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Abstract

In the classical linear regression model the problem of testing for symmetry of the
error distribution is considered. The test statistic is a functional of the difference between
the two empirical distribution functions of the estimated residuals and their counterparts
with opposite signs. The weak convergence of the difference process to a Gaussian process
is established. The covariance structure of this process depends heavily on the density of
the error distribution, and for this reason the performance of a symmetric wild bootstrap
procedure is discussed in asymptotic theory and by means of a simulation study.
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1 Introduction

Consider the linear model

Yni = xT
niβ + εni (i = 1, . . . , n)(1.1)

where β ∈ IRp denotes the unknown parameter and the errors εni are assumed to be independent

and identically distributed with E[εni] = 0. Throughout this paper let Xn ∈ R
n×p denote the
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design matrix in the linear model, where the vector xT
ni = (xni1, . . . , xnip) corresponds to the

ith row of the matrix Xn and is not random. In this paper we are interested in the problem of

testing the hypotheses

H0 : F (y) = 1 − F (−y) for all y ∈ IR vs H1 : F (y) �= 1 − F (−y) for some y ∈ IR(1.2)

where F is the distribution function of the random variables εni. As pointed out by Bickel (1982)

the assumption of symmetry in the linear regression model (1.1) is of importance because in

this case asymptotically efficient adaptive estimates for the parameter β in the linear model

(1.1) exist. The problem of testing symmetry of the unknown distribution of the residuals in

regression models has been considered by numerous authors in the literature for various special

cases of regression models. Most of the literature concentrates on the problem of testing the

symmetry of the distribution of an i.i.d. sample about an unknown mean [see for example

Bhattacheraya, Gastwirth and Wright (1982), Aki (1981), Koziol (1985), Schuster and Barker

(1987) or Psaradakis (2003) among many others]. Recently, Fan and Gencay (1999) and Ahmad

and Li (1997) proposed tests for this problem in the linear model (1.1), which are based on

kernel density estimates from the estimated residuals. Fan and Gencay’s (1999) test is based on

an affinity measure between the density f of the error distribution and its reflection. Ahmad

and Li (1997) transferred an approach of Rosenblatt (1975) for testing independence to the

problem of testing symmetry in a linear model with homoscedastic errors. This test depends

on a smoothing parameter h required for the density estimation of the error distribution and

is consistent against alternatives converging to the null hypothesis at a rate (n
√
h)−1/2, where

n denotes the sample size. The resulting test is attractive from a practical point of view

because the corresponding test statistic can easily be calculated and is asymptotically normal

distributed. However, the performance of the test is very sensitive with respect to the choice of

the bandwidth h and the test cannot detect alternatives converging to the null at a rate n−1/2.

We actually construct a test for symmetry in the linear model (1.1) which does not depend on

a smoothing parameter and can detect alternatives converging to the null at a rate n−1/2. For

this we consider the empirical process

Sn(y) := F̂n(y) + F̂n(−y−) − 1 =
1

n

n∑
i=1

(
I{ε̂ni ≤ y} − I{−ε̂ni ≤ y}

)
,(1.3)

where ε̂ni = Yni − xT
niβ̂n (i = 1, . . . , n) denote the residuals obtained from an M-estimator for

the parameter β in the linear model (1.1). Note that a process of this type was also introduced

by Koul (2002, Section 6.5) and that the statistic on the left hand side estimates the function

F (y) +F (−y)− 1, which vanishes under the assumption of symmetry of the error distribution.

Therefore, in principle, a test for the hypothesis (1.2) can be based on a Kolmogorov-Smirnov

or Cramér-von Mises type functional of the process Sn(y). However, as pointed out by Koul

(2002) tests based on the process (1.3) are in general not asymptotically distribution-free. The

purpose of the present paper is to investigate the performance of a bootstrap version of a test



based on a functional of the process (1.3) from an asymptotic point of view and by means of

a simulation study. In Section 2 we present some preliminary results and assumptions, while

Section 3 contains our main theoretical results. We prove weak convergence of a centered version

of the empirical process Sn to a Gaussian process under the null hypothesis of a symmetric error

distribution and any fixed alternative. The covariance structure of the limiting process depends

on the unknown distribution of the error, estimation method and design matrix in a complicated

way, and as a consequence an asymptotically distribution free test statistic is not available. We

propose a modification of the wild bootstrap approach to compute critical values and prove its

consistency. The finite sample properties of this bootstrap procedure are discussed by means

of a simulation study in Section 4 for the case of a linear regression and an ANOVA model.

The numerical results indicate that the new bootstrap test is an interesting alternative to the

existing procedures because it is applicable for sample sizes larger than 20 and more powerful

than the tests based on kernel estimators. Finally some of the more technical details are deferred

to the appendix.

2 M-estimators in linear models

We assume that the density f of the error distribution exists and is uniformly continuous,

positive and denote with F the corresponding distribution function. Moreover the design

matrix Xn ∈ IRn×p is assumed to be of rank p ≤ n and to satisfy the following regularity

assumptions

max
i=1,...,n

xT
ni(X

T
nXn)−1xni = O(

1

n
),(2.1)

lim
n→∞

1

n
XT

nXn = Σ ∈ IRp×p,(2.2)

lim
n→∞

1

n

n∑
i=1

xni = m ∈ IRp.(2.3)

Example 2.1 Consider the classical one-way-layout in analysis of variance, that is

Ynij = μi + εnij, i = 1, . . . , p; j = 1, . . . , ni; n =

p∑
i=1

ni.(2.4)

In this case we have XT
nXn = diag(n1, . . . , np) and it is easy to see that assumptions (2.1) -

(2.3) are satisfied if limn→∞ ni

n
= ki > 0 for all i = 1, . . . , p, where Σ = diag(1/k1, . . . , 1/kp)

and m = (k1, . . . , kp)
T .

