward(F).15 Club Rank and Nation Rank indicate the rank of the club

and nation of the player measured by UEFA points. They are included to capture the reputation

of the player as well as the individual quality. εi and ui are the error terms for Model 1 and 2

respectively. In addition to the control variables in the base model, we regress the same dependent

variables on a broader set of control variables including national team dummies, captaincy, height

and preferred foot. The estimates are close and the coefficient of ICM and TICM variables are still

significant. Since we have a small sample size, we prefer to use and report the results for the base

models. Another important control variable is contract length of the players since according to the

Bosman Rules in European football it is likely that players who are near to their contract expiration

15Goalkeepers are excluded from the regression analysis. Niko Kovac (Croatia) and Robert Kovac (Croatia) retired
from professional soccer before 2010 and are also excluded.
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dates have lower market values.16 We checked the remaining duration of contracts of the players in

our sample which is available in transfermarkt.de. There are only 12 players whose contracts’ expire

at the end of 2009-2010 season. Inclusion or exclusion of those players do not affect our results.

Some players are observed more than once in the tournament and they have different average

ratings and intercentrality measures in different matches. However, we have only one observation

for the market value of the players and the other control variables are time independent with the

current setup. Model 1 can be estimated by using panel data methods (population average, pooled

OLS or random effects) whereas Model 2 cannot be estimated by panel data methods. In order to

deal with this issue, we take the average of the average ratings, (team) intercentrality measures and

use GLS estimation in the estimation of Models 1 and 2. We provide the estimation results of Model

1 by using pooled OLS since average ratings and (team) intercentrality measures vary from match

to match.

The estimation results for the relationship between average ratings and (team) intercentrality

measures are provided in Tables 15 and 16. In the pooled OLS estimation, we estimate a linear

regression model where the time variable is the match. Ideally, we could run a random effects

model. However, there is not enough idiosyncratic variance in the data. In Model 15, we report the

cluster-robust standard errors. We include a dummy variable ET to control for the minutes played

of the players. ET takes the value of 1 if the corresponding player played more than 90 minutes

in any match and 0 otherwise. In Table 16, we take the average of the average ratings and (team)

intercentrality measures and have only one observation for each player and we report cluster-robust

standard errors. The findings suggest that there is a strong relationship between the TICM and the

average ratings. Specifically, players who have higher TICM performed better than their teammates

according to the experts. For other sensitivity checks, we include the players who play enough time

in the game specifically who played more than on the average 30 minutes. We lose 30 observations,

but the results are robust. Another important factor to control for is whether or not the match

ended in normal time. We define a dummy variable ET which is equal to 1 if the match ended in

extra time and 0 otherwise. With the inclusion of this variable, TICM is significant whereas ICM is

not. Therefore, we conclude that TICM better explains the average ratings since it also incorporates

16Bosman Rules is an important factor affecting the free movement of labor and had a profound effect on the
transfers of football players within the EU. It allows professional football players in the European Union (EU) to
move freely to another club at the end of their contract with their present team.
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the goals scored by the players.

The estimation results investigating the relationship between the estimated market value and

(team) intercentrality measures in Euro 2008 is provided in Table 17. We again report the results

for both ICM and TICM. The standard errors are bootstrapped with 1000 replications.17 According

to the estimation results, intercentrality measure in UEFA Euro 2008 explains the 2010 market values

of the players. One standard deviation increase in the intercentrality measure (ICM) creates on the

average 9.84 percent increase in the market values of the players. On the other hand, one standard

deviation increase in TICM yields on the average 10.88 percent increase in the market values of the

players. It might be the case that, intercentrality measure is important for only a certain group of

players (say midfielders) who play in the some certain position of the field. To test this hypothesis,

we interact the intercentrality measure of players with their position dummies. The findings suggest

that intercentrality measure is equally important at 5 percent significance level. (i.e, the effect of

intercentrality measure is homogenous in the sample with respect to players’ positions on the field.)

