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Abstract

We consider the design problem for the estimation of several scalar measures sug-
gested in the epidemiological literature for comparing the success rate in two samples.
The designs considered so far in the literature are local in the sense that they depend
on the unknown probabilities of success in the two groups and are not necessarily ro-
bust with respect to their misspecification. A maximin approach is proposed to obtain
efficient and robust designs for the estimation of the relative risk, attributable risk and
odds ratio, whenever a range for the success rates can be specified by the experimenter.
It is demonstrated that the designs obtained by this method are usually more efficient
than the uniform design, which allocates equal sample sizes to the two groups.

Keywords and Phrases: two by two table, odds ratio, relativ risk, attributable risk, optimal

design, efficient design

1 Introduction

The analysis of two by two tables is an important tool in many epidemiological studies [see

e.g. Rothman and Greenland (1998)]. For the typical situation of comparing two dichotomous

variables analytic methods for planning the sample size have been derived by Haseman (1978).
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If the total sample size is fixed a primary objective of experimental design is to determine

the sample sizes for the two groups, which increase the efficiency of the statistical analysis.

Walter (1977a,b) derived an expression for the optimal sampling ratio in a case-control study

by minimizing the asymptotic variance of the estimator for the log of the odds ratio for a

fixed total sample size. This author pointed out that the equal allocation to both treatments

provides a simple and efficient design for the experiment in many cases. However, if cost

considerations have to be taken into account unequal sample sizes may be preferred [Walter

(1977b)]. Therefore other authors combine cost and statistical considerations in one opti-

mality criterion to find efficient designs [see Miettinen (1969), Meydrech and Kupper (1978),

Morgenstern and Winn (1983) or Moussa (1986) among others]. As pointed out by Kalish

and Begg (1987) all of these optimal designs are local in the sense of Chernoff (1953), because

they depend on unknown model parameters and the implementation in practice requires prior

parameter estimates or some form of sequential design. However, there are many situations,

where neither preliminary information regarding the unknown parameters is available, nor

sequential designs are applicable.

Morgenstern and Winn (1986) mentioned that a design with equal allocation to both exposures

is not robust, if cost considerations have to be taken into account and the parameters have

been misspecified. In such cases some care is necessary with the application of locally optimal

designs, because these can be rather inefficient under misspecification of the initial parameters.

Recently Matthews (1999) considered a Bayesian approach to find efficient and robust designs

for the estimation of the odds ratio in a two by two table. For a normal distributed prior

this author determined explicit formulas for the optimal allocation of the subjects to the two

groups. The locally optimal design problems appear as a special case by using one point

priors and the equal allocation rule is not necessarily efficient if there is uncertainty for the

estimation of the log-odds ratio.

The present paper has two goals. On the one hand we are interested in the construction of

efficient and robust designs for risk estimation in situations, where only very vague information

is available, which can not be used for the specification of a prior distribution for a Bayesian

approach. On the other hand we want to combine statistical and cost considerations in

the construction of optimality criteria, which do not require specific preliminary information

about the unknown parameters. We adopt a minimax approach to determine robust and

efficient designs for the estimation of the odds ratio, the relative and attributable risk. It is

demonstrated that the new minimax designs are usually preferable to the designs which use

equal sample sizes in both groups. While this superiority is moderate (but still visible) if cost

considerations have not to be taken into account, the improvement is substantial if different

costs of sampling within the comparison groups are experienced. In Section 2 we introduce

the necessary notation and demonstrate that all estimation problems yield to the same type

of optimal design problem. We find the locally optimal designs and investigate the efficiency

of the equal allocation design. In Section 3 the minimax optimality criterion is proposed and

2



robust and efficient designs are determined. The new designs are compared with the equal

allocation rule in two examples and its superiority is demonstrated. Finally, some technical

details are discussed in Section 4.