Similarly, in the classical linear regression model

Ynij =

p∑
l=1

βlfl(ti) + εnij, i = 1, . . . , k; j = 1, . . . , ni,(2.5)



with linear independent functions f1, . . . , fp and k ≥ p different points t1, . . . , tk we have xT
nij =

(f1(ti), . . . , fp(ti)) (i = 1, . . . , k; j = 1, . . . , ni), and the assumptions (2.1) - (2.3) also follow

from the condition limn→∞ ni

n
= ki > 0 (i = 1, . . . , k), where

Σ =
(∫

fi(t)fj(t)dξ(t)
)p

i,j=1
, m =

(∫
fi(t)dξ(t)

)p

i=1
,

and ξ denotes the measure with masses ki at the points ti (i = 1, . . . , k).

Throughout this paper let β̂n denote an M-estimator for the parameter β. More precisely, let

ψ : IR → IR denote a right continuous function with left limits, nondecreasing, with bounded

total variation, such that
∫
F dψ <∞, E[ψ2(εni)] =

∫
ψ2(t)f(t) dt <∞ and

E[ψ(εni)] =

∫
ψ dF = 0,

then the M-estimator β̂n of β is defined as a solution of the system of equations

XT
n

⎛
⎜⎜⎝
ψ(Yn1 − xT

n1β̂n)
...

ψ(Ynn − xT
nnβ̂n)

⎞
⎟⎟⎠ =

n∑
i=1

xniψ(Yni − xT
niβ̂n) = 0.

Example 2.2 With the choice ψ(x) = x we obtain the least squares estimator

β̂n = (XT
nXn)−1XT

n Yn = β + (XT
nXn)−1XT

n εn

(with the notations Yn = (Yn1, . . . , Ynn)
T , εn = (εn1, . . . , εnn)

T ) for which the above conditions

can easily be verified if the second moment of the error distribution exists. A further important

class of M-estimators is obtained by the function ψ(x) = sign(x), which corresponds to the

median [see e.g. Hampel, Ronchetti, Rousseeuw and Stahel (1986)]. Other classes are the

Huber estimators and quantiles [see e.g. van der Vaart (1998), p.43]. The results of this paper

are applicable for a broad class of M-estimators, but in the examples presented below we

concentrate on the least squares case.

The important properties ofM-estimators in linear regression models with fixed design are care-

fully described in Koul (2002), p. 103, and briefly mentioned here for the sake of completeness.

Under the assumptions stated above we have in particular

||(XT
nXn)1/2(β̂n − β)|| = OP (1),(2.6)

and the stochastic expansion

(XT
nXn)1/2(β̂n − β) =

1∫
f dψ

(XT
nXn)−1/2

n∑
i=1

xniψ(εni) + oP (1)(2.7)



is valid. In order to investigate the properties of the error distribution we introduce the residuals

ε̂ni = Yni − xT
niβ̂n = εni − xT

ni(β̂n − β)

and the corresponding empirical distribution function

F̂n(y) =
1

n

n∑
i=1

I{ε̂ni ≤ y},

which is considered as a process inD[−∞,∞] = D(ĪR), where we use the convention F̂n(−∞) =

0 and F̂n(∞) = 1. It is intuitively clear that – under the assumption that the linear model is

correctly specified – this function is an approximation of the empirical distribution function of

the unobservable errors

Fn(y) =
1

n

n∑
i=1

I{εni ≤ y}.

This statement can be made precise using condition (2.6) and Theorem 6.2.1 in Koul (2002, p.

232), which yields (uniformly with respect to y ∈ IR) the expansion

F̂n(y) = Fn(y) + f(y)
1

n

n∑
i=1

xT
ni(β̂n − β) + oP (

1√
n

)

= Fn(y) +
f(y)∫
f dψ

1

n

n∑
j=1

x̃njψ(εnj) + oP (
1√
n

),

where the second equality follows from the expansion (2.7) and we used the notation

x̃nj =
n∑

i=1

xT
ni(X

T
nXn)−1xnj .(2.8)

Note also that assumptions (2.2) and (2.3) imply

1

n

n∑
j=1

x̃2
nj =

1

n

n∑
j=1

x̃nj −→ mT Σ−1m for n→ ∞.(2.9)

For the construction of a test of symmetry we consider the process
√
n(F̂n(y) − F (y)) and its

reflection. This process has the stochastic expansion

√
n(F̂n(y) − F (y)) = Gn(y) + oP (1)

(uniformly with respect to y ∈ IR), where the process Gn is defined by

Gn(y) =
1√
n

n∑
j=1

(
I{εnj ≤ y} − F (y) +

f(y)∫
f dψ

x̃njψ(εnj)
)
.