Note that the regression models use the (team) intercentrality measures which are calculated

for specific parameters of a = 0.125 and d = 0.5. As a sensitivity check, we calculated the (team)

intercentrality measures for a = 0.1 and d = 0.4, 0.5, 0.6 and a = 0.125 and d = 0.4, 0.6. The

estimated coefficients and their significance are very similar.18

5 Conclusion and Discussion

In this paper, we introduce a Team Game and develop a measure of identifying the key player

in the teams. Our work extends the intercentrality measure of Ballester et al.(2006) to contain

an additional term. This additional term comes from the team outcome expression in the utility

functions of players. This term suggests that a player gets utility when her team achieves its desired

outcome. The calculated team intercentrality measure (TICM) can be regarded as team performance

index of players. The calculated group team intercentrality measure (ĉg) can be interpreted as the

joint contribution of players to their teams.

Our model measure also has some common features with intercentrality measure (ICM) of

17Since we have only one market value observation for the players, we lose significant amount of observations. To
deal with this issue, we bootstrap the standard errors.

18We do not report the estimates obtained by using the above parameters but they are available upon request.
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Ballester et al.(2006). We can say that a key player does not need to have the highest amount

of individual payoff. In addition, a key player does not need to have the highest amount of individ-

ual action (number of kickings). It is important to note that both Ballester et al. (2006) and our

framework are not seeking the best players in the network. The identified key players and key groups

have the highest contribution to the corresponding aggregate Nash equilibrium. We show that there

is a positive relationship between the average ratings and TICM and ICM in the sample. This

fact reflects that soccer players having more interactions with their teammates get more credit in

performance by the experts. More importantly, the market value of the soccer players increase with

both TICM and ICM which is assumed to be reflected in their salaries. This effect is homogenous

in the sample, it doesn’t depend on the position of the player on the field.

One interesting extension of the approach in the paper might be considering the effort variable to

be a vector and allowing different types of individual actions. This will require that we obtain a new

set of theocratical results. Depending on the availability of data this model then can be empirically

tested. In soccer for instance one could include tackling and dribbling data. Given the relationship

between passing and scoring opportunities, this will not alter our primary results, but will provide

us a more precise way to identify key players and key groups.
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7 Appendix

Proof of Proposition 1.a:
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Proof. Note that equation (9) still holds for this case. Σ matrix is substituted in equation (10) to

obtain:

(βI + γU− λG)x∗ = α+ θδ

where α is now a n×1 column vector and its elements shows the returns to individual actions. Now,

substitute x · 1 instead of U · x∗:

[βI− λG]x∗ = α− γx∗ · 1 + θδ −→ β[I− λ∗G]x∗ = α− γx∗ · 1 + θδ

And pre-multiply both sides by [I− λ∗G]−1 matrix to obtain:

βx∗ = [I− λ∗G]−1(α+ θδ)− γx∗[I− λ∗G]−1 · 1

βx∗ = bα(g, λ∗) + θbδ + γx∗b(g, λ∗)

x∗(Σ) =
bα(g, λ∗) + θbδ(g, λ∗)

β + γb(g, λ∗)

Proof of Proposition 1.b: Define:

α̃i =
αi
σii

, σ̃ij =
σij
σii

, δ̃i =
δi
σii

Now, rewrite the payoff function by using the above definition such that:

Ui = α̃xi +
1
2
σ̃iix

2
i +

∑
j 6=i

σ̃ijxixj + θZ̃

Ui =
σi
|σii|

xi +
1
2
σii
|σii|

x2
ii +

∑
j 6=i

σij
|σii|

xixj + θZ̃

∂Ui
∂xi

=
αi
|σii|

+
σii
|σii|

xi +
∑
j 6=i

σij
|σii|

xj + θ
δi
|σii|

= 0

∂Ui
∂xi

=
1
|σii|

(αi + σiixi +
∑
j 6=i

xj + θδi) = 0

1
|σii|

(αi + σi1x1 + σi2, x2 + ...+ σinxn + θδi) = 0 ∀ i = 1, . . . , n

Let Σ̃ be the following matrix: 
1
σ11

0 0 · · · 0
0 1

σ22
0 · · · 0

0 0 1
σ33

· · · 0
...

...
...

. . .
...