2 Locally optimal designs for two by two tables

Suppose that X1, X2 are two independent responses with Xi ∼ B(ni, pi), where ni is a known

number of trials and pi ∈ (0, 1) is an unknown success probability (i = 1, 2). Among the

many scalar measures suggested in the epidemiological literature [see e.g. Walter (1976)] we

consider three important measures. The attributable risk is defined as

Δ = Δ(p1, p2) = p1 − p2(2.1)

and varies in the interval (−1, 1), while the relative risk

ρ = ρ(p1, p2) =
p1

p2
(2.2)

and the odds ratio

ψ = ψ(p1, p2) =
p1(1 − p2)

p2(1 − p1)
(2.3)

range over the interval (0,∞). The basis for the determination of optimal designs is the approx-

imate normal distribution (if n1, n2 → ∞) of the common estimate (p̂1, p̂2) = (X1/n1, X2/n2),

that is

√
n
{(

p̂1

p̂2

)
−

(
p1

p2

)} D−→ N
(
0,

( p1(1−p1)
w

0

0 p2(1−p2)
1−w

))
,

where n = n1 + n2 denotes the total sample size and

w = lim
n1,n2→∞

n1

n
∈ (0, 1)(2.4)

is the asymptotic proportion of observations in the first sample. In observational studies the

problem of an optimal design therefore corresponds to the choice of w ∈ (0, 1) such that one

gets most efficient estimates of the risk measures (2.1) - (2.3). If Δ̂ = Δ(p̂1, p̂2), ρ̂ = ρ(p̂1, p̂2)

and ψ̂ = ψ(p̂1, p̂2) denote the usual estimates of Δ, ρ and ψ, respectively, then an optimal

design minimizes the corresponding asymptotic variances. A straightforward application of

the Delta-method shows that these are given by (up to the factor 1/n)

Φ−1
Δ (p1, p2, w) = p1(1 − p1)

{ 1

w
+
p2(1 − p2)

p1(1 − p1)

1

1 − w

}
,(2.5)

Φ−1
ρ (p1, p2, w) = p1(1−p1)

p22

{ 1

w
+
p1(1 − p2)

p2(1 − p1)

1

1 − w

}
,(2.6)

Φ−1
ψ (p1, p2, w) = p1(1−p2)2

(1−p1)3p22

{ 1

w
+
p1(1 − p1)

p2(1 − p2)

1

1 − w

}
,(2.7)
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where the lower index Δ, ρ or ψ of the function Φ corresponds to the different risk measure.

We call an allocation rule w ∈ (0, 1) locally optimal design for a specific risk measure if

it maximizes the corresponding inverse variance Φx(p1, p2, w), where the index x ∈ {Δ, ρ, ψ}
reflects the risk measure under consideration. Usually for risk ratio estimation the logarithmic

transformation of the odds ratio is recommended [see e.g. Rothman and Greenland (1998)]

but this transformation has no effect on the construction of optimal designs because the

corresponding asymptotic variance is obtained by multiplying Φ−1
ψ with a constant, which is

independent of w. Therefore, only the odds ratio is considered here and the optimal designs

for estimating the log of the odds ratio coincide with the designs maximizing Φψ. Note that

all criteria are of the same structure and consequently locally optimal designs can be found by

minimizing one function [see the proofs in Section 4]. The following results gives the (locally)

optimal designs and is proved in the Appendix.

Lemma 2.1. The locally optimal design for estimating the risk Δ, ρ and ψ allocates w∗
x ·100%

of the observations to the first exposure, where

w∗
Δ =

√
p1(1 − p1)√

p2(1 − p2) +
√
p1(1 − p1)

(attributable risk)

w∗
ρ =

√
p2(1 − p1)√

p1(1 − p2) +
√
p2(1 − p1)

(relative risk)

w∗
ψ =

√
p2(1 − p2)√

p1(1 − p1) +
√
p2(1 − p2)

(odds ratio)

It is interesting to note the optimal allocation for estimating the relative risk depends on the

(unknown) odds ratio, i.e. w∗
ρ = (1+

√
ψ)−1. Moreover, the optimal allocations for estimating

the attributable risk and the odds ratio satisfy w∗
Δ = 1−w∗

ψ, and we expect that the optimal

designs for estimating these risk measures are quite different. For example if p1 = 0.1, p2 = 0.4

we obtain for the optimal allocation for estimating the attributable risk w∗
Δ ≈ 37.9% while

this quantity is w∗
ψ ≈ 62.1% for the estimation of the odds ratio.

