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Abstract

We investigate the possibility of exploiting partial correlation graphs for identifying

interpretable latent variables underlying a multivariate time series. It is shown how

the collapsibility and separation properties of partial correlation graphs can be used to

understand the relation between a factor model and the structure among the observable

variables.

Keywords: Time series analysis; Dimension reduction; Factor analysis; Partial correla-

tions

1 Introduction

Statistical modelling should appropriately reect the correlations among the compo-

nents of a multivariate time series. This claim usually leads to complex models involving

numerous parameters and requiring a high amount of data to enable reliable inference.

Thus, suitable strategies for dimension reduction are called for when analyzing high{

dimensional processes as the available data does often not suÆce to consider the full

set of variables. This problem is known as the curse of dimensionality.

Factor analysis is a well{known approach to reduce the observed variables to a few

underlying latent variables. Pe~na and Box (1987) suggest the following simple general-

ization to model a d-variate stationary time series fY

V

(t) = (Y

1

(t); : : : ; Y

d

(t))

0

; t 2 Zg,

V = f1; : : : ; dg. They assume that there is an l-variate latent factor process fX

F

(t); t 2

Zg following a VARMA(p,q) model and driving the observable variables, i.e. for each

time point t

Y

V

(t) = �X

F

(t) + �(t) ; (1)

is assumed, where � is a d � l{matrix of loadings and f�(t); t 2 Zg, �(t) � N(0;�

�

),

is a d-variate white noise process, which is independent of fX

F

(t); t 2 Zg. If model

(1) holds with independent factors, i.e. if all matrices in the VARMA(p,q) model are

diagonal, the autocovariance matrices �

Y

(h) of fY

V

(t); t 2 Zg are symmetrical for h � 1

and the columns of � are the common eigenvectors of �

Y

(h) while the corresponding
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Table 1: Eigenvalues of the autocorrelation matrices at the �rst three time lags.

Lag EV1 EV2 EV3 EV4 EV5 EV6 EV7 EV8 EV9 EV10 EV11

1 3.772 2.163 1.279 0.962 0.650 0.390 0.310 0.193 0.013 0.007 0.005

2 3.623 2.036 1.196 0.895 0.590 0.357 0.265 0.156 0.010 0.004 0.003

3 3.520 1.968 1.167 0.853 0.533 0.342 0.234 0.133 0.010 0.005 0.001

eigenvalues 

i

(h); i = 1; : : : ; l; are the diagonal elements of the autocovariance matrices

�

X

(h) of fX

F

(t); t 2 Zg. These relations can be exploited to identify factor models.

For illustration, we analyze an 11-variate time series of vital signs (di�erent types

of blood pressures, heart rate, pulse, and blood temperature) of a critically ill patient.

In a �rst rough analysis using model (1) we compute the eigenvalues and eigenvectors

of the autocorrelation matrices �

Y

(h); h = 1; 2; 3, i.e. the autocovariance matrices

of the standardized time series (Table 1). Based on these values it seems reasonable

to assume that there are four or �ve underlying factors. Gather et al. (2003) use

four factors for a similar data situation, but without pulsoximetry, so that we decide

to use �ve factors, here. In the present example, it is important that the factors

can be interpreted by the physician who has to make decisions regarding changes

of treatments. Therefore we rotate the factors in the l-dimensional space using the

automatic `varimax' procedure. The resulting loadings, shown in Table 2, allow to

relate each of the factors with a physiological meaningful subset of the variables, e.g.

the second factor consists mainly of the arterial pressures. In order to further improve

the interpretation of the factors, Gather et al. (2003) suggest to impose restrictions

on the loading matrix using physiological knowledge and the results obtained from an

analysis of the partial correlations among the component processes. This seems even

more important given the problems that may occur with automatic rotations w.r.t. the

identi�cation of underlying dependence structures even for i.i.d. data (Jolli�e, 1989).

In the following we put the suggestions of Gather et al. (2003) on a sound basis by

exploiting the factorization properties of partial correlation graphs and relating them

to dynamic factor models.