0 · · · 0 0 1
σnn


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Then,

Σ̃(α+ Σx + θδ) = 0

In the above equation, Σ̃ is not zero matrix (since the diagonal elements are not equal to 0), then

the second term must be equal to a zero vector. By using this, if the equation is solved for x, then:

x∗(Σ) =
beα(g, λ̃∗) + θb̃δ(g, λ∗)

β̃ + γ̃b̂(g, λ̃∗)
(14)

8 Tables

Table 1: Spain vs Germany Final Game, a=0.125 and d=0.5

Name Position ĉi ci Name Position ĉi ci

Xavi M 4.31 3.97 Lahm D 4.38 3.73
Fabregas M 3.97 3.35 Schweinsteiger M 4.31 3.57

Senna M 3.66 3.66 Frings M 4.02 4.02
Ramos D 3.53 3.53 Podolski M 4.01 3.45

Capdevila D 3.49 3.49 Metzelder D 3.88 3.88
Puyol D 3.48 3.48 Mertesacker D 3.77 3.77
Silva M 3.47 3.36 Ballack M 3.71 3.38

Guiza* F 3.46 3.02 Klose F 3.59 3.14
Marchena D 3.46 3.46 Hitzlsperger M 3.58 3.58

Iniesta M 3.45 3.45 Friedrich D 3.47 3.47
Torres F 3.18 2.98 Lehmann G 3.34 3.34

Xabi Alonso* M 3.14 3.14 Jansen* M 3.25 3.25
Cazorla* M 3.11 3.11 Gomez* F 3.12 3.12
Casillas G 3.07 3.07 Kuranyi* F 2.99 2.99

Table 1: In the above Table, the first 4 columns are for Spain and the remaining ones are for
Germany. ĉi represents TICM and ci represents ICM. * indicates that player is a substitute.
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Table 2: Spain vs Russia Semi-Final Game, a=0.125 and d=0.5

Name Position ĉi ci Name Position ĉi ci

Ramos D 5.37 5.37 Zyryanov M 4.87 4.56
Silva M 5.49 5.35 Semak M 4.37 4.37

Fabregas* M 6.02 5.24 Zhirkov D 4.12 4.12
Xavi M 5.48 5.09 Anyukov D 4.10 4.10

Iniesta D 4.97 4.97 Ignashevich D 3.84 3.84
Senna M 4.82 4.82 Berezutski D 3.83 3.83

Capdevila D 4.23 4.23 Arshavin F 4.06 3.70
Xabi Alonso* M 4.11 4.11 Saenko M 3.63 3.63

Torres F 4.28 4.06 Semshov M 3.57 3.58
Marchena D 4.02 4.02 Sychev* F 3.46 3.46

Puyol D 3.75 3.75 Akinfeev G 3.36 3.36
Casillas G 3.69 3.69 Pavlyuchenko F 3.51 3.30

Villa F 4.07 3.59 Biyaletdinov* M 3.28 3.28
Guiza* F 4.06 3.58

Table 2: In the above Table, the first 4 columns are for Spain and the remaining ones are for Russia.
ĉi represents TICM and ci represents ICM. * indicates that player is a substitute.

Table 3: Germany vs Turkey Semi-Final Game, a=0.125 and d=0.5

Name Position ĉi ci Name Position ĉi ci

Schweinsteiger M 4.96 4.15 Hamit M 4.73 4.73
Mertesacker D 3.84 3.85 Ayhan M 4.65 4.65

Lahm D 4.48 3.82 Sabri D 4.64 4.64
Friedrich D 3.75 3.75 Hakan D 4.32 4.32

Hitzlsperger M 3.75 3.75 Kazim M 4.23 4.23
Frings* M 3.68 3.68 Ugur M 4.92 4.23

Metzelder D 3.67 3.67 Aurelio M 4.15 4.15
Podolski M 4.12 3.55 Gokhan D 4.14 4.14
Ballack M 3.61 3.29 Mehmet M 4.11 4.11
Rolfes M 3.22 3.22 Semih F 4.72 3.85
Klose F 3.51 3.07 Gokdeniz* M 3.45 3.45

Lehmann G 2.98 2.98 Rustu G 3.44 3.44
Jansen* M 2.91 2.91 Tumer* M 3.34 3.34

Mevlut* F 3.43 3.43

Table 3: In the above Table, the first 4 columns are for Germany and the remaining ones are for
Turkey. ĉi represents TICM and ci represents ICM. * indicates that player is a substitute.
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Table 4: Netherlands vs Russia Quarter Final Game, a=0.125 and d=0.5