For a given design w ∈ (0, 1) define

effx(p1, p2, w) =
Φx(p1, p2, w)

max
η∈(0,1)

Φx(p1, p2, η)
=

Φx(p1, p2, w)

Φx(p1, p2, w∗
x)

(2.8)

as the efficiency for estimating the risk x ∈ {Δ, ρ, ψ}. Note that effx(p1, p2, w) ∈ [0, 1] measures

the performance of the allocation of w · 100% of the observations to the first exposure, if p1

and p2 would be the “true” parameters. Our next result shows that the commonly used equal

allocation rule w = 1/2 has at least efficiency 50%, independent of the particular risk measure.

Lemma 2.2. The equal allocation design with w = 1/2 satisfies

effx(p1, p2,
1

2
) =

(1 +
√
x̃)2

2(1 + x̃)
≥ 1

2
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for all p1, p2 ∈ (0, 1) independently of the risk measure x ∈ {Δ, ρ, ψ}, where x̃ is defined by

x̃(p1, p2) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p2(1 − p2)

p1(1 − p1)
if x = Δ (attributable risk)

p1(1 − p2)

p2(1 − p1)
if x = ρ (relative risk)

p1(1 − p1)

p2(1 − p2)
if x = ψ (odds ratio).

(2.9)

Moreover,

effΔ(p1, p2,
1

2
) = effψ(p1, p2,

1

2
).

Walter (1977a) recommends the equal allocation design for the estimation of the odds ratio

because he argued that there is little loss in precision with use of an equal number of cases or

non-cases. Lemma 2.2 partially confirms these findings. Moreover, it follows from the proof

of Lemma 2.2 that in the case of estimating the odds ratio and the attributable risk the lower

bound is only attained if the quantity p2(1−p2)/p1(1−p1) is very small or very large. A similar

observation can be made for the quantity p1(1−p2)/p2(1−p1) for the problem of estimating the

relative risk. Consider for example this problem and assume that the true but unknown success

probabilities are p1 = 0.1 and p2 = 0.3, which gives for the odds ratio ψ = 7/27 ≈ 0.259. In

this case the equal allocation of subjects to both groups has efficiency 90.43 % for estimating

the relative risk. On the other hand in the more extreme case p1 = 0.05, p2 = 0.5 we have

ψ = 1/19 ≈ 0.052 and the efficiency of this design would be about 71.79 %. Thus the use

of equal allocation of subjects to the different groups can be recommended in many but not

all cases. In general the performance of the design depends sensitively on the probabilities

of success, which are not known before experiments have been carried out. Moreover, it was

pointed out by Walter (1977b) and Morgenstern and Winn (1983) that unequal sampling sizes

should be preferred when different costs of sampling within the different comparison groups

are experienced. Optimality criteria which incorporate cost considerations were considered

by Miettinen (1969), Morgenstern and Winn (1983) among others. Following the lastnamed

authors we consider the function

αx(p1, p2, γ, w) =
Φx(p1, p2, w)

w + γ(1 − w)
(2.10)

as optimality criterion, where x ∈ {Δ, ψ, ρ} corresponds to the particular risk measure, the

function Φx is defined in (2.5) - (2.7) and γ is the unit cost ratio comparing exposed with

unexposed subjects. An (locally) optimal design for the risk measure x now maximizes the

function αx(p1, p2, γ, w) with respect to w ∈ [0, 1]. The following result is the analogue of

Lemma 2.1 and Lemma 2.2 and specifies the locally optimal designs if cost considerations

have to be taken into account.
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Lemma 2.3. The locally optimal design maximizing the function αx allocates w∗
x · 100% of

the subjects to the first exposure, where

w∗
Δ =

√
γp1(1 − p1)√

γp1(1 − p1) +
√
p2(1 − p2)

(attributable risk)

w∗
ρ =

√
γp2(1 − p1)√

γp2(1 − p1) +
√
p1(1 − p2)

(relative risk)

w∗
ψ =

√
γp2(1 − p2)√

γp2(1 − p2) +
√
p1(1 − p1)

(odds ratio).