A continuous quantile transformation shows that this process in D[−∞,∞] is equivalent to the

process

G̃n(t) = Gn(F−1(t)) =
1√
n

n∑
j=1

(
I{Unj ≤ t} − t+

f(F−1(t))x̃nj∫
f ◦ F−1 dψ̃

ψ̃(Unj)
)
, t ∈ [0, 1],

in D[0, 1], where the random variables Unj = F (εnj) have a uniform distribution and ψ̃ =

ψ ◦ F−1. Now a standard argument shows the weak convergence of Gn in D[−∞,∞] to a

centered Gaussian process G with covariance kernel

Cov(G(x), G(y)) = F (x ∧ y) − F (x)F (y) +mT Σ−1m
f(x)f(y)

(
∫
f dψ)2

∫
ψ2(t)f(t) dt

+mT Σ−1m
( f(x)∫

f dψ

∫ y

−∞
ψ(t)f(t) dt+

f(y)∫
f dψ

∫ x

−∞
ψ(t)f(t) dt

)
.

Example 2.3 Note that in general the covariance kernel depends in a complicated way on the

design matrix (by the quantity m and Σ) and the distribution of the error. However, there

are important situations, where the structure simplifies substantially. Consider for example

the situation discussed in Example 2.1 for the one-way-layout (2.4), then it is easy to see that

mT Σm = 1. Similarly, in the classical polynomial regression model (2.5) with fi(t) = ti−1

(i = 1, . . . , p) it follows by a straightforward calculation that mT Σm = 1. If least squares

estimation is used for the parameter β we obtain in these cases that the covariance matrix of

the limiting process G is given by

Cov(G(x), G(y)) = F (x ∧ y) − F (x)F (y) + f(x)f(y)

∫
t2f(t)dt+ F (x)f(y) + F (y)f(x).

Nevertheless, even in this case the covariance kernel of the process G depends in a complicated

manner on the distribution function F and its density and this remark applies in particular to

the process Sn defined in (1.3).

3 Testing for a symmetric error distribution

Recall the definition of the hypothesis of symmetry in (1.2) and the definition of the empirical

process in (1.3). Note that the statistic Sn(y) on the left hand side estimates the function

F (y) + F (−y)− 1, which vanishes under the assumption of symmetry of the error distribution

and consequently a test for symmetry can be based on a Kolmogorov-Smirnov or Cramér-von-

Mises type functional of the process F̂n(y) + F̂n(−y−) − 1. As indicated in Example 2.3 and

pointed out by Koul (2002) in more detail, tests based on the process (1.3) are in general not

asymptotically distribution-free. For this reason we investigate the performance of a bootstrap

procedure to obtain critical values for these tests. Our first result states the weak convergence



of the process (1.3) in the space D[−∞,∞] and is needed to establish the consistency of a

modification of the wild bootstrap (adapted to the problem of testing for symmetry), which

will be given in the second part of this section (see Theorem 3.4).

Theorem 3.1 The estimated empirical symmetry process

Ŝn(y) =
√
n

(
F̂n(y) + F̂n(−y−) − F (y) − F (−y)

)
converges weakly in D[−∞,∞] to a Gaussian process G with covariance

Cov(G(x), G(y)) = F (x ∧ y) − F (x)F (y) + F ((−x) ∧ y) − F (−x)F (y) + F (x ∧ (−y))
− F (x)F (−y) + F ((−x) ∧ (−y)) − F (−x)F (−y)
+ (f(x) + f(−x))(U(y) + U(−y))mT Σ−1m/(

∫
f dψ)

+ (f(y) + f(−y))(U(x) + U(−x))mT Σ−1m/(
∫
f dψ)

+ (f(x) + f(−x))(f(y) + f(−y))mT Σ−1mσ2/(
∫
f dψ)2

where

σ2 = E[ψ2(εn1)] =

∫ ∞

−∞
ψ2(x)f(x) dx, U(x) = E[I{εn1 ≤ x}ψ(εn1)] =

∫ x

−∞
ψ(t)f(t) dt

and the matrix Σ and the vector m are defined in (2.2) and (2.3), respectively.

If the function ψ is symmetric and the null hypothesis of symmetry is valid this covariance

kernel reduces to:

Cov(G(x), G(y)) = 2F (−(|x| ∨ |y|)) +
4mT Σ−1m

(
∫
f dψ)

(f(x)U(y) + f(y)U(x))

+
4f(x)f(y)mTΣ−1mσ2

(
∫
f dψ)2

.

Suitable statistics for testing symmetry of the error distribution F are, for example, of Kolmogorov–

Smirnov or Cramer–von–Mises type,

sup
t∈IR

|Ŝn(t)| and

∫
Ŝ2

n(t) dĤn(t),(3.1)

where Ĥn is the empirical distribution function of the absolute values of the estimated resid-

uals |ε̂1n|, . . . , |ε̂nn|, and the null hypothesis of symmetry is rejected for large values of these

statistics. The asymptotic distribution of the test statistics can be obtained from Theorem

3.1, an application of the Continuous Mapping Theorem and (in the latter case) the uniform

convergence of Ĥn,

sup
t∈IR

|Ĥn(t) −H(t)| = op(1),



where H denotes the distribution function of |εn1|. A standard argument on contiguity [see

e. g. Witting, Müller–Funk (1995), Theorem 6.113, 6.124 and 6.138 or van der Vaart (1998),

Section 6] now shows that the resulting tests are consistent with respect to local alternatives

converging to the null at a rate n−1/2. However, the null distribution of the process Ŝn(t) is not

asymptotically distribution free and the critical values cannot be computed without estimating

the unknown features of the error distribution of the data generating process.