2 Graph notations

Graphical models aim at analysing the associations among a vector of variables such

that they can uniquely be represented by a graph (Lauritzen, 1996). A graph G =
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(V;E) consists of a �nite set of vertices V and a set of edges E � V � V . If only (a; b)

is in E we draw a directed edge (arrow) from a to b, a! b, and call a a parent of b, and

b a child of a. If both (a; b) 2 E and (b; a) 2 E we use an undirected edge (line) a|b

and call a and b neighbors. Directed and undirected edges typically encode di�erent

dependence structures subject to the kind of graphical model. The sets of parents,

children and neighbors of a 2 V are denoted by pa(a), ch(a) and ne(a) respectively.

Similarly, we de�ne the parents, children and neighbors of a subset A � V to be

pa(A) =

S

a2A

pa(a) n A, ch(A) =

S

a2A

ch(a) n A and ne(A) =

S

a2A

ne(a) n A. The

boundary of A is bd(A) = pa(A) [ ne(A). If bd(A) = ; we call A an ancestral set. The

closure cl(A) of A is A [ bd(A). The subgraph G

A

of G induced by A is obtained by

eliminating all vertices except those in A and all edges (a; b) not contained in A� A.

A path from a 2 V to b 2 V is a sequence of vertices a = a

0

; : : : ; a

m

= b, m � 1, such

that (a

i�1

; a

i

) 2 E, i = 1; : : : ; m, and is denoted by a 7! b. If both a 7! b and b 7! a

we say that a and b are connected. Connectivity de�nes an equivalence relation and

the equivalence classes are called connectivity components.

In order to address factor models we will make use of chain graphs. The vertex set

V of such a chain graph can be partitioned into disjoint subsets B(j), V = B(1) [

: : : [ B(k), such that all edges between vertices in the same subset are undirected

and all edges between di�erent subsets are directed, pointing from the subset with

the lower number to the subset with the higher number. We assume w.l.o.g. that

B(1); : : : ; B(k) are connectivity components and call them chain components, while

C(j) = B(1)[ : : :[B(j) is called set of concurrent variables, j = 1; : : : ; k. For a chain

graph G we de�ne its moral graph G

m

as the undirected graph with the same vertex

set but with a|b in G

m

i�, in G, we have a|b, a ! b, b ! a or if there are c

a

; c

b

in

the same chain component such that a! c

a

and b! c

b

.

Undirected graphs (no directed edges) are special cases of chain graphs, where V =

B(1). In undirected graphs, subsets A;B � V are separated by S � V if any path

from every a 2 A to b 2 B intersects S. An undirected graph that contains all possible

edges is called complete. It typically represents the saturated model.

3 Partial correlation graphs

Brillinger (1996) and Dahlhaus (2000) introduce partial correlation graphs for mul-

tivariate time series to represent the essential linear, possibly time{lagged relations

among the components which remain after eliminating the linear e�ects of the other

variables. We consider throughout the paper a vector{valued weakly stationary time
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series fY

V

(t); t 2 Zg; V = f1; : : : ; dg, and denote it briey by Y

V

. Similarly, for A � V

we denote the subprocess of all variables a 2 A by Y

A

. We further assume that the

covariance function 

ab

(h) = Cov(Y

a

(t+h); Y

b

(t)) is absolutely summable with respect

to all time lags h 2 Z for all pairs a; b 2 V . Then the cross{spectrum between the time

series Y

a

and Y

b

is de�ned as the Fourier{transform of their covariance function

f

Y

a

Y

b

(�) =

1

2�

1

X

h=�1



ab

(h) exp(�i�h) :

The variables Y

a

and Y

b

are uncorrelated at all time lags h i� f

ab

(�) equals zero for all

frequencies.

As we are interested in the partial correlations we need to adjust for the linear e�ects

of the remaining variables on Y

a

and Y

b

. This is done by considering the residual time

series �

a

(t) and �

b

(t) obtained by subtracting all linear inuences of Y

V nfa;bg

from Y

a

(t)

and Y

b

(t), respectively (Brillinger, 1981). The cross{spectrum between the series �

a

and �

b

then yields the partial cross{spectrum of Y

a

and Y

b

, f

Y

a

Y

b

�V nfa;bg

(�) = f

�

a

�

b

(�).