Moreover, the efficiency

effx(p1, p2, γ, w) =
αx(p1, p2, γ, w)

maxη∈(0,1) αx(p1, p2, γ, η)
=

αx(p1, p2, γ, w)

αx(p1, p2, γ, w∗
x)

(2.11)

of the equal allocation design w = 1/2 satisfies

effx(p1, p2, γ,
1

2
) =

(1 +
√
γx̃)2

(1 + γ)(1 + x̃)
≥

{
1

1+γ
if γ ≥ 1

γ
1+γ

if γ ≤ 1
,

where x̃ is defined in (2.9).

Lemma 2.3 indicates that the equal allocation design is more sensitive with respect to misspec-

ification of the unknown success probabilities if cost considerations have to be taken into ac-

count. Consider for example the situation of the previous paragraph, where p1 = 0.1, p2 = 0.3,

if the relative costs are given by γ = 9, then the locally optimal designs is given by w∗
ρ ≈ 85.5%

and the efficiency of the equal allocation design (locally optimal for p1 = 0.5 and p2 = 0.1)

for both groups is 50.7% for the estimation of the relative risk.

3 Robust designs

As pointed out in the previous sections the locally optimal designs depend on the unknown

parameters p1, p2, which are not known before any experiments have been performed. In

many cases these designs are not robust with respect to misspecification of the probabilities

of success. For example the design which uses equal sample sizes for both groups is locally

optimal for estimating Δ, ρ and ψ if p1 = p2 and no cost considerations have to be taken into

account (i.e. γ = 1). However, if the probabilities of success are of different size or if different

costs of sampling with different groups are experienced this design is not necessarily efficient

any more.

For these reasons we propose a maximin approach for the construction of robust and efficient

designs, which determines the proportion of total observations w in the first sample such that

min{effx(p1, p2, γ, w) | (p1, p2) ∈ P}(3.1)
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is maximal. Here P ⊂ [0, 1] × [0, 1] is a certain region for the unknown success probabilities,

which has to be specified by the experimenter (the locally optimal designs are obtained by

using one point sets). The problem of maximizing a minimum of efficiencies has been con-

sidered by several authors in different contexts [see e.g. Dette (1997) or Imhof (2001) among

others]. A design maximizing the function in (3.1) will be called maximin optimal design. Be-

cause maximizing the function (3.1) considers the worst scenario over the set P, this approach

yields efficient estimates, whenever the unknown success probabilities satisfy (p1, p2) ∈ P. The

following result specifies the maximin optimal designs.

Theorem 3.1. Assume that P is compact and define

x = min{x̃(p1, p2) | (p1, p2) ∈ P}
x̄ = max{x̃(p1, p2) | (p1, p2) ∈ P},

where x̃ corresponds to the particular risk measure under consideration and is defined in

(2.9). The maximin optimal design for estimating the risk measure x allocates w∗
x,x̄ · 100% of

the subjects to the first exposure, where

w∗
x,x̄ =

√
γ(2 +

√
xγ +

√
x̄γ)

(
√
x+

√
x̄)(1 + γ) + 2

√
γ(1 +

√
xx̄)

.(3.2)

Moreover, for all (p1, p2) ∈ P the efficiency of the maximin optimal design satisfies

effx(p1, p2, γ, w
∗
x,x̄) ≥

{
1 − 2

2 +
√
γx+

√
γx̄

+

√
x+

√
x̄

√
x+

√
x̄+ 2

√
xx̄γ

}−1

.

The optimal designs can easily be found by a hand calculator as soon as x and x̄ have been

specified. Some designs are given in Table 3.1 and 3.2 for various values of x and x̄ for

the sake of quick reference. Note that the function x̃ in (2.9) is different for the three risk

measures, and consequently for a fixed set P ⊂ [0, 1]×[0, 1] the quantities x and x̄ are changing

with the different problems of estimating the attributable, relative risk and the odds ratio.