To avoid the problem of estimating the distribution function F and its density function f we

propose a modification of the wild bootstrap approach, which is adapted to the specific problem

of testing symmetry. For this let vn1, . . . , vnn be independent and identically distributed random

variables, which are independent of the sample Yn = {Yn1, . . . ,Ynn} such that P (vni = 1) =

P (vni = −1) = 1/2, i = 1, . . . , n. Note that whether the underlying error distribution F is

symmetric or not the distribution of the random variable vniεni is symmetric with density f̃

and distribution function F̃ given by

f̃(t) =
1

2
(f(t) + f(−t)), F̃ (t) =

1

2
(F (t) + 1 − F (−t)),(3.2)

respectively. We now define bootstrap residuals by

ε∗ni = vniε̂ni

and build new bootstrap observations by

Y ∗
ni = xT

niβ̂n + ε∗ni (i = 1, . . . , n).(3.3)

Finally, we calculate estimated residuals from the bootstrap sample

ε̂∗ni = Y ∗
ni − xT

niβ̂
∗
n = ε∗ni − xT

ni(β̂
∗
n − β̂n)

where β̂∗
n is defined as the M-estimator for the “parameter” β̂n in the linear model (3.3).

Throughout the remaining part of this section we assume that a symmetric function ψ =

ψ(−x) = −ψ(x) is used for the calculation of the M-estimates. As a consequence we obtain

bootstrap observations under the null hypothesis.

The bootstrap version of the empirical distribution function of the residuals is now given by

F̂ ∗
n(y) =

1

n

n∑
i=1

I{ε̂∗ni ≤ y},

and the empirical distribution function of the symmetrized (unobservable) errors is denoted by

F ∗
n(y) =

1

n

n∑
i=1

I{vniεni ≤ y}.

Finally, we define the analogue of the empirical symmetry process in the bootstrap setting, that

is

Ŝ∗
n(y) =

√
n(F̂ ∗

n(y) − 1 + F̂ ∗
n(−y−)) =

1√
n

n∑
i=1

(
I{ε̂∗ni ≤ y} − I{−ε̂∗ni ≤ y}

)
.



Note that no centering is necessary here because of the identity

E[F ∗
n(y) − 1 + F ∗

n(−y−) | Yn] = 0.

The proof of the following auxiliary result, which gives an asymptotic expansion for the process

Ŝ∗
n(y), is deferred to the appendix.

Proposition 3.2 Uniformly with respect to y ∈ IR the expansion

Ŝ∗
n(y) =

√
n(F̂ ∗

n(y) − 1 + F̂ ∗
n(−y−)) = G∗

n(y) + oP (1)

is valid, where the process G∗
n is defined by

G∗
n(y) =

√
n
(
F ∗

n(y) − 1 + F ∗
n(−y−) + (f(y) + f(−y)) 1

n

n∑
i=1

xT
ni(β̂

∗
n − β̂n)

)
.

In order to establish the consistency of the proposed bootstrap procedure we require the fol-

lowing additional assumptions for the estimator β̂∗
n from the bootstrap sample

||(XT
nXn)1/2(β̂∗

n − β̂n)|| = OP (1)(3.4)

1

n

n∑
i=1

xT
ni(β̂

∗
n − β̂n) =

1∫
f dψ

1

n

n∑
i=1

x̃niψ(vniεni) + oP (
1√
n

).(3.5)

Remark 3.3 (a) Note that the conditions (3.4) and (3.5) are fulfilled if β̂n and β̂∗
n are defined

as least squares estimators, that is ψ(x) = x. In this case we have

(XT
nXn)1/2(β̂∗

n − β̂n) = (XT
nXn)−1/2

n∑
i=1

xniε
∗
ni

= (XT
nXn)−1/2

n∑
i=1

xni(vniεni − vnix
T
ni(β̂n − β)),

and therefore (with Example 2.2)

1

n

n∑
i=1

xT
ni(β̂

∗
n − β̂n) =

1

n

n∑
i=1

x̃nivniεni − Zn,

where the random variable Zn is defined by

Zn =
1

n

n∑
j=1

n∑
k=1

vnkεnjx̃nkx
T
nk(X

T
nXn)−1xnj = oP (

1√
n

).



The last equality follows from E[Zn] = 0 and a calculation of the variance, which gives

Var(Zn) = o( 1
n
).

(b) If ψ is continuously differentiable then the condition (3.5) follows from the assumption

(compare with (2.7)]

(XT
nXn)1/2(β̂∗

n − β̂n) =
1∫
f dψ

(XT
nXn)−1/2

n∑
i=1

xniψ(ε∗ni) + oP (1)(3.6)

by means of a Taylor expansion

ψ(ε∗ni) = ψ(vniε̂ni) = ψ(vniεni − vnix
T
ni(β̂n − β)) = ψ(vniεni) − vnix

T
ni(β̂n − β)ψ′(ξni)

and an application of the expansion (2.7).

(c) It is notable that the choice of a symmetric function ψ in the estimating equations for the

M-estimator is essential for the appropriate performance of the bootstrap procedure. As a

direct consequence we obtain E[ψ(ε∗ni) | Yn] = E[ψ(vniε̂ni) | ε̂ni] = (ψ(ε̂ni)+ψ(−ε̂ni))/2 = 0 and

therefore we do not have to center the definition of M-estimator in the bootstrap setting, in

the contrast to the work of Koul and Lahiri (1994) in this context. The dominating parts of

the expansion (3.5) and (3.6) have expectation zero, conditionally on the sample Yn.