The (partial) cross{spectrum between two vector time series Y

A

and Y

B

, A;B � V ,

can be de�ned in a similar way. The partial spectral coherency is a standardization of

the partial cross{spectrum

R

Y

a

Y

b

�Y

V nfa;bg

(�) =

f

Y

a

Y

b

�Y

V nfa;bg

(�)

h

f

Y

a

Y

a

�Y

V nfa;bg

(�)f

Y

b

Y

b

�Y

V nfa;bg

(�)

i

1=2

: (2)

With these de�nitions, the partial correlation graph of a multivariate time series is

given as the undirected graph G = (V;E), where two vertices a and b are connected

by an undirected edge whenever the partial spectral coherency R

Y

a

Y

b

�Y

V nfa;bg

(�) is not

identical to zero. A missing edge between a and b is denoted by a?bjV n fa; bg and

indicates that the linear relation between these two variables given all the others is zero

at all time lags. This relation between a graph and the partial correlation structure is

known as undirected pairwise Markov property (PU). Under the assumption that the

spectral density matrix is regular for all frequencies, the undirected pairwise Markov

property implies the undirected global Markov property, a stronger property in general.

The latter states that A ? BjS for all subsets A;B; S � V whenever S separates A

and B in G. It is plausible to consider undirected graphs because the residual series are

adjusted not only for the past but also for the future e�ects so that the graph cannot

carry any information on the dynamic dependencies.
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4 Chain graphs and dynamic factor models

In the following we derive what a partial correlation graph of an observed time series

should look like given an underlying factor model. This allows to derive suitable re-

strictions for a factor model from a preliminary data analysis using partial correlation

graphs. Particularly, the resulting graph provides an assistance in identifying the num-

ber and types of factors. Throughout this section we assume that the spectral density

matrix of the multivariate stationary time series Y

V

is regular at all frequencies.

The �rst proposition needed gives a condition which ensures that missing edges in

a subgraph can still be regarded as zero partial correlations within the corresponding

subprocess after marginalizing over the remaining components (see Fried and Didelez,

2003).

Proposition 1. Let G = (V;E) be the partial correlation graph of a multivariate

time series. If the boundary of each connectivity component of B � V is complete

then G

V nB

is not smaller than the partial correlation graph of the subprocess X

V nB

,

i.e. G

V nB

has the same or more edges than the latter. We say that G is collapsible on

to V nB (or over B).

In order to derive partial correlation graphs for time series models with latent vari-

ables we next de�ne partial correlation chain graphs. The idea is that factor models

consist of two building blocks: The �rst one reects the assumptions about the inter-

dependence among the underlying factors; this constitutes the �rst chain component

B(1). Then we model the distribution of the observable variables given the factors;

this constitutes B(2), and the conditional distribution of B(2) given B(1) is speci�ed

by some suitable model.

The implementation of this idea requires the generalization of the notion of a chain

graph to time series. While time series models are often thought to be causal in

time, some time series methods like dynamic principal component analysis (Brillinger,

1981) apply non{causal �lters with non{zero weights for past and future observations.

The following de�nition is designed for the latter case due to our interest for such

latent variable techniques. We de�ne a partial correlation chain graph G = (V;E) by

the pairwise block{recursive Markov property (PB) relatively to a dependence chain

B(1); : : : ; B(k). It states that for any pair a; b of non{adjacent vertices we have

a ? bjC(j

?

) n fa; bg;

where j

?

is the smallest j 2 f1; : : : ; kg with a; b 2 C(j). We consider two further

Markov properties that are commonly used for i.i.d. data. The global chain graph

Markov property (GC) states that A ? B j S for all subsets A, B, S of V such
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that S separates A and B in (G

An(A[B[S)

)

m

, which is the moral graph of the smallest

ancestral subgraph containing A [ B [ S. The pairwise chain Markov property (PC)

states a ? b j nd(a) n fbg whenever a; b are non{adjacent and b 2 nd(a). Obviously, we

have (GC)) (PC)) (PB). In order to prove that these properties are even equivalent,

provided that the spectral density matrix is regular everywhere, we �rst state another

result, which is also interesting in itself.

Proposition 2. If the pairwise chain graph Markov property (PC) is satis�ed with

respect to a partial correlation chain graph G the pairwise undirected Markov property

(PU) is satis�ed w.r.t. G

m

, too.

Proof. Proposition 2 can be proven along the same lines as Lemma 3.33 in Lauritzen

(1996, p. 56f) using Lemma 3.1(ii) in Dahlhaus (2000). It only requires the property

X ? Y j Z ) h(X) ? Y j Z for any component selection function h, which is satis�ed

for zero partial correlation. 2

Proposition 3. If the spectral density matrix is regular everywhere then the block{

recursive Markov property (PB), the pairwise chain Markov property (PC) and the

pairwise global chain graph Markov property (GC) for partial correlation chain graphs

are equivalent.