Nevertheless, the tables can be used for all three risk measures. In the following discussion

we illustrate the application of Theorem 3.1. We study two typical examples to demonstrate

that maximin optimal designs should usually be preferred to the uniform allocation rule.
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x
∖

x̄ 0.01 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0

0.01 .909 .800 .761 .736 .718 .705 .679 .662 .648 .638 .629 .621 .609 .599

0.2 .691 .652 .627 .609 .595 .570 .553 .539 .528 .520 .512 .500 .490

0.4 .613 .588 .570 .566 .531 .513 .500 .489 .480 .473 .460 .451

0.6 .563 .546 .532 .506 .488 .475 .465 .456 .448 .436 .427

0.8 .528 .514 .489 .471 .458 .447 .438 .431 .418 .409

1.0 .500 .474 .457 .443 .433 .424 .417 .405 .395

1.5 .449 .432 .418 .408 .399 .391 .379 .369

2.0 .414 .401 .390 .381 .374 .362 .352

2.5 .387 .377 .368 .354 .348 .339

3.0 .366 .357 .350 .337 .328

3.5 .348 .341 .329 .319

4.0 .333 .321 .311

5.0 .309 .299

6.0 .289

Table 3.1. Maximin optimal designs for various ranges [x, x̄] and cost efficiency γ = 1. The value
w∗
x,x̄ in the table gives the relative proportion of total observations to the first exposure.

x
∖

x̄ 0.01 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0

0.01 .876 .734 .684 .653 .630 .613 .581 .559 .542 .529 .518 .508 .493 .481

0.2 .613 .569 .541 .522 .506 .479 .460 .445 .433 .424 .415 .402 .392

0.4 .528 .502 .483 .469 .442 .424 .410 .399 .390 .382 .369 .359

0.6 .477 .459 .445 .419 .402 .388 .377 .368 .361 .348 .339

0.8 .442 .428 .403 .385 .372 .362 .353 .345 .333 .324

1.0 .414 .390 .372 .360 .349 .341 .333 .321 .312

1.5 .366 .349 .337 .327 .319 .312 .300 .291

2.0 .333 .321 .311 .303 .296 .285 .276

2.5 .309 .299 .291 .285 .274 .265

3.0 .290 .282 .275 .270 .256

3.5 .274 .268 .257 .249

4.0 .261 .250 .242

5.0 .240 .232

6.0 .224

Table 3.2. Maximin optimal designs for various ranges [x, x̄] and cost efficiency γ = 0.5. The value
w∗
x,x̄ in the table gives the relative proportion of total observations to the first exposure.
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Figure 3.1: Efficiencies of the equal allocation design (dotted line) and the maximin optimal

optimal design for estimating the odds ratio. The maximin optimal design is calculated under

the assumption that p1 ∈ [0.2, 0.7]; p2 ∈ [0.05, 0.55], which yields x̃(p1, p2) ∈ [0.64, 5.26]. Left

panel: cost efficiency γ = 1, right panel: γ = 0.5.

Example 3.3. Consider the problem of estimating the odds ratio and assume that the experimenter
has some preliminary knowledge about the unknown probabilities of success, that is

(p1, p2) ∈ P1 := [0.2, 0.7] × [0.05, 0.55].(3.3)

For the calculation of the maximin optimal designs for the estimation of the odds ratio we note (2.9)
and determine

x = min
{p1(1 − p1)

p2(1 − p2)
| (p1, p2) ∈ P1

}
= 0.64,

x̄ = max
{p1(1 − p1)

p2(1 − p2)
| (p1, p2) ∈ P1

}
= 5.26,

and an application of Theorem 3.1 yields w∗
0.64,5.26 = 34.23% in the case γ = 0.5 and w∗