Theorem 3.4 Assume that the density f of the error distribution is Lipschitz continuous of

order γ ≥ 1/2, then the process

Ŝ∗
n(y) =

√
n

(
F̂ ∗

n(y) − 1 + F̂ ∗
n(−y−)

)
,

conditioned on Yn, converges weakly in D[−∞,∞] to a centered Gaussian process G̃ with co-

variance kernel

Cov(G̃(x), G̃(y)) = 2F̃ (−(|x| ∨ |y|)) + 2f̃(x)(U(y) + U(−y))mT Σ−1m/(
∫
f(t) dψ(t))

+ 2f̃(y)(U(x) + U(−x))mT Σ−1m/(
∫
f(t) dψ(t))

+ 4f̃(x)f̃(y)mT Σ−1mσ2/(
∫
f(t) dψ(t))2

in probability, where the function f̃(y) = (f(y) + f(−y))/2 denotes the density of the sym-

metrized error and F̃ (y) = (F (y) + 1 − F (−y))/2 the corresponding distribution function.

Under the null hypothesis of symmetry H0 : f = f̃ we have Cov(G̃(x), G̃(y)) = Cov(G(x), G(y))

where the process G and its covariance kernel are defined in Theorem 3.1.

The proof of the theorem is deferred to the appendix. From the theorem the consistency of a

test for symmetry based on the wild bootstrap procedure can be deduced as follows. Let Tn

denote the test statistic based on a continuous functional of the process Ŝn and let T ∗
n denote



the corresponding bootstrap statistic based on Ŝ∗
n. If tn is the realization of the test statistic

Tn based on the sample Yn then a level α–test is obtained by rejecting symmetry whenever

tn > c1−α, where PH0(Tn > c1−α) = α. The quantile c1−α can now be approximated by the

bootstrap quantile c∗1−α defined by

P (T ∗
n > c∗1−α | Yn) = α.(3.7)

¿From Theorem 3.4 and the Continuous Mapping Theorem we obtain a consistent asymptotic

level α–test by rejecting the null hypothesis if tn > c∗1−α. We will illustrate the finite sample

properties of this approach by means of simulation in Section 4.

4 Finite sample properties

In this section we investigate the finite sample properties of the bootstrap test proposed in

Section 3. We consider the classical one-way-layout in analysis of variance and a quadratic

regression model on the interval [0, 1]. If Tn is a functional of the empirical process (1.3), then

the null hypothesis is rejected if

Tn > T ∗
n(�B(1−α)�),(4.1)

where T ∗
n(1) < . . . < T ∗

n(B) denote the order statistic of the bootstrap sample T
∗(1)
n , . . . , T

∗(B)
n ,

where the bootstrap is described in Section 3. We use B = 200 replications for the resampling

procedure and 2000 simulation runs for the estimation of the rejection probabilities.

4.1 Testing for a symmetric error distribution in a regression model

In this example we illustrate the performance of the bootstrap procedure in the problem of

testing for a symmetric error distribution in a quadratic regression model, that is

Yni = β1xni + β2x
2
ni + εni, i = 1, . . . , n,(4.2)

where the explanatory variables xni = i/n (i = 1, . . . , n) correspond to the uniform design.

The finite sample performance of the Cramér-von-Mises type test statistic

Tn =

∫
R

(
F̂n(x) − 1 + F̂n(−x−)

)2

dĤn(x)(4.3)

is investigated, where F̂n denotes the empirical distribution function of the residuals ε̂n1, . . . , ε̂nn

and Ĥn(x) = F̂n(x)−F̂n(−x−) denotes the empirical distribution function of the absolute values

of the residuals |ε̂n1|, . . . , |ε̂nn| [see Shorack and Wellner (1986), p. 747]. The null hypothesis is

rejected by the bootstrap test if the inequality (4.1) is satisfied, where the resampling scheme

is described in Section 3. The parameters in model (4.2) are given by β1 = β2 = 1, while the



error distribution is given by

εni ∼ N (0, 1) (null hypothesis)

(4.4)

εni ∼ (χ2
k − k)/

√
2k, k = 1, 2, 3, 4.

The results are depicted in Table 4.1 and show a reasonable approximation of the nominal level

in all cases. The alternative of non-symmetry is detected with high probability, even in the

case k = 4, which is rather close to symmetry.

It might be of interest to compare these results with the test based on kernel estimators, which

was presented by Ahmad and Li (1997). In their simulation study these authors considered

the problem of testing the symmetry of an i.i.d. sample of observations and a comparison is

not directly possible. For this reason we also included the symmetry test of Ahmad and Li

(1997) in our study. Our numerical results show that the approximation of the nominal level

of the test of Ahmad and Li (1997) is not too accurate. This phenomenon was also observed

by other authors in the context of testing model assumptions [see e.g. Härdle and Mammen

(1993), Hjellvik and Tjøstheim (1996) or Fan and Linton (2003)]. Therefore we implemented

a bootstrap version of Ahmad and Li’s (1997) test. We investigated the performance of the

test in the situation discussed in the previous paragraph. The test requires a specification of a

bandwidth, say a, which was chosen as a = σ̂2/n1/2, which was recommended by Ahmad and