Name Position ĉi ci Name Position ĉi ci

Van Bronchorst D 5.32 4.34 Arshavin F 4.98 4.60
Van Der Vaart M 5.08 5.08 Zhirkov D 4.56 4.56

Nistelrooy F 5.05 4.63 Pavlyuchenko F 4.47 4.24
Sneijder M 4.51 4.30 Zyryanov M 4.46 4.16

Van Persie* F 4.50 4.16 Semak M 4.22 4.22
Heitinga* D 4.43 4.43 Torbinski* M 4.17 3.68

Boulahrouz D 4.39 4.39 Anyukov D 4.01 4.01
Oojer D 4.35 4.35 Semshov M 3.91 3.91

De Jong M 4.24 4.24 Saenko M 3.90 3.90
Kuyt M 4.21 3.73 Kolodin D 3.88 3.88

Afellay* M 4.16 4.16 Ignashevich D 3.76 3.76
Van Der Sarr G 4.09 4.09 Bilyaletdinov* M 3.76 3.68

Englaar M 4.03 4.03 Akinfeev G 3.52 3.52
Mathijsen D 4.00 4.00 Sychev* F 3.40 3.40

Table 4: In the above Table, the first 4 columns are for Netherlands and the remaining ones are for
Russia. ĉi represents TICM and ci represents ICM. * indicates that player is a substitute.

Table 5: Germany vs Portugal Quarter Final Game, a=0.125 and d=0.5

Name Position ĉi ci Name Position ĉi ci

Ballack M 5.10 4.69 Deco M 6.44 5.81
Schweinsteiger M 5.47 4.58 Simao M 5.39 5.39

Podolski M 5.20 4.55 Ronaldo M 5.47 5.31
Rolfes M 4.38 4.38 Bosingwa D 5.18 5.18
Lahm D 4.95 4.25 Ferreira D 4.70 4.70

Hitzlsperger M 4.05 4.05 Pepe D 5.15 4.63
Klose F 5.01 3.96 Petit M 4.51 4.51

Friedrich D 3.87 3.87 Meireles* M 4.91 4.48
Lehmann G 3.60 3.60 Carvalho D 4.40 4.40

Mertesacker D 3.58 3.58 Moutinho M 4.02 4.02
Metzelder D 3.57 3.57 Nani* M 4.02 4.02

Fritz* M 3.39 3.39 Nuno Gomes F 4.39 3.98
Borowski* M 3.32 3.32 Postiga* F 4.26 3.85

Jansen* M 3.31 3.31 Ricardo G 3.81 3.81

Table 5: In the above Table, the first 4 columns are for Germany and the remaining ones are for
Portugal. ĉi represents TICM and ci represents ICM. * indicates that player is a substitute.
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Table 6: Spain vs Italy Quarter Final Game, a=0.125 and d=0.5

Name Position ĉi ci Name Position ĉi ci

Silva M 8.14 7.97 Grosso D 5.74 5.74
Capdevila D 7.53 7.53 De Rossi M 5.13 5.13
Fabregas* M 8.47 7.49 Ambrossini M 4.93 4.93

Senna M 7.23 7.23 Aquilani M 4.73 4.73
Xavi M 7.61 7.13 Zambrotta D 4.65 4.65

Ramos D 6.52 6.52 Camoranesi* M 4.65 4.65
Marchena D 6.14 6.14 Chiellini D 4.56 4.56

Villa F 6.59 5.99 Toni F 4.38 4.38
Iniesta M 5.67 5.67 Panucci D 4.99 4.29
Puyol D 5.63 5.63 Cassano F 4.28 4.28
Torres F 5.54 5.29 Buffon G 4.05 4.05

Cazorla* M 5.18 5.18 Di Natale* F 4.05 4.05
Guiza* F 5.32 4.77 Perrotta M 3.94 3.94

Casillas G 4.72 4.72 Del Piero* F 3.59 3.59

Table 6: In the above Table, the first 4 columns are for Spain and the remaining ones are for Italy.
ĉi represents TICM and ci represents ICM. * indicates that player is a substitute.