0.64,5.26 =
42.95% in the case γ = 1. These numbers have been directly obtained from formula (3.2). If Table
3.2 and 3.1 are used we get the estimates 34.8 % and 43.6 % for these proportions. The efficiencies
of the equal allocation rule and the maximin optimal design are depicted in Figure 3.1 for the cost
efficiencies γ = 1 and γ = 0.5, where the x̃(p1, p2) = p1(1−p1)

p2(1−p2) varies between x and x̄. Note that
the equal allocations design is locally optimal for x̃ = 1 in the case γ = 1 and for x̃ = 0.707
in the case γ = 0.5. If γ = 1, the equal allocation design has a slightly better performance if
x̃ = x̃(p1, p2) = p1(1 − p1)/p2(1 − p2) varies between 0.64 and 1.0 (approximately 4 %), but is
substantially less efficient for large values of x̃(p1, p2) > 1.3. The situation for the case γ = 0.5 is
quite similar, where we observe even stronger advantages for the maximin optimal design [see the
right panel in Figure 3.1]. If x̃ < 0.8 the maximin optimal design is at most 5 % less efficient, in
the region x̃ ∈ [0.8, 1.1] the designs are comparable while for x̃ > 1.1 the application of the maximin
optimal design would yield substantial advantages. Thus in these cases the equal allocation rule can
only be recommended if x(p1, p2) < 1.1. However, with this additional information the performance
of the maximin optimal design can even be improved using a smaller set P1 for the construction of

9



the maximin optimal design. Consider for example the case x̃ ∈ [0.64, 1.1] and the maximin optimal
design w∗

0.64,1.1 = 43.51%(γ = 1) and w∗
0.64,1.1 = 52.18%(γ = 0.5). The corresponding efficiencies of

the maximin and uniform design are shown in Figure 3.2. In the case γ = 1 there are no essential
differences, while in the case γ = 0.5 the maximin optimal design is nearly uniformly more efficient
than the equal allocation rule.

0.7 0.8 0.9 1.1

0.995

0.996

0.997

0.998

0.999

0.7 0.8 0.9 1.1

0.965

0.97

0.975

0.98

0.985

0.99

0.995

Figure 3.2: Efficiencies of the equal allocation design (dotted line) and the maximin optimal

design for estimating the odds ratio. The maximin optimal design is calculated under the

assumption that x̃(p1, p2) ∈ [0.64, 1.1]. Left panel: cost efficiency γ = 1, right panel: γ = 0.5.

Example 3.4. We have investigated several other examples, where we observed a similar superiority
of the maximin optimal designs. Examplarily, we discuss the problem of estimating the relative risk
with cost efficiency γ = 1 and γ = 0.5. Assume that the range

P2 = [0.6, 0.9] × [0.2, 0.4]

could be specified by the experimenter for the unknown success probabilities (p1, p2). In this case
we obtain x = 0.17 und x̄ = 36 and for equal cost efficiencies the maximin optimal design allocates
42.26% of the observations to the exposure. The corresponding efficiencies are depicted in the left
panel of Figure 3.3. The loss of efficiency of the equal allocation rule can be substantial, if x(p1, p2) =
p1(1 − p2)/p2(1 − p1) is large. On the other hand the minimal efficiency of the maximin optimal
design is approximately 80% if x̃ ∈ [0.17, 36] and therefore this design yields efficient estimates over
the whole range P2. If the cost efficiency is γ = 0.5 we obtain w∗

0.17,36 = 31.87%, the superiority of
the maximin optimal design is even more visible and illustrated in the right panel of Figure 3.3.
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Figure 3.3: Efficiencies of the equal allocation design (dotted line) and the maximin optimal

design for estimating the relative risk. The maximin optimal design is calculated under the

assumption that p1 ∈ [0.6, 0.9]; p2 ∈ [0.2, 0.4], which yields x̃(p1, p2) ∈ [0.17, 36]. Left panel:

cost efficiency γ = 1, right panel: γ = 0.5.

4 Appendix: proofs

Note first that all results can be obtained by maximizing the function

h(x̃, γ, w) =
{(

w + γ(1 − w)
)( 1

w
+

x̃

1 − w

)}−1
,(4.1)

where the parameter x̃ = x̃(p1, p2) is defined in (2.9) and corresponds to the specific risk measure
under consideration and γ is the cost efficiency.