Li (1997). Here σ̂2 is the least squares estimator of the variance in the linear regression model

(4.2). The rejection probabilities of Ahmad and Li’s (1997) test for the error distributions given

in (4.4) are presented in Table 4.2. We observe that in all cases under consideration the test

based on the empirical process approach yields substantially higher rejection probabilities than

the test of Ahmad and Li (1997). Moreover, this test does not rely on a smoothing parameter.

n 25 50 75 100

α 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%

df0 .031 .055 .109 .034 .058 .106 .029 .586 .105 .029 .056 .102

df1 .728 .806 .888 .987 .993 .995 1.000 1.000 1.000 1.000 1.000 1.000

df2 .495 .618 .738 .921 .957 .980 .993 .997 .999 .999 1.000 1.000

df3 .367 .462 .561 .795 .859 .920 .958 .977 .989 .993 .996 .997

df4 .275 .373 .493 .674 .773 .853 .880 .925 .961 .968 .983 .994

Table 4.1: Simulated rejection probabilities of the bootstrap test for a symmetric error distri-

bution. The model is given by (4.2) and the error distribution is normal (df0) and chi-square

with k degrees of freedom (dfk) normalized such that E[εni] = 0, E[ε2
ni] = 1.



n 25 50 75 100

α 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%

df0 .034 .058 .102 .032 .057 .105 .031 .053 .109 .028 .054 .104

df1 .681 .717 .782 .929 .947 .967 .992 .994 .998 .996 .996 1.000

df2 .479 .556 .658 .748 .809 .882 .906 .930 .965 .970 .979 .996

df3 .346 .412 .510 .579 .649 .753 .755 .806 .870 .878 .913 .954

df4 .251 .304 .418 .459 .522 .627 .645 .697 .808 .745 .811 .868

Table 4.2: Simulated rejection probabilities of Ahmad and Li’s (1997) test for symmetry in the

model (4.2). The error distribution is normal (df0) and chi-square with k degrees of freedom

(dfk) normalized such that E[εni] = 0, E[ε2
ni] = 1.

4.2 Testing for symmetry of the error distribution in ANOVA mod-

els.

In this example we investigate the properties of the bootstrap procedure in the classical ANOVA

model of a one-way-layout, that is

Yij = μi + εij, i = 1, . . . , p; j = 1, . . . , ni;n =

p∑
i=1

ni.(4.5)

We consider the case of p = 4 factors and n = 20 and n = 40 total observations, where the

sample sizes for the different groups are

A : n1 = n2 = n3 = n4 =
n

4
;

(4.6)

B : n1 =
3n

20
;n2 =

n

4
;n3 =

n

4
;n4 =

7n

20
.

The finite sample properties of the test for symmetry of the error distribution in the model

(4.5) are of interest, where the statistic Tn is defined by the Kolmogorov-Smirnov functional,

that is

Tn = sup
x∈R

|F̂n(x) − 1 + F̂n(−x−)|.

The variance of the error in the model (4.5) is given by σ2 = 1, while the error distributions

are defined in (4.4). The simulated rejection probabilities are shown in Table 4.3.

The results are similar as in Example 4.1. We observe a reasonable approximation of the

nominal level, even for the sample size n = 20, and deviations from the null hypothesis are

detected with high probability. It is interesting to note that the unbalanced design B yields

a slightly better approximation of the nominal level than the balanced design A. However, for

more unbalanced designs the approximation of the level is usually not so accurate.



n = 20 n = 40

A B A B

2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%

df0 0.020 0.042 0.092 0.022 0.048 0.088 0.025 0.045 0.091 0.026 0.050 0.089

df1 0.327 0.422 0.572 0.303 0.394 0.528 0.878 0.935 0.965 0.844 0.903 0.946

df2 0.190 0.259 0.399 0.165 0.242 0.379 0.580 0.690 0.798 0.608 0.716 0.816

df3 0.126 0.192 0.308 0.135 0.198 0.319 0.431 0.541 0.663 0.422 0.532 0.656

df4 0.111 0.174 0.280 0.098 0.153 0.259 0.313 0.407 0.540 0.338 0.430 0.564

Table 4.3: Simulated rejection probabilities of the bootstrap test (4.1) for a symmetric error

distribution in the one-way-layout (4.5) with four factors for various distributions defined in

(4.4) and designs given in (4.6).
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5 Appendix: Proofs

5.1 Proof of Theorem 3.1

The proof follows by standard arguments and for this reason we will only indicate the main

steps. From Theorem 6.2.1, Koul (2002, p. 232), we have the following decomposition of the

process, uniformly with respect to y ∈ IR,

Ŝn(y) =
1√
n

n∑
i=1

(
I{ε̂ni ≤ y} − I{−ε̂ni ≤ y} − F (y) + 1 − F (−y)

)

=
√
n
(
Fn(y) − 1 + Fn(−y−) − F (y) + 1 − F (−y)

+ (f(y) + f(−y)) 1

n

n∑
i=1

xT
ni(β̂n − β)

)
+ oP (1).

With the expansion (2.7) of the M-estimator we obtain

Ŝn(y) = Gn(y) + oP (1),



uniformly with respect to y ∈ IR, where the process Gn is defined by

Gn(y) =
1√
n

n∑
i=1

(
I{εni ≤ y} − I{−εni ≤ y} − F (y) + 1 − F (−y)

+ (f(y) + f(−y)) 1∫
f dψ

x̃niψ(εni)
)
.