Table 7: Croatia vs Turkey Quarter Final Game, a=0.125 and d=0.5

Name Position ĉi ci Name Position ĉi ci

Modric M 5.69 4.58 Arda M 7.67 5.26
Pranjic D 4.47 4.47 Hamit M 5.24 5.24
Rakitic M 4.18 4.18 Tuncay M 5.24 5.24

N. Kovac M 3.97 3.97 Hakan D 5.11 5.11
Simunic D 3.90 3.90 Nihat F 5.03 4.40

Srna M 4.06 3.83 Sabri D 4.24 4.24
Corluka D 3.77 3.77 Gokhan D 4.14 4.14

R. Kovac D 3.77 3.77 Emre D 4.13 4.13
Kranjcar M 3.66 3.66 Mehmet M 4.09 4.09

Olic F 3.64 3.37 Semih* F 4.89 3.99
Petric* F 3.32 3.32 Kazim M 3.91 3.91

Klasnic* F 4.05 3.31 Ugur* M 4.48 3.82
Pletikosa G 3.21 3.21 Rustu G 3.69 3.69

Gokdeniz* M 3.43 3.43

Table 7: In the above Table, the first 4 columns are for Croatia and the remaining ones are for
Turkey. ĉi represents TICM and ci represents ICM. * indicates that player is a substitute.
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Table 8: Key Group of Spain in Euro 2008, TICM, a=0.125, d=0.5
Match Group Size Player Position Rank in ĉ Player Names ĉg

Final 2 M, M 1,2 Xavi, Fabregas 7.78
Final 2 M, F 1,8 Xavi, Guiza 7.36
Final 3 M, M, F 1,2,8 Xavi, Fabregas, Guiza 10.58
Final 3 M, M, M 1,2,3 Xavi, Fabregas, Senna 10.49

Semi-Final 2 M, M 1,3 Fabregas, Xavi 10.48
Semi-Final 2 M, M 1,2 Fabregas, Silva 10.40
Semi-Final 3 M, M, M 1,2,3 Fabregas, Silva, Xavi 14.03
Semi-Final 3 M, M, D 1,2,4 Fabregas, Silva, Ramos 13.76

Quarter Final 2 M, M 1,3 Fabregas, Xavi 14.49
Quarter Final 2 M, M 1,2 Fabregas, Silva 14.15
Quarter Final 3 M, M, M 1,2,3 Fabregas, Silva, Xavi 18.87
Quarter Final 3 M, M, F 1,3,6 Fabregas, Xavi, Vila 18.66

Table 9: Key Group of Germany in Euro 2008, TICM, a=0.125, d=0.5
Match Group Size Player Position Rank in ĉ Player Names ĉg

Final 2 D, M 1,2 Lahm, Schweinsteiger 8.28
Final 2 M, M 2,4 Schweinsteiger, Podolski 7.97
Final 3 D, M, M 1,2,4 Lahm, Schweinsteiger, Podolski 11.44
Final 3 M, M, M 2,3,4 Schweinsteiger, Frings, Podolski 11.25

Semi-Final 2 M, D 1,2 Schweinsteiger, Lahm 8.92
Semi-Final 2 M, M 1,3 Schweinsteiger, Podolski 8.52
Semi-Final 3 M, D, M 1,2,3 Schweinsteiger, Lahm, Podolski 11.93
Semi-Final 3 M, D, M 1,2,9 Schweinsteiger, Lahm, Ballack 11.69

Quarter Final 2 M, M 1,2 Schweinsteiger, Podolski 9.86
Quarter Final 2 M, F 1,4 Schweinsteiger, Klose 9.85
Quarter Final 3 M, M, F 1,2,4 Schweinsteiger, Podolski, Klose 13.71
Quarter Final 3 M, M, D 1,4,5 Schweinsteiger, Klose, Lahm 13.69

Table 10: Key Group of Russia in Euro 2008 TICM, a=0.125, d=0.5
Match Group Size Player Position Rank in ĉ Player Names ĉg

Semi-Final 2 M, M 1,2 Zyryanov, Semak 8.36
Semi-Final 2 M, D 1, 4 Zyryanov, Anyukov 8.19
Semi-Final 3 M, M, F 1,2,5 Zyryanov, Semak, Arshavin 11.23
Semi-Final 3 M, D, F 1,4,5 Zyryanov, Anyukov, Arshavin 11.11