Proof of Lemma 2.1, 2.2 and 2.3. Lemma 2.1 and 2.2 are obtained from Lemma 2.3 for the
special choice γ = 1. For the proof of Lemma 2.3 we maximize the function h(x̃, γ, w) with respect
to w and obtain

w∗
x̃ =

√
γ

√
γ +

√
x̃

,

which gives the locally optimal designs in Lemma 2.1 (γ = 1) and Lemma 2.3. The cost efficiency
defined by (2.11) is then given by

eff(x̃, γ, w) :=
h(x̃, γ, w)
h(x̃, γ, w∗

x̃)
=

(1 +
√

γx̃)2(
w + γ(1 − w)

)(
1
w + x̃

1−w
) .(4.2)

For the equal allocation design w = 1/2 we obtain

eff(x̃, γ,
1
2
) =

(1 +
√

γx̃)2

(1 + γ)(1 + x̃)
,

which has minimal value 1/(1 + γ) if γ ≥ 1 (x̃ → ∞) and minimal value γ/(1 + γ) if γ ≤ 1 (x̃ → 0).
�
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Proof of Theorem 3.1. Recalling the definition of the maximin criterion in (3.1), (4.1) and (4.2)
it follows that

min{effx(p1, p2, γ, w) | (p1, p2) ∈ P} = min
x̃∈[x,x̄]

eff(x̃, γ, w),(4.3)

where eff(x̃, γ, w) is defined in (4.2). Therefore the maximin optimal design can be found by maxi-
mizing the right hand side of (4.3) with respect to w. A straightforward calculation shows that

∂

∂x̃

(
log(eff(x̃2, γ, w)

)
= 2

(x̃ +
√

γ)w −√
γ

(1 +
√

γx̃)(w − 1 − wx̃)
,

which vanishes only at the point x̃ =
√

γ(1 − w)/w. A similar calculation of the second derivative
yields

∂2

∂2x̃
log(eff(x̃2, γ, w))

∣∣∣∣x̃=√
γ(1−w)

w

=
2w3

(w − 1)(w + γ(1 − w))2
< 0.

Consequently it follows that the function eff(x̃, γ, w) has at most one local extremum in the interval
[x, x̄], which is a local maximum. Therefore we have

min
x̃∈[x,x̄]

eff(x̃, γ, w) = min{eff(x, γ,w), eff(x̄, γ, w)},(4.4)

and we will show in the following that for the maximin optimal design w∗
x,x̄, the minimum on the

right hand side is attained for x̃ = x and x̃ = x̄, i.e.

eff(x, γ,w∗
x,x̄) = eff(x̄, γ, w∗

x,x̄).(4.5)

If this fact has been proven the last equation determines the optimal allocation to the first exposure
w∗
x,x̄ as

w∗
x,x̄ =

√
γ(2 +

√
xγ +

√
x̄γ)

(
√

x +
√

x̄)(1 + γ) + 2
√

γ(1 +
√

xx̄)
,

which completes the first part of the theorem. The assertion regarding the cost efficiency follows by
a straightforward calculation.
In order to prove (4.5) we can split the maximization of the right hand side of (4.4) in the maxi-
mization over the sets

M< =
{

w ∈ [0, 1] | eff(x, γ,w) < eff(x̄, γ, w)
}

,

M> =
{

w ∈ [0, 1] | eff(x, γ,w) > eff(x̄, γ, w)
}

,

M= =
{

w ∈ [0, 1] | eff(x, γ,w) = eff(x̄, γ, w)
}

.

Now assume that w∗
x,x̄ ∈ M<. In this case we obtain w∗

x,x̄ =
√

γ/(
√

γ +
√

x) and by the definition of
M< the inequality

eff(x, γ,

√
γ√

γ +
√

x
) < eff(x̄, γ,

√
γ√

γ +
√

x
).

But this inequality is equivalent to √
γ(
√

x −√
x̄)2 < 0,

12



which yields a contradiction. A similar argument for the set M> shows that the maximum is attained
in M=, which establishes (4.4) and completes the proof.

�
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