A straightforward calculation of the covariances gives

Cov(Gn(x), Gn(y)) = Cov(G(x), G(y)) + o(1),

where Cov(G(x), G(y)) is defined in Theorem 3.1.

The weak convergence of the finite dimensional distributions of the process Gn is now obtained

by an application of the Cramér–Wold device and the Lindeberg condition. Finally, tightness

of the process Gn can be shown in terms of asymptotic equicontinuity, that is for all ε > 0

lim
δ↘0

lim sup
n→∞

P
(

sup
x,y∈ĪR
|x−y|≤δ

∣∣∣Gn(x) −Gn(y)
∣∣∣ > ε

)
= 0.

This follows from tightness of the standard empirical process and from uniform continuity of

the density f . �

5.2 Proof of Proposition 3.2.

For vectors a, b ∈ IRp and real values x ∈ IR, we introduce the notation

Y (x, a, b) =
1√
n

n∑
i=1

(
I{vniεni ≤ x+ vnic

T
nia+ cTnib} − P (vniεni ≤ x+ vnic

T
nia+ cTnib)

)
,

where we assume for the (nonrandom) weights cni ∈ IRp

max
i=1,...,n

||cni|| = o(1) and
1√
n

n∑
i=1

||cni|| = O(1).(4.7)

The proof of the proposition (3.2) requires the following auxiliary result.

Lemma 5.1 For each L > 0:

sup
x∈IR,||a||≤L,||b||≤L

|Y (x, a, b) − Y (x, 0, 0)| = oP (1).

Proof. The proof can be done in a similar manner as the proofs of Lemmata 2.3.2. – 2.3.4.

(Koul, 2002, p. 53) and is therefore omitted. �



Now we apply Lemma 5.1 with the definitions cTni = xT
ni(X

T
nXn)−1/2, a = (XT

nXn)1/2(β̂n − β)

and b = (XT
nXn)1/2(β̂∗

n − β̂n) and obtain uniformly with respect to y ∈ IR,

1√
n
Ŝ∗

n(y) − (F ∗
n(y) − 1 + F ∗

n(−y−))

=
1

n

n∑
i=1

(
I{vniεni ≤ y + vnix

T
ni(β̂n − β) + xT

ni(β̂
∗
n − β̂n)} − I{vniεni ≤ y}

− I{−vniεni ≤ y − vnix
T
ni(β̂n − β) − xT

ni(β̂
∗
n − β̂n)} + I{−vniεni ≤ y}

)

=
1

n

n∑
i=1

(
P (vε ≤ y + vxT

ni(β̂n − β) + xT
ni(β̂

∗
n − β̂n) | Yn) − P (vε ≤ y)

− P (−vε ≤ y − vxT
ni(β̂n − β) − xT

ni(β̂
∗
n − β̂n) | Yn) + P (−vε ≤ y)

)
+ oP (

1√
n

)

=
1

2n

n∑
i=1

(
F (y + xT

ni(β̂n − β) + xT
ni(β̂

∗
n − β̂n)) − F (y)

− F (−y + xT
ni(β̂n − β) − xT

ni(β̂
∗
n − β̂n)) + F (−y)

+ F (−y + xT
ni(β̂n − β) + xT

ni(β̂
∗
n − β̂n)) − F (−y)

− F (y + xT
ni(β̂n − β) − xT

ni(β̂
∗
n − β̂n)) + F (y)

)
+ oP (

1√
n

).

Here ε and v denote independent random variables, independent of Yn, such that P (v = −1) =

P (v = 1) = 1/2 and ε has density f. By an application of Lemma 2.3.1. of Koul (2002) we

further have, uniformly with respect to y ∈ IR,

1√
n
Ŝ∗

n(y) − (F ∗
n(y) − 1 + F ∗

n(−y−))

=
1

2n

n∑
i=1

(
f(y)(xT

ni(β̂n − β) + xT
ni(β̂

∗
n − β̂n)) − f(−y)(xT

ni(β̂n − β) − xT
ni(β̂

∗
n − β̂n))

+ f(−y)(xT
ni(β̂n − β) + xT

ni(β̂
∗
n − β̂n)) − f(y)(xT

ni(β̂n − β) − xT
ni(β̂

∗
n − β̂n))

)
+ oP (

1√
n

)

= (f(y) + f(−y)) 1

n

n∑
i=1

xT
ni(β̂

∗
n − β̂n) + oP (

1√
n

).

Finally we note that the conditions for an application of Lemma 2.3.1 of Koul (2002, p. 52) are

satisfied because of the uniform continuity of the density f and assumptions (2.1), (2.6) and

(3.4). �



5.3 Proof of Theorem 3.4

Using the expansion in Proposition 3.2 and assumption (3.5) we have uniformly with respect

to y ∈ IR

Ŝ∗
n(y) = G̃∗

n(y) + oP (1)

where the process G̃∗
n is defined by

G̃∗
n(y) =

1√
n

n∑
i=1

(
I{vniεni ≤ y} − I{−vniεni ≤ y} + 2f̃(y)

1∫
f dψ

x̃niψ(vniεni)
)

=
1√
n

n∑
i=1

vni

(
I{εni ≤ y} − I{−εni ≤ y} + 2f̃(y)

1∫
f dψ

x̃niψ(εni)
)
.