Quarter Final 2 F, M 1,4 Arshavin, Zyryanov 8.80
Quarter Final 2 F, F 1,3 Arshavin, Pavlyuchenko 8.79
Quarter Final 3 F, F, M 1,3,6 Arshavin, Pavlyuchenko, Torbinski 12.08
Quarter Final 3 F, D, F 1,2,3 Arshavin, Zhirkov, Pavlyuchenko 11.95
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Table 11: Key Group of Turkey in Euro 2008 TICM, a=0.125, d=0.5
Match Group Size Player Position Rank in ĉ Player Names ĉg

Semi-Final 2 M, F 1,2 Ugur, Semih 9.18
Semi-Final 2 F, D 2,5 Semih, Sabri 8.96
Semi-Final 3 M, F, D 1,2,5 Ugur, Semih, Sabri 12.60
Semi-Final 3 M, F, M 1,2,3 Ugur, Semih, Hamit 12.54

Quarter Final 2 M, F 1,5 Arda, Nihat 11.89
Quarter Final 2 M, F 1, 6 Arda, Semih 11.85
Quarter Final 3 M, F, F 1,5,6 Arda, Nihat, Semih 12.31
Quarter Final 3 M, M, F 1,2,6 Arda, Hamit, Semih 12.18

Table 12: Key Groups of Other Countries in Euro 2008 TICM, a=0.125, d=0.5
Match Group Size Player Position Rank in ĉ Player Names ĉg

Netherlands
Quarter Final 2 D, F 1,3 Bronckhorst, Nistelrooy 9.81
Quarter Final 2 D, M 1,2 Bronckhorst, Vaart 9.64
Quarter Final 3 D, M, F 1,2,3 Bronckhorst, Vaart, Nistelrooy 13.27
Quarter Final 3 D, F, F 1,3,5 Bronckhorst, Nistelrooy, Persie 13.15

Portugal
Quarter Final 2 M, D 1,5 Deco, Pepe 10.73
Quarter Final 2 M, M 1,2 Deco, Ronaldo 10.60
Quarter Final 3 M, M, D 1,2,5 Deco, Ronaldo, Pepe 14.35
Quarter Final 3 M, D, M 1,5,6 Deco, Pepe, Meireles 14.15

Italy
Quarter Final 2 D, D 1,3 Grosso, Panucci 9.91
Quarter Final 2 D, M 1,2 Grosso, De Rossi 9.78
Quarter Final 3 D, M, D 1,2,3 Grosso, De Rossi, Panucci 13.47
Quarter Final 3 D, D, D 1,3,7 Grosso, Panucci, Zambrotta 13.25

Croatia
Quarter Final 2 F, M 1,5 Modric, Klasnic 9.21
Quarter Final 2 D, M 1,2 Modric, Pranjic 9.17
Quarter Final 3 D, F, M 1,2,5 Modric, Pranjic, Klasnic 12.31
Quarter Final 3 D, D, M 1,3,5 Modric, Rakitic, Klasnic 12.18
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Table 13: Key Group of Spain in Euro 2008 ICM, a=0.125, d=0.5
Match Group Size Player Position Rank in ĉ Player Names ĉg

Final 2 M, M 1, 2 Xavi, Senna 7.02
Final 2 M, D 1, 3 Xavi, Ramos 6.97
Final 3 M, D, D 1, 3, 4 Xavi, Ramos, Capdevila 9.61
Final 3 M, D, D 1, 3, 5 Xavi, Ramos, Puyol 9.60

Semi-Final 2 D, M 1,2 Ramos, Silva 9.52
Semi-Final 2 M, M 2,3 Silva, Fabregas 9.45
Semi-Final 3 M, D, M 5,1,3 Iniesta, Ramos, Fabregas 12.82
Semi-Final 3 M, M, M 5,4,8 Iniesta, Xavi, Xabi 12.73

Quarter Final 2 D, M 2,1 Capdevila, Silva 13.51
Quarter Final 2 M, M 4,1 Senna, Silva 13.13
Quarter Final 3 D, M, M 2,4,1 Capdevila, Senna, Silva 17.48
Quarter Final 3 D, M, M 2,4,3 Capdevila, Senna, Fabregas 17.39