Proof. Proposition 3 can be proven in the same way as Theorem 3.34 in Lauritzen

(1996, p. 57f) using Lemma 3.1(ii) in Dahlhaus (2000) and Proposition 2. 2

Partial correlation chain graphs are most useful for hierarchical time series models,

of which factor models are a special case. Assume that

Y

B(j)

(t) =

j�1

X

i=1

1

X

h=�1

�

j;i

(h)Y

B(i)

(t� h) + �

B(j)

(t);

�

B(j)

(t) =

p

X

h=1

�

j

(h)�

B(j)

(t� h); j = 1; : : : ; k;

i.e. �

B(j)

follows a VAR{model, where the elements �

j

(h)

b;a

of �

j

(h) denote the inu-

ence of variable a in the regression of b on the other variables. The partial correlation

chain graph of the whole multivariate time series obeying the above model is given

by the following algorithm, where we make use of the results of Dahlhaus (2000) for

VAR{processes:

Construction of partial correlation chain graph.

1. Starting with B(1). Connect each pair (a; b) 2 B(1)�B(1) whenever �

j

(h)

a;b

6= 0

or �

j

(h)

b;a

6= 0 for any h 2 f1; : : : ; pg, or if c 2 B(1) and h

a

; h

b

2 f1; : : : ; pg exist

such that �

j

(h)

c;b

6= 0 and �

j

(h)

c;a

6= 0.

6



2. Draw vertices for the variables in B(2), connect the pairs of variables in B(2) by

a line using an analogous rule as in step 1, and draw an arrow from a 2 B(1) to

b 2 B(2) if (with obvious notation) �

2;1

(u)

b;a

6= 0 for any u 2 Z.

3. Repeat step 2 for B(3); : : : ; B(k) drawing an arrow from a variable a 2 B(i) to a

variable b 2 B(j), j > i, if �

j;i

(u)

b;a

6= 0 for any u 2 Z, and using the rule stated

above for connecting pairs of variables in B(j) by lines.

Proof. To show that this construction is valid we only need to show that steps 1 to

3 are correct for the construction of the partial correlation chain graph, i.e. we have

to prove (PB) for the resulting graph. This can be done by induction on j. The

correctness for j = 1 is veri�ed by Dahlhaus (2000) as �

B(1)

is a VAR(p){process. Now

assume that the statement is true for all j � n. In order to prove correctness for

j = n + 1 let w.l.o.g. b 2 B(n + 1), and assume a 2 C(n + 1) is non{adjacent to b.

As �

b

? Y

C(n)

the regression coeÆcients for variables a 2 C(n) when regressing Y

b

on

Y

C(n+1)nfbg

are given by the elements (�

j;i

(u))

b;a

; u 2 Z. Hence, a ? b j C(n+1)nfa; bg

for any non{adjacent a 2 C(n) follows from Proposition 3 in Fried and Didelez (2002).

The coeÆcients for a 2 B(n+1) are the same as the coeÆcients for a in the regression

of �

b

on Y

B(n+1)nfbg

. As �

b

? f

P

n

i=1

P

1

u=�1

�

j;i

(u)Y

B(i)

(t � u)g these coeÆcients are

zero if the coeÆcients of �

a

in the regression of �

b

on �

B(n+1)nfbg

are zero, and this in

turn is equivalent to �

b

? �

a

j�

B(n+1)nfa;bg

, which proves the result. 2

Now we have all necessary tools available for constructing the partial correlation

graph for the observed variables generated by a dynamic factor model, where k = 2.

A general stationary dynamic factor model is given by

Y

V

(t) =

1

X

h=�1

�(h)X

F

(t� h) + �

V

(t);

with an unobserved factor series and an error series following VAR(p){processes

X

F

(t) =

p

X

h=1

�(h)X

F

(t� h) + �(t); �

V

(t) =

p

X

h=1

�(h)�

V

(t� h) + Æ(t) :

We note that the model in this very general form is not identi�able but it can serve

to investigate which information on the model structure can be gained from partial

correlation graphs without imposing any further restrictions.