The last equality follows with the definition of the random variables vni and the symmetry of

the function ψ. Now we obtain for the conditional covariance of the asymptotically equivalent

process G̃∗
n

E[G̃∗
n(x)G̃∗

n(y) | Yn] =
1

n

n∑
i=1

(1

2
(I{εni ≤ x ∧ y} + I{−εni ≤ x ∧ y})

− 1

2
(I{εni ≤ x} + I{−εni ≤ x})1

2
(I{εni ≤ y} + I{−εni ≤ y})

+
1

2
(I{εni ≤ (−x) ∧ y} + I{−εni ≤ (−x) ∧ y})

− 1

2
(I{εni ≤ −x} + I{−εni ≤ −x})1

2
(I{εni ≤ y} + I{−εni ≤ y})

+
1

2
(I{εni ≤ x ∧ (−y)} + I{−εni ≤ x ∧ (−y)})

− 1

2
(I{εni ≤ x} + I{−εni ≤ x})1

2
(I{εni ≤ −y} + I{−εni ≤ −y})

+
1

2
(I{εni ≤ (−x) ∧ (−y)} + I{−εni ≤ (−x) ∧ (−y)})

− 1

2
(I{εni ≤ −x} + I{−εni ≤ −x})1

2
(I{εni ≤ −y} + I{−εni ≤ −y})

)

+ 4f̃(y)
1

n

n∑
i=1

x̃niψ(εni)
1

2
(I{εni ≤ x} − I{−εni ≤ x})/(∫ f dψ)

+ 4f̃(x)
1

n

n∑
i=1

x̃niψ(εni)
1

2
(I{εni ≤ y} − I{−εni ≤ y})/(∫ f dψ)

+ 4f̃(x)f̃(y)
1

n

n∑
i=1

x̃2
niψ

2(εni)/(
∫
f dψ)2 (a.s.)

and by the weak law of large numbers this random variable converges in probability to the

covariance kernel Cov(G̃(x), G̃(y)) defined in Theorem 3.4.



In a second step we show the conditional weak convergence in probability of the finite dimen-

sional distributions applying the Cramér–Wold device and Lindeberg’s condition. For this let

a1, . . . , ak, y1, . . . , yk ∈ IR denote arbitrary constants and consider the linear combination

k∑
j=1

ajG̃
∗
n(yj) =

1√
n

n∑
i=1

vniAni

with

Ani =

k∑
j=1

aj

(
I{εni ≤ yj} − I{−εni ≤ yj} + 2

f̃(yj)∫
f dψ

x̃niψ(εni)
)
.

It is easy to see that

Ani ≤ c1 + c2ψ(εni)

for some suitable constants c1 and c2. For δ > 0 we consider the quantity

Ln(δ) =
1

n

n∑
i=1

E
[
(Anivni)

2I{|Anivni| ≥
√
nδ}

∣∣∣Yn

]
.

Observing that |vni| = 1, it follows for each K > 0 and some constants d1, d2, d3, d4

lim sup
n→∞

Ln(δ) ≤ lim sup
n→∞

1

n

n∑
i=1

(d1 + d2ψ
2(εni))I{d3 + d4|ψ(εni)| ≥ K}.

Applying the strong law of large numbers for n → ∞ and considering K → ∞ we obtain the

assertion,

lim sup
n→∞

Ln(δ) = 0 with probability 1.

Finally we show conditional tightness of the process G̃∗
n in probability. To this end we apply

the continuous quantile transformation t = F (y) and consider the process

H∗
n(t) = G̃∗

n(F−1(t)) =
1√
n

n∑
i=1

vnih(εni, t),

in D[0, 1], where t ∈ [0, 1] and

h(εni, t) = I{F (εni) ≤ t} − I{F (−εni) ≤ t} + 2f̃(F−1(t))
1∫
f dψ

x̃niψ(εni).

We obtain for 0 ≤ s ≤ t ≤ 1 with suitable constants c, c′ > 0

E
[
(H∗

n(t) −H∗
n(s))4

∣∣∣Yn

]
=

3

n2

n∑
i=1

n∑
j=1
j �=i

(h(εni, t) − h(εni, s))
2(h(εnj, t) − h(εnj, s))

2



+
1

n2

n∑
i=1

(h(εni, t) − h(εni, s))
4

≤ 3
(1

n

n∑
i=1

(h(εni, t) − h(εni, s))
2
)2

≤ c
( 1

n

n∑
i=1

(I{s < F (εni) ≤ t} + I{s < F (−εni) ≤ t}

+ (f̃(F−1(t)) − f̃(F−1(s)))2x̃2
niψ

2(εni))
)2

≤ c′
(
Mn(t) −Mn(s)

)2

where the last inequality follows from the Lipschitz continuity of f and we introduced the

definition

Mn(t) =
1

n

n∑
i=1

(I{F (εni) ≤ t} + I{F (−εni) ≤ t} + F−1(t)x̃2
niψ

2(εni)).

(Mn(t))n∈N is a sequence of random functions, increasing in t ∈ [0, 1], which converges uniformly

in t ∈ [0, 1] almost surely to the increasing function M(t) defined by

M(t) = P (F (εn1) ≤ t) + P (F (−εni) ≤ t) + F−1(t)mT Σ−1mE[ψ2(εn1)].

This proves tightness of the process H∗
n, conditionally on the sample Yn, with probability 1 and

completes the proof of Theorem 3.4. �
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