Table 14: Descriptive Statistics
Variable Obs Mean Std. Dev Min Max

Average Rating 110 6.18 0.86 3.33 8.17
Intercentrality (ICM) 110 4.18 0.60 2.99 5.81

Team Intercentrality (TICM) 110 4.379 0.741 2.986 7.671
Log Market Value 110 2.325 0.775 0.182 4.248

Age 110 27.035 3.741 20 38
Club UEFA Points 104 71.22 29.32 10.53 125.00

Nation UEFA Points 110 44.56 17.12 11.62 75.27
Germany 110 0.15 0.36 0.00 1.00

Croatia 110 0.10 0.29 0.00 1.00
Netherlands 110 0.12 0.33 0.00 1.00

Spain 110 0.13 0.34 0.00 1.00
Russia 110 0.12 0.33 0.00 1.00

Portugal 110 0.12 0.32 0.00 1.00
Turkey 110 0.16 0.36 0.00 1.00

Italy 110 0.12 0.33 0.00 1.00
Defender 110 0.28 0.45 0.00 1.00

Midfielder 110 0.45 0.50 0.00 1.00
Forward 110 0.22 0.41 0.00 1.00

Table 14: Average ratings for the players are obtained by taking the average of the player ratings
available through Goal.com ESPN Soccer and Skysports. Log of the market value of players are
obtained from transfermarkt.de. Spain, Germany, Russia Turkey, Netherlands, Croatia, Italy and
Portugal are the dummy variables which are equal to 1 if player i is playing for the corresponding
national team and 0 otherwise. D, M and F are dummy variables to indicate the field position of
the players. They represent Defender, Midfielder and Forward respectively. Club and Nation UEFA
points are available from UEFA’s website. We use 2008 points, which is earned in 2003-2008 period
by clubs or nations in UEFA tournaments.
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Table 15: Average Ratings and (Team) Intercentrality Measure Pooled OLS Estimation
Variable I II III IV V VI

Intercentrality (ICM) 0.184* 0.158 0.161
(0.102) (0.109) (0.125)

Team Intercentrality (TICM) 0.278*** 0.253** 0.241**
(0.096) (0.100) (0.106)

ET 0.262 0.338 0.339 0.173 0.239 0.237
(0.242) (0.259) (0.263) (0.232) (0.251) (0.256)

Age 0.031 0.158 0.155 0.085 0.198 0.161
(0.272) (0.268) (0.269) (0.248) (0.244) (0.246)

Age squared -0.001 -0.003 -0.003 -0.002 -0.004 -0.003
(0.005) (0.005) (0.005) (0.005) (0.004) (0.004)

Club UEFA Points 0.001 0.000 0.000 0.000 0.000 -0.001
(0.003) (0.003) (0.003) -0.003 -0.003 -0.003

Nation UEFA Points 0.009* 0.010* 0.010* 0.009 0.010* 0.010*
(0.006) (0.006) (0.006) (0.005) (0.005) (0.005)

Defender -0.359** -0.272 -0.313* -0.036
(0.171) (0.735) (0.166) (0.734)

Forward -0.21 -0.27 -0.208 -0.984
(0.215) (1.261) (0.196) (1.306)

DxICM -0.02
(0.156)

FxICM 0.016
(0.314)

DxTICM -0.063
(0.149)

FxTICM 0.184
(0.304)

Constant 4.836 3.303 3.317 3.731 2.378 2.934
(3.634) (3.573) (3.605) (3.341) (3.287) (3.321)

Observations 167 167 167 167 167 167
Number of Players 110 110 110 110 110 110

R-squared 0.09 0.111 0.112 0.126 0.143 0.148
Wald Chi Sq statistic 4.44 3.54 2.99 7.49 5.70 4.37

Table 15: The dependent variable is average ratings and the pooled OLS coefficients are reported in
the above regressions. Cluster-robust standard errors are given in parentheses. ***, **, * indicate
1, 5 and 10 percent significance levels respectively. Goalkeepers are excluded from the sample.
DxICM, FxICM, DxTICM and FxTICM are interaction variables obtained by interacting the (team)
intercentrality measure with the position dummy. ET is a dummy variable which takes the value of
1 if the player played more than 90 minutes in any of the matches and 0 otherwise.
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Table 16: Average Ratings and (Team) Intercentrality GLS Estimation
Variable I II III IV V VI