First, we have to construct the partial correlation chain graph, according to the

above algorithm, with Y

B(1)

= X

F

, Y

B(2)

= Y

V

. Then we moralize this chain graph,

according to Proposition 2, obtaining the partial correlation graph for (Y

V

; X

F

). Fi-

nally, we marginalize this moral graph w.r.t. X

F

by applying Proposition 1 for all

7



collapsible connectivity components of Y

B

(1) = X

F

and completing the boundaries of

non{collapsible components in Y

B

(2) = Y

V

. This yields the partial correlation graph

G

Y

of Y

V

. It is easy to see that all subgraphs of G

Y

on variables that are a�ected

by the same underlying factor will be complete. Therefore, it is straight forward to

detect possible factors from the partial correlation graph of the observable time series

by identifying such complete subsets. However, the identi�cation of common factors

can be obscured since dependencies within the error process �

V

(t) can cause additional

edges in G

Y

. Nevertheless, it seems reasonable to attribute strong relations to the

factors and weaker ones to the errors.

5 Application to physiological time series

The ideas of the previous section are now applied to detect the partial linear relations

and underlying factors in the physiological time series mentioned in the introduction.

To begin with, the cross{spectra are estimated from the data, and then the partial

spectral coherencies are computed using equation (2). For our calculations we use the

program \Spectrum" (Dahlhaus and Eichler, 2000) which is based on a nonparametric

kernel estimator. In this �rst step, the partial spectral coherencies are estimated in the

saturated model.

As relations among (physiological) variables may have di�erent strengths we classify

the empirical partial relations into strong (S), moderate (M), weak (W) and negligible

(N) partial correlation on the basis of the area under the estimated partial spectral

coherence. This area can be measured by the partial mutual information between Y

a

and Y

b

,

�

1

2�

Z

logf1� jR

Y

a

Y

b

�Y

V nfa;bg

(�)j

2

gd�

The resulting partial correlation graph is shown in Figure 1 with distinct edges for

di�erent classi�cations and negligible edges being omitted.

In a second step, we verify the obtained graph by exploiting its collapsibility prop-

erties such as described in Proposition 1 (cf. also Fried and Didelez, 2003). Consider

a missing edge (a; b): If G is the partial correlation graph for Y

V

then Y

V

also satis�es

the pairwise Markov property w.r.t. the graph G

0

with cl(a) as well as bd(a)[fbg made

complete. Then Proposition 1 applies to G

0

with B = V n (cl(a)[fbg) and we �nd that

an edge between a and b is missing in G if it is missing in G

0

A

, where A = (cl(a)[fbg).
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APD

HR

PAPD

Puls

CVP

Temp

APS

PAPM

PAPS

SPO2

APM

moderate

weak

strong

APD

HR

PAPD

Puls

CVP

Temp

APS

PAPM

PAPS

SPO2

APM

moderate

weak

strong

Figure 1: Partial correlation graph for hemodynamic system, one-step selection (left)

and �nal selection (right).

Therefore, we can restrict testing the existence of an edge (a; b) to the subprocess Y

A

.

This allows to double{check the previous classi�cations in a stepwise procedure (Fried

and Didelez, 2003). However, we do not change the initial classi�cation by more than

one class.

Since false omission of an edge is more serious than false inclusion because it induces

more restrictions than supported by the data, we start by verifying the edges classi�ed

as (N). We can e.g. check the missing edges (HR;APD), (HR;APM) and (HR;APS)

applying Proposition 1 to fAPM;APD;APS;HR; SPO2g. We �nd that only the

partial mutual information for (HR;APM) is increased while the others remain about

the same. Therefore, we reclassify this edge as (W). A similar argument leads to the

reclassi�cation of the edges (APM;PULS), (APM;PAPM) and (APM;CV P ) as

(W).

Next we look at the edges in (W). We �nd the partial mutual information for

(CV P;HR) to be very small when considering the subgraph on fCV P;HR; PULS; SPO2; APMg.

Hence, we reclassify this edge as (N). Similarly, we �nd (SPO2; PULS) and (APS; SPO2)

to be negligible based on fSPO2; PULS;HR;CV P; TEMPg and fAPS; SPO2; T emp; Puls;HRg.

Since we could eliminate some edges in the previous step we obtain more graph sep-

arations, that can be used for further double{checking. In particular, we re{investigate

the relations between CV P and the pulmonary pressures based on fCV P; SPO2; T emp; PAPxg

with PAPx 2 fPAPD; PAPM;PAPSg, where APM has to be included when PAPx =

PAPM . We �nd all these edges to be signi�cant and the partial mutual information

to be much higher for (CV P; PAPx) than e.g. for (CV P; SPO2). This suggests that

conditioning on the other pulmonary pressures hides some of the relations, in particular

those to CV P . Indeed, the pulmonary arterial pressures and CV P are jointly denoted

as intrathoracic pressures because of their well{known physiological association.

Further double{checking of the remaining edges does not lead to any more alterations

9



of the graph. The �nal model found by our stepwise search is also depicted in Figure

1. It shows strong relations among the arterial pressures, among the heart rate and the

pulse, as well as among the intrathoracic pressures. In addition, there are some weak

relations. The strong relation between SPO2 and Temp is caused by a systematic

error of the measurement instruments, which the physicians were unaware of before.

The other results agree with medical knowledge.

Disregarding the edges classi�ed as (W), the �nal partial correlation graph consists

of four complete subgraphs, just like the partial correlation graph for a dynamic factor

model with four independent factors. This seems to justify the assumption of a separate

factor for each of these groups of variables, respectively. As we believe the relation

between Temp and SPO2 to be a measurement artifact, we also treat them separately.

When applying the Pe~na{Box dynamic factor model to the clusters of variables

identi�ed above we �nd one factor to be suÆcient for each group. The resulting factor

loadings are provided in Table 2, and a comparison of the residual variances for the

factor model for all variables and the `partitioned' factor model is given in Table 3.

Most of the variables are explained almost equally well by both models. The residual

variance in the simpler partitioned model is substantially larger for CVP, only. If we

assume two factors for the group of intrathoracic pressures we �nd the second factor

to be essentially the di�erence between PAPS and CVP.

6 Conclusion

Statistical methods for dimension reduction aim at condensing the information pro-

vided by a high{dimensional time series into a few essential variables. In this regard,

partial correlation graphs are a suitable tool: On the one hand, they help to explore

the relations among the observable variables. On the other hand, they can be used to

identify suitable rotations of the loading matrices in dynamic factor analysis, or even

to partition the variables according to clusters of closely related variables. With this

kind of information we can identify meaningful and interpretable factor models as we

have demonstrated in the present paper. This is particularly important as automatic

rotations are diÆcult to apply when a more complicated dynamic factor model with

non-zero loadings at various time lags is used. However, very strong relations among

some of the variables may hide other, weaker relations or even cause spurious relations,

thus misleading the initial analysis of the partial correlation structure. Using the step-

wise selection procedure suggested by Fried and Didelez (2003), and further re�ned
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Table 2: Left: Factor loadings for physiological time series after varimax rotation. The

�rst rotated factor can be identi�ed mainly with the intrathoracic pressures (PAPx and

CVP), the second with HR and Puls, the third with the arterial pressures, the fourth

with the temperature and the �fth with SPO2. Right: Factor loadings for `partitioned

factor model'.

Var. fac. 1 fac. 2 fac. 3 fac. 4 fac. 5 fac. 1 fac. 2 fac. 3 fac. 4 fac. 5

PAPS .380 -.142 -.016 -.031 -.346 .484 0 0 0 0

PAPM .558 -.001 .041 -.067 -.049 .565 0 0 0 0

PAPD .582 .041 -.001 .003 .145 .510 0 0 0 0

CVP .424 .048 -.047 .413 -.004 .432 0 0 0 0

APS .002 -.102 .592 -.046 .273 0 .530 0 0 0

APM .039 .018 .604 -.025 -.015 0 .622 0 0 0

APD -.037 .092 .535 .085 -.276 0 .577 0 0 0

HR .008 .690 .011 .003 .003 0 0 .702 0 0

Puls .001 .698 -.003 -.010 .015 0 0 .712 0 0

Temp -.138 -.036 .023 .909 .014 0 0 0 1 0

SPO2 .084 -.015 -.010 .011 .844 0 0 0 0 1

Table 3: Percentage of non{explained variation: Factor model (top), partitioned factor

model (bottom).

PAPS PAPM PAPD CVP APS APM APD HR Puls Temp SPO2

0.268 0.041 0.181 0.199 0.146 0.024 0.168 0.022 0.019 0.053 0.128

0.309 0.070 0.234 0.412 0.271 0.027 0.227 0.013 0.012 0.000 0.000
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here, seems a promising alternative.
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