Intercentrality (ICM) 0.299** 0.229** 0.198
(0.120) (0.113) (0.150)

Team Intercentrality (TICM) 0.310*** 0.266*** 0.231*
(0.106) (0.100) (0.134)

Age -0.181 -0.078 -0.089 -0.115 -0.012 -0.033
(0.318) (0.285) (0.313) (0.310) (0.296) (0.308)

Age Squared 0.003 0.001 0.001 0.002 0.000 0.000
(0.006) (0.005) (0.006) (0.006) (0.005) (0.006)

Club UEFA pts -0.003 -0.002 -0.002 -0.003 -0.003 -0.004
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

Nation UEFA pts 0.001 0.001 0.001 0.001 0.001 0.002
(0.007) (0.007) (0.007) (0.007) (0.007) (0.007)

Defender -0.145 -0.702 -0.118 -0.116
(0.213) (1.232) (0.216) (1.076)

Forward -0.471* -0.732 -0.479* -2.067
(0.262) (1.613) (0.251) (1.494)

DxICM 0.130
(0.285)

FxICM 0.065
(0.416)

DxTICM -0.002
(0.242)

FxTICM 0.390
(0.365)

Constant 7.910* 6.867* 7.163* 6.875 5.745 6.257
(4.396) (3.907) (4.350) (4.285) (4.108) (4.417)

Observations 104 104 104 104 104 104
R square 0.087 0.118 0.119 0.114 0.147 0.159

R square adj 0.041 0.053 0.035 0.069 0.085 0.079
Wald Chi Sq Statistic 9.46 13.91 12.03 10.87 16.88 18.52

Table 16: The dependent variable is average ratings and the GLS estimation results are reported
in the above regressions. Bootstrapped robust standard errors are given in parentheses. ***, **, *
indicate 1, 5 and 10 percent significance levels respectively. Goalkeepers are excluded from sample.
DxICM, FxICM, DxTICM and FxTICM are interaction variables obtained by interacting the (team)
intercentrality measure with the position dummy.
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Table 17: Market Values and (Team) Intercentrality GLS Estimation
Variable I II III IV V VI

Intercentrality (ICM) 0.129* 0.164** 0.240***
(0.070) (0.070) (0.090)

Team Intercentrality (TICM) 0.132** 0.145*** 0.204***
(0.056) (0.053) (0.061)

Age 0.314 0.301 0.329 0.341 0.33 0.344*
(0.219) (0.198) (0.207) (0.227) (0.213) (0.207)

Age squared -0.008* -0.007** -0.008** -0.008** -0.008** -0.008**
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

Club UEFA pts 0.007*** 0.006** 0.006*** 0.007*** 0.006*** 0.007***
(0.003) (0.002) (0.002) (0.002) (0.002) (0.003)

Nation UEFA pts 0.013*** 0.013*** 0.012*** 0.013*** 0.013*** 0.012***
(0.005) (0.004) (0.005) (0.005) (0.004) (0.005)

Defender -0.163 1.223 -0.153 0.802
(0.134) (0.747) (0.139) (0.715)

Forward 0.184 0.761 0.153 1.296
(0.148) (0.802) (0.148) (0.817)

DxICM -0.324*
(0.172)

FxICM -0.142
(0.200)

DxTICM -0.217
(0.158)

FxTICM -0.277
(0.201)

Constant -2.115 -2.084 -2.82 -2.541 -2.442 -2.994
(2.985) (2.667) (2.790) (3.084) (2.931) (2.843)

Observations 104 104 104 104 104 104
R square 0.483 0.501 0.523 0.489 0.509 0.524

R square adj 0.456 0.470 0.477 0.463 0.473 0.479
Wald Chi Sq Statistic 104.62 133.43 121.25 100.81 126.04 138.07

Table 17: The dependent variable is the log of 2010 market value of the players obtained from
transfermarkt.de in the above regressions. Goalkeepers are excluded from the sample. DxICM,
FxICM, DxTICM and FxTICM are variables obtained by interacting the (team) intercentrality
measures with the position dummy of the player. Bootstrapped robust standard errors are reported
in parentheses. ***, **, * indicate 1, 5 and 10 percent significance levels respectively